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What brought us here?

Or a different question: do we have a colleague ready to examine critically
every principle, even if comes from highest authorities? The answer is yes!
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Round is nice

A trademark question in spectral geometry is about the shape which
makes a given property optimal.

Quite often the optimal shape has a rotational symmetry; each of us
can quote examples starting from the Faber-Krahn inequality

Note that such a symmetry always raised some fascination; recall how
an old scifi described a computer-generated ideal beauty:

The canvas was covered by a complicated pattern of infinite number arabesques each of which
decomposed into arabescues more minutious [...] and in the middle of the page was an empty,
ideally round white disc.

Stanislaw  Lem: The Magellanic cloud
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An important example

Rafael certainly contributed to
this fascination, through one
his most famous results, ob-
tained together with Mark:
the proof, or rather proofs,
of the Payne-Pólya-Weinberger
inequality

It is useful to go through the

history of attempts to demon-

strate the PPW conjecture to

realize what a tour de force this

result is
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But things are not always that simple

In this talk I will stay on what one can call the Faber-Krahn level asking
shapes optimizing the ground-state energy

We will see that the rotational symmetry keeps playing an important role
but the results may depend substantially on both the boundary conditions
and topology

As the first example, consider the optimization problem for a Robin
Laplacian associated with the quadratic form

ψ 7→
∫

Ω
|∇ψ(x)|2dx + α

∫
∂Ω
|ψ(s)|2ds

on H1(Ω). As long as α > 0 the result is similar to Faber-Krahn: the
principal eigenvalue λα1 (Ω) is uniquely minimized among the sets of the
same volume by λα1 (B) where B is the ball
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Attractive Robin boundary

The situation changes if α < 0. In this case Bareket1 conjectured that
λα1 (B) is now maximal among ground states for sets of the same volume

This is true for local deformations of a ball, but fails globally: Freitas &
Krejčǐŕık2 showed that λα1 (Ω) > λα1 (B) may hold if Ω is a spherical shell.

On the other hand, note that by Antunes et al.3 the analogous inequality
does hold if we compare sets of the same perimeter

Furthermore, in two dimensions Krejčǐŕık & Lotoreichik4 showed that
λα1 (Ω) ≥ λα1 (B) holds if Ω is the exterior of a convex set of the same
area/perimeter as B; under additional geometrical constraints the result
extends to non-convex domains and higher dimensions5

1
M. Bareket: On an isoperimetric inequality for the first eigenvalue of a b.v.p., SIAM J. Math. Anal. 8 (1977), 280-287

2
P. Freitas, D. Krejčǐŕık: The first Robin eigenvalue with negative boundary parameter, Adv. Math. 280 (2015), 322-339

3
P. Antunes, P. Freitas, D. Krejčǐŕık: Bounds and extremal domains for Robin ..., Adv. Calc. Var. 10 (2017), 357-380

4
D. Krejčǐŕık, V. Lotoreichik: Optimisation of the lowest Robin eigenvalue ..., J. Convex Anal. 25 (2018), 319-337

5
D. Krejčǐŕık, V. Lotoreichik: Optimisation ..., II: non-convex domains and higher dim..., arXiv:1707.02269 [math.SP]

Pavel Exner: On loops, cones, and stars BenguriaFest 2018 December 20, 2018 6/1



Back to the Dirichlet case
Even when the boundary is Dirichlet, the situation is not simple and
topology may play role. Let us mention pictorially two examples in
maximum symmetry may lead to maximum of the principal eigenvalue
If we seek extremum among strips of fixed length and width we have6
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ground state of ground state of<

whenever the strip is not a circular annulus.
Similarly, for a circular obstacle in circular cavity we have7
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ground state of ground state of<

whenever the obstacle is off center; the minimum is reached when it is
touching the boundary

6
P.E., E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature,

in Proceedings of QMath7, Birkhäuser, Basel 1999; pp. 47-53
7

E.M. Harrell, P. Kröger, K. Kurata: On the placement of an obstacle ..., SIAM J. Math. Anal. 33 (2001), 240-259
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Singular potentials

The main aim of this talk is to show that similar isoperimetric-type
problems arise in Rd if the particle is subject to suitable classes of
singular potentials, specifically for Schrödinger operators of the type

Hα,Γ = −∆− αδ(x − Γ) , α > 0 ,

in L2(Rd ), where Γ is a manifold or a more general subset of Rd with
some (not very strong, Lipschitz is enough) regularity properties

Motivation: (a) Interesting mathematical objects, in particular, since
their spectral properties reflect the geometry of Γ
(b) an alternative model of quantum graphs and generalized graphs
with the advantage that tunneling between edges is not neglected

Remarks: (a) In this talk we will consider primarily situations where Γ
is a manifold or complex of codimension one
(b) However, we will also say something about more singular interactions,
either of δ′ type, or with support of codimension two
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The δ-interaction supported by a manifold
A natural tool to define the corresponding singular Schrödinger
operator is to employ the appropriate quadratic form, namely

qδ,α[ψ] := ‖∇ψ‖2
L2(Rd ) − α‖f |Γ‖

2
L2(Γ)

with the domain H1(Rd ) and to use the first representation theorem.

If Γ is a smooth manifold with codim Γ = 1 one can easily check
that the form defines a unique self-adjoint operator Hα,Γ, which can
alternatively characterized by boundary conditions: it acts as −∆ on
functions from H2

loc(Rd \ Γ), which are continuous and exhibit a
normal-derivative jump,

∂ψ

∂n
(x)

∣∣∣∣
+

− ∂ψ

∂n
(x)

∣∣∣∣
−

= −α(x)ψ(x)

This explains the formal expression as describing the attractive
δ-interaction of strength α(x) perpendicular to Γ at the point x .

Alternatively, one sometimes uses the symbol −∆δ,α for this operator.
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Planar loops
Let Γ be a loop in Rd , d ≥ 2, parametrized by its arc length, i.e. a
piecewise differentiable function Γ : [0, L]→ Rd such that Γ(0) = Γ(L)
and |Γ̇(s)| = 1 for all but finitely many s ∈ [0, L]. We have8

Theorem ([E-Harrell-Loss’06])

Let d = 2. For any α > 0 and L > 0 we have λ1(α, Γ) ≤ λ1(α, C),
where C is a circle of perimeter L, the inequality being sharp unless Γ
is congruent with C.

Proof idea: One employs a generalized Birman-Schwinger principle by
which there is one-to-one correspondence between eigenvalues −κ2 of
Hα,Γ and solutions to the integral-operator equation

Rκα,Γφ = φ , where Rκα,Γ(s, s ′) :=
α

2π
K0(κ|Γ(s)− Γ(s ′)|)

on L2([0, L]), where K0 is the Macdonald function
8

P.E., E.M. Harrell, M. Loss: Inequalities for means of chords, with application ..., Lett. Math. Phys. 75 (2006), 242-233
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Proof idea, continued

We employ inequalities on mean values of chords denoted as Cp
L (u):∫ L

0
|Γ(s + u)− Γ(s)|pds ≤ L1+p

πp
sinp πu

L
, p > 0, u ∈ (0, 1

2L]

This may not be true for all p > 0, however, a simple Fourier analysis
allows one to demonstrate the following result:

Proposition

C 2
L (u) is valid for any u ∈ (0, 1

2L], and the inequality is strict unless Γ is a
planar circle; by convexity the same is true for all p < 2.

Using a variational argument together with the fact that K0(·) appearing
in the resolvent kernel is strictly monotonous and convex the optimization
problem for Rκα,Γ is reduced to the inequality C 1

L (u) being thus proved �

Remark: The (reverse) inequalities hold also for p ∈ [−2, 0) showing, e.g.,
that a charged loop in the absence of gravity takes a circular form
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A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed
at the arc distances jL

N , j = 0, . . . ,N1, in other words, the formal
Hamiltonian

HN
α,Γ = −∆ + α̃

N−1∑
j=0

δ

(
x − Γ

(
jL

N

))
in L2(Rd ), d = 2, 3, where the last term has to be properly defined

We are interested in the shape of Γ which maximizes the ground
state energy provided, of course, that the discrete spectrum of HN

α,Γ

is non-empty; this requirement is nontrivial for d = 3

Introduce the generalized boundary values as the coefficients in the
expansion of H∗Y where HY is the Laplacian restricted to functions
vanishing at the vicinity of the points of Y
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Point interactions ‘necklaces’

A reminder: fixing the points yj ∈ Y the said expansion look as follows

ψ(x) = − 1

2π
log |x − yj | L0(ψ, yj ) + L1(ψ, yj ) +O(|x − yj |), d = 2,

ψ(x) =
1

4π|x − yj |
L0(ψ, yj ) + L1(ψ, yj ) +O(|x − yj |), d = 3.

Local self-adjoint extension are then given by

L1(ψ, yj )− αL0(ψ, yj ) = 0 , α ∈ R;

for details we refer to [AGHH’88, 05]. Then we have9

Theorem ([E’06])

The ground state of HN
α,Γ is uniquely maximized by a N-regular polygon

9
P.E.: Necklaces with interacting beads: isoperimetric ..., in Proceedings UAB05, AMS, Providence 2006; pp. 141-149
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New effects in three dimensions
In three dimensions the discrete spectrum of Hα,Γ = −∆− αδ(x − Γ)
may be empty is α is small enough. As an example, for Γ being a sphere
of radius R bound states are known10 to exist iff αR > 1

This raises the following question: given the critical sphere, αR = 1, would
its deformation produce a discrete spectrum? One answer is11

Theorem ([E-Fraas’09])

Let Γε by a deformation of the sphere expressed in spherical coordinates
as r(θ, φ) = R(1 + ερ(θ, φ)) where ρ is nonzero function of zero mean. If
Hα,Γ0 is critical, σdisc(Hα,Γε) 6= ∅ holds for all nonzero ε small enough.

Remarks: (a) The results fails to hold globally: if a surface-preserving
deformation of a critical surface is elongated enough, the discrete
spectrum is empty.

(b) In contrast, deformation of a critical surface always produces a nonvoid
discrete spectrum if it is capacity preserving

10
J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of ..., J. Phys. A: Math. Gen. 20 (1987), 3687-3712.

11
P.E., M. Fraas: On geometric perturbations of critical Schrödinger operators with ..., J. Math. Phys. 50 (2009), 112101
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More singular interactions in 2D

So far I spoke of an old stuff. Let us now look at some fresh results.
Consider again a planar loop a replace δ by δ′ interaction. The latter can
be defined by boundary condition or using the quadratic form,

qδ′,β[ψ] := ‖∇ψ‖2
L2(Rd ) −

1

β
‖[f ]Γ‖2

L2(Γ)

defined on H1(R2 \ Γ), where [f ]Γ := f+|Γ − f+|Γ. Then we have12

Theorem ([Lotoreichik’18])

For any β > 0 we have max|Γ|=L λ
β
1 (Γ) = λβ1 (C), where C is a circle of

perimeter L > 0 and the maximum is taken over all C 2 smooth loops.

The Birman-Schwinger method does not work in this case, one has to use
instead locally orthogonal coordinates in a way similar to those employed
in [Krejčǐŕık-Lotoreichik’18] to treat exterior of a Robin obstacle

12
V. Lotoreichik: Spectral isoperimetric inequality for the δ′ interaction on a contour, arXiv:1810.05457
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Cones
Let us now involve next some new geometries into the game.

Our now topic will be singular Schrödinger operators Hα,Γ having a conical
surface as the interaction support Γ.

We start with some definitions: Let T ⊂ S2 be a C 2-smooth loop on the
2D unit sphere S2 ⊂ R3 of length |T | without self-intersections. We
distinguish between circular and non-circular loops. A circle C on S2 has,
of course, the length |C| ≤ 2π.

The C 2-smooth cone ΣR(T ) ⊂ R3 of radius R ∈ (0,∞] with a C 2-smooth
loop T ⊂ S2 as its cross-section is

ΣR(T ) :=
{
rT ∈ R3 : r ∈ [0,R)

}
;

it is called finite (or truncated) if R <∞ and infinite otherwise

The cone ΣR(T ) is called circular if its cross-section T is a circle and
non-circular otherwise. An infinite circular cone with the cross-section
length 2π is, in fact, a plane.
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Results in the finite case

If R <∞ it is not difficult to check that σess(Hα,Γ) = [0,∞); we are
interested in the principal eigenvalue λ1(Hα,Γ). We have13

Theorem ([E-Lotoreichik’17])

Let C ⊂ S2 be a circle and T ⊂ S2 be a C 2-smooth non-circular loop such
that L := |C| = |T | ∈ (0, 2π]. Let ΓR := ΣR(C) and ΛR := ΣR(T ) be finite
cones of radius R > 0 with the cross-sections C and T , respectively; then

#σdisc(Hα,ΓR
) ≥ 1 if and only if α > αcrit for a certain value

αcrit = αcrit(L,R) > 0.

#σdisc(Hα,ΛR
) ≥ 1 for all α ≥ αcrit (the borderline case α = αcrit is

included) and the spectral isoperimetric inequality

λ1(Hα,ΛR
) < λ1(Hα,ΓR

)

is satisfied for all α > αcrit.

13
P.E., V. Lotoreichik: A spectral isoperimetric inequality for cones, Lett. Math. Phys. 107 (2017), 717-732
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Cones, continued

We see the effect we have encountered before with spheres:

Corollary

Any (fixed-radius, smooth, conical) deformation of a critical circular cone
gives rise to a non-void discrete spectrum of the corresponding Hα,Γ

On the other hand, the spectrum is different for infinite cones: we have
σess(Hα,Γ) = [−1

4α
2,∞) and the discrete spectrum is infinite except in the

trivial case of a plane

Moreover, we even know its accumulation rate: for circular cones we
have14

N
−1

4α
2 − E

(−∆δ,α) ∼ cot θ

4π
| lnE | , E → 0+ ,

and as a similar results also holds in the non-circular case15

14
V. Lotoreichik, T. Ourmières-Bonafos: On the bound states of Schrodinger ..., Comm. PDE 41 (2016), 999-1028

15
T. Ourmières-Bonafos, K. Pankrashkin: Discrete spectrum of interactions ..., Appl. Anal. 97 (2018), 1628-1649
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Results in the infinite case

Theorem ([E-Lotoreichik’17])

Let C ⊂ S2 be a circle and T ⊂ S2 be a C 2-smooth non-circular loop such
that L := |C| = |T | ∈ (0, 2π). Let Γ∞ := Σ∞(C) and Λ∞ := Σ∞(T ) be
infinite cones with the cross-sections C and T , respectively; then for any
α > 0 we have

#σdisc(Hα,Γ∞) ∩ (−∞,−1
4α

2) ≥ 1

the spectral isoperimetric inequality λ1(Hα,Λ∞) ≤ λ1(Hα,Γ∞) is valid

Once we prove the previous theorem, the present one can be demonstrated
by analyzing the limit R →∞ of the finite-cone operators. It is not trivial
but the argument is straightforward (with an extra work one can prove
that the maximum is sharp)
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Proof sketch in the finite case

The strategy is to employ the generalized Birman-Schwinger principle
in combination with a minimization result about the energy of knots,
cf. [E-Harrell-Loss’06] and an earlier paper by Abrams et al.16

The former we have used before; it can be written as

dim ker
(
Hα,Σ + κ2

)
= dim ker

(
I − αSΣ(κ)

)
for any κ > 0, where(

SΣ(κ)ψ
)
(x) :=

∫
Σ
Gκ(x − y)ψ(y) dσ(y)

It implies, in particular, the following equivalences:

#σdisc(Hα,Σ) ∩ (−∞,−κ2) ≥ 1 iff µΣ(κ) > α−1, where µΣ(κ) > 0
is the largest eigenvalue of SΣ(κ)

λ1(Hα,Σ) = −κ2 iff µΣ(κ) = α−1

16
A. Abrams et al.: Circles minimize most knot energies, Topology 42 (2003), 381-394
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Proof sketch, continued

We also note the eigenvalue µΣ(κ) is simple and the corresponding
eigenfunction can be chosen positive

To proceed, we need a suitable parametrization of the cone. We begin
with arc-length parametrization of the cross section, τ : [0, L]→ S2 with
|τ̇ | ≡ 1 and put

σ : [0,R)× [0, L]→ R3, σ(r , s) := rτ(s) ; (1)

this defines natural co-ordinates (r , s) on ΣR . We find easily

Proposition

Let C ⊂ S2 be a circle and ΓR := ΣR(C). Then the eigenfunction
corresponding to the largest eigenvalue of the BS operator SΓR

(κ) is
rotationally invariant, i.e. it depends on the distance from the tip of
the cone only.
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Proof sketch, continued

Now we employ an inequality related to Cp
L (u) used earlier, known also

from other sources:17 for a C 2-smooth loop T ⊂ S2 we put

Φf [T ] :=

∫ L

0

∫ L

0
f (|τ(s)− τ(t)|2)dsdt

Then we have

Proposition

Let f ∈ C ([0,∞);R) be convex and decreasing. Let C ⊂ S2 be a circle
and T ⊂ S2 be a C 2-smooth non-circular loop such that |T | = |C| = L
for some L ∈ (0, 2π]. Then the following isoperimetric inequality holds

Φf [C] < Φf [T ].

17
G. Lűko: On the mean length of the chords of a closed curve, Israel J. Math. 4 (1966), 23-32
J. O’Hara: Energy of knots and conformal geometry, World Scientific 2003

Pavel Exner: On loops, cones, and stars BenguriaFest 2018 December 20, 2018 22/1



Proof sketch, concluded

In particular, the above proposition holds with the function

f (x) :=
e−a
√

bx+c

√
bx + c

,

which is convex and decreasing for any positive a, b, c .

Comparing the BS operators for the circular and non-circular cones with
the use of the indicated parametrization we employ such isoperimetric
inequalities with

a(r , r ′) := κ, b(r , r ′) := rr ′, c(r , r ′) := (r − r ′)2 ;

we have to exclude situations where r = 0, r ′ = 0 or r = r ′, but this is
a zero measure set. With a bit of work, this yields finally the result. �
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Another object of interest: stars

Let us return to planar leaky graphs and consider star-shaped ones:

We consider a star graph ΣN = ΣN(L) ⊂ R2, which has N ≥ 2 edges
of length L ∈ (0,∞] each, enumerated in the clockwise manner.

They are characterized by the angles φ = φ(ΣN) = {φ1, φ2, . . . , φN}
between the neighboring edges, φn ∈ (0, 2π) for all n ∈ {1, . . . ,N}
and

∑N
n=1 φn = 2π.

By ΓN we denote the star graph with maximum symmetry, in other
words, φ = φ(ΓN) =

{
2π
N ,

2π
N , . . . ,

2π
N

}
.

Given α > 0, we ask again about the spectral threshold of the operator
Hα,ΣN

corresponding to the formal expression −∆− αδ(x − Σn)
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An illustration

Γ5

2π
5

2π
5

2π
52π

5

2π
5

Σ5

φ1
φ5

φ4

φ3

φ2

Figure: The star graphs Γ5 and Σ5 with N = 5 and L <∞.
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Star optimization

It is easy to see that σess(Hα,ΣN
) = [0,∞) if L <∞ and with the set

σess(Hα,ΣN
) = [−1

4α
2,∞) if L =∞.

We mentioned that σdisc(Hα,ΣN
) 6= ∅ if L <∞, and the same is true also

for an infinite star18 unless we have simultaneously L =∞, N = 2, and
φ = {π, π}. For the lowest eigenvalue we have19

Theorem ([E-Lotoreichik’18])

For any α > 0 we have the relation

max
ΣN (L)

λα1 (ΣN(L)) = λα1 (ΓN(L)) ,

where the maximum is taken over all star graphs with N ≥ 2 edges of
a given length L ∈ (0,∞]. If L <∞ the equality is achieved iff ΣN and
ΓN are congruent.

18
P. Exner, T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A 34 (2001), 1439-1450

19
P. Exner, V. Lotoreichik: Optimization of the lowest eigenvalue for leaky ..., in Proceedings of QMath13, AMS 2018
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Star optimization, continued
For infinite stars the condition ΣN(∞) ∼= ΓN(∞) is apparently also
necessary and sufficient, just the method used in the proof of the
theorem needs to be amended

Moreover, the ground state has then some esthetic quality:
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Star optimization, concluded

Idea of the proof: We again employ Birman-Schwinger principle. Writing
the BS operators for L <∞, one can interchange integration over the
variables parametrizing the edges and summation over the edges

In the internal part we then employ an inequality for polygon chords
similar to the one used in the proof of the isoperimetric inequality for
point-interaction necklaces mentioned above [E’06]

To establish the relation for L =∞ one uses the strong resolvent
convergence which gives, in particular,

lim
L→∞

λα1 (ΣN(L)) = λα1 (ΣN(∞))

and the analogous relation for symmetric stars
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Stars in three dimensions

Albeit technically nontrivial, the previous problem was simple in the sense
that the result was easy to guess

This would not be the same if we consider an analogue of the star
optimization problem in three dimensions, i.e. for Schrödinger operators
with a singular interaction supported by a ‘sea urchin’ shape set Γ of N
‘pins’, finite or semi-infinite

The first question is how to define the operator. The interaction is more
singular as we have now codim Γ = 2 and one has no ‘natural’ quadratic
form to be used

Without being too technical, one takes the Laplacian defined on functions
that are H2 outside Γ and imposed the generalized boundary conditions20

defining 2D point interaction in the cross planes to the edges of Γ

20
P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by ..., Ann. H. Poincaré 3 (2002), 967-981
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Recall some related problems
Optimization problem for 3D stars is no doubt nontrivial. The first
analogue coming to mind is the Thomson problem21 about distribution
of N point charges on the surface of a sphere

Recall that a rigorous solution is known for a few small N cases, for
instance, a (computer-assisted) proof for N = 5 was presented only
recently22. Note also that twenty years ago Stephen Smale included it
into the list of eighteen ‘new Hilbert problems’ for the 21st century

Various generalizations of the problem triggered numerous mathematical
investigations in algebraic combinatorics23

Unfortunately – and this is another point Rafael often stressed – physics is
forgotten at that! They quote, for instance, Tamme’s problem in botany
but not Thomson. The plum-pudding model was wrong, of course, but
still physics was the original inspiration here!

21
J.J.Thomson: On the structure of the atom: an investigation of the stability ..., Phil. Mag. 7 (1904), 237-265

22
R.E. Schwartz: The five-electron case of Thomson’s problem, Experim. Math. 22 (2013), 157-186

23
H. Cohen, A. Kumar: Universally optimal distribution of point on the sphere, J. AMS 20 (2007), 99-148
E. Bannai, E. Bannai: A survey of spherical designs and algebraic combinatorics ..., Eur. J. Combin. 30 (2009), 1392-1425
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Universal optimality by Cohen and Kumar
Consider N points {xi}N

i=1 living on the unit sphere S2. They form an
M-spherical design if for any polynomial x 7→ p(x) on R3 of total degree
M the equivalence one has

∫
S2 p(x)dx = 1

N

∑N
i p(xi ) holds

Let m be the number of different inner products between distinct {xi}N
i=1.

They form a sharp configuration if it is 2m − 1 spherical design

By [Cohen-Kumar’07] sharp configurations are universally optimal meaning
that they minimize any potential energy f : [0, 4]→ R which is completely
monotonous, i.e. it satisfies (−1)k f (k) ≥ 0 for all k ≥ 0
in three dimensions there are five sharp configurations:

N = 2, antipodal points
N = 3, simplex with inner product −1/2,
N = 4, tetrahedron – simplex with inner product −1/3,
N = 6, octahedron – cross polytope with inner products −1, 0,
N = 12, icosahedron with inner products −1/,±1/

√
5.

Remark: The remaining Platonic solids, cube and dodekahedron, do not
qualify for universality having m=3 and 4, respectively. Note that they
do not represent Thomson problem solutions!
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Application to star leaky graphs

One may wonder what has the mentioned minimization problem to do
with the maximization of the ground state eigenvalues. The answer is
that, as in the previous cases, that the problem is equivalent to
minimization of the (norm of) the Birman-Schwinger operator. We have

Lemma

Consider an N-arm star with edges of length L ∈ (0,∞] determined by
unit vectors {γ̄i}N

i=1, and let {σ̄i}N
i=1 corresponds to a sharp-configuration

star. Then we have∑
i ,j i 6=j

Tκ;s,t(|γ̄i − γ̄j |2) ≥
∑

i ,j i 6=j

Tκ;s,t(|σ̄i − σ̄j |2)

for any s, t ∈ [0, L] and the inequality is sharp unless the two stars are

congruent. Here Tκ;s,t(x) := e−κ
√

a+bx

4π
√

a+bx
with a = (s − t)2 and b = st
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Application to star leaky graphs, continued

Next we use the fact that the largest eigenvalue of the Birman-Schwinger
operator corresponding to a sharp-configuration star has the maximum
symmetry, f̃σ = (fσ, ..., fσ) ∈ ⊕N

1 L2([0, L])

Then supQκ,γ ≥ (Qκ,γ f̃σ, f̃σ) ≥ supQκ,σ holds according to the above
lemma, which allows us to make the following conclusion24

Theorem

Assume that N ∈ {2, 3, 4, 6, 12}, then the ground state energy of the
N-arm leaky star assumes the unique maximum for γ = σ, where σ is
the corresponds to the appropriate sharp configuration listed above.

24
P.E., S. Kondej, in preparation
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Open questions

Ignoring various technical ones which appeared in the course of the
presentation, there are deeper and more interesting questions, for instance

what a non-constant coupling strength α would do with the
optimization?

what would an optimal shape for a 2D δ′ star? The answer is easy
to guess when N is even but not at all for an odd number of edges

no need to stress how beautiful and difficult the 3D star optimization
problem described above is; one want to know what happens for the
N’s different from the five listed cases

can one say something about higher eigenvalues, say, along the lines
of Payne-Pólya-Weinberger-Ashbaugh-Benguria?

etc., etc.
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It remains to say

¡Muchos años más felices, Rafael!
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