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Why QM on graphs is of interest?

The answer to this question is like a kaleidoscope showing different
facets when turned; let us look at some of them:

The birth and rebirth of the quantum graph concept

Graph vertices: how to match the wavefunctions?

The meaning of different vertex couplings

Duality between discrete and metric graphs

Quantum graphs may violate the Weyl asymptotics

Even linear graphs may behave nontrivially

Listening to the graph shape

Graphs are a natural environment to study quantum chaos

There are also different quantum graphs

P. Exner: QM on graphs Simons Center for Geometry and Physics June 7, 2022 - 2 -



Quantum graph origin: Pauling’s insight
The notion first appeared in early days of QM when Linus Pauling
suggested that the Kekulé pictures describing molecules of aromatic
hydrocarbons, like benzene, napfthalene, anthracene sketched here
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and others – ignoring the double edges marking the bond type – are more
than symbols. He conjectured that some electrons form a graph-shaped
frame in which the remaining ones move.

Using this idea, he managed to calculate spectra of such molecules with
∼10% accuracy, a remarkable feat for such a primitive model.

Doing so, he had to decide how the electron wave functions match at the
graph vertices. He choose the simplest possible way assuming that they
are continuous and the sum of their derivatives vanishes, that is, what
people today mostly call Kirchhoff conditions.
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Vertex coupling
This choice requires a justification as it is not the only possibility. An
insight was proposed seventeen years later – science was slower those
days and there a world war in between – using another natural idea:
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Ruedenberg and Scherr, J. Chem. Phys. 21 (1953), 1565

By a formal use of Green’s formula, they showed that the squeezing limit
of free motion in a branched tube with Neumann boundary yields nothing
but the Kirchhoff conditions used by Pauling.

The idea looks simple indeed, however, mathematically it proved to be
quite a hard problem; I will return to it later.

After that, the quantum graphs concept was forgotten and existed, at
most, as an obscure textbook example for more than three decades.

P. Exner: QM on graphs Simons Center for Geometry and Physics June 7, 2022 - 4 -



Rebirth of the concept
In fact, the idea of such a way to describe atomic lattices returned
recently in connection with graphene and other 2D materials described
by Schrödinger or Dirac equation on graphs.

Kuchment and Post, Commun. Math. Phys. 275 (2007), 805

Oliveira and Rocha, Rep. Math. Phys. 89 (2022), 231

In the meantime, however, a new inspiration came from a different area,
namely from the progress in solid state physics. Since the 1980s the
fabrication techniques improved allowing us to produce structure so tiny
and clean that the electron transport is coherent.

 

Examples: a ring of diameter diameter 784nm made of gold wire of width
41nm, and a ring-type heterostructure made of AlGaAs-GaAs.

Webb et al., Phys. Rev. Lett. 54 (1985), 2696 Fuhrer et al., Nature 413 (2001), 822
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Rebirth of the concept
Recall that metallic ring graphs were one of the first systems on
which the existence of Aharonov-Bohm effect was demonstrated
experimentally.

There are numerous materials of which such graph-like systems are
constructed. Apart from semiconductors and metals already mentioned,
one can use, for instance, carbon nanotubes.

From the stationary point of view, it is not surprising that properties of
such systems can be simulated and studied using microwave networks
built of optical cables.

Hul et al., Phys. Rev. E69 (2004), 056205

From the mathematical point of view, graphs can support a number of
other equations coming both quantum and classical physics. I addition to
Schrödinger and Dirac mentioned, for instance wave equation, undamped
and damped, elasticity equation. Also, nonlinear equations such as
Schrödinger and Korteweg de Vries have been studied.

Thirty five years after their rebirth, quantum graphs are everywhere.
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How to match the wave functions

The choice made by Pauling was not the only possible. Recall that to
define a QM Hamiltonian, in general it is not sufficient to specify its
differential symbol. To qualify as an observable, the operator must be
self-adjoint, H = H∗, which for an unbounded operator is a considerably
stronger requirement than mere symmetry, H ⊂ H∗.

In physicist’s language this means to demand that that the probability
current must be preserved. Let us illustrate that on an example:
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The most simple case is a star graph with
the state Hilbert space H =

⊕n
j=1 L

2(R+)
and the particle Hamiltonian acting on H
as ψj 7→ −ψ′′j (to make things easy, we use
the units in which ~ = 2m = 1)
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Self-adjoint vertex couplings
Since the operator is of second order, the boundary condition involve
the values of functions and the first outward derivatives at the vertex.

These boundary values can be written as columns, Ψ(0) := {ψj(0)} and
Ψ′(0) := {ψ′j(0)}, the entries understood as left limits at the endpoint;
then the most general self-adjoint matching conditions are of the form

AΨ(0) + BΨ′(0) = 0,

where the n × n matrices A,B satisfy the conditions

rank (A,B) = n

AB∗ is Hermitean

Kostrykin and Schrader, J. Phys. A32 (1999), 595 Rofe-Beketov, Teor. Funkc., Funkc. Anal. Pril. 8 (1969), 3

Naturally, these conditions are non-unique, as A,B can be replaced by
CA,CB with a regular C . This non-uniqueness can be removed by using

(U − I )Ψ(0) + i(U + I )Ψ′(0) = 0,

where U is a unitary n × n matrix, hence depending on n2 real parameters
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Self-adjoint vertex couplings
The claim is easy to verify. To see that it is enough to express the
squared norms ‖Ψ(0)± i`Ψ′(0)‖2

Cn and subtract them from each other;
the difference is nothing but the boundary form,

(Hψ,ψ)− (ψ,Hψ) =
n∑

j=1

(ψ̄jψ
′
j − ψ̄′jψj)(0) = 0,

which has to vanish to make the operator self’adjoint.

Note that each term of the sum is, up to the factor 1
2 , nothing but the

probability current in the jth edge, taken in the outward direction.

As a consequence, the two vectors having the same norm must be related
by an n × n unitary matrix; this gives (U − I )Ψ(0) + i`(U + I )Ψ′(0) = 0.

It seems that we have one more parameter, but it is not important because
the matrices corresponding to two different values are related by

U ′ =
(`+ `′)U + `− `′
(`− `′)U + `+ `′

.

Thus we can set ` = 1, which means just a choice of the length scale.
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Why we should care about different couplings?

The answer to this question is: from the simple reason – because they
describe a different physics. Consider again the example of a star graph
of n edges, denoting its different Hamiltonians as HU .

One of them is HD corresponding to U = −I , in other words, each edge
component of HU is a halfline Laplacian with Dirichlet boundary condition,
ψj(0) = 0. The spectrum of of such a disconnected graph is easily found,
being σ(HD) = R+ of multiplicity n.

For any U we have σess(HU) = R+, because the difference of the
resolvents, (HU − z)−1 − (HD − z)−1, is an operator of finite rank
(equal to n) but in addition, there may be negative eigenvalues.

It is easy to check the number of these eigenvalues coincides with the
number of eigenvalues of U in the open upper complex halfplane.
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Common examples of vertex coupling
Denote by J the n × n matrix whose all entries are equal to one;
then U = 2

n+iαJ − I corresponds to the so-called δ coupling,

ψj(0) = ψk(0) =: ψ(0), j , k = 1, . . . , n,
n∑

j=1

ψ′
j (0) = αψ(0)

with ‘coupling strength’ α ∈ R; α =∞ gives the Dirichlet U = −I
On the other hand, α = 0 gives Kirchhoff condition mentioned above.

Similarly, U = I − 2
n−iβJ describes the δ′s coupling,

ψ′
j (0) = ψ′

k(0) =: ψ′(0), j , k = 1, . . . , n,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R. For β =∞ we get the Neumann decoupling; the case
β = 0 is sometimes referred to as anti-Kirchhoff condition.

Another generalization of the 1D δ′ interaction is the δ′ coupling:
n∑

j=1

ψ′
j (0) = 0, ψj(0)− ψk(0) =

β

n
(ψ′

j (0)− ψ′
k(0)), 1 ≤ j , k ≤ n

with U = n−iα
n+iα I − 2

n+iαJ and Neumann edge decoupling for β =∞.

There many other couplings, of course, some of physical interest
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Can any s-a coupling be given meaning?

Let us return to the squeezing network idea of Ruedenberg and Scher
and ask under which conditions one can approximate Hamiltonian of a
quantum graphs by the Laplacian – or more general operator – of the
appropriate ‘fat graph’

For Neumann network the approximation of [RS’53] can be made rigorous,
leading to Kirchhoff coupling at the vertices.

Kuchment and Zeng, J. Math. Anal. Appl.
258 (2001), 671

Rubinstein and Schatzman, Arch. Rat. Mech.
Anal. 160 (2001), 271

Saito, Electron. J. Diff. Eq. 31 (2000), 1 Exner and Post, J. Geom. Phys. 54 (2005), 77
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What about the other vertex couplings?

The δ-coupling is not difficult: in the star graph example we replace the
Laplacian with the Schrödinger operator acting as ψj 7→ −ψ′′j + Vjψj on
the graphs edges.

Given a family Wε,j := 1
ε Wj

(
x
ε

)
, j = 1, . . . , n, of scaled potentials, one

can prove that – under appropriate assumptions – we have

H0(V + Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the coupling parameter
α :=

∑n
j=1

∫∞
0 Wj(x) dx representing the ‘total’ value of the potential.

This result is then easy to ‘lift’ squeezing networks with scaled potentials.

This is, however, still a small subset in the family of all self-adjoint
couplings, and one has to ask whether we can do better.
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A general coupling approximation

The answer is affirmative; the scheme looks as follows:

 
Exner and Post, Commun. Math. Phys. 322 (2013), 207

While this is an interesting – a rather involved – mathematics, the result
has only the existence meaning and in practice one proceeds pragmatically
choosing the coupling ad hoc to fit the physics of the problem.

Remark: The squeezing limit of Dirichlet networks is completely different.
It is generically trivial, but gives a nontrivial result if there is a resonance
at threshold. The principle is known but no analogue to the above general
result has been derived so far.
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There are other graphs
The graphs we have considered so far were metric meaning that their
edges were identified with line segments.

In mathematics, however, graph theory usually means something different;
it is a venerable discipline which roots can be traced back at least to 1736
when Leonhard Euler answered the question about the seven bridges of
Königsberg. A graph is in this setting understood as a collection of
vertices and of edges connecting them in accordance with the graph
adjacency matrix. The literature on these graphs is immense.

The two theories can be related. It is particularly useful as it allows us to
rephrase the spectral analysis of quantum graphs, which is a differential
operator problem, in terms of a difference equation.

The idea proposed in the 1980’s by physicists, Alexander and de Gennes,
followed by mathematicians. It is particularly simple if the graph in
question is equilateral. To explain it, we have to exclude first the part σD
consisting of Dirichlet eigenvalues with eigenfunctions supported by a
single edge and vanishing at its endpoints.
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The duality: a magnetic chain example
As an example, consider an array of rings, each of circumference 2π,
exposed to a magnetic field perpendicular to the graph plane,

0 π 0 π 0 π• • • •

eLj−1

eUj−1

Aj−1

eLj

eUj

Aj

eLj+1

eUj+1

Aj+1

vj−1 vj vj+1 vj+2

. . . . . .

and supporting the magnetic Laplacian, ψj 7→ −D2ψj on each graph link,
where D := −i∇− A. We assume δ-coupling in the vertices, i.e. the
domain consists of functions from H2

loc(Γ) satisfying

ψi (0) = ψj(0) =: ψ(0) , i , j = 1, . . . , n ,
n∑

i=1

Dψi (0) = αψ(0) ,

where α ∈ R is the coupling constant and n = 4 holds in our case.
Kostrykin and Schrader, Commun. Math. Phys. 237 (2003), 161

If the magnetic field is homogeneous, the spectrum is found by Floquet
decomposition. It is not purely continuous because of the Dirichlet
eigenvalues; if A− 1

2 ∈ Z it consists of flat bands only.
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The duality: a magnetic chain example

If the field is non-homogeneous, the task is more complicated. Apart from
the Dirichlet eigenvalues, the spectral problem of the Hamiltonian −∆α,A

means to solve the differential equation (−∆α,A − k2)
(
ψ(x , k)
ϕ(x , k)

)
= 0 with the

indicated matching condition at the vertices.

Since we know solutions on the edges, this leads to the difference equation

2 cos(Ajπ)ψj+1(k) + 2 cos(Aj−1π)ψj−1(k) = η(k)ψj(k) , k 6∈ Z ,

where ψj(k) := ψ(jπ, k) and η(k) := 4 cos kπ + α
k sin kπ for k > 0, and

η(k) := 4 + απ for k = 0.

What is important, this is a two-way correspondence; we can reconstruct
the solution of the original problem from that of the difference one. This
establishes a two-way connection between the weak solutions of the two
equations preserving their Lp/`p properties.
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The duality: a magnetic chain example

But we can do much better: the restriction (−∆α,A) � J to an interval
J ⊂ R \ σD is unitarily equivalent to the pre-image η(−1)

(
LA � η(J)

)
,

where LA is the operator on `2(Z) acting as

(LAϕ)j = 2 cos(Ajπ)ϕj+1 + 2 cos(Aj−1π)ϕj−1.

Hence the spectrum of −∆α,A is obtained by ‘unfolding’ of σ(LA) by
η(−1); recall that the function η(k) = 4 cos kπ + α

k sin kπ is monotonous
between any pair of adjacent Dirichlet eigenvalues.

Note also that this claim is a particular case of a general duality result
valid for any equilateral graph.

Pankrashkin, J. Math. Anal. Appl. 396 (2012), 640

To illustrate how the duality can be useful consider an example in which
the magnetic field is nonconstant varying linearly along the chain, namely
Aj = µj + θ for some µ, θ ∈ R and every j ∈ Z.
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A chain with linear magnetic field

First of all, you may say that in nature one never meets a (globally) linear
magnetic field. A pragmatic answer is that the unbounded character of the
sequence {Aj} need not bother us because only the fractional part of each
Aj matters.

But there is a deeper reason why we can consider such a model, nicely
expressed by Bratelli and Robinson:

... while the experimentalist might collect all his data between breakfast and lunch in a small
cluttered laboratory, his theoretical colleagues interpret those results in terms of isolated systems
moving eternally in an infinitely extended space. The validity of such idealizations is the heart
and soul of theoretical physics and has the same fundamental significance as the reproducibility
of experimental data.

Let us thus look how the spectrum of such a chain looks like. It appears
that the character of the slope µ is important. If it is rational the system is
periodic and by Floquet analysis we find that its spectrum is a combination
of absolutely continuous bands and flat bands; if µj + θ + 1

2 ∈ Z holds for
some j = 0, . . . , q − 1, the spectrum consists of flat bands only.
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Does it remind you something?
For irrational µ the Floquet method cannot be applied but the role
the (ir)rationality plays here may bring to your mind a famous problem,
the almost Mathieu equation

un+1 + un−1 + λ cos(2πµn + θ))un = εun

in particular its critical case, λ = 2, often also dubbed Harper equation.

The spectrum of the corresponding difference operator Hµ,2,θ, independent
of θ, as a function of µ is the well-known Hofstadter butterfly

Source: Fermat’s Library
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The Ten Martini Problem

The spectrum of operator Hµ,2,θ is easily seen to consists of absolutely
continuous bands for any rational value of µ.

On the other hand, the case µ 6∈ Q appeared to be quite difficult and kept
mathematicians busy – under the name Ten Martini Problem proposed by
B. Simon – for more than two decades.

The conjecture saying that the spectrum of Hµ,2,θ does not depend on θ
and it is for any irrational µ a Cantor set of Lebesgue measure zero was
finally proved to be correct.

Avila and Jitomirskaya, Ann. Math. 170 (2009), 303

Note that a complicated spectral behavior exhibited by systems with
incommensurate length scales was anticipated earlier but it attracted
serious attention only after Hofstadter’s result ignited the imagination.

Azbel, J. Exp. Theor. Phys. 19 (1964), 634

Note also manifestations of such a behavior were found recently by several
groups observing graphene lattices in a homogeneous magnetic field.
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And how is this related to our problem?

Using an operator algebra trick proposed by Shubin we can establish
unitary equivalence between Hµ,2,θ and the operator LA dual to our
quantum graph Hamiltonian. This allows one to determine the spectral
character of −∆α,A the fact that the function η is locally analytic:

Shubin, Commun. Math. Phys. 164 (1994), 259 Exner and Vašata, J. Phys. A50 (2017), 165201

σ(−∆α,A) does not depend on θ and if α 6= 0 and µ /∈ Q, it is a disjoint
union of the isolated-point family {n2| n ∈ N} and Cantor sets, one inside
each interval (−∞, 1) and

(
n2, (n + 1)2

)
, n ∈ N. Moreover, the overall

Lebesgue measure of σ(−∆α,A) is zero.

Translating other almost Mathieu results to this setting, one is able to
conclude, e.g., that there is a dense Gδ set of the slopes µ for which, and
all θ, the Haussdorff dimension dimH σ(−∆α,A) = 0. At the same time,
there is another dense set of the slopes µ, for which, on the contrary,
one has dimH σ(−∆α,A) > 0.

Last and Shamis, Commun. Math. Phys. 348 (2016), 729 Helffer et al., Commun. Math. Phys. 368 (2019), 369
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Quantum graphs may violate Weyl asymptotics
I hope the example illustrated that quantum graphs – besides their
‘practical use – can exhibit intriguing properties.

The list of those is long and in the rest of the talk I am going to show
you several other situations where quantum graphs make us think.

One such question concerns the semiclassical behavior of the spectrum.
Asking about the eigenvalue counting function of a finite graph,

L :=
∑

j `j

our QM intuition suggests – correctly! – that it should be

N(k) =
2L

π
k +O(1)

as k →∞ irrespective of a (nontrivial) vertex coupling; on purpose we
doublecount considering separately values ±k giving rise to the energy k2.
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Davies and Pushnitski observation

The situation is similar if we attach to vertices of our finite graph
semi-infinite leads. Naturally, eigenvalues of the ‘core graph’ are now
embedded in the continuous spectrum of the leads, and a nontrivial
coupling turns (some or all of) them into resonances to which resolvent
poles in the lower complex halfplane correspond.

Consequently, one has to count now singularities in the closed semicircle
{z : |z | ≤ k , Im z ≤ 0}; in the Weyl spirit one expects their number to
behave again as N(k) = 2L

π k +O(1) when k →∞.

Alas, this may not be the case! Davies and Pushnitski noted that if the
coupling is Kirchhoff and some vertices are balanced, meaning that they
connect the same number of internal and external edges, then the leading
term in the asymptotics may be smaller than Weyl formula prediction.

Davies and Pushnitski, Anal. PDE 4(5) (2011), 729
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Effective coupling on the ‘core graph’
To explain the effect we note that there is a way to consider the ‘core
graph’ only, without the leads. To this aim, we write the matrix U at each
vertex where leads are attached in the block form, U =

(
U1 U2

U3 U4

)
, where U1

refers to the core, U4 to the exterior part, and the off-diagonal U2 and U3

are rectangular matrices connecting the two.

Then the external part can be eliminated by considering the core only with
the effective coupling given by

Ũ(k) := U1 − (1− k)U2[(1− k)U4 − (k + 1)I ]−1U3

which is obviously energy-dependent and, in general, non-unitary.

Note that this is another nice illustration of a simple formula known
already to Schur, often attributed to Feshbach, Grushin, and other people.

We also need a tool to count zeros of functions F (k) =
∑n

r=0 ar (k) eikσr .
Fortunately, mathematics is eternal and one can use an old result by which
the asymptotics is given by the difference of the largest and smallest σj .

Langer, Bull. Amer. Math. Soc. 37 (1931), 213
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The counting function
Putting this together we conclude that the counting function for a
graph with the core Γ and leads behaves asymptotically as

N(k) =
2W

π
k +O(1) for k →∞,

where W is the effective size of Γ satisfying 0 ≤W ≤ L. Moreover,
W < V (we say that graph is non-Weyl) if and only there is a vertex
such that one of (1∓ k)/(1± k) is an eigenvalue of the matrix Ũj(k).

Davies et al., J. Phys. A43 (2010), 474013

Note that for non-Kirchhoff coupling the vertex need not be balanced:
f1(x) f2(x)

u(x)

0

l

Assuming f1(0) = f2(0) =: f (0), u(`) = 0, together with u(0) = bf (0)
and f ′1(0) + f ′2(0) = −bu′(0), we get Weyl graph, W = ` if b 6=

√
2,

but W = 1
2` if b =

√
2 (the resonance pole escapes then to infinity).
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Why balanced vertices matter?

This may look as mathematics, let us try to understand why balanced
Kirchhoff vertices diminish the effective size of the core graph. The reason
comes from the symmetry:

Γ0

U (2) U (1)

l0

Suppose that a balanced vertex v1 connects p internal edges of the same
length l0 (we can always add ‘dummy’ Kirchhoff vertices) and p external
edges. Without going into computations, we claim that one can pass to an
unitarily equivalent graph with the couplings Ũ(2) and Ũ(1) with the latter
split into the one-dimensional symmetric part and its complement.

However, Kirchhoff coupling at a balanced vertex of degree one means the
absence of a coupling, hence the new graph sees the segment of length `0

as a part of the lead, diminishing thus the effective size.
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However, the effective size is a global property

One may ask whether considering the effect of each balanced vertex
separately allows to to determine the effective size. It is not the case,
as the following simple example of Kirchhoff graph Γn shows:

l

l

l

l

l

The symmetry allows to decompose the system w.r.t. the cyclic rotation
group Zn into segments characterized by numbers ω satisfying ωn = 1;
the resonance condition then reads (0 . eik`)−2(ω2 + 1) + 4ωe−ik` = 0.
Using it, we easily find that the effective size of Γn is

Wn =

{
n`/2 if n 6= 0 (mod4),

(n − 2)`/2 if n = 0 (mod4).

Note also that one can demonstrate non-Weyl behavior of graph
resonances experimentally in a model using microwave networks:

 Lawniczak et al., Phys. Rev. Lett. 122 (2019), 140503
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Magnetic field effects

We saw that a magnetic field can significantly influence quantum graph
properties. Let us thus ask what happens with the effective size if such a
graph with leads is exposed to a field described by a vector potential A.

By the same technique, reducing the problem to analysis of the core graph
with energy-dependent boundary conditions at the ‘outer’ vertices, one can
check that if Γ is Weyl, W = L, then ΓA is also Weyl.

On the other hand, for non-Weyl graphs the field may change their
effective size. Here is a simple example:

0

l
B

This (Kirchhoff) graph is non-Weyl for A = 0, and thus for any A.
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Magnetic field effects

The resonance condition for such a graph is easily found to be

the missing eik` term−2 cosφ+ e−ik` = 0,

where φ = A` is the magnetic flux through the loop. As the senior term
is absent, by Langer theorem the effective size is W = 1

2` provided that
the `-independent term is nonzero.

However, for φ = ±π/2 (modπ), this term disappears. The effective size
of the graph is then zero; it is straightforward to see that in the present
case there are no resonances at all.

Exner and Lipovský, Phys. Lett. A375 (2011), 805

Recall that (in the used units) the flux quantum is 2π, hence resonances
are absent for odd multiples of a quarter of the quantum. One could
compare it with the ring chain where the absolutely continuous spectrum
disappeared for odd multiples of one half of the quantum.
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Even linear graphs may behave nontrivially

To begin with, recall that the first who seriously studied crystals in a
electric field was Wannier using a natural model combining a periodic
and linear potential, often referred to as a washboard potential.

He originally thought that such a system may have bound states but this
was not the case. If the periodic component was supposed to be regular,
the spectrum proved to be absolutely continuous, however, exhibiting
resonance ladders.

The question naturally arose what happens if the interaction is singular,
in the simplest case given by an equidistant array of point interactions,
with the Hamiltonian

Hα,F = − d2

dx2
+ α

∑
n∈Z

δ(x − na)− Fx

on L2(R) with some nonzero α and F and an a > 0.

Of course, this is nothing but a periodic line graph with the δ-coupling.
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Wannier-Stark KP ladder

In the absence of the electric field this is nothing but the standard
Kronig-Penney model the spectrum of which is a textbook matter.

Albeverio et al.: Solvable Models in Quantum Mechanics, 2nd ed., AMS Chelsea 2005

It might this seem that the problem is not difficult to solve but nothing
can be farther from the reality!

We know that if the δ interaction is replaced with a strongly singular one
usually (not very luckily) called δ′, defined by the boundary conditions
f ′(na+) = f ′(na−) =: f ′(na) and f (na+)− f (na−) = βf ′(na) – this
again a line graph, now with a different self-adjoint coupling – we have

σac(Hδ′,β,F ) = ∅

and spectrum is pure point, dense or not depending on the properties of F .

Avron et al., Phys. Rev. Lett. 72 (1994), 896 Duclos et al., Helv. Phys. Acta 71 (1998), 133

The reason is the high-energy gap behavior of the periodic system.
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Wannier-Stark KP ladder

The gaps are shrinking for a regular potential, while for δ′ their widths
are increasing as k →∞. And if the gaps are tilted by the electric field,
they represent classically forbidden zones!

The δ case represents a borderline situation as in this case the gaps are
asymptotically constant (in the energy variable). Treatments – of a various
degree of rigor – were suggesting that there may be a transition from pure
point spectrum for small |F | to continuous one for strong field was
conjectured, and that the rationality of the field intensity may play role.

Berezhkovskii and Ovchinnikov, Sov. Phys.
Solid State 18 (1976), 1908 Ao, Phys. Rev. B41 (1990), 2998

Borysowicz, Phys. Lett. A231 (1997), 240 Buslaev, AMS Translations, vol. 189, 1999

This seemed to be supported by the result about the random WS ladder
in which the constant strength α is replaced by i.i.d. variable {αn} of zero
mean; with probability one we have here a transition from pure point to
continuous spectrum.

Delyon et al., Phys. Rev. Lett. 52 (1984), 2187
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Wannier-Stark KP ladder

The last result was very recently strengthened by Frank and Larson:
putting α2 := E[α2

n] they proved under some technical assumptions
that σ(Hα,F ) = R holds almost surely being

singularly continuous if F > α2/2a2

dense pure point if F > α2/2a2

Frank and Larson, Prob. Math. Phys. (2022), to appear; arXiv:2104.10256

However, they also proved – at that was a true tour de force! – that
in the deterministic case things look differently, namely:

If Fa2/π2 ∈ Q+ and F = q
3p with p, q ∈ N, one has

σac(Hα,F ) = R , σsc(Hα,F ) = ∅ , σpp(Hα,F ) ⊂
{ π2

3pa2
m + α : m ∈ Z

}
.

The question about the irrational field slope remains open!
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Can one hear the shape of a graph?

So far we dealt with spectral (and transport) properties of a single graph,
or a class of graphs. One can also ask an opposite question: given spectral
data of a graph Hamiltonian, can one retrieve information about the graph
geometry and topology?

The above question, asked by Gutkin and Smilansky, was of course
inspired by the classical question of Mark Kac about the shape of the
drum of which we nowadays know that it is answered negatively, although
there are classes of regions for which the answer is affirmative.

Gutkin and Smilansky, J. Phys. 34 (2001), 6061

In the case of graphs it was no surprise that the answer, in general, was
negative. Examples of isospectral combinatorial graphs were known for
long, and in view of the duality we have discussed, one could naturally
‘translate’ these results into the quantum graphs setting.
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Isospectral graphs

An example of isospectral pair with Kirchhoff vertices, due to [GS’01], is

The example is not a single one, in fact there is a method to construct
isospectral graphs which, similarly to construction of isospectral Dirichlet
domains addressing Kac’s question, has its roots in Sunada’s method of
finding isospectral Riemannian manifolds.

Sunada, Ann. Math. 121 (1985), 169

An atlas of isospectral graphs can be found in

Band et al., J. Phys. A42 (2009), 175202
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So, which quantum graphs can one hear?

Obviously, to find a class for which the question could be answered
affirmatively, one should look ‘far away’ from equilateral graphs.

The assumptions one has to impose are the following:

Graph edges are ‘fully connected’ meaning that the scattering matrix
(Sjj ′) at each vertex is energy-independent and has no zero entries

The graph has no loops and multiple edges

All the edge lengths are incommensurate

Under these conditions the spectrum determines uniquely the edge lengths
and the graph connectivity.

Gutkin and Smilansky, J. Phys. 34 (2001), 6061 Kurasov and Nowaczyk, J. Phys. A38 (2005), 4901

The reconstruction can be also based on scattering data: if we have
a graph consisting of a compact core and leads such that the above
assumptions hold for all the vertices and all internal edges, then the
‘edge-to-edge’ scattering matrix determines the graph uniquely.
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The trace formula

The key element of the argument is the formula expressing the density
of states which can be formally written as

d(k) ≡
∑
n

δ(k − kn) =
L

π
+

1

2π

∑
p

(
Ape

ik`p +A∗pe−ik`p
)

where the sum runs over all periodic orbits in the graph, including those
with repetitions, `p is the orbit length, and Ap is the product of scattering
amplitudes at the vertices of the path.

It was discovered in the early days and rediscovered repeatedly; it can be
made rigorous through averaging with suitable trial functions.

Roth, C.R. Acad, Sci. 296 (1983), 793 Bolte and Endres, Ann. H. Poincaré 10 (2009), 189

In view of the incommensurability, one can use the trace formula to find
the length spectrum of the graph and use it successively to arrange the
edges into metric stars with the appropriate connectivity.
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Quantum chaos in graphs
It is well known that the concepts of chaotic motion is classical and
quantum physics are widely different. It the former it is manifested by
the sensitivity of trajectories to the initial conditions, absence of tori
in the phase space, etc.

Chaotic motion of quantum systems, on the other hand, shows in the
distribution of eigenvalues which looks like that of large random matrices.
The standard BGS conjecture about billiard dynamics says that classically
chaotic regions exhibit random-type-matrix spectra. Note, however, that
the correspondence is not one-to-one, the example of Šeba billiard shows
that even a classically integrable system may have such a spectrum.

Bohigas et al., Phys. Rev. Lett. 52 (1984), 1 Šeba, Phys. Rev. Lett. 64 (1990), 1855

Kottos and Smilansky proposed to study quantum chaos on graphs. It
has one obvious advantage: to get a reliable spectral statistics you have
to compute a large number of eigenvalues which is much easier here
that in the PDE setting.

Kottos and Smilansky, Phys. Rev. Lett. 79 (1997), 4794
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A simple example

Adopted from [KS’97] we show here results for a tetrahedron graph
with Kirchhoff coupling at the vertices.

It shows integrated nearest neighbor distribution for 80 thousand levels,
compared to standard RMT distributions, namely GUE for the graph
with the magnetic field and GOE for the graph without it.
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When and which quantum chaos can we see?

Naturally, now every graph shows a chaotic behavior. To begin with, in
analogy with the inverse problem discussed before, a universal behavior
is expected in graphs with incommensurate edges.

The edges must be connected by non-separating matching conditions,
otherwise we will obtain Poissonian distribution characteristic for
independent segments.

This is not sufficient, however, to get an RMT-type result. For instance, a
star graph with incommensurate edges and Kirchhoff coupling the nearest
neighbor distribution shows a level repulsion but different from the GOE.
We need a ‘sufficient connectivity’, e.g. the tetrahedron graph is complete.

Berkolaiko and Kuchment: Introduction to Quantum Graphs, AMS 2013

In addition to orthogonal ensembles of random matrices we saw, one
meets also symplectic chaotic graphs; this happens when Laplacian on
the graph is replaced by the Dirac operator.

Bolte and Harrison, J. Phys. A36 (2003), 2747
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More chaotic features

The nearest neighbor distribution is not the only characteristics of the
chaotic behavior. One also studies the two-point correlation function,

R2(x) = weak−lim
N→∞

1

N

N∑
i=1

N∑
j=1

δ(x − (kj − ki ))

and the form factor obtained by Fourier transformation,

K (τ) =

∫
R
e2πixτ (R2(x)− 1)dx .

The form factor was in various chaotic graphs again found to be in
agreement with corresponding quantity of the respective random
matrix ensemble.

The form factor can be expressed by means of the trace formula
mentioned above. While graphs – in contrast to billiards – have no
classical counterpart, periodic orbits appearing in the trace formula
can be regarded as a certain analogue of classical dynamics.
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Leaky graphs
Regarding quantum graphs as model nanowires is in a sense too
idealized. I reality the confinement of electrons to such a wire is not
absolute; the wire boundary is, for instance, an interface between two
semiconductor materials, and as result, tunneling is possible.

Looking for a more realistic model, let us consider a planar graph Γ
and choose the singular Schrödinger operator

Hα,Γ = −∆−αδ(x − Γ), α > 0,

in L2(R2) with attractive interaction as its Hamiltonian.

The particle can be now be found in the whole plane. States belonging
to the negative spectral subspace remain localized close to Γ and the set
R2 \ Γ is classically forbidden region, hence tunneling between parts of Γ
is possible with the probability decreasing exponentially with the distance.

We call such models we use the name leaky (quantum) graphs. We can
also study them in higher dimensions, say with Γ composed of curves
and surfaces in R3 – the only limitation is that the codimension of the
interaction must be ≤ 3 but for simplicity we stay with the 2D situation.
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There is more geometry in leaky graphs
In the ‘standard’ quantum graphs the geometrical information consists
of the lengths of the edges and their connectivity, now we have to take
in addition their shapes into account.

This seems innocent but it is not. As an example, consider the situation
when Γ is a single infinite curve. If Γ is a straight line, the variable
separate and Hα,Γ has a purely ac spectrum, σ(Hα,Γ) =

[
− 1

4α
2,∞

)
.

Let us look what happens if we bend the curve assuming that

Γ : R→ R2 is piecewise C 1-smooth parametrized by its arc length

|Γ(s)− Γ(s ′)| ≥ c |s − s ′| holds for some c ∈ (0, 1) excluding, e.g.,
self-intersections and U-shapes

Γ is asymptotically straight: there are d > 0, µ > 1
2 such that

1− |Γ(s)− Γ(s ′)|
|s − s ′| ≤ d

[
1 + |s + s ′|2µ

]−1/2

holds in Sω :=
{

(s, s ′) : ω < s
s′ < ω−1

}
with some ω ∈ (0, 1).

P. Exner: QM on graphs Simons Center for Geometry and Physics June 7, 2022 - 44 -



Spectrum of a bent curve

In the described situation, the essential spectrum remains preserved,
σess(Hα,Γ) = [−1

4α
2,∞). What is more interesting, however, that the

geometry induces the existence of discrete spectrum: if Γ is not straight,
Hα,Γ has at least one eigenvalue below the threshold −1

4α
2.

Exner and Ichinose, J. Phys. A34 (2001), 1439

The discrete spectrum depends on the geometry being non-void unless
Γ is straight. Consider a broken line Γ = Γβ with a small angle β,

         

````````̀

   
  
β

which has a single eigenvalue with the asymptotic behavior

−1
4α

2 − λ1(Hα,Γβ )

−1
4α

2
= − 1

9π2
β4 + o(β4) as β → 0.

Exner and Kondej, J. Phys. A48 (2015), 495301
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More complicated graphs

Geometric effects also appear in more complicated graphs. Some follow
directly for the result we quoted. As an example, consider a star graph Γ
with semiinfinite edges. Except of the trivial case of a straight line, Γ
contains at least one broken line which we call Γ̃.

It is easy to check the essential spectrum of the two is the same,

σess(Hα,Γ) = σess(Hα,Γ̃) =
[
− 1

4α
2,∞

)
,

and since Hα,Γ ≤ Hα,Γ̃, by minimax principle we infer that σdisc(Hα,Γ) 6= ∅.
Another simple variational argument shows that #σdisc(Hα,Γ) can be made
arbitrarily large if we choose one of the angles of the star sufficiently small.

This again illustrate the difference between the leaky and ‘standard’
quantum graphs: for the latter the number of bound states in an
infinite-star graph cannot exceed the vertex degree.
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Leaky graphs with a strong coupling

If the δ interaction is strong, the wave function are concentrated in
the small neighborhood of Γ making them essentially one-dimensional.
Nevertheless, the geometric effect are still there.

To understand what is happening, consider again an infinite curve,
non-straight but asymptotically straight, this time smooth enough so
that its curvature κ(s) and its first two derivatives exist, and ask how
the jth eigenvalue of Hα,Γ behaves as α→∞. We find that

λj(α) = −1

4
α2 + µj +O(α−1 lnα)

where µj is the jth eigenvalue of SΓ = − d2

ds2 − 1
4κ(s)2, and we know that

the operator SΓ has at last one negative eigenvalue whenever κ 6= 0.

Exner and Yoshitomi, J. Geom. Phys. 41 (2002), 344

The same technique can be used to show that if Γ is a smooth periodic
curve, the spectrum of Hα,Γ has open gaps for α large enough.

Yoshitomi, J. Diff. Eqs 142 (1998), 12
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Scattering on leaky curve
The geometrically induced bound states manifest that parts of a leaky
graph ‘talk to each other’. Another illustration is provided by scattering,
even on a single curve; we focus on negative energies when the particle
is localized in the vicinity of the curve.

Consider a straight line deformation
shaped as an open loop with a bottle-
neck the width a of which we will vary
and ask about resonances

←→
a

← → ← →
L L

For a straight Γ the transverse eigenfunction is e−α|y |/2, so the distance
at which tunneling becomes significant is ≈ 4α−1. In the example, we
choose α = 1 and use a well-known physicist’s trick to study resonances
by exploring spectral properties of the problem cut to a finite length L
and to look for avoided crossings in the L eigenvalue dependence.

Hagedorn and B. Meller, J. Math. Phys. 41 (2000), 103
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Resonances on bottleneck curve
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Wide bottleneck, a = 5.2

0 10 20 30 40 50 60

−0.25

−0.2

−0.15

−0.1

−0.05

0

L

E

Narrow bottleneck, a = 2.9
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Even narrower one, a = 1.9

We see that if the bottleneck width is small enough, the system exhibits
resonances, obviously caused by tunneling between adjacent parts.

Those are absent in the ‘standard’ quantum graph where the curve is
equivalent to a straight line, and this cannot be changed even if we add
a curvature-induced potential, say, −1

4γ(s)2; to see that, it is enough to
‘flip’ one half of the curve.

This not the last interesting problem quantum graphs may offer – there
are many more – but I am afraid time came to stop.
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It remains to say

Thank you for your attention!
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