Approximations *for* and *by* **quantum graph Hamiltonians**

Pavel Exner

in collaboration with Taksu Cheon, Pavel Hejčík, Olaf Post, Petr Šeba and Ondřej Turek

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 – p.1/50

Introduction

Vertex coupling parametrization, a reminder: what it is and why it is interesting

- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs
- More singular vertex couplings

- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs
- More singular vertex couplings
- Vice versa, approximations by PDE solutions by graphs

- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs
- More singular vertex couplings
- Vice versa, approximations by PDE solutions by graphs
- Transport through billiards with leads

- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs
- More singular vertex couplings
- Vice versa, approximations by PDE solutions by graphs
- Transport through billiards with leads
- Emergence of global structures in large graphs

is naturally the same as

to give apples to Alcinous [classical]

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]
- to sell refrigerators to Aleut-Americans [American, politically correct]

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]
- to sell refrigerators to Aleut-Americans [American, politically correct]
- or maybe, *Eulen nach Athen tragen* [German, it seems]

- *to give apples to Alcinous* [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]
- to sell refrigerators to Aleut-Americans [American, politically correct]
- or maybe, *Eulen nach Athen tragen* [German, it seems]
- to throw a perfume on the violet [Shakespeare, King John]

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]
- to sell refrigerators to Aleut-Americans [American, politically correct]
- or maybe, *Eulen nach Athen tragen* [German, it seems]
- to throw a perfume on the violet [Shakespeare, King John]
- *etc., etc.* Let us thus go straight *in medias res*

Vertex coupling

The most simple example is a star graph with the state Hilbert space $\mathcal{H} = \bigoplus_{j=1}^{n} L^2(\mathbb{R}_+)$ and the particle Hamiltonian acting on \mathcal{H} as $\psi_j \mapsto -\psi_j''$

Vertex coupling

The most simple example is a star graph with the state Hilbert space $\mathcal{H} = \bigoplus_{j=1}^{n} L^2(\mathbb{R}_+)$ and the particle Hamiltonian acting on \mathcal{H} as $\psi_j \mapsto -\psi_j''$

Since it is second-order, the boundary condition involve $\Psi(0) := \{\psi_j(0)\}$ and $\Psi'(0) := \{\psi'_j(0)\}$ being of the form

 $A\Psi(0) + B\Psi'(0) = 0;$

by [Kostrykin-Schrader'99] the $n \times n$ matrices A, B give rise to a self-adjoint operator if they satisfy the conditions

- $\operatorname{rank}(A, B) = n$
 - AB* is self-adjoint

HFT boundary conditions

The non-uniqueness of K-S b.c. can be removed: **Proposition** [Harmer'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

 $A = U - I, \quad B = i(U + I)$

HFT boundary conditions

The non-uniqueness of K-S b.c. can be removed: **Proposition** [Harmer'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

 $A = U - I, \quad B = i(U + I)$

One can derive them modifying the argument used in [Fülöp-Tsutsui'00] for generalized point interactions, n = 2Self-adjointness requires vanishing of the boundary form,

$$\sum_{j=1}^{n} (\bar{\psi}_{j} \psi_{j}' - \bar{\psi}_{j}' \psi_{j})(0) = 0,$$

which occurs *iff* the norms $\|\Psi(0) \pm i\ell\Psi'(0)\|_{\mathbb{C}^n}$ with a fixed $\ell \neq 0$ coincide, so the vectors must be related by an $n \times n$ unitary matrix; this gives $(U - I)\Psi(0) + i\ell(U + I)\Psi'(0) = 0$

Remarks

The length parameter is not important because matrices corresponding to two different values are related by

$$U' = \frac{(\ell + \ell')U + \ell - \ell'}{(\ell - \ell')U + \ell + \ell'}$$

The choice $\ell = 1$ just fixes the length scale

Remarks

The length parameter is not important because matrices corresponding to two different values are related by

$$U' = \frac{(\ell + \ell')U + \ell - \ell'}{(\ell - \ell')U + \ell + \ell'}$$

The choice $\ell = 1$ just fixes the length scale

The HFT b.c. help to simplify the analysis done in [Kostrykin-Schrader'99], [Kuchment'04] and other previous work. It concerns, for instance, the null spaces of the matrices A, B

Remarks

The length parameter is not important because matrices corresponding to two different values are related by

$$U' = \frac{(\ell + \ell')U + \ell - \ell'}{(\ell - \ell')U + \ell + \ell'}$$

The choice $\ell = 1$ just fixes the length scale

- The HFT b.c. help to simplify the analysis done in [Kostrykin-Schrader'99], [Kuchment'04] and other previous work. It concerns, for instance, the null spaces of the matrices A, B
- or the on-shell scattering matrix for a star graph of n halflines with the considered coupling which equals

$$S_U(k) = \frac{(k-1)I + (k+1)U}{(k+1)I + (k-1)U}$$

Examples of vertex coupling

Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U = \frac{2}{n+i\alpha}\mathcal{J} - I$ corresponds to the standard δ *coupling*,

$$\psi_j(0) = \psi_k(0) =: \psi(0), \ j, k = 1, \dots, n, \ \sum_{j=1}^n \psi'_j(0) = \alpha \psi(0)$$

with "coupling strength" $\alpha \in \mathbb{R}$; $\alpha = \infty$ gives U = -I

m

Examples of vertex coupling

Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U = \frac{2}{n+i\alpha}\mathcal{J} - I$ corresponds to the standard δ *coupling*,

$$\psi_j(0) = \psi_k(0) =: \psi(0), \ j, k = 1, \dots, n, \ \sum_{j=1}^n \psi'_j(0) = \alpha \psi(0)$$

with "coupling strength" $\alpha \in \mathbb{R}$; $\alpha = \infty$ gives U = -I

• $\alpha = 0$ corresponds to the "free motion", the so-called *free boundary conditions* (better name than Kirchhoff)

n

Examples of vertex coupling

Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U = \frac{2}{n+i\alpha}\mathcal{J} - I$ corresponds to the standard δ *coupling*,

$$\psi_j(0) = \psi_k(0) =: \psi(0), \ j, k = 1, \dots, n, \ \sum_{j=1}^n \psi'_j(0) = \alpha \psi(0)$$

with "coupling strength" $\alpha \in \mathbb{R}$; $\alpha = \infty$ gives U = -I

- $\alpha = 0$ corresponds to the "free motion", the so-called *free boundary conditions* (better name than Kirchhoff)
- Similarly, $U = I \frac{2}{n-i\beta}\mathcal{J}$ describes the δ'_s coupling $\psi'_j(0) = \psi'_k(0) =: \psi'(0), \ j, k = 1, \dots, n, \ \sum_{j=1}^n \psi_j(0) = \beta \psi'(0)$ with $\beta \in \mathbb{R}$; for $\beta = \infty$ we get *Neumann* decoupling

Further examples

• Another generalization of 1D δ' is the δ' coupling: $\sum_{j=1}^{n} \psi'_{j}(0) = 0, \quad \psi_{j}(0) - \psi_{k}(0) = \frac{\beta}{n} (\psi'_{j}(0) - \psi'_{k}(0)), \quad 1 \leq j, k \leq n$ with $\beta \in \mathbb{R}$ and $U = \frac{n-i\alpha}{n+i\alpha}I - \frac{2}{n+i\alpha}\mathcal{J}$; the infinite value of β refers again to Neumann decoupling of the edges

Further examples

- Another generalization of 1D δ' is the δ' coupling: $\sum_{j=1}^{n} \psi'_{j}(0) = 0, \quad \psi_{j}(0) - \psi_{k}(0) = \frac{\beta}{n} (\psi'_{j}(0) - \psi'_{k}(0)), \quad 1 \leq j, k \leq n$ with $\beta \in \mathbb{R}$ and $U = \frac{n-i\alpha}{n+i\alpha}I - \frac{2}{n+i\alpha}\mathcal{J}$; the infinite value of β refers again to Neumann decoupling of the edges
- Due to *permutation symmetry* the *U*'s are combinations of *I* and \mathcal{J} in the examples. In general, interactions with this property form a two-parameter family described by $U = uI + v\mathcal{J}$ s.t. |u| = 1 and |u + nv| = 1 giving the b.c.

$$(u-1)(\psi_j(0) - \psi_k(0)) + i(u-1)(\psi'_j(0) - \psi'_k(0)) = 0$$

$$(u-1+nv)\sum_{k=1}^{n}\psi_k(0) + i(u-1+nv)\sum_{k=1}^{n}\psi_k'(0) = 0$$

While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with n = 2, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with n = 2, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]
- More recently, the same system has been proposed as a way to realize a *qubit*, with obvious consequences: cf. "quantum abacus" in [Cheon-Tsutsui-Fülöp'04]

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with n = 2, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]
- More recently, the same system has been proposed as a way to realize a *qubit*, with obvious consequences: cf. "quantum abacus" in [Cheon-Tsutsui-Fülöp'04]
- Recall also that in a rectangular lattice with δ coupling of nonzero α spectrum depends on *number theoretic properties* of model parameters [E.'95]

More on the lattice example

Basic cell is a rectangle of sides ℓ_1 , ℓ_2 , the δ coupling with parameter α is assumed at every vertex

More on the lattice example

Basic cell is a rectangle of sides ℓ_1 , ℓ_2 , the δ coupling with parameter α is assumed at every vertex

Spectral condition for quasimomentum (θ_1, θ_2) reads

$$\sum_{j=1}^{2} \frac{\cos \theta_j \ell_j - \cos k \ell_j}{\sin k \ell_j} = \frac{\alpha}{2k}$$

Lattice band spectrum

Recall a continued-fraction classification, $\alpha = [a_0, a_1, \ldots]$:

- "good" irrationals have $\limsup_j a_j = \infty$ (and full Lebesgue measure)
- *"bad" irrationals* have $\limsup_j a_j < \infty$ (and $\lim_j a_j \neq 0$, of course)

Lattice band spectrum

Recall a continued-fraction classification, $\alpha = [a_0, a_1, \ldots]$:

- "good" irrationals have $\limsup_j a_j = \infty$ (and full Lebesgue measure)
- "bad" irrationals have $\limsup_j a_j < \infty$ (and $\lim_j a_j \neq 0$, of course)

Theorem [E.'95]: Call $\theta := \ell_2 / \ell_1$ and $L := \max\{\ell_1, \ell_2\}$.

(a) If θ is rational or "good" irrational, there are infinitely many gaps for any nonzero α

(b) For a "bad" irrational θ there is $\alpha_0 > 0$ such no gaps open above threshold for $|\alpha| < \alpha_0$

(c) There are infinitely many gaps if $|\alpha|L > \frac{\pi^2}{\sqrt{5}}$

Lattice band spectrum

Recall a continued-fraction classification, $\alpha = [a_0, a_1, \ldots]$:

- "good" irrationals have $\limsup_j a_j = \infty$ (and full Lebesgue measure)
- *"bad" irrationals* have $\limsup_j a_j < \infty$ (and $\lim_j a_j \neq 0$, of course)

Theorem [E.'95]: Call $\theta := \ell_2 / \ell_1$ and $L := \max\{\ell_1, \ell_2\}$.

(a) If θ is rational or "good" irrational, there are infinitely many gaps for any nonzero α

(b) For a "bad" irrational θ there is $\alpha_0 > 0$ such no gaps open above threshold for $|\alpha| < \alpha_0$

(c) There are infinitely many gaps if $|\alpha|L > \frac{\pi^2}{\sqrt{5}}$

This all illustrates why we seek a meaningful way *to "construct" different vertex couplings*. It will be our next task

A head-on approach

Take a more realistic situation with no ambiguity, such as *branching tubes* and analyze the *squeezing limit*:

Unfortunately, it is not so simple as it looks because

A head-on approach

Take a more realistic situation with no ambiguity, such as *branching tubes* and analyze the *squeezing limit*:

Unfortunately, it is not so simple as it looks because

- after a long effort the Neumann-like case was solved [Kuchment-Zeng'01], [Rubinstein-Schatzmann'01], [Saito'01], [E.-Post'05] leading to free b.c. only
- the important *Dirichlet case* is open (and difficult), apart of the (not so intriguing) case leading to full decoupling of graph edges [Post'05], [Grieser'05]?

Recall the Neumann-like case

The simplest situation in [KZ'01, EP'05] (weights left out) Let M_0 be a finite connected graph with vertices v_k , $k \in K$

and edges $e_j \simeq I_j := [0, \ell_j]$, $j \in J$; the state Hilbert space is

$$L^2(M_0) := \bigoplus_{j \in J} L^2(I_j)$$

and in a similar way Sobolev spaces on M_0 are introduced

Recall the Neumann-like case

The simplest situation in [KZ'01, EP'05] (weights left out) Let M_0 be a finite connected graph with vertices v_k , $k \in K$ and edges $e_j \simeq I_j := [0, \ell_j]$, $j \in J$; the state Hilbert space is

$$L^2(M_0) := \bigoplus_{j \in J} L^2(I_j)$$

and in a similar way Sobolev spaces on M_0 are introduced The form $u \mapsto ||u'||_{M_0}^2 := \sum_{j \in J} ||u'||_{I_j}^2$ with $u \in \mathcal{H}^1(M_0)$ is associated with the operator which acts as $-\Delta_{M_0}u = -u''_j$ and satisfies free b.c.,

On the other hand, Laplacian on manifold

Consider a Riemannian manifold X of dimension $d \ge 2$ and the corresponding space $L^2(X)$ w.r.t. volume dX equal to $(\det g)^{1/2} dx$ in a fixed chart. For $u \in C^{\infty}_{\text{comp}}(X)$ we set

$$q_X(u) := \|\mathrm{d}u\|_X^2 = \int_X |\mathrm{d}u|^2 \mathrm{d}X, \ |\mathrm{d}u|^2 = \sum_{i,j} g^{ij} \partial_i u \, \partial_j \overline{u}$$

The closure of this form is associated with the s-a operator $-\Delta_X$ which acts in fixed chart coordinates as

$$-\Delta_X u = -(\det g)^{-1/2} \sum_{i,j} \partial_i ((\det g)^{1/2} g^{ij} \partial_j u)$$

On the other hand, Laplacian on manifold

Consider a Riemannian manifold X of dimension $d \ge 2$ and the corresponding space $L^2(X)$ w.r.t. volume dX equal to $(\det g)^{1/2} dx$ in a fixed chart. For $u \in C^{\infty}_{\text{comp}}(X)$ we set

$$q_X(u) := \|\mathrm{d}u\|_X^2 = \int_X |\mathrm{d}u|^2 \mathrm{d}X, \ |\mathrm{d}u|^2 = \sum_{i,j} g^{ij} \partial_i u \, \partial_j \overline{u}$$

The closure of this form is associated with the s-a operator $-\Delta_X$ which acts in fixed chart coordinates as

$$-\Delta_X u = -(\det g)^{-1/2} \sum_{i,j} \partial_i ((\det g)^{1/2} g^{ij} \partial_j u)$$

If *X* is compact with piecewise smooth boundary, one starts from the form defined on $C^{\infty}(X)$. This yields $-\Delta_X$ as the *Neumann* Laplacian on *X* and allows us in this way to treat "fat graphs" and "sleeves" on the same footing

Fat graphs and sleeves: manifolds

We associate with the graph M_0 a family of manifolds M_{ε}

We suppose that M_{ε} is a union of compact edge and vertex components $U_{\varepsilon,j}$ and $V_{\varepsilon,k}$ such that their interiors are mutually disjoint for all possible $j \in J$ and $k \in K$

Manifold building blocks

Manifold building blocks

However, M_{ε} need not be embedded in some \mathbb{R}^d . It is convenient to assume that $U_{\varepsilon,j}$ and $V_{\varepsilon,k}$ depend on ε only through their metric:

- for edge regions we assume that $U_{\varepsilon,j}$ is diffeomorphic to $I_j \times F$ where F is a compact and connected manifold (with or without a boundary) of dimension m := d 1
- for vertex regions we assume that the manifold $V_{\varepsilon,k}$ is diffeomorphic to an ε -independent manifold V_k

Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that $\mathcal{H}, \mathcal{H}'$ are separable Hilbert spaces. We want to compare ev's λ_k and λ'_k of nonnegative operators Q and Q' with purely discrete spectra defined via quadratic forms q and q' on $\mathcal{D} \subset \mathcal{H}$ and $\mathcal{D}' \subset \mathcal{H}'$. Set $||u||_{Q,n}^2 := ||u||^2 + ||Q^{n/2}u||^2$.

Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that $\mathcal{H}, \mathcal{H}'$ are separable Hilbert spaces. We want to compare ev's λ_k and λ'_k of nonnegative operators Q and Q' with purely discrete spectra defined via quadratic forms q and q' on $\mathcal{D} \subset \mathcal{H}$ and $\mathcal{D}' \subset \mathcal{H}'$. Set $||u||^2_{Q,n} := ||u||^2 + ||Q^{n/2}u||^2$.

Lemma: Suppose that $\Phi : \mathcal{D} \to \mathcal{D}'$ is a linear map such that there are $n_1, n_2 \ge 0$ and $\delta_1, \delta_2 \ge 0$ such that

 $||u||^{2} \leq ||\Phi u||'^{2} + \delta_{1} ||u||^{2}_{Q,n_{1}}, \ q(u) \geq q'(\Phi u) - \delta_{2} ||u||^{2}_{Q,n_{2}}$

for all $u \in \mathcal{D} \subset \mathcal{D}(Q^{\max\{n_1,n_2\}/2})$. Then to each k there is an $\eta_k(\lambda_k, \delta_1, \delta_2) > 0$ which tends to zero as $\delta_1, \delta_2 \to 0$, such that

 $\lambda_k \ge \lambda'_k - \eta_k$

Eigenvalue convergence

Let thus $U = I_j \times F$ with metric g_{ε} , where cross section Fis a compact connected Riemannian manifold of dimension m = d - 1 with metric h; we assume that $\operatorname{vol} F = 1$. We define another metric \tilde{g}_{ε} on $U_{\varepsilon,j}$ by

$$\widetilde{g}_{\varepsilon} := \mathrm{d}x^2 + \varepsilon^2 h(y);$$

the two metrics coincide up to an $\mathcal{O}(\varepsilon)$ error

This property allows us to treat manifolds embedded in \mathbb{R}^d (with metric \tilde{g}_{ε}) using product metric g_{ε} on the edges

Eigenvalue convergence

Let thus $U = I_j \times F$ with metric g_{ε} , where cross section Fis a compact connected Riemannian manifold of dimension m = d - 1 with metric h; we assume that $\operatorname{vol} F = 1$. We define another metric \tilde{g}_{ε} on $U_{\varepsilon,j}$ by

 $\tilde{g}_{\varepsilon} := \mathrm{d}x^2 + \varepsilon^2 h(y);$

the two metrics coincide up to an $\mathcal{O}(\varepsilon)$ error

This property allows us to treat manifolds embedded in \mathbb{R}^d (with metric \tilde{g}_{ε}) using product metric g_{ε} on the edges

The sought result now looks as follows.

Theorem [E.-Post'05]: Under the stated assumptions $\lambda_k(M_{\varepsilon}) \rightarrow \lambda_k(M_0)$ as $\varepsilon \rightarrow 0$ (giving thus free b.c.!)

Sketch of the proof

Proposition: $\lambda_k(M_{\varepsilon}) \leq \lambda_k(M_0) + o(1)$ as $\varepsilon \to 0$ To prove it apply the lemma to Φ_{ε} : $L^2(M_0) \to L^2(M_{\varepsilon})$, $\left(\varepsilon^{-m/2} u(v_k) \text{ if } z \in V_k \right)$

 $\Phi_{\varepsilon} u(z) := \begin{cases} \varepsilon^{-m/2} u(v_k) & \text{if } z \in V_k \\ \varepsilon^{-m/2} u_j(x) & \text{if } z = (x, y) \in U_j \end{cases} \text{ for } u \in \mathcal{H}^1(M_0)$

Sketch of the proof

Proposition: $\lambda_k(M_{\varepsilon}) \leq \lambda_k(M_0) + o(1)$ as $\varepsilon \to 0$ To prove it apply the lemma to Φ_{ε} : $L^2(M_0) \to L^2(M_{\varepsilon})$,

 $\Phi_{\varepsilon} u(z) := \begin{cases} \varepsilon^{-m/2} u(v_k) & \text{if } z \in V_k \\ \varepsilon^{-m/2} u_j(x) & \text{if } z = (x, y) \in U_j \end{cases} \text{ for } u \in \mathcal{H}^1(M_0)$

Proposition: $\lambda_k(M_0) \leq \lambda_k(M_{\varepsilon}) + o(1)$ as $\varepsilon \to 0$

Proof again by the lemma. Here one uses *averaging*:

$$N_j u(x) := \int_F u(x, \cdot) \,\mathrm{d}F \,, \ C_k u := \frac{1}{\operatorname{vol} V_k} \int_{V_k} u \,\mathrm{d}V_k$$

to build the comparison map by *interpolation*:

$$(\Psi_{\varepsilon})_j(x) := \varepsilon^{m/2} \left(N_j u(x) + \rho(x) (C_k u - N_j u(x)) \right)$$

with a smooth ρ interpolating between zero and one

More general b.c.? Recall RS argument

[Ruedenberg-Scher'53] used the heuristic argument:

$$\lambda \int_{V_{\varepsilon}} \phi \,\overline{u} \, \mathrm{d}V_{\varepsilon} = \int_{V_{\varepsilon}} \langle \mathrm{d}\phi, \mathrm{d}u \rangle \, \mathrm{d}V_{\varepsilon} + \int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}}\phi \,\overline{u} \, \mathrm{d}\partial V_{\varepsilon}$$

The surface term dominates in the limit $\varepsilon \to 0$ giving formally free boundary conditions

More general b.c.? Recall RS argument

[Ruedenberg-Scher'53] used the heuristic argument:

$$\lambda \int_{V_{\varepsilon}} \phi \, \overline{u} \, \mathrm{d} V_{\varepsilon} = \int_{V_{\varepsilon}} \langle \mathrm{d} \phi, \mathrm{d} u \rangle \, \mathrm{d} V_{\varepsilon} + \int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \, \overline{u} \, \mathrm{d} \partial V_{\varepsilon}$$

The surface term dominates in the limit $\varepsilon \to 0$ giving formally free boundary conditions

A way out could thus be to use *different* scaling rates of edges and vertices. Of a particular interest is the borderline case, $\operatorname{vol}_d V_{\varepsilon} \approx \operatorname{vol}_{d-1} \partial V_{\varepsilon}$, when the integral of $\langle \mathrm{d}\phi, \mathrm{d}u \rangle$ is expected to be negligible and we hope to obtain

$$\lambda_0 \phi_0(v_k) = \sum_{j \in J_k} \phi'_{0,j}(v_k)$$

Scaling with a power α

Let us try to do the same properly using *different scaling* of the *edge* and *vertex* regions. Some technical assumptions needed, e.g., the bottlenecks must be "simple"

Let vertices scale as ε^{α} . Using the comparison lemma again (just more in a more complicated way) we find that

■ if $\alpha \in (1-d^{-1}, 1]$ the result is as above: the ev's at the spectrum bottom converge the graph Laplacian with *free b.c.*, i.e. continuity and

 $\sum_{\text{edges meeting at } v_k} u'_j(v_k) = 0;$

Let vertices scale as ε^{α} . Using the comparison lemma again (just more in a more complicated way) we find that

■ if $\alpha \in (1-d^{-1}, 1]$ the result is as above: the ev's at the spectrum bottom converge the graph Laplacian with *free b.c.*, i.e. continuity and

$$\sum_{\text{edges meeting at } v_k} u'_j(v_k) = 0;$$

• if $\alpha \in (0, 1-d^{-1})$ the "limiting" Hilbert space is $L^2(M_0) \oplus \mathbb{C}^K$, where K is # of vertices, and the "limiting" operator acts as *Dirichlet Laplacian* at each edge and as zero on \mathbb{C}^K

• if $\alpha = 1 - d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_0(u) := \sum_j ||u'_j||^2_{I_j}$, the domain of which consists of $u = \{\{u_j\}_{j \in J}, \{u_k\}_{k \in K}\}$ such that $u \in H^1(M_0) \oplus \mathbb{C}^K$ and the *edge and vertex parts are coupled* by $(\operatorname{vol}(V_k^-)^{1/2}u_j(v_k) = u_k$

- if $\alpha = 1 d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_0(u) := \sum_j ||u'_j||_{I_j}^2$, the domain of which consists of $u = \{\{u_j\}_{j \in J}, \{u_k\}_{k \in K}\}$ such that $u \in H^1(M_0) \oplus \mathbb{C}^K$ and the *edge and vertex parts are coupled* by $(\operatorname{vol}(V_k^-)^{1/2}u_j(v_k) = u_k$
- finally, if vertex regions do not scale at all, $\alpha = 0$, the manifold components decouple in the limit again,

$$\bigoplus_{j\in J} \Delta^{\mathrm{D}}_{I_j} \oplus \bigoplus_{k\in K} \Delta_{V_{0,k}}$$

- if $\alpha = 1 d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_0(u) := \sum_j ||u'_j||_{I_j}^2$, the domain of which consists of $u = \{\{u_j\}_{j \in J}, \{u_k\}_{k \in K}\}$ such that $u \in H^1(M_0) \oplus \mathbb{C}^K$ and the *edge and vertex parts are coupled* by $(\operatorname{vol}(V_k^-)^{1/2}u_j(v_k) = u_k$
- finally, if vertex regions do not scale at all, $\alpha = 0$, the manifold components decouple in the limit again,

 Hence such a straightforward limiting procedure *does not help* us to justify choice of appropriate s-a extension
 Hence the scaling trick does not work: one has to add either *manifold geometry* or *external potentials*

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Consider once more star graph with $\mathcal{H} = \bigoplus_{j=1}^{n} L^2(\mathbb{R}_+)$ and Schrödinger operator acting on \mathcal{H} as $\psi_j \mapsto -\psi_j'' + V_j \psi_j$

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Consider once more star graph with $\mathcal{H} = \bigoplus_{j=1}^{n} L^2(\mathbb{R}_+)$ and Schrödinger operator acting on \mathcal{H} as $\psi_j \mapsto -\psi_j'' + V_j \psi_j$

We make the following assumptions:

$$V_j \in L^1_{\text{loc}}(\mathbb{R}_+), \ j = 1, \dots, n$$

• δ coupling with a parameter α in the vertex

Then the operator, denoted as $H_{\alpha}(V)$, is self-adjoint

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$W_{\varepsilon,j} := \frac{1}{\varepsilon} W_j\left(\frac{x}{\varepsilon}\right), \quad j = 1, \dots, n$$

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$W_{\varepsilon,j} := \frac{1}{\varepsilon} W_j\left(\frac{x}{\varepsilon}\right), \quad j = 1, \dots, n$$

Theorem [E.'96]: Suppose that $V_j \in L^1_{loc}(\mathbb{R}_+)$ are below bounded and $W_j \in L^1(\mathbb{R}_+)$ for j = 1, ..., n. Then

$$H_0(V+W_{\varepsilon}) \longrightarrow H_{\alpha}(V)$$

as $\varepsilon \to 0+$ in the norm resolvent sense, with the parameter $\alpha := \sum_{j=1}^{n} \int_{0}^{\infty} W_{j}(x) dx$

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$W_{\varepsilon,j} := \frac{1}{\varepsilon} W_j\left(\frac{x}{\varepsilon}\right), \quad j = 1, \dots, n$$

Theorem [E.'96]: Suppose that $V_j \in L^1_{loc}(\mathbb{R}_+)$ are below bounded and $W_j \in L^1(\mathbb{R}_+)$ for j = 1, ..., n. Then

$$H_0(V+W_{\varepsilon}) \longrightarrow H_{\alpha}(V)$$

as $\varepsilon \to 0+$ in the norm resolvent sense, with the parameter $\alpha := \sum_{j=1}^{n} \int_{0}^{\infty} W_{j}(x) dx$

Proof: Analogous to that for δ interaction on the line. \Box

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ'_s

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ'_s

Inspiration: Recall that δ' on the line can be approximated by δ 's scaled in a *nonlinear* way [Cheon-Shigehara'98]

Moreover, the convergence is *norm resolvent* and gives rise to approximations by *regular potentials* [Albeverio-Nizhnik'00], [E.-Neidhardt-Zagrebnov'01]

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ'_s

Inspiration: Recall that δ' on the line can be approximated by δ 's scaled in a *nonlinear* way [Cheon-Shigehara'98]

Moreover, the convergence is *norm resolvent* and gives rise to approximations by *regular potentials* [Albeverio-Nizhnik'00], [E.-Neidhardt-Zagrebnov'01]

This suggests the following scheme:

δ_s' approximation

Theorem [Cheon-E.'04]: $H^{b,c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$b(a):=-\frac{\beta}{a^2}\,,\quad c(a):=-\frac{1}{a}$$

δ_s' approximation

Theorem [Cheon-E.'04]: $H^{b,c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$b(a):=-\frac{\beta}{a^2}\,,\quad c(a):=-\frac{1}{a}$$

Proof: Green's functions of both operators are found explicitly be Krein's formula, so the convergence can be established by straightforward computation

δ_s' approximation

Theorem [Cheon-E.'04]: $H^{b,c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$b(a):=-\frac{\beta}{a^2}\,,\quad c(a):=-\frac{1}{a}$$

Proof: Green's functions of both operators are found explicitly be Krein's formula, so the convergence can be established by straightforward computation

Remark: Similar approximation can be worked out also for the other couplings mentioned above – cf. [E.-Turek'05]. For the permutation symmetric ones, e.g., one has

$$b(a) := \frac{in}{a^2} \left(\frac{u-1+nv}{u+1+nv} + \frac{u-1}{u+1} \right)^{-1}, \quad c(a) := -\frac{1}{a} - i\frac{u-1}{u+1}$$

Approximation *by* **graphs**

Let us now address the opposite question. Suppose we study a *large* quantum graph asking ourselves whether

global structures may emerge

Approximation *by* **graphs**

Let us now address the opposite question. Suppose we study a *large* quantum graph asking ourselves whether

- *global structures* may emerge
- graph families can approximate a "continuous" system described by a suitable PDE

Approximation *by* **graphs**

Let us now address the opposite question. Suppose we study a *large* quantum graph asking ourselves whether

- *global structures* may emerge
- graph families can approximate a "continuous" system described by a suitable PDE
- such structures are similar to something really existing in the nature

- $\mathcal{V} = \{\mathcal{X}_j : j \in I\}$ and $\mathcal{L} = \{\mathcal{L}_{jn} : (j, n) \in I_{\mathcal{L}} \subset I \times I\};$ we may suppose one *edge* between a pair of *vertices*
- $\mathcal{N}(\mathcal{X}_j) = \{\mathcal{X}_n : n \in \nu(j) \subset I \setminus \{j\}\}$ are *neighbors* of \mathcal{X}_j

- $\mathcal{V} = \{\mathcal{X}_j : j \in I\}$ and $\mathcal{L} = \{\mathcal{L}_{jn} : (j, n) \in I_{\mathcal{L}} \subset I \times I\};$ we may suppose one *edge* between a pair of *vertices*
- $\mathcal{N}(\mathcal{X}_j) = \{\mathcal{X}_n : n \in \nu(j) \subset I \setminus \{j\}\}$ are *neighbors* of \mathcal{X}_j
- Boundary \mathcal{B} , i.e. vertices with a single neighbor, and interior $\mathcal{I} := \mathcal{V} \setminus \mathcal{B}$ correspond to index subsets $I_{\mathcal{B}}$ and $I_{\mathcal{I}}$

- $\mathcal{V} = \{\mathcal{X}_j : j \in I\}$ and $\mathcal{L} = \{\mathcal{L}_{jn} : (j, n) \in I_{\mathcal{L}} \subset I \times I\};$ we may suppose one *edge* between a pair of *vertices*
- $\mathcal{N}(\mathcal{X}_j) = \{\mathcal{X}_n : n \in \nu(j) \subset I \setminus \{j\}\}$ are *neighbors* of \mathcal{X}_j
- Boundary \mathcal{B} , i.e. vertices with a single neighbor, and interior $\mathcal{I} := \mathcal{V} \setminus \mathcal{B}$ correspond to index subsets $I_{\mathcal{B}}$ and $I_{\mathcal{I}}$
- a metric Γ has \mathcal{L}_{jn} isometric to $[0, \ell_{jn}]$; this gives Hilbert space $L^2(\Gamma) := \bigoplus_{(j,n) \in I_{\mathcal{L}}} L^2(0, \ell_{jn})$ with elements $\{\psi_{jn}\}$

- $\mathcal{V} = \{\mathcal{X}_j : j \in I\}$ and $\mathcal{L} = \{\mathcal{L}_{jn} : (j, n) \in I_{\mathcal{L}} \subset I \times I\};$ we may suppose one *edge* between a pair of *vertices*
- $\mathcal{N}(\mathcal{X}_j) = \{\mathcal{X}_n : n \in \nu(j) \subset I \setminus \{j\}\}$ are *neighbors* of \mathcal{X}_j
- Boundary \mathcal{B} , i.e. vertices with a single neighbor, and interior $\mathcal{I} := \mathcal{V} \setminus \mathcal{B}$ correspond to index subsets $I_{\mathcal{B}}$ and $I_{\mathcal{I}}$
- a metric Γ has \mathcal{L}_{jn} isometric to $[0, \ell_{jn}]$; this gives Hilbert space $L^2(\Gamma) := \bigoplus_{(j,n) \in I_{\mathcal{L}}} L^2(0, \ell_{jn})$ with elements $\{\psi_{jn}\}$
- operators $H_{\alpha} \equiv H_{\alpha}(\Gamma, U)$ with *potentials* $U := \{U_{jn}\}$ and δ -couplings $\alpha := \{\alpha_j \in : j \in I\}$ defined as above

- $\mathcal{V} = \{\mathcal{X}_j : j \in I\}$ and $\mathcal{L} = \{\mathcal{L}_{jn} : (j, n) \in I_{\mathcal{L}} \subset I \times I\};$ we may suppose one *edge* between a pair of *vertices*
- $\mathcal{N}(\mathcal{X}_j) = \{\mathcal{X}_n : n \in \nu(j) \subset I \setminus \{j\}\}$ are *neighbors* of \mathcal{X}_j
- Boundary \mathcal{B} , i.e. vertices with a single neighbor, and interior $\mathcal{I} := \mathcal{V} \setminus \mathcal{B}$ correspond to index subsets $I_{\mathcal{B}}$ and $I_{\mathcal{I}}$
- a metric Γ has \mathcal{L}_{jn} isometric to $[0, \ell_{jn}]$; this gives Hilbert space $L^2(\Gamma) := \bigoplus_{(j,n) \in I_{\mathcal{L}}} L^2(0, \ell_{jn})$ with elements $\{\psi_{jn}\}$
- operators $H_{\alpha} \equiv H_{\alpha}(\Gamma, U)$ with *potentials* $U := \{U_{jn}\}$ and δ -couplings $\alpha := \{\alpha_j \in : j \in I\}$ defined as above
- on $\mathcal{L}_{nj} \equiv [0, \ell_{jn}]$ (the right end identified with \mathcal{X}_j) we introduce solutions to $-f'' + U_{jn}f = k^2 f$ satisfying $u_{jn}(\ell_{jn}) = 1 (u_{jn})'(\ell_{jn}) = 0$ and $v_{jn}(0) = 1 (v_{jn})'(0) = 0$ (Dirichlet b.c. at \mathcal{B}); one has $W_{jn} = -v_{jn}(\ell_{jn}) = u_{jn}(0)$

A preliminary: graph duality

Let H^D_{α} be obtained Dirichlet decoupling of H_{α} and denote $\mathcal{K} := \{k : k^2 \in \sigma(H^D_{\alpha})\}$. Moreover, assume that

(*i*) there is C > 0 s.t. $||U_{jn}||_{\infty} \le C$ for all $(j, n) \in I_{\mathcal{L}}$ (*ii*) $\ell_0 := \inf\{\ell_{jn} : (j, n) \in I_{\mathcal{L}}\} > 0$ (*iii*) $L_0 := \sup\{\ell_{jn} : (j, n) \in I_{\mathcal{L}}\} < \infty$ (*iv*) $N_0 := \max\{\operatorname{card} \nu(j) : j \in I\} < \infty$

A preliminary: graph duality

Let H^D_{α} be obtained Dirichlet decoupling of H_{α} and denote $\mathcal{K} := \{k : k^2 \in \sigma(H^D_{\alpha})\}$. Moreover, assume that

(*i*) there is C > 0 s.t. $||U_{jn}||_{\infty} \le C$ for all $(j, n) \in I_{\mathcal{L}}$ (*ii*) $\ell_0 := \inf\{\ell_{jn} : (j, n) \in I_{\mathcal{L}}\} > 0$ (*iii*) $L_0 := \sup\{\ell_{jn} : (j, n) \in I_{\mathcal{L}}\} < \infty$ (*iv*) $N_0 := \max\{\operatorname{card} \nu(j) : j \in I\} < \infty$

Theorem [E.'97]: (a) Suppose that *(i)-(iv)* are satisfied and $\psi \in D_{loc}(H_{\alpha})$ solves $-f'' + U_{jn}f = k^2 f$ for some $k \notin \mathcal{K}$ with $k^2 \in \mathbb{R}$, Im $k \ge 0$. Then the boundary values satisfy

$$\sum_{n \in \nu(j) \cap I_{\mathcal{I}}} \frac{\psi_n}{W_{jn}} - \left(\sum_{n \in \nu(j)} \frac{(v_{jn})'(\ell_{jn})}{W_{jn}} - \alpha_j\right) \psi_j = 0$$

Graph duality, continued

Conversely, any solution $\{\psi_j : j \in I_{\mathcal{I}}\}$ to the above system determines a solution of $-f'' + U_{jn}f = k^2 f$ by

$$\psi_{jn}(x) = \frac{\psi_n}{W_{jn}} u_{jn}(x) - \frac{\psi_j}{W_{jn}} v_{jn}(x) \quad \text{if} \quad n \in \nu(j) \cap I_{\mathcal{I}},$$
$$\psi_{jn}(x) = -\frac{\psi_j}{W_{jn}} v_{jn}(x) \quad \text{if} \quad n \in \nu(j) \cap I_{\mathcal{B}}.$$

(b) Under (i), (ii), $\psi \in L^2(\Gamma)$ implies that the solution $\{\psi_j\}$ of the "discrete" system belongs to $\ell^2(I_{\mathcal{I}})$

(c) The opposite implication is valid provided *(iii)*, *(iv)* also hold, and k has a positive distance from from \mathcal{K}

Graph duality, continued

Conversely, any solution $\{\psi_j : j \in I_{\mathcal{I}}\}$ to the above system determines a solution of $-f'' + U_{jn}f = k^2 f$ by

$$\psi_{jn}(x) = \frac{\psi_n}{W_{jn}} u_{jn}(x) - \frac{\psi_j}{W_{jn}} v_{jn}(x) \quad \text{if} \quad n \in \nu(j) \cap I_{\mathcal{I}},$$
$$\psi_{jn}(x) = -\frac{\psi_j}{W_{jn}} v_{jn}(x) \quad \text{if} \quad n \in \nu(j) \cap I_{\mathcal{B}}.$$

(b) Under (i), (ii), $\psi \in L^2(\Gamma)$ implies that the solution $\{\psi_j\}$ of the "discrete" system belongs to $\ell^2(I_{\mathcal{I}})$

(c) The opposite implication is valid provided *(iii)*, *(iv)* also hold, and k has a positive distance from from \mathcal{K}

Remark: There is a natural relation between the dual system specified above and the *spectral determinant* of Γ

Let us specify the above result to the situation when *(a)* all the graph edges have *the same length* $\ell > 0$, and *(b)* all the *potentials* U_{in} *vanish*. Then we have

$$u_{jn}(x) = \frac{1}{k} \sin k(x-\ell), \quad v_{jn}(x) = \frac{1}{k} \sin kx,$$

with $W_{jn} = -\frac{1}{k} \sin k\ell$ and the dual system becomes

$$-\sum_{n\in\nu(j)}\frac{\psi_n-\psi_j\cos k\ell}{k^{-1}\sin k\ell}+\alpha_j\psi_j=0\,,\quad j\in I\,;$$

it is true even at \mathcal{B} since we assume Dirichlet b.c. there

Let us specify the above result to the situation when *(a)* all the graph edges have *the same length* $\ell > 0$, and *(b)* all the *potentials* U_{in} *vanish*. Then we have

$$u_{jn}(x) = \frac{1}{k} \sin k(x-\ell), \quad v_{jn}(x) = \frac{1}{k} \sin kx,$$

with $W_{jn} = -\frac{1}{k} \sin k\ell$ and the dual system becomes

$$-\sum_{n\in\nu(j)}\frac{\psi_n-\psi_j\cos k\ell}{k^{-1}\sin k\ell}+\alpha_j\psi_j=0\,,\quad j\in I\,;$$

it is true even at \mathcal{B} since we assume Dirichlet b.c. there

Let now local metric on Γ come from *embedding*, the graph being a *subset in* \mathbb{R}^{ν} . In particular, consider a *cubic lattice graph* $\mathcal{C}^{\nu} \equiv \mathcal{C}^{\nu}(\ell) \subset \mathbb{R}^{\nu}$ whose vertices are lattice points $\{x_j(\ell) = (j_1\ell, \dots, j_{\nu}\ell) : j_i \in \mathbb{Z}\}$, as well as subgraphs of \mathcal{C}^{ν}

Theorem [E.-Hejčík-Šeba'05]: (a) Let $V : \mathbb{R}^{\nu} \to \mathbb{R}$ be C^1 with ∇V bounded and put $\alpha_j(\ell) := V(x_j)\ell$. Let for any $\ell > 0$ and k with $k^2 \in \mathbb{R}$, Im $k \ge 0$, the family $\{\psi_j^\ell\}$ solve the dual system, and define a step function $\psi_\ell : \mathbb{R}^{\nu} \to \mathbb{C}$ by

$$\psi_{\ell}(x) := \psi_{j}^{\ell} \quad \text{if} \quad -\frac{1}{2}\ell \le (x - x_{j})_{i} < \frac{1}{2}\ell$$

Suppose that $\{\psi_{\ell}\}$ converges to a function $\psi : \mathbb{R}^{\nu} \to \mathbb{C}$ as $\ell \to 0$ in the sense that $\varepsilon_j(\ell) := \psi(x_j) - \psi_{\ell}(x_j)$ behaves as $\sum_{n \in \nu(j)} (\varepsilon_n(\ell) - \varepsilon_j(\ell)) = o(\ell^2)$; then the limiting function ψ solves the equation

$$-\Delta\psi(x) + V(x)\psi(x) = \nu k^2\psi(x)$$

Theorem [E.-Hejčík-Šeba'05]: (a) Let $V : \mathbb{R}^{\nu} \to \mathbb{R}$ be C^1 with ∇V bounded and put $\alpha_j(\ell) := V(x_j)\ell$. Let for any $\ell > 0$ and k with $k^2 \in \mathbb{R}$, Im $k \ge 0$, the family $\{\psi_j^\ell\}$ solve the dual system, and define a step function $\psi_\ell : \mathbb{R}^{\nu} \to \mathbb{C}$ by

$$\psi_{\ell}(x) := \psi_{j}^{\ell} \quad \text{if} \quad -\frac{1}{2}\ell \le (x - x_{j})_{i} < \frac{1}{2}\ell$$

Suppose that $\{\psi_{\ell}\}$ converges to a function $\psi : \mathbb{R}^{\nu} \to \mathbb{C}$ as $\ell \to 0$ in the sense that $\varepsilon_j(\ell) := \psi(x_j) - \psi_{\ell}(x_j)$ behaves as $\sum_{n \in \nu(j)} (\varepsilon_n(\ell) - \varepsilon_j(\ell)) = o(\ell^2)$; then the limiting function ψ solves the equation

$$-\Delta\psi(x) + V(x)\psi(x) = \nu k^2\psi(x)$$

(b) The analogous result holds for Schrödinger equation in a region $\Omega \subset \mathbb{R}^{\nu}$ with Dirichlet b.c. if $\partial \Omega$ is piecewise smooth

Proof: For $f \in C^2$ we use Taylor expansion,

$$\frac{f(x+\ell) - f(x-\ell) - 2f(x)\cos k\ell}{\ell k^{-1}\sin k\ell} = \frac{2k}{\ell}f(x)\tan\frac{k\ell}{2} + f''(x)\frac{k\ell}{\sin k\ell} + o(\ell),$$

so the right-hand side tends to $f''(x) + k^2 f(x)$ as $\ell \to 0$. Applying this to ψ w.r.t. *each of the* ν *variables* we find

$$\Delta\psi(x_j) + \nu k^2 \psi(x_j) - V(x_j)\psi(x_j) = \left(\frac{\ell}{k}\sin k\ell\right)^{-1} \sum_{n\in\nu(j)} \left(\varepsilon_n(\ell) - \varepsilon_j(\ell)\right) + o(\ell),$$

where the right-hand side tends to zero by assumption. $\hfill\square$

Proof: For $f \in C^2$ we use Taylor expansion,

 $\frac{f(x+\ell) - f(x-\ell) - 2f(x)\cos k\ell}{\ell k^{-1}\sin k\ell} = \frac{2k}{\ell}f(x)\tan\frac{k\ell}{2} + f''(x)\frac{k\ell}{\sin k\ell} + o(\ell)\,,$

so the right-hand side tends to $f''(x) + k^2 f(x)$ as $\ell \to 0$. Applying this to ψ w.r.t. *each of the* ν *variables* we find

$$\Delta\psi(x_j) + \nu k^2 \psi(x_j) - V(x_j)\psi(x_j) = \left(\frac{\ell}{k}\sin k\ell\right)^{-1} \sum_{n\in\nu(j)} \left(\varepsilon_n(\ell) - \varepsilon_j(\ell)\right) + o(\ell),$$

where the right-hand side tends to zero by assumption. $\hfill\square$

Remarks: (a) We do not discuss here *existence of* ψ (b) The restriction $k \notin \mathcal{K}$ is satisfied for ℓ is small enough (c) The limiting energy is νk^2 , because all the "local" momentum components are equal (and the particle moves naturally over the graph in a zig-zag way)

Example

Take a *"Sinai-billiard" graph* made of a $N \times N$ rectangular lattice with *Dirichlet b.c.* at the boundary of Γ

The computation will be made with N = 97 and $\alpha = 0$, U = 0

Nodal domains

Take first an *eigenfunction* of the graph Hamiltonian corresponding to high enough eigenvalue

The nodal domains *on the graph* look similar to those of the "usual" Sinai billiard

Sinai graph transport

We attach to the above graph *two external leads* at points (14, 40) and (59, 80) of the 97×97 lattice

The b.c. are again supposed to be *free*

Billiards with leads

To have something to compare with, recall how one can describe transport through a billiard Ω with a *pair of leads* attached at internal points of Ω

The billiard Hamiltonian is, of course, the Dirichlet Laplacian $-\Delta_D^{\Omega}$ on $L^2(\Omega)$ and 1D Laplacians describe the leads

Billiards with leads

To have something to compare with, recall how one can describe transport through a billiard Ω with a *pair of leads* attached at internal points of Ω

The billiard Hamiltonian is, of course, the Dirichlet Laplacian $-\Delta_D^{\Omega}$ on $L^2(\Omega)$ and 1D Laplacians describe the leads

The direct sum $\mathcal{H} = L^2(\mathbb{R}_-) \oplus L^2(\Omega) \oplus L^2(\mathbb{R}_+)$ is naturally associated with the full system, so the wavefunctions are triples $\Phi = (\phi_-, \phi, \phi_+)$ of square integrable functions

Coupling of the leads

It describes by b.c. which involve *generalized boundary values*

$$L_0(\Phi) := \lim_{r \to 0} \frac{\Phi(\vec{x})}{\ln r}, \ L_1(\Phi) := \lim_{r \to 0} \left[\Phi(\vec{x}) - L_0(\Phi) \ln r \right]$$

Coupling of the leads

It describes by b.c. which involve *generalized boundary* values

$$L_0(\Phi) := \lim_{r \to 0} \frac{\Phi(\vec{x})}{\ln r}, \ L_1(\Phi) := \lim_{r \to 0} \left[\Phi(\vec{x}) - L_0(\Phi) \ln r \right]$$

Typical b.c. determining a s-a extension

$$\pm \phi'_{\mp}(0\mp) = A\phi_{\mp}(0\mp) + BL_0(\phi) , L_1(\phi) = C\phi_{\mp}(0\mp) + DL_0(\phi) ,$$

where

$$A, D \in \mathbb{R}$$
 and $B = 2\pi \overline{C}$

N.B.: If we use such a coupling between *plane and halfline* one can derive the S-matrix as a function of A, B, C, D

Billiard transport

Let the leads be attached at points $x_1, x_2 \in \Omega$. Construction of generalized eigenfunctions means *to couple plane-wave solution at leads* with

 $\phi(x) = a_1 G(x, x_1; k) + a_2 G(x, x_2; k) ,$

where $G(\cdot, \cdot; k)$ is Green's function of $-\Delta_D^{\Omega}$ in the billiard

Billiard transport

Let the leads be attached at points $x_1, x_2 \in \Omega$. Construction of generalized eigenfunctions means *to couple plane-wave solution at leads* with

$$\phi(x) = a_1 G(x, x_1; k) + a_2 G(x, x_2; k) ,$$

where $G(\cdot, \cdot; k)$ is Green's function of $-\Delta_D^{\Omega}$ in the billiard

The latter has a logarithmic singularity so $L_j(\phi)$ express in terms of $g := G(x_1, x_2; k)$ and

$$\xi_j \equiv \xi(x_j;k) := \lim_{x \to x_j} \left[G(x, x_j;k) + \frac{\ln|x - x_j|}{2\pi} \right];$$

the b.c. then determine *scattering*, i.e. transmission and reflection amplitudes, as well as the *coefficients* a_1, a_2

How to choose coupling parameters

A heuristic way to do that is to *compare low-energy scattering* in the *plane+halfline* model mentioned above

with the situation when the halfline is replaced by tube of radius *a* (for simplicity we disregard effect of the sharp edge at interface of the two parts)

Plane plus tube scattering

Rotational symmetry allows us to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$\psi(x) := \begin{cases} e^{ikx} + r_a^{(\ell)}(t)e^{-ikx} & \dots & x \le 0\\ \sqrt{\frac{\pi kr}{2}} t_a^{(\ell)}(k)H_\ell^{(1)}(kr) & \dots & r \ge a \end{cases}$$

Plane plus tube scattering

Rotational symmetry allows us to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$\psi(x) := \begin{cases} e^{ikx} + r_a^{(\ell)}(t)e^{-ikx} & \dots & x \le 0\\ \sqrt{\frac{\pi kr}{2}} t_a^{(\ell)}(k)H_\ell^{(1)}(kr) & \dots & r \ge a \end{cases}$$

This yields

$$r_a^{(\ell)}(k) = -\frac{\mathcal{D}_-^a}{\mathcal{D}_+^a}, \quad t_a^{(\ell)}(k) = 4i\sqrt{\frac{2ka}{\pi}} \left(\mathcal{D}_+^a\right)^{-1}$$

with

$$\mathcal{D}^{a}_{\pm} := (1 \pm 2ika)H^{(1)}_{\ell}(ka) + 2ka\left(H^{(1)}_{\ell}\right)'(ka)$$

Choice of the parameters

This has to be compared with the plane-and-halfline result. Only the *s*-wave is important: for the halfline there is no scattering if $\ell \neq 0$ while for the tube transmission probability vanishes as $a^{2\ell-1}$ for $a \to 0$

Choice of the parameters

This has to be compared with the plane-and-halfline result. Only the *s*-wave is important: for the halfline there is no scattering if $\ell \neq 0$ while for the tube transmission probability vanishes as $a^{2\ell-1}$ for $a \to 0$

Comparison shows that the two amplitudes coincide, in the leading order as $k \rightarrow 0$, with *plane+halfline* expression if

$$A := \frac{1}{2a}, \quad D := -\ln a, \quad B = 2\pi C = \sqrt{\frac{2\pi}{a}}$$

Notice that the "natural" coupling depend on a *single parameter*, namely radius of the "thin" component

In the example below we choose the tube radius *a* to be *one tenth* of the distance between the lattice graph nodes

Eigenfunctions comparison

graph with energy E Schrödinger with energy 2E

Energy *E* refers to incident momentum $k = \sqrt{E} = 1.65$

Probability currents

Apart of being less numerically demanding, study of transport with complex-valued generalized eigenfunctions allows us to analyze also *phase-related effects* and to compare them to their analogues in "true" billiards

Probability currents

Apart of being less numerically demanding, study of transport with complex-valued generalized eigenfunctions allows us to analyze also *phase-related effects* and to compare them to their analogues in "true" billiards

A primary quantity of interest is the *probability current* which in (an open) billiard is given conventionally by

 $\vec{j}(\vec{x}) = \text{Im} \left(\bar{\psi} \nabla \psi \right) (\vec{x})$

Probability currents

Apart of being less numerically demanding, study of transport with complex-valued generalized eigenfunctions allows us to analyze also *phase-related effects* and to compare them to their analogues in "true" billiards

A primary quantity of interest is the *probability current* which in a billiard is given conventionally by

 $\vec{j}(\vec{x}) = \operatorname{Im} \left(\bar{\psi} \nabla \psi \right) (\vec{x})$

What is a quantity to compare on Γ ? One possibility is to take *vertex values* as *discretization* of a smooth complex function and to compute the current in analogy with the above formula, by discrete approximation of differentiation

There is also an *alternative way*, more or less equivalent

Graph probability flows

"Microscopically", of course, they follow graph edges

Graph probability flows, continued

Construct now the "overall" flow on the graph as a *vector sum* of the "red" and "blue" components:

In this way, we find the vector field on Γ , to be compared with that of the billiard with leads

Comparison with Sinai billiard

vector addition, energy E Im $(\bar{\psi}\nabla\psi)(\vec{x})$, energy 2E

For simplicity, we show here just the lower left corner of the two pictures

Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)
- Potential approximations of vertex couplings: now we understand how they can be constructed, beyond the δ -coupling case

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)
- Potential approximations of vertex couplings: now we understand how they can be constructed, beyond the δ -coupling case
- Graph approximations to PDE solutions: simplest example here, many other situations can be considered

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)
- Potential approximations of vertex couplings: now we understand how they can be constructed, beyond the δ -coupling case
- Graph approximations to PDE solutions: simplest example here, many other situations can be considered
- Emergence of global structures: a proper "microscopic" understanding needed to approximate correctly effects like phase singularities

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)
- Potential approximations of vertex couplings: now we understand how they can be constructed, beyond the δ -coupling case
- Graph approximations to PDE solutions: simplest example here, many other situations can be considered
- Emergence of global structures: a proper "microscopic" understanding needed to approximate correctly effects like phase singularities
- Interesting applications: the obtained phase portraits of our large graphs are strikingly similar to structures observed in neural networks such a visual cortex

The talk was based on

- [CE04] T. Cheon, P.E.: An approximation to δ' couplings on graphs, *J. Phys. A: Math. Gen.* A37 (2004), L329-335
- [E95] P.E.: Lattice Kronig–Penney models, *Phys. Rev. Lett.***75** (1995), 3503-3506
- [E96] P.E.: Weakly coupled states on branching graphs, *Lett. Math. Phys.* **38** (1996), 313-320
- [E97] P.E.: A duality between Schrödinger operators on graphs and certain Jacobi matrices, *Ann. Inst. H. Poincaré: Phys. Théor.* 66 (1997), 359-371
- [EHŠ05] P.E., P. Hejčík, P. Šeba: Emergence of global structures in large quantum graphs, in preparation
- [ENZ01] P.E., H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ' : an inverse Klauder phenomenon with norm-resolvent convergence, *Commun. Math. Phys.* **224** (2001), 593-612
- [EP05] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, *J. Geom. Phys.* 54 (2005), 77-115
- [ET05] P.E., O. Turek: Approximations of singular coupling at graph vertices, in preparation

The talk was based on

- [CE04] T. Cheon, P.E.: An approximation to δ' couplings on graphs, *J. Phys. A: Math. Gen.* A37 (2004), L329-335
- [E95] P.E.: Lattice Kronig–Penney models, *Phys. Rev. Lett.***75** (1995), 3503-3506
- [E96] P.E.: Weakly coupled states on branching graphs, *Lett. Math. Phys.* **38** (1996), 313-320
- [E97] P.E.: A duality between Schrödinger operators on graphs and certain Jacobi matrices, *Ann. Inst. H. Poincaré: Phys. Théor.* 66 (1997), 359-371
- [EHŠ05] P.E., P. Hejčík, P. Šeba: Emergence of global structures in large quantum graphs, in preparation
- [ENZ01] P.E., H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ' : an inverse Klauder phenomenon with norm-resolvent convergence, *Commun. Math. Phys.* **224** (2001), 593-612
- [EP05] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, *J. Geom. Phys.* 54 (2005), 77-115
- [ET05] P.E., O. Turek: Approximations of singular coupling at graph vertices, in preparation
- for more information see http://www.ujf.cas.cz/~exner

