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[Introducing quantum graphs at Snowbird

o N

IS naturally the same as

# (o give apples to Alcinous
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[Introducing quantum graphs at Snowbird

-

IS naturally the same as

e o o @

°

°

-

to give apples to Alcinous

to carry firewood to the forest

to carry coals to Newcastle

to sell refrigerators to Aleut-Americans

or maybe, Eulen nach Athen tragen
to throw a perfume on the violet

Let us thus go straight in medias res
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Vertex coupling

f The most simple example is a T
star graph with the state Hilbert

space H = @, L*(R;) and
the particle Hamiltonian acting
onH as ¢ — —
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Vertex coupling

f The most simple example is a T
star graph with the state Hilbert

space H = @, L*(R;) and
the particle Hamiltonian acting
onH as ¢ — —

Since it is second-order, the boundary condition involve
U(0) == {¢;(0)} and ¥'(0) := {}(0)} being of the form

AU (0) + BY'(0) =0;
by [Kostrykin-Schrader'99] the n x n matrices A, B give rise
to a self-adjoint operator if they satisfy the conditions
® rank (A, B)=n
#® AB*is self-adjoint J
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HFT boundary conditions

fThe non-uniqueness of K-S b.c. can be removed: T

Proposition [Harmer'00]: Vertex couplings are uniguely
characterized by unitary n x n matrices U such that

A=U~1, B=i(U+1)
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HFT boundary conditions

fThe non-uniqueness of K-S b.c. can be removed: T

Proposition [Harmer'00]: Vertex couplings are uniguely
characterized by unitary n x n matrices U such that

A=U-1, B=i(U+1)

One can derive them modifying the argument used in
[Fulop-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,

D (W — ia)(0) = 0

j=1
which occurs iff the norms || ¥(0) £ W’ (0)||c» with a fixed
¢ = 0 coincide, so the vectors must be related by an n X N

%unltary matrix; this gives (U — 1)V (0) + (U + I)¥'(0) = 0 J
&)
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Remarks

~» The length parameter is not important because matrices |
corresponding to two different values are related by
I — (C+ U +¢—-1
(0 — U+ 0+ 0
The choice ¢ = 1 just fixes the length scale
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Remarks

~» The length parameter is not important because matrices |

corresponding to two different values are related by

(C+ U +¢—-1
(—0U+ L0+ 1

"'he choice ¢ = 1 just fixes the length scale

'he HFT b.c. help to simplify the analysis done in
[Kostrykin-Schrader'99], [Kuchment'04] and other

previous work. It concerns, for instance, the null
spaces of the matrices A, B

U =
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Remarks

~» The length parameter is not important because matrices |

corresponding to two different values are related by
(C+ U +¢—-1

(—0U+ 0+

"'he choice ¢ = 1 just fixes the length scale

U =

'he HFT b.c. help to simplify the analysis done in
[Kostrykin-Schrader'99], [Kuchment'04] and other
previous work. It concerns, for instance, the null
spaces of the matrices A, B

or the on-shell scattering matrix for a star graph of n
halflines with the considered coupling which equals

(k—1)I+(k+1)U
(k+ DI+ (k—1)U |
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Examples of vertex coupling

f # Denote by J the n x n matrix whose all entries are T

equal to one; then U = —=—.7 — I corresponds to the
standard o coupling,

1;(0) = 1y(0) = ¥(0), jk=1,....n, Zw;<0> = av)(0)

with “coupling strength” a« e R; aa = oo gives U = —1
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#® o = 0 corresponds to the “free motion”, the so-called
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Examples of vertex coupling

f # Denote by 7 the n xn matrix whose all entries are T
equal to one; then U = J — I corresponds to the
standard o coupling,

;(0) = ¥(0) = 9(0), jk=1,....n, Zw;<0>=

with “coupling strength” a« e R; aa = oo gives U = —1

n—H,oz

#® o = 0 corresponds to the “free motion”, the so-called
free boundary conditions (better name than Kirchhoff)

® Similarly, U =1 — —j describes the 0. coupling
Y5(0) = ¢4 (0) = ¢ (0), j bk =1,...,m, ijm):
=1

=
% with 3 € R; for 3 = oo we get Neumann decoupling J
!
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Further examples

f # Another generalization of 1D ¢’ is the ¢ coupling: T

> 3(0) = 0, 65(0)—6n(0) = ~(¥}(0)—¥4(0)), 1 <k <

with 3 e R and U = 2227 — _2__ 7: the infinite value of

n-t+io n-t+io

3 refers again to Neumann decoupling of the edges
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Further examples
f # Another generalization of 1D ¢’ is the ¢ coupling: T

Zw =0, 5(0)-4x(0) = “(4(0)~¢h(0), 1< jik <
W|th feRand U = 2ay _

o n+mj the infinite value of
3 refers again to Neumann decoupling of the edges

# Due to permutation symmetry the U’s are combinations
of I and 7 in the examples. In general, interactions with
this property form a two-parameter family described by
U=ul +vJ s.t. |ul =1and |u+ nv| =1 giving the b.c.

(= 1)(1;(0) = ¥ (0)) +i(u — 1)(¢5(0) = ¢,(0)) = 0
(u — 1+ nv) Zwk )+ i(u — 1+ nv) Zwk =0
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Why are vertices interesting?

-

# While usually conductivity of graph structures is
controlled by external fields, vertex coupling can
serve the same purpose
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Why are vertices interesting?

o N

# While usually conductivity of graph structures is
controlled by external fields, vertex coupling can
serve the same purpose

# It is an interesting problem in itself, recall that for the
generalized point interaction, 1.e. graph with n = 2,
the spectrum has nontrivial topological structure
[Tsutsui-Fulop-Cheon’01]
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serve the same purpose

# It is an interesting problem in itself, recall that for the
generalized point interaction, 1.e. graph with n = 2,
the spectrum has nontrivial topological structure
[Tsutsui-Fulop-Cheon’01]

# More recently, the same system has been proposed as
a way to realize a qubit, with obvious consequences:
cf. “guantum abacus” in [Cheon-Tsutsui-Fulop’04]
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Why are vertices interesting?

-

While usually conductivity of graph structures is
controlled by external fields, vertex coupling can
serve the same purpose

It is an interesting problem in itself, recall that for the
generalized point interaction, 1.e. graph with n = 2,
the spectrum has nontrivial topological structure
[Tsutsui-Fulop-Cheon’01]

More recently, the same system has been proposed as
a way to realize a qubit, with obvious consequences:
cf. “guantum abacus” in [Cheon-Tsutsui-Fulop’04]

Recall also that in a rectangular lattice with 4 coupling
of nonzero « spectrum depends on number theoretic
properties of model parameters [E.95]

|
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More on the lattice example

o N

Basic cell is a rectangle of sides /1, /5, the 6 coupling with
parameter « Is assumed at every vertex

I,

fm+1
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More on the lattice example

o N

Basic cell is a rectangle of sides /1, /5, the 6 coupling with
parameter « Is assumed at every vertex

I,

g, 8,41

X

Spectral condition for quasimomentum (6, 62) reads

22: cosl; — coskl; e

sin k¢ 2%k
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Lattice band spectrum

fRecaII a continued-fraction classification, o = [ag, a1, . . .J: T

® ‘good”irrationals have limsup; a; = oo
(and full Lebesgue measure)

® ‘bad’irrationals have limsup; a; < oo
(and lim; a; # 0, of course)
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Lattice band spectrum

fRecaII a continued-fraction classification, o = [ag, a1, . . .J: T

® ‘good”irrationals have limsup; a; = oo

(and full Lebesgue measure)

® ‘bad’irrationals have limsup; a; < oo

(and lim; a; # 0, of course)

Theorem [E95]: Call § := ¢35 /¢ and L := max{/1, l2}.
(a) If 9 is rational or “good” irrational, there are infinitely

many gaps for any nonzero «

(b) For a “bad” irrational 6 there is o > 0 such no gaps

open above threshold for |a| < ag

(c) There are infinitely many gaps if [a[L > =

Summer Research Con
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Lattice band spectrum

fRecaII a continued-fraction classification, o = [ag, a1, . . .J: T

® ‘good”irrationals have limsup; a; = oo
(and full Lebesgue measure)

® ‘bad’irrationals have limsup; a; < oo
(and lim; a; # 0, of course)

Theorem [E95]: Call § := ¢35 /¢ and L := max{/1, l2}.

(a) If 9 is rational or “good” irrational, there are infinitely
many gaps for any nonzero «

(b) For a “bad” irrational 6 there is o > 0 such no gaps
open above threshold for |a| < ag

(c) There are infinitely many gaps if |a|L > %

This all illustrates why we seek a meaningful way fo
%“construct” different vertex couplings. It will be our next taskJ
&)
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A head-on approach

fTake a more realistic situation with no ambiguity, such T
as branching tubes and analyze the squeezing limit:

= - <

Unfortunately, it is not so simple as it looks because
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A head-on approach

fTake a more realistic situation with no ambiguity, such T
as branching tubes and analyze the squeezing limit:

= - <

Unfortunately, it is not so simple as it looks because

# after a long effort the Neumann-like case was solved
[Kuchment-Zeng'01], [Rubinstein-Schatzmann’01],
[Saito’01], [E.-Post’05] leading to free b.c. only

# the important Dirichlet case is open (and difficult),
apart of the (not so intriguing) case leading to full
decoupling of graph edges [Post’05], [Grieser'05]? J

)
w Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 — p.12/50



Recall the Neumann-like case

fThe simplest situation in [KZ'01, EP'05] (weights left out) T

Let M, be a finite connected graph with vertices v, k € K
and edges e; ~ [; := |0,¢], j € J; the state Hilbert space is

L*(My) = P L*(1)
=
and in a similar way Sobolev spaces on M, are introduced
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Recall the Neumann-like case

fThe simplest situation in [KZ'01, EP'05] (weights left out) T

Let M, be a finite connected graph with vertices v, k € K
and edges e; ~ [; := |0,¢], j € J; the state Hilbert space is

L*(Mo) = €D L*(1))
jeJ
and in a similar way Sobolev spaces on M, are introduced
The form w — [[u/[|3,, = 225 [[W/]|7, with u € H' (Mo) is
associated with the operator which acts as — Ay u = —uf
and satisfies free b.c.,

Z wi(vg) =0
J, €; meets v
o | .
)
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)n the other hand, Laplacian on manifold

fConsider a Riemannian manifold X of dimension d > 2 andj
the corresponding space L?(X) w.r.t. volume dX equal to

(det ¢)'/2dz in a fixed chart. For u € C°__(X) we set

comp
gx(u) = ||dul% = / dul*dX , |dul* = g7 005
X .
2V}
The closure of this form is associated with the s-a operator
—A x which acts in fixed chart coordinates as

—Axu= —(det g)~/? Z 8;((det g)'/2 g% o;ju)
1,
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)n the other hand, Laplacian on manifold

fConsider a Riemannian manifold X of dimension d > 2 andj
the corresponding space L?(X) w.r.t. volume dX equal to

(det ¢)'/2dz in a fixed chart. For u € C°__(X) we set

comp

gx(u) = ||dul% = / dul*dX , |dul* = g7 005
X .
(2¥)
The closure of this form is associated with the s-a operator
—A x which acts in fixed chart coordinates as

—Axu= —(det g)~/? Z 8;((det g)'/2 g% dju)
1,]
If X Is compact with piecewise smooth boundary, one starts
from the form defined on C*°(X). This yields —Ax as the

Neumann Laplacian on X and allows us in this way to treat
%“fat graphs” and “sleeves” on the same footing J
&)
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Fat graphs and sleeves: manifolds

-

We associate with the graph M, a family of manifolds M.

M

We suppose that M. is a union of compact edge and vertex
components U, ; and V; ;, such that their interiors are

%mutually disjoint for all possible j € Jand k € K J
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Manifold building blocks

: = :
'e\c T®
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Manifold building blocks

However, M. need not be embedded in some R<.

It is convenient to assume that U, ; and V. ;, depend on ¢
only through their metric:

o for edge regions we assume that U, ; is diffeomorphic to
I; x F ' where F'is a compact and connected manifold
(with or without a boundary) of dimension m :=d — 1

o for vertex regions we assume that the manifold V_ ., is
diffeomorphic to an s-independent manifold V,
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Comparison of eigenvalues

fOur main tool here will be minimax principle. Suppose that T
H, H' are separable Hilbert spaces. We want to compare
ev's \; and X, of nonnegative operators ¢ and @’ with

purely discrete spectra defined via quadratic forms ¢ and ¢’
onD Cc Hand D' C H'. Set ||ull3,, := lull*+ |Q"/?ul/*.
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Comparison of eigenvalues

fOur main tool here will be minimax principle. Suppose that T
H, H' are separable Hilbert spaces. We want to compare
ev's \; and X, of nonnegative operators ¢ and @’ with

purely discrete spectra defined via quadratic forms ¢ and ¢’
onD Cc Hand D' C H'. Set ||ull3,, := lull*+ |Q"/?ul/*.

Lemma: Suppose that ® : D — D’ is a linear map such that
there are ny,no > 0 and 41, d2 > 0 such that

Jull® < [|Pu] + &1l

O > 4(1) = ¢ (Pu) — 2]|ull,p,

for all u € D ¢ D(Qmax{mm2}/2) Then to each k there is an
ne(Ag, 01, 02) > 0 which tends to zero as 4;, 63 — 0, such that

e > N — 1
)
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Eigenvalue convergence

fLet thus U = I; x F with metric g., where cross section F T

IS a compact connected Riemannian manifold of dimension
m = d — 1 with metric h; we assume that vol ' = 1. We
define another metric g. on U, ; by

Ge = da* + £°h(y) ;

the two metrics coincide up to an O(¢) error

This property allows us to treat manifolds embedded in R?
(with metric g.) using product metric ¢g. on the edges
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Eigenvalue convergence

fLet thus U = I; x F with metric g., where cross section F T

IS a compact connected Riemannian manifold of dimension
m = d — 1 with metric h; we assume that vol ' = 1. We
define another metric g. on U, ; by

Ge = da* + £°h(y) ;

the two metrics coincide up to an O(¢) error

This property allows us to treat manifolds embedded in R?
(with metric g.) using product metric ¢g. on the edges

The sought result now looks as follows.

Theorem [E.-Post’05]: Under the stated assumptions
)\k(Mg) — )\k(M()) as € — 0

" -
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Sketch of the proof

fProposition: Ae(Mz) < Ap(Mo) +0(1) @as € — 0 T
To prove it apply the lemmato ®. : L*(My) — L*(M.),

—m/2 if 2z €V
{ ) wlve) itz € Ve for u € H* (M)
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Sketch of the proof

fProposition: Ae(Mz) < Ap(Mo) +0(1) @as € — 0 T
To prove it apply the lemmato ®. : L*(My) — L*(M.),

G u(z) = e Pulvy) if 2 €V for u € H* (M)
e~ 2u;(z) if 2z = (z,y) € U;

Proposition: \.(My) < \p.(M:) +0(1) as ¢ — 0

Proof again by the lemma. Here one uses averaging:

1
N = JdF, Cru:= dV;
jue) /FU(% )dF', Cyu vol v, /Vku k

to build the comparison map by interpolation:
(V.);(x) :=e™?(Nju(z) + p(x)(Cru — Nju(x)))

with a smooth p interpolating between zero and one |

S
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More general b.c.? Recall RS argument

o N

[Ruedenberg-Scher’53] used the heuristic argument:

/gbudV / (de, du) dV. +/ O dOV-

The surface term dominates in the limit e — 0 giving
formally free boundary conditions

|
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More general b.c.? Recall RS argument

o , . N

[Ruedenberg-Scher’53] used the heuristic argument:

)\/ gbﬂdVg:/ (de, du) dV€+/ O dOV
Ve Ve oV

The surface term dominates in the limit e — 0 giving
formally free boundary conditions

A way out could thus be to use different scaling rates of
edges and vertices. Of a particular interest is the borderline
case, vol V- ~ vol,; 10Vz, when the integral of (d¢, du) is
expected to be negligible and we hope to obtain

Nodo(ve) = Y ¢ (o)

JEJk
@ Summer Research Confere i icati i

nce Quantum Graphs and Their Applications; Snowbird, June 21, 2005 — p.20/50



Scaling with a power «

o N

Let us try to do the same properly using different scaling of
the edge and vertex regions. Some technical assumptions
needed, e.g., the bottlenecks must be “simple”

vertex region V; ;.

AN

. fransition region A,

fat edge U.
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Two-speed scaling limit

o N

Let vertices scale as *. Using the comparison lemma
again (just more in a more complicated way) we find that

o ifac(1—-d ' 1] the resultis as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
free b.c., 1.e. continuity and

Z wj(vg) = 0;

edges meeting at vg
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Two-speed scaling limit

o N

Let vertices scale as *. Using the comparison lemma
again (just more in a more complicated way) we find that

o ifac(1—-d ' 1] the resultis as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
free b.c., 1.e. continuity and

Z w)(vg) = 0;

edges meeting at vg

o ifac(0,1—d ') the “limiting” Hilbert space is
L*(My) @ CK, where K is # of vertices, and the
“limiting” operator acts as Dirichlet Laplacian at each
edge and as zero on C& J
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Two-speed scaling limit

f o if o =1—-d ', Hilbert space is the same but the limiting T
operator is given by quadratic form go(u) := 3= [[u/ |7 ,
the domain of which consists of v = {{u;} e, {vr rer }
such that v € H'(My) @ C* and the edge and vertex
parts are coupled by (vol (V7 )1/ 2u;(vy) = uy,
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Two-speed scaling limit

f o if o =1—-d ', Hilbert space is the same but the limiting T

operator is given by quadratic form go(u) := 3= [[u/ |7 ,
the domain of which consists of v = {{u;} e, {vr rer }
such that v € H'(My) @ C* and the edge and vertex
parts are coupled by (vol (V7 )1/ 2u;(vy) = uy,

finally, if vertex regions do not scale at all, « = 0, the
manifold components decouple in the limit again,

DAL @ D A

jed keK

|
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Two-speed scaling limit

f o if o =1—-d ', Hilbert space is the same but the limiting T

operator is given by quadratic form go(u) := 3= [[u/ |7 ,
the domain of which consists of v = {{u;} e, {vr rer }
such that v € H'(My) @ C* and the edge and vertex
parts are coupled by (vol (V7 )1/ 2u;(vy) = uy,

finally, if vertex regions do not scale at all, « = 0, the
manifold components decouple in the limit again,

DAL & D v,
jeJ keK

Hence such a straightforward limiting procedure does
not help us to justify choice of appropriate s-a extension

Hence the scaling trick does not work: one has to add
either manifold geometry or external potentials J
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Potential approximation

fA more modest goal: let us look what we can achieve with T
potential families on the graph alone
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Potential approximation

fA more modest goal: let us look what we can achieve with T
potential families on the graph alone

Consider once more star graph
with H = @)_, L*(Ry) and
Schrodinger operator acting on
H as ¢, — —@Dé-’ + Vi),
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Potential approximation

fA more modest goal: let us look what we can achieve with T
potential families on the graph alone

Consider once more star graph
with H = @)_, L*(Ry) and
Schrodinger operator acting on
H as ¢, — —wg-/ + Vi),

We make the following assumptions:

e VielLl Ry),j=1,...,n

loc

# ¢ coupling with a parameter « in the vertex

%Then the operator, denoted as H,(V), is self-adjoint J
!
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Potential approximation of o coupling

o N

Suppose that the potential has a shrinking component,

1
We ::ng (g) ., 7=1,....n

|

Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 — p.25/50

S



Potential approximation of o coupling

o N

Suppose that the potential has a shrinking component,

1
We ::ng (g) ., 7=1,....n

Theorem [E.96]: Suppose that V; € L} (R, ) are below

loc

bounded and W, € LY(R,) for j=1,...,n. Then
H()(V + Wg) — HQ(V)

as ¢ — 0+ in the norm resolvent sense, with the parameter
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Potential approximation of o coupling

o N

Suppose that the potential has a shrinking component,

1
We ::ng (g) ., 7=1,....n

Theorem [E.96]: Suppose that V; € L} (R, ) are below

loc

bounded and W, € LY(R,) for j=1,...,n. Then
H()(V + Wg) — HQ(V)

as ¢ — 0+ in the norm resolvent sense, with the parameter

Proof: Analogous to that for 4 interaction on the line. [
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More singular couplings

fThe above scheme does not work for graph Hamiltonians T
with discontinuous wavefunctions such as o,
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More singular couplings

fThe above scheme does not work for graph Hamiltonians T
with discontinuous wavefunctions such as o,

Inspiration: Recall that 4’ on the line can be approximated
by ¢’s scaled in a nonlinear way [Cheon-Shigehara’98]

Moreover, the convergence is norm resolvent and gives
rise to approximations by reqular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]
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More singular couplings

fThe above scheme does not work for graph Hamiltonians T
with discontinuous wavefunctions such as o,

Inspiration: Recall that 4’ on the line can be approximated
by ¢’s scaled in a nonlinear way [Cheon-Shigehara’98]

Moreover, the convergence is norm resolvent and gives
rise to approximations by reqular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]

This suggests the following scheme:
Hbe Hg

a— 0
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0. approximation

fTheorem [Cheon-E’04]: H*¢(a) — Hg as a — 0+ in the T
norm-resolvent sense provided b, ¢ are chosen as
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0. approximation

fTheorem [Cheon-E’04]: H*¢(a) — Hg as a — 0+ in the T
norm-resolvent sense provided b, ¢ are chosen as

15 1
bla) = —— = ——
(a) ==, cla) = —
Proof: Green’s functions of both operators are found
explicitly be Krein’s formula, so the convergence can be

established by straightforward computation
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0. approximation

fTheorem [Cheon-E’04]: H*¢(a) — Hg as a — 0+ in the T
norm-resolvent sense provided b, ¢ are chosen as

b(a) = —%, c(a) = —é

Proof: Green’s functions of both operators are found
explicitly be Krein’s formula, so the convergence can be

established by straightforward computation

Remark: Similar approximation can be worked out also for
the other couplings mentioned above — cf. [E.-Turek’05]. For
the permutation symmetric ones, e.g., one has

. 1
m (u—1-+nv u—1 1 u—1
b = : '

(@) a? (u+1+m}+u+1) - da)
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Approximation by graphs

o N

Let us now address the opposite question. Suppose we
study a /arge quantum graph asking ourselves whether

® global structures may emerge
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Approximation by graphs

o N

Let us now address the opposite question. Suppose we
study a /arge quantum graph asking ourselves whether

® global structures may emerge

# graph families can approximate a “continuous”
system described by a suitable PDE
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Approximation by graphs
- -

Let us now address the opposite question. Suppose we
study a /arge quantum graph asking ourselves whether

® global structures may emerge

# graph families can approximate a “continuous”
system described by a suitable PDE

# such structures are similar to something really
existing in the nature

" .
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A preliminary: some needed notions

f_. V={&;:jeltand L={Lj,: (j,n) € Ip C I x1}; T
we may suppose one edge between a pair of vertices

|
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A preliminary: some needed notions

f_. V={&;:jeltand L={Lj,: (j,n) € Ip C I x1}; T
we may suppose one edge between a pair of vertices

o N(X;)={X,: nev(j) CI\{j}} are neighbors of X;

|
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A preliminary: some needed notions

f.o V={&;:jeltand L={Lj,: (j,n) € Ip C I x1}; T
we may suppose one edge between a pair of vertices

o N(X;)={X,: nev(j) CI\{j}} are neighbors of X;

® Boundary B, i.e. vertices with a single neighbor, and
interior 7 := V' \ B correspond to index subsets /3 and /7

) i
w Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 — p.29/50



A preliminary: some needed notions

»

9

V={&;:jeltand L={Lj,: (j,n) € Ip C I x1}; T
we may suppose one edge between a pair of vertices

N(X;) ={X,: newv(j)CI\{j}} are neighbors of X;

Boundary B, i.e. vertices with a single neighbor, and
interior 7 := V' \ B correspond to index subsets /3 and /7

a metric I' has L;, isometric to [0, /,,]; this gives Hilbert
space L*(I') := @; yer, L7(0,¢;n) with elements {4, }

|
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A preliminary: some needed notions

-

K

9

V={&;:jeltand L={Lj,: (j,n) € Ip C I x1}; T
we may suppose one edge between a pair of vertices

N(X;) ={X,: newv(j)CI\{j}} are neighbors of X;

Boundary B, i.e. vertices with a single neighbor, and
interior 7 := V' \ B correspond to index subsets /3 and /7

a metric I' has L;, isometric to [0, /,,]; this gives Hilbert
space L*(I') := @; yer, L7(0,¢;n) with elements {4, }

operators H, = H,(I',U) with potentials U := {U;, } and
6-couplings o := {a; €: j € I} defined as above

|

Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 — p.29/50



-

A preliminary: some needed notions

K

9

V={&;:jeltand L={Lj,: (j,n) € Ip C I x1}; T
we may suppose one edge between a pair of vertices

N(X;) ={X,: newv(j)CI\{j}} are neighbors of X;

Boundary B, i.e. vertices with a single neighbor, and
interior 7 .=V \ B correspond to index subsets /5 and I
a metric T has L, isometric to [0, £;,,]; this gives Hilbert
space L*(I') := @; yer, L7(0,¢;n) with elements {4, }

operators H, = H,(I',U) with potentials U := {U;, } and
o-couplings o == {«a; €: j € I} defined as above

on L,; = |0,¢;,] (the right end identified with X;) we
introduce solutions to — f” + U,,, f = k* f satisfying
ujin(Cjn) = 1= (ujn)' (€jn) = 0 @nd v;, (0) = 1—(v;,)'(0) = 0
(Dirichlet b.c. at B); one has W;,, = —vj,({jn) = u;n(0)
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A preliminary: graph duality

fLet HP be obtained Dirichlet decoupling of H,, and denote T
K :={k: k? € o(H")}. Moreover, assume that

(i) thereis C' > 0 s.t. ||[Ujp|lco < Cforall (5,n) € I
(i) Lo :=1inf{l;p: (j,n) € Iz} >0

(lif) Lo :=sup{ {jn : (j,n) € Ip} < 0

(Iv) No := max{cardv(j): j €} <0

) i
w Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 — p.30/50



A preliminary: graph duality

fLet HP be obtained Dirichlet decoupling of H,, and denote T
K :={k: k? € o(H")}. Moreover, assume that

(i) thereis C' > 0 s.t. ||[Ujp|lco < Cforall (5,n) € I
(i) Lo :=1inf{l;p: (j,n) € Iz} >0

(lif) Lo :=sup{ {jn : (j,n) € Ip} < 0

(Iv) No := max{cardv(j): j €} <0

Theorem [E.97]: (a) Suppose that (i)-(iv) are satisfied
and ¢ € Dy,.(H,) solves —f" + U, f = k*f for some k ¢ K
with k% € R, Im k£ > 0. Then the boundary values satisfy

2 : n 2 : Uin / gjn 0
J

nev(y) Jn

] n :
nev(j)Nlz

)
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Graph duality, continued

fConversely, any solution {v; : j € Iz} to the above system T
determines a solution of — " + U, f = k*f by

Yjn(2) = %ujn(f) ~ %an(l’) it nev(j)Nliz,
j J

Vin(x) = — I/I?i—] Vin () if nev(j)Nlig.
J

(b) Under (i), (ii), v» € L*(T") implies that the solution {1;} of
the “discrete” system belongs to ¢/%(1z)

(c) The opposite implication is valid provided (iii), (iv) also
hold, and £ has a positive distance from from K

|
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Graph duality, continued

Conversely, any solution {v; : j € I7} to the above system T
determines a solution of — " + U, f = k*f by

Yjn(2) = %ujn(f) ~ %an(l’) it nev(j)Nliz,
j J
Vin(x) = — W?i—j Vin () if nev(j)Nlig.

(b) Under (i), (ii), v» € L*(T") implies that the solution {1;} of
the “discrete” system belongs to ¢/%(1z)

(c) The opposite implication is valid provided (iii), (iv) also
hold, and £ has a positive distance from from K

Remark: There is a natural relation between the dual
system specified above and the spectral determinant of I J
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Approximation by lattice graphs

fLet us specify the above result to the situation when
(a) all the graph edges have the same length ¢ > 0, and
(b) all the potentials U, vanish. Then we have

1 1
Uin(z) = — sink(x —¢), vju(zr) = — sinkx,

k k
with W, = —1 sin k¢ and the dual system becomes

B Z wn choské

—Llgin k¢ oy =0, jel;

nGV

it IS true even at B since we assume Dirichlet b.c. there
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Approximation by lattice graphs

fLet us specify the above result to the situation when T
(a) all the graph edges have the same length ¢ > 0, and
(b) all the potentials U, vanish. Then we have

1 1
Uin(z) = — sink(x —¢), vju(zr) = — sinkx,

k k
with W, = —1 sin k¢ and the dual system becomes

B Z wn choské

—lgin k¢ tagpy =0, Jel;

nGV

it IS true even at B since we assume Dirichlet b.c. there

Let now local metric on I' come from embedding, the graph
being a subset in R”. In particular, consider a cubic lattice
graph C¥ = C¥(¢) C R” whose vertices are lattice points

%{xj(é) = (j1l, ..., jul) : ji € Z}, as well as subgraphs of ¥ |
o)
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Approximation by lattice graphs

" Theorem [E.-Hejcik-Seba'05]: (a) Let V : R” — Rbe ¢t |
with VV bounded and put «;(¢) := V (z;)¢. Let forany ¢ > 0
and k with k* € R, Im k > 0, the family {¢’{} solve the dual
system, and define a step function ¢, : R¥ — C by

ol 1 1
Yo(z) =y i = SO (2 my)i < S

Suppose that {v,} converges to a function ¢y : R¥ — C as
¢ — 0inthe sense that ¢;(¢) := ¢(z;) — ¥¢(z;) behaves as

> new(i) (En(€) — £5(€)) = o(£?); then the limiting function v
solves the equation

—AY(x) + V(2)p(z) = vk p(x)

|
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Approximation by lattice graphs

" Theorem [E.-Hejcik-Seba'05]: (a) Let V : R” — Rbe ¢t |
with VV bounded and put «;(¢) := V (z;)¢. Let forany ¢ > 0
and k with k* € R, Im k£ > 0, the family {¢{} solve the dual
system, and define a step function ¢, : R¥ — C by

ol 1 1
Yo(z) =y i = SO (2 my)i < S

Suppose that {v,} converges to a function ¢y : R¥ — C as
¢ — 0inthe sense that ¢;(¢) := ¢(z;) — ¥¢(z;) behaves as

> new(i) (En(€) — £5(€)) = o(£?); then the limiting function v
solves the equation

—AY(x) + V(2)p(z) = vk p(x)

(b) The analogous result holds for Schrodinger equation in
a region 2 c R” with Dirichlet b.c. if 992 is piecewise smoothJ
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Approximation by lattice graphs

fProof: For f € C? we use Taylor expansion, T
flx+0) = f(x —L) —2f(x)coskl 2k k¢ ., 74
¢k—1sin k/ N 7]"(:13) tan 2 + /(@) sin k¢ +o(0),

so the right-hand side tends to f”(z) + k*f(z) as ¢ — 0.
Applying this to ¢ w.r.t. each of the v variables we find

A () +vk*P(x) =V (z)(x;) = (g sin kf) . Z (en(f) —€i(€))+o(0),

nev(y)

where the right-hand side tends to zero by assumption. [

|
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Approximation by lattice graphs

fProof: For f € C? we use Taylor expansion, T
flx+0) = f(x —L) —2f(x)coskl 2k k¢ ., 74
¢k—1sin k/ N 7]"(:13) tan 2 + /(@) sin k¢ +o(0),

so the right-hand side tends to f”(z) + k*f(z) as ¢ — 0.
Applying this to ¢ w.r.t. each of the v variables we find

A () +vk*P(x) =V (z)(x;) = (g sin kf) . Z (en(f) —€i(€))+o(0),

nev(y)

where the right-hand side tends to zero by assumption. [

Remarks: (a) We do not discuss here existence of i

(b) The restriction k& ¢ K is satisfied for ¢ is small enough

(c) The limiting energy is k2, because all the “local”
momentum components are equal (and the particle moves
naturally over the graph in a zig-zag way) |
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Example

fTake a "Sinai-billiard” graph made of a N x N rectangular T
lattice with Dirichlet b.c. at the boundary of I'

%The computation will be made with N =97anda =0,U =0 |
o)
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Nodal domains

fTake first an eigenfunction of the graph Hamiltonian T
corresponding to high enough eigenvalue

The nodal domains on the graph look similar to those of the
“usual” Sinai billiard
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Sinai graph transport

fWe attach to the above graph two external leads at points T
(14,40) and (59, 80) of the 97 x 97 lattice

/

/ l =]

%The b.c. are again supposed to be free |
o
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Billiards with leads

o N

To have something to compare with, recall how one can
describe transport through a billiard Q2 with a pair of leads
attached at internal points of ¢

The billiard Hamiltonian is, of course, the Dirichlet Laplacian
—~A% on L*(Q) and 1D Laplacians describe the leads

" -
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Billiards with leads

o N

To have something to compare with, recall how one can
describe transport through a billiard Q2 with a pair of leads
attached at internal points of ¢

The billiard Hamiltonian is, of course, the Dirichlet Laplacian
—~A% on L*(Q) and 1D Laplacians describe the leads

The direct sum ‘H = L*(R_) & L*(Q2) @ L*(R.) is naturally
associated with the full system, so the wavefunctions are
triples ® = (¢_, ¢, ) of square integrable functions

. Tz B
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Coupling of the leads

flt describes by b.c. which involve generalized boundary T
values

Lo(®) := lim 2(2) Li(®) :=lim [®(Z) — Lo(P) Inr]

r—0 Inr ’ r—0
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Coupling of the leads

flt describes by b.c. which involve generalized boundary T
values

Lo(®) := lim 2(2) Li(®) :=lim [®(Z) — Lo(P) Inr]

r—0 Inr ’ r—0
Typical b.c. determining a s-a extension

L0 (0F) = A¢x(0F) + BLo(¢)
Li(¢) = Cox(0F) + DLo(¢),

where
A, DeR and B =2rC

N.B.: If we use such a coupling between plane and halfline
%one can derive the S-matrix as a function of A, B,C, D J
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Billiard transport

fLe’[ the leads be attached at points z1, x5 € €. Cons’[ruc’[ionT
of generalized eigenfunctions means o couple plane-wave
solution at leads with

o(x) = a1G(x, z15 k) + aoG(x, 205 k) |

where G(-,-; k) is Green’s function of —A% in the billiard
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Billiard transport

fLet the leads be attached at points z1, x5 € €. Cons’[ruc’[ionT
of generalized eigenfunctions means o couple plane-wave
solution at leads with

o(x) = a1G(x, 215 k) + aoG(x, x93 k),

where G(-,-; k) is Green’s function of —A% in the billiard

The latter has a logarithmic singularity so L;(¢) express in
terms of g := G(x1,22; k) and

1 . )
& = E(ayik) = lim | Gla, k) + 22 x]‘] |

T—; 27

the b.c. then determine scattering, i.e. transmission and
%reﬂection amplitudes, as well as the coefficients aq, as J
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How to choose coupling parameters

o N

A heuristic way to do that is to compare low-enerqgy
scattering in the plane+halfline model mentioned above

with the situation when the halfline is replaced by tube of
radius « (for simplicity we disregard effect of the sharp edge
at interface of the two parts)

U7
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Plane plus tube scattering

fRotationaI symmetry allows us to treat each partial wave T
separately. Given orbital quantum number ¢ one has to
match smoothly the corresponding solutions

w( ) ezkﬂc 4+ n(f) (t)e—z’k:a: z <0
rT) =
wke 1O (k) HE (k) r>a
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Plane plus tube scattering

fRotationaI symmetry allows us to treat each partial wave T
separately. Given orbital quantum number ¢ one has to
match smoothly the corresponding solutions

w( ) eikx 4+ m(f) (t)e—z’k:a: T S 0
€T) =
wkr 1O (k) HY () r>a
This yields
YN 2 () PO 2ka __,\ -1
Ta (k) — Di , ta (k) = 4 T (D—i-)

with
/
% D = (1 + 2ika)H" (ka) + 2ka (Hé”) (ka) B
2
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Choice of the parameters

o N

This has to be compared with the plane-and-halfline result.
Only the s-wave is important: for the halfline there is no
scattering if £ # 0 while for the tube transmission probability

vanishes as a2~ fora — 0
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Choice of the parameters

o N

This has to be compared with the plane-and-halfline result.
Only the s-wave is important: for the halfline there is no
scattering if £ # 0 while for the tube transmission probability
vanishes as a*~! fora — 0

Comparison shows that the two amplitudes coincide, in the
leading order as k£ — 0, with plane+halfline expression if

A= i, D:=—-Ina, B=2rC= “2_7
2a a

Notice that the “natural” coupling depend on a single
parameter, namely radius of the “thin” component

In the example below we choose the tube radius a to be
one tenth of the distance between the lattice graph nodes J
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S

Eigenfunctions comparison

-

graph with energy £ Schrédinger with energy 2F

Energy E refers to incident momentum & = v E = 1.65

|
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Probability currents

o N

Apart of being less numerically demanding, study of
transport with complex-valued generalized eigenfunctions
allows us to analyze also phase-related effects and to
compare them to their analogues in “true” billiards
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Probability currents

o N

Apart of being less numerically demanding, study of
transport with complex-valued generalized eigenfunctions
allows us to analyze also phase-related effects and to
compare them to their analogues in “true” billiards

A primary quantity of interest is the probability current
which in (an open) billiard is given conventionally by

J(&) =Im (YVY) (7)

" -
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Probability currents

o N

Apart of being less numerically demanding, study of
transport with complex-valued generalized eigenfunctions
allows us to analyze also phase-related effects and to
compare them to their analogues in “true” billiards

A primary quantity of interest is the probability current
which in a billiard is given conventionally by

J(&) =Im (YVY) (7)

What is a quantity to compare on I'? One possibility is to
take vertex values as discretization of a smooth complex
function and to compute the current in analogy with the
above formula, by discrete approximation of differentiation

%There IS also an alternative way, more or less equivalent J
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Graph probability flows
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Graph probability flows, continued

fConstruct now the “overall” flow on the graph as a vector T
sum of the “red” and “blue” components:

R
T N T
R

In this way, we find the vector field on I', to be compared
%with that of the billiard with leads -
&)

Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 — p.47/50




illiard

1nal

th S

1SO1l Wi

Compar

SN
..
S=

—N

IIAMIJ_ ﬂ

RN
o

oL

Aty

PRNNNN
AN ”v

o

=

-\
PR

e~

) (), energy 2E

YVY

m

I

energy L

vector addition

t the lower left corner

jus

licity, we show here

imp

For s
of the two pictures

Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 — p.48/50



Summary and outlook

f ® Fat graph approximations: progress in the T
Neumann-like case, free boundary conditions arise
generically. The Dirichlet case is open (and frustrating)
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Neumann-like case, free boundary conditions arise
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® G@Graph approximations to PDE solutions: simplest
example here, many other situations can be considered
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Summary and outlook

Fat graph approximations: progress in the T
Neumann-like case, free boundary conditions arise
generically. The Dirichlet case is open (and frustrating)

Potential approximations of vertex couplings: now we
understand how they can be constructed, beyond the
o-coupling case

Graph approximations to PDE solutions: simplest
example here, many other situations can be considered

Emergence of global structures: a proper “microscopic”
understanding needed to approximate correctly effects
like phase singularities
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Summary and outlook

Fat graph approximations: progress in the T
Neumann-like case, free boundary conditions arise
generically. The Dirichlet case is open (and frustrating)

Potential approximations of vertex couplings: now we
understand how they can be constructed, beyond the
o-coupling case

Graph approximations to PDE solutions: simplest
example here, many other situations can be considered

Emergence of global structures: a proper “microscopic”
understanding needed to approximate correctly effects
like phase singularities

Interesting applications: the obtained phase portraits of
our large graphs are strikingly similar to structures
observed in neural networks such a visual cortex J
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