Approximations for and by quantum graph Hamiltonians

Pavel Exner
in collaboration with Taksu Cheon, Pavel Hejčík, Olaf Post, Petr Šeba and Ondřej Turek

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Talk overview

- Introduction

Talk overview

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting

Talk overview

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds

Talk overview

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs

Talk overview

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs
- More singular vertex couplings

Talk overview

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs
- More singular vertex couplings
- Vice versa, approximations by PDE solutions by graphs

Talk overview

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs
- More singular vertex couplings
- Vice versa, approximations by PDE solutions by graphs
- Transport through billiards with leads

Talk overview

- Introduction
- Vertex coupling parametrization, a reminder: what it is and why it is interesting
- Approximations of graphs by fat graphs and sleeve manifolds
- Another approximation: scaled potentials on graphs
- More singular vertex couplings
- Vice versa, approximations by PDE solutions by graphs
- Transport through billiards with leads
- Emergence of global structures in large graphs

ntroducing quantum graphs at Snowbird

is naturally the same as

- to give apples to Alcinous [classical]

Introducing quantum graphs at Snowbird

is naturally the same as

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]

Introducing quantum graphs at Snowbird

is naturally the same as

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]

Introducing quantum graphs at Snowbird

is naturally the same as

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]
- to sell refrigerators to Aleut-Americans
[American, politically correct]

Introducing quantum graphs at Snowbird

is naturally the same as

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]
- to sell refrigerators to Aleut-Americans [American, politically correct]
- or maybe, Eulen nach Athen tragen [German, it seems]

Introducing quantum graphs at Snowbird

is naturally the same as

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]
- to sell refrigerators to Aleut-Americans [American, politically correct]
- or maybe, Eulen nach Athen tragen [German, it seems]
- to throw a perfume on the violet [Shakespeare, King John]

Introducing quantum graphs at Snowbird

is naturally the same as

- to give apples to Alcinous [classical]
- to carry firewood to the forest [Czech, rural]
- to carry coals to Newcastle [English, industrial]
- to sell refrigerators to Aleut-Americans [American, politically correct]
- or maybe, Eulen nach Athen tragen [German, it seems]
- to throw a perfume on the violet [Shakespeare, King John]
- etc., etc. Let us thus go straight in medias res

Vertex coupling

The most simple example is a star graph with the state Hilbert space $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and the particle Hamiltonian acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}$

Vertex coupling

The most simple example is a star graph with the state Hilbert space $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and the particle Hamiltonian acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}$

Since it is second-order, the boundary condition involve $\Psi(0):=\left\{\psi_{j}(0)\right\}$ and $\Psi^{\prime}(0):=\left\{\psi_{j}^{\prime}(0)\right\}$ being of the form

$$
A \Psi(0)+B \Psi^{\prime}(0)=0 ;
$$

by [Kostrykin-Schrader'99] the $n \times n$ matrices A, B give rise to a self-adjoint operator if they satisfy the conditions

- $\operatorname{rank}(A, B)=n$
- $A B^{*}$ is self-adjoint

HFT boundary conditions

The non-uniqueness of K -S b.c. can be removed:
Proposition [Harmer'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

$$
A=U-I, \quad B=i(U+I)
$$

HFT boundary conditions

The non-uniqueness of K-S b.c. can be removed:
Proposition [Harmer'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

$$
A=U-I, \quad B=i(U+I)
$$

One can derive them modifying the argument used in [Fülöp-Tsutsui'00] for generalized point interactions, $n=2$ Self-adjointness requires vanishing of the boundary form,

$$
\sum_{j=1}^{n}\left(\bar{\psi}_{j} \psi_{j}^{\prime}-\bar{\psi}_{j}^{\prime} \psi_{j}\right)(0)=0
$$

which occurs iff the norms $\left\|\Psi(0) \pm i \ell \Psi^{\prime}(0)\right\|_{\mathbb{C}^{n}}$ with a fixed $\ell \neq 0$ coincide, so the vectors must be related by an $n \times n$ unitary matrix; this gives $(U-I) \Psi(0)+i \ell(U+I) \Psi^{\prime}(0)=0$

Remarks

- The length parameter is not important because matrices corresponding to two different values are related by

$$
U^{\prime}=\frac{\left(\ell+\ell^{\prime}\right) U+\ell-\ell^{\prime}}{\left(\ell-\ell^{\prime}\right) U+\ell+\ell^{\prime}}
$$

The choice $\ell=1$ just fixes the length scale

Remarks

- The length parameter is not important because matrices corresponding to two different values are related by

$$
U^{\prime}=\frac{\left(\ell+\ell^{\prime}\right) U+\ell-\ell^{\prime}}{\left(\ell-\ell^{\prime}\right) U+\ell+\ell^{\prime}}
$$

The choice $\ell=1$ just fixes the length scale

- The HFT b.c. help to simplify the analysis done in [Kostrykin-Schrader'99], [Kuchment'04] and other previous work. It concerns, for instance, the null spaces of the matrices A, B

Remarks

- The length parameter is not important because matrices corresponding to two different values are related by

$$
U^{\prime}=\frac{\left(\ell+\ell^{\prime}\right) U+\ell-\ell^{\prime}}{\left(\ell-\ell^{\prime}\right) U+\ell+\ell^{\prime}}
$$

The choice $\ell=1$ just fixes the length scale

- The HFT b.c. help to simplify the analysis done in [Kostrykin-Schrader'99], [Kuchment'04] and other previous work. It concerns, for instance, the null spaces of the matrices A, B
- or the on-shell scattering matrix for a star graph of n halflines with the considered coupling which equals

$$
S_{U}(k)=\frac{(k-1) I+(k+1) U}{(k+1) I+(k-1) U}
$$

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,
$\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)$
with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,
$\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)$ with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$
- $\alpha=0$ corresponds to the "free motion", the so-called free boundary conditions (better name than Kirchhoff)

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,
$\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)$
with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$
- $\alpha=0$ corresponds to the "free motion", the so-called free boundary conditions (better name than Kirchhoff)
- Similarly, $U=I-\frac{2}{n-i \beta} \mathcal{J}$ describes the δ_{s}^{\prime} coupling $\psi_{j}^{\prime}(0)=\psi_{k}^{\prime}(0)=: \psi^{\prime}(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}(0)=\beta \psi^{\prime}(0)$ with $\beta \in \mathbb{R}$; for $\beta=\infty$ we get Neumann decoupling

Further examples

- Another generalization of $1 \mathrm{D} \delta^{\prime}$ is the δ^{\prime} coupling:
$\sum_{j=1}^{n} \psi_{j}^{\prime}(0)=0, \quad \psi_{j}(0)-\psi_{k}(0)=\frac{\beta}{n}\left(\psi_{j}^{\prime}(0)-\psi_{k}^{\prime}(0)\right), 1 \leq j, k \leq n$
with $\beta \in \mathbb{R}$ and $U=\frac{n-i \alpha}{n+i \alpha} I-\frac{2}{n+i \alpha} \mathcal{J}$; the infinite value of
β refers again to Neumann decoupling of the edges

Further examples

- Another generalization of $1 \mathrm{D} \delta^{\prime}$ is the δ^{\prime} coupling:
$\sum_{j=1}^{n} \psi_{j}^{\prime}(0)=0, \quad \psi_{j}(0)-\psi_{k}(0)=\frac{\beta}{n}\left(\psi_{j}^{\prime}(0)-\psi_{k}^{\prime}(0)\right), 1 \leq j, k \leq n$ with $\beta \in \mathbb{R}$ and $U=\frac{n-i \alpha}{n+i \alpha} I-\frac{2}{n+i \alpha} \mathcal{J}$; the infinite value of β refers again to Neumann decoupling of the edges
- Due to permutation symmetry the U's are combinations of I and \mathcal{J} in the examples. In general, interactions with this property form a two-parameter family described by $U=u I+v \mathcal{J}$ s.t. $|u|=1$ and $|u+n v|=1$ giving the b.c.

$$
\begin{array}{r}
(u-1)\left(\psi_{j}(0)-\psi_{k}(0)\right)+i(u-1)\left(\psi_{j}^{\prime}(0)-\psi_{k}^{\prime}(0)\right)=0 \\
(u-1+n v) \sum_{k=1}^{n} \psi_{k}(0)+i(u-1+n v) \sum_{k=1}^{n} \psi_{k}^{\prime}(0)=0
\end{array}
$$

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]
- More recently, the same system has been proposed as a way to realize a qubit, with obvious consequences: cf. "quantum abacus" in [Cheon-Tsutsui-Fülöp'04]

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]
- More recently, the same system has been proposed as a way to realize a qubit, with obvious consequences: cf. "quantum abacus" in [Cheon-Tsutsui-Fülöp'04]
- Recall also that in a rectangular lattice with δ coupling of nonzero α spectrum depends on number theoretic properties of model parameters [E.'95]

More on the lattice example

Basic cell is a rectangle of sides ℓ_{1}, ℓ_{2}, the δ coupling with parameter α is assumed at every vertex

More on the lattice example

Basic cell is a rectangle of sides ℓ_{1}, ℓ_{2}, the δ coupling with parameter α is assumed at every vertex

Spectral condition for quasimomentum $\left(\theta_{1}, \theta_{2}\right)$ reads

$$
\sum_{j=1}^{2} \frac{\cos \theta_{j} \ell_{j}-\cos k \ell_{j}}{\sin k \ell_{j}}=\frac{\alpha}{2 k}
$$

Lattice band spectrum

Recall a continued-fraction classification, $\alpha=\left[a_{0}, a_{1}, \ldots\right]$:

- "good" irrationals have $\limsup _{j} a_{j}=\infty$ (and full Lebesgue measure)
- "bad" irrationals have limsup $\sin _{j}<\infty$
(and $\lim _{j} a_{j} \neq 0$, of course)

Lattice band spectrum

Recall a continued-fraction classification, $\alpha=\left[a_{0}, a_{1}, \ldots\right]$:

- "good" irrationals have $\limsup _{j} a_{j}=\infty$ (and full Lebesgue measure)
- "bad" irrationals have limsup $\sin _{j}<\infty$ (and $\lim _{j} a_{j} \neq 0$, of course)

Theorem [E.'95]: Call $\theta:=\ell_{2} / \ell_{1}$ and $L:=\max \left\{\ell_{1}, \ell_{2}\right\}$. (a) If θ is rational or "good" irrational, there are infinitely many gaps for any nonzero α
(b) For a "bad" irrational θ there is $\alpha_{0}>0$ such no gaps open above threshold for $|\alpha|<\alpha_{0}$
(c) There are infinitely many gaps if $|\alpha| L>\frac{\pi^{2}}{\sqrt{5}}$

Lattice band spectrum

Recall a continued-fraction classification, $\alpha=\left[a_{0}, a_{1}, \ldots\right]$:

- "good" irrationals have $\limsup _{j} a_{j}=\infty$ (and full Lebesgue measure)
- "bad" irrationals have limsup $\sin _{j}<\infty$ (and $\lim _{j} a_{j} \neq 0$, of course)

Theorem [E.'95]: Call $\theta:=\ell_{2} / \ell_{1}$ and $L:=\max \left\{\ell_{1}, \ell_{2}\right\}$. (a) If θ is rational or "good" irrational, there are infinitely many gaps for any nonzero α
(b) For a "bad" irrational θ there is $\alpha_{0}>0$ such no gaps open above threshold for $|\alpha|<\alpha_{0}$
(c) There are infinitely many gaps if $|\alpha| L>\frac{\pi^{2}}{\sqrt{5}}$

This all illustrates why we seek a meaningful way to "construct" different vertex couplings. It will be our next task

A head-on approach

Take a more realistic situation with no ambiguity, such as branching tubes and analyze the squeezing limit:

Unfortunately, it is not so simple as it looks because

A head-on approach

Take a more realistic situation with no ambiguity, such as branching tubes and analyze the squeezing limit:

Unfortunately, it is not so simple as it looks because

- after a long effort the Neumann-like case was solved [Kuchment-Zeng'01], [Rubinstein-Schatzmann'01], [Saito'01], [E.-Post'05] leading to free b.c. only
- the important Dirichlet case is open (and difficult), apart of the (not so intriguing) case leading to full decoupling of graph edges [Post'05], [Grieser'05]?

Recall the Neumann-like case

The simplest situation in [KZ'01, EP'05] (weights left out) Let M_{0} be a finite connected graph with vertices $v_{k}, k \in K$ and edges $e_{j} \simeq I_{j}:=\left[0, \ell_{j}\right], j \in J$; the state Hilbert space is

$$
L^{2}\left(M_{0}\right):=\bigoplus_{j \in J} L^{2}\left(I_{j}\right)
$$

and in a similar way Sobolev spaces on M_{0} are introduced

Recall the Neumann-like case

The simplest situation in [KZ'01, EP'05] (weights left out) Let M_{0} be a finite connected graph with vertices $v_{k}, k \in K$ and edges $e_{j} \simeq I_{j}:=\left[0, \ell_{j}\right], j \in J$; the state Hilbert space is

$$
L^{2}\left(M_{0}\right):=\bigoplus_{j \in J} L^{2}\left(I_{j}\right)
$$

and in a similar way Sobolev spaces on M_{0} are introduced The form $u \mapsto\left\|u^{\prime}\right\|_{M_{0}}^{2}:=\sum_{j \in J}\left\|u^{\prime}\right\|_{I_{j}}^{2}$ with $u \in \mathcal{H}^{1}\left(M_{0}\right)$ is associated with the operator which acts as $-\Delta_{M_{0}} u=-u_{j}^{\prime \prime}$ and satisfies free b.c.,

$$
\sum_{j, e_{j} \text { meets } v_{k}} u_{j}^{\prime}\left(v_{k}\right)=0
$$

On the other hand, Laplacian on manifold

Consider a Riemannian manifold X of dimension $d \geq 2$ and the corresponding space $L^{2}(X)$ w.r.t. volume $\mathrm{d} X$ equal to $(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$ in a fixed chart. For $u \in C_{\text {comp }}^{\infty}(X)$ we set

$$
q_{X}(u):=\|\mathrm{d} u\|_{X}^{2}=\int_{X}|\mathrm{~d} u|^{2} \mathrm{~d} X,|\mathrm{~d} u|^{2}=\sum_{i, j} g^{i j} \partial_{i} u \partial_{j} \bar{u}
$$

The closure of this form is associated with the s-a operator $-\Delta_{X}$ which acts in fixed chart coordinates as

$$
-\Delta_{X} u=-(\operatorname{det} g)^{-1 / 2} \sum_{i, j} \partial_{i}\left((\operatorname{det} g)^{1 / 2} g^{i j} \partial_{j} u\right)
$$

On the other hand, Laplacian on manifold

Consider a Riemannian manifold X of dimension $d \geq 2$ and the corresponding space $L^{2}(X)$ w.r.t. volume $\mathrm{d} X$ equal to $(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$ in a fixed chart. For $u \in C_{\text {comp }}^{\infty}(X)$ we set

$$
q_{X}(u):=\|\mathrm{d} u\|_{X}^{2}=\int_{X}|\mathrm{~d} u|^{2} \mathrm{~d} X,|\mathrm{~d} u|^{2}=\sum_{i, j} g^{i j} \partial_{i} u \partial_{j} \bar{u}
$$

The closure of this form is associated with the s-a operator $-\Delta_{X}$ which acts in fixed chart coordinates as

$$
-\Delta_{X} u=-(\operatorname{det} g)^{-1 / 2} \sum_{i, j} \partial_{i}\left((\operatorname{det} g)^{1 / 2} g^{i j} \partial_{j} u\right)
$$

If X is compact with piecewise smooth boundary, one starts from the form defined on $C^{\infty}(X)$. This yields $-\Delta_{X}$ as the Neumann Laplacian on X and allows us in this way to treat "fat graphs" and "sleeves" on the same footing

Fat graphs and sleeves: manifolds

We associate with the graph M_{0} a family of manifolds M_{ε}

M_{0}

We suppose that M_{ε} is a union of compact edge and vertex components $U_{\varepsilon, j}$ and $V_{\varepsilon, k}$ such that their interiors are mutually disjoint for all possible $j \in J$ and $k \in K$

Manifold building blocks

Manifold building blocks

However, M_{ε} need not be embedded in some \mathbb{R}^{d}.
It is convenient to assume that $U_{\varepsilon, j}$ and $V_{\varepsilon, k}$ depend on ε only through their metric:

- for edge regions we assume that $U_{\varepsilon, j}$ is diffeomorphic to $I_{j} \times F$ where F is a compact and connected manifold (with or without a boundary) of dimension $m:=d-1$
- for vertex regions we assume that the manifold $V_{\varepsilon, k}$ is diffeomorphic to an ε-independent manifold V_{k}

Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that $\mathcal{H}, \mathcal{H}^{\prime}$ are separable Hilbert spaces. We want to compare ev's λ_{k} and λ_{k}^{\prime} of nonnegative operators Q and Q^{\prime} with purely discrete spectra defined via quadratic forms q and q^{\prime} on $\mathcal{D} \subset \mathcal{H}$ and $\mathcal{D}^{\prime} \subset \mathcal{H}^{\prime}$. Set $\|u\|_{Q, n}^{2}:=\|u\|^{2}+\left\|Q^{n / 2} u\right\|^{2}$.

Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that $\mathcal{H}, \mathcal{H}^{\prime}$ are separable Hilbert spaces. We want to compare ev's λ_{k} and λ_{k}^{\prime} of nonnegative operators Q and Q^{\prime} with purely discrete spectra defined via quadratic forms q and q^{\prime} on $\mathcal{D} \subset \mathcal{H}$ and $\mathcal{D}^{\prime} \subset \mathcal{H}^{\prime}$. Set $\|u\|_{Q, n}^{2}:=\|u\|^{2}+\left\|Q^{n / 2} u\right\|^{2}$.
Lemma: Suppose that $\Phi: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ is a linear map such that there are $n_{1}, n_{2} \geq 0$ and $\delta_{1}, \delta_{2} \geq 0$ such that

$$
\|u\|^{2} \leq\|\Phi u\|^{\prime 2}+\delta_{1}\|u\|_{Q, n_{1}}^{2}, q(u) \geq q^{\prime}(\Phi u)-\delta_{2}\|u\|_{Q, n_{2}}^{2}
$$

for all $u \in \mathcal{D} \subset \mathcal{D}\left(Q^{\max \left\{n_{1}, n_{2}\right\} / 2}\right)$. Then to each k there is an $\eta_{k}\left(\lambda_{k}, \delta_{1}, \delta_{2}\right)>0$ which tends to zero as $\delta_{1}, \delta_{2} \rightarrow 0$, such that

$$
\lambda_{k} \geq \lambda_{k}^{\prime}-\eta_{k}
$$

Eigenvalue convergence

Let thus $U=I_{j} \times F$ with metric g_{ε}, where cross section F is a compact connected Riemannian manifold of dimension $m=d-1$ with metric h; we assume that $\operatorname{vol} F=1$. We define another metric \tilde{g}_{ε} on $U_{\varepsilon, j}$ by

$$
\tilde{g}_{\varepsilon}:=\mathrm{d} x^{2}+\varepsilon^{2} h(y) ;
$$

the two metrics coincide up to an $\mathcal{O}(\varepsilon)$ error
This property allows us to treat manifolds embedded in \mathbb{R}^{d} (with metric \tilde{g}_{ε}) using product metric g_{ε} on the edges

Eigenvalue convergence

Let thus $U=I_{j} \times F$ with metric g_{ε}, where cross section F is a compact connected Riemannian manifold of dimension $m=d-1$ with metric h; we assume that $\operatorname{vol} F=1$. We define another metric \tilde{g}_{ε} on $U_{\varepsilon, j}$ by

$$
\tilde{g}_{\varepsilon}:=\mathrm{d} x^{2}+\varepsilon^{2} h(y) \text {; }
$$

the two metrics coincide up to an $\mathcal{O}(\varepsilon)$ error
This property allows us to treat manifolds embedded in \mathbb{R}^{d} (with metric \tilde{g}_{ε}) using product metric g_{ε} on the edges

The sought result now looks as follows.
Theorem [E.-Post'05]: Under the stated assumptions $\lambda_{k}\left(M_{\varepsilon}\right) \rightarrow \lambda_{k}\left(M_{0}\right)$ as $\varepsilon \rightarrow 0$ (giving thus free b.c.!)

Sketch of the proof

Proposition: $\lambda_{k}\left(M_{\varepsilon}\right) \leq \lambda_{k}\left(M_{0}\right)+o(1)$ as $\varepsilon \rightarrow 0$
To prove it apply the lemma to $\Phi_{\varepsilon}: L^{2}\left(M_{0}\right) \rightarrow L^{2}\left(M_{\varepsilon}\right)$,

$$
\Phi_{\varepsilon} u(z):=\left\{\begin{array}{ll}
\varepsilon^{-m / 2} u\left(v_{k}\right) & \text { if } z \in V_{k} \\
\varepsilon^{-m / 2} u_{j}(x) & \text { if } z=(x, y) \in U_{j}
\end{array} \quad \text { for } u \in \mathcal{H}^{1}\left(M_{0}\right)\right.
$$

Sketch of the proof

Proposition: $\lambda_{k}\left(M_{\varepsilon}\right) \leq \lambda_{k}\left(M_{0}\right)+o(1)$ as $\varepsilon \rightarrow 0$
To prove it apply the lemma to $\Phi_{\varepsilon}: L^{2}\left(M_{0}\right) \rightarrow L^{2}\left(M_{\varepsilon}\right)$,

$$
\Phi_{\varepsilon} u(z):=\left\{\begin{array}{ll}
\varepsilon^{-m / 2} u\left(v_{k}\right) & \text { if } z \in V_{k} \\
\varepsilon^{-m / 2} u_{j}(x) & \text { if } z=(x, y) \in U_{j}
\end{array} \quad \text { for } u \in \mathcal{H}^{1}\left(M_{0}\right)\right.
$$

Proposition: $\lambda_{k}\left(M_{0}\right) \leq \lambda_{k}\left(M_{\varepsilon}\right)+o(1)$ as $\varepsilon \rightarrow 0$
Proof again by the lemma. Here one uses averaging:

$$
N_{j} u(x):=\int_{F} u(x, \cdot) \mathrm{d} F, C_{k} u:=\frac{1}{\operatorname{vol~V}_{k}} \int_{V_{k}} u \mathrm{~d} V_{k}
$$

to build the comparison map by interpolation:

$$
\left(\Psi_{\varepsilon}\right)_{j}(x):=\varepsilon^{m / 2}\left(N_{j} u(x)+\rho(x)\left(C_{k} u-N_{j} u(x)\right)\right)
$$

with a smooth ρ interpolating between zero and one

More general b.c.? Recall RS argument

[Ruedenberg-Scher'53] used the heuristic argument:

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

The surface term dominates in the limit $\varepsilon \rightarrow 0$ giving formally free boundary conditions

More general b.c.? Recall RS argument

[Ruedenberg-Scher'53] used the heuristic argument:

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

The surface term dominates in the limit $\varepsilon \rightarrow 0$ giving formally free boundary conditions
A way out could thus be to use different scaling rates of edges and vertices. Of a particular interest is the borderline case, $\operatorname{vol}_{d} V_{\varepsilon} \approx \operatorname{vol}_{d-1} \partial V_{\varepsilon}$, when the integral of $\langle\mathrm{d} \phi, \mathrm{d} u\rangle$ is expected to be negligible and we hope to obtain

$$
\lambda_{0} \phi_{0}\left(v_{k}\right)=\sum_{j \in J_{k}} \phi_{0, j}^{\prime}\left(v_{k}\right)
$$

Scaling with a power α

Let us try to do the same properly using different scaling of the edge and vertex regions. Some technical assumptions needed, e.g., the bottlenecks must be "simple"
vertex region $V_{\varepsilon, k}$

Two-speed scaling limit

Let vertices scale as ε^{α}. Using the comparison lemma again (just more in a more complicated way) we find that

- if $\alpha \in\left(1-d^{-1}, 1\right]$ the result is as above: the ev's at the spectrum bottom converge the graph Laplacian with free b.c., i.e. continuity and

$$
\sum \quad u_{j}^{\prime}\left(v_{k}\right)=0
$$

edges meeting at v_{k}

Two-speed scaling limit

Let vertices scale as ε^{α}. Using the comparison lemma again (just more in a more complicated way) we find that

- if $\alpha \in\left(1-d^{-1}, 1\right]$ the result is as above: the ev's at the spectrum bottom converge the graph Laplacian with free b.c., i.e. continuity and

$$
\sum \quad u_{j}^{\prime}\left(v_{k}\right)=0
$$

edges meeting at v_{k}

- if $\alpha \in\left(0,1-d^{-1}\right)$ the "limiting" Hilbert space is $L^{2}\left(M_{0}\right) \oplus \mathbb{C}^{K}$, where K is \# of vertices, and the "limiting" operator acts as Dirichlet Laplacian at each edge and as zero on \mathbb{C}^{K}

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$
- finally, if vertex regions do not scale at all, $\alpha=0$, the manifold components decouple in the limit again,

$$
\bigoplus_{j \in J} \Delta_{I_{j}}^{\mathrm{D}} \oplus \bigoplus_{k \in K} \Delta_{V_{0, k}}
$$

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$
- finally, if vertex regions do not scale at all, $\alpha=0$, the manifold components decouple in the limit again,

$$
\bigoplus_{j \in J} \Delta_{I_{j}}^{\mathrm{D}} \oplus \bigoplus_{k \in K} \Delta_{V_{0, k}}
$$

- Hence such a straightforward limiting procedure does not help us to justify choice of appropriate s-a extension Hence the scaling trick does not work: one has to add either manifold geometry or external potentials

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Consider once more star graph with $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and Schrödinger operator acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}+V_{j} \psi_{j}$

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Consider once more star graph with $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and Schrödinger operator acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}+V_{j} \psi_{j}$

We make the following assumptions:

- $V_{j} \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right), j=1, \ldots, n$
- δ coupling with a parameter α in the vertex

Then the operator, denoted as $H_{\alpha}(V)$, is self-adjoint

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$
W_{\varepsilon, j}:=\frac{1}{\varepsilon} W_{j}\left(\frac{x}{\varepsilon}\right), \quad j=1, \ldots, n
$$

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$
W_{\varepsilon, j}:=\frac{1}{\varepsilon} W_{j}\left(\frac{x}{\varepsilon}\right), \quad j=1, \ldots, n
$$

Theorem [E.'96]: Suppose that $V_{j} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+}\right)$are below bounded and $W_{j} \in L^{1}\left(\mathbb{R}_{+}\right)$for $j=1, \ldots, n$. Then

$$
H_{0}\left(V+W_{\varepsilon}\right) \longrightarrow H_{\alpha}(V)
$$

as $\varepsilon \rightarrow 0+$ in the norm resolvent sense, with the parameter $\alpha:=\sum_{j=1}^{n} \int_{0}^{\infty} W_{j}(x) d x$

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$
W_{\varepsilon, j}:=\frac{1}{\varepsilon} W_{j}\left(\frac{x}{\varepsilon}\right), \quad j=1, \ldots, n
$$

Theorem [E.'96]: Suppose that $V_{j} \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$are below bounded and $W_{j} \in L^{1}\left(\mathbb{R}_{+}\right)$for $j=1, \ldots, n$. Then

$$
H_{0}\left(V+W_{\varepsilon}\right) \longrightarrow H_{\alpha}(V)
$$

as $\varepsilon \rightarrow 0+$ in the norm resolvent sense, with the parameter $\alpha:=\sum_{j=1}^{n} \int_{0}^{\infty} W_{j}(x) d x$

Proof: Analogous to that for δ interaction on the line. \square

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ_{s}^{\prime}

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ_{s}^{\prime} Inspiration: Recall that δ^{\prime} on the line can be approximated by δ 's scaled in a nonlinear way [Cheon-Shigehara'98]
Moreover, the convergence is norm resolvent and gives rise to approximations by regular potentials [Albeverio-Nizhnik'00], [E.-Neidhardt-Zagrebnov'01]

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ_{s}^{\prime} Inspiration: Recall that δ^{\prime} on the line can be approximated by δ 's scaled in a nonlinear way [Cheon-Shigehara'98]
Moreover, the convergence is norm resolvent and gives rise to approximations by regular potentials [Albeverio-Nizhnik'00], [E.-Neidhardt-Zagrebnov'01]
This suggests the following scheme:

δ_{s}^{\prime} approximation

Theorem [Cheon-E.'04]: $H^{b, c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$
b(a):=-\frac{\beta}{a^{2}}, \quad c(a):=-\frac{1}{a}
$$

δ_{s}^{\prime} approximation

Theorem [Cheon-E.'04]: $H^{b, c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$
b(a):=-\frac{\beta}{a^{2}}, \quad c(a):=-\frac{1}{a}
$$

Proof: Green's functions of both operators are found explicitly be Krein's formula, so the convergence can be established by straightforward computation

δ_{s}^{\prime} approximation

Theorem [Cheon-E.'04]: $H^{b, c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$
b(a):=-\frac{\beta}{a^{2}}, \quad c(a):=-\frac{1}{a}
$$

Proof: Green's functions of both operators are found explicitly be Krein's formula, so the convergence can be established by straightforward computation
Remark: Similar approximation can be worked out also for the other couplings mentioned above - cf. [E.-Turek'05]. For the permutation symmetric ones, e.g., one has

$$
b(a):=\frac{i n}{a^{2}}\left(\frac{u-1+n v}{u+1+n v}+\frac{u-1}{u+1}\right)^{-1}, \quad c(a):=-\frac{1}{a}-i \frac{u-1}{u+1}
$$

Approximation by graphs

Let us now address the opposite question. Suppose we study a large quantum graph asking ourselves whether

- global structures may emerge

Approximation by graphs

Let us now address the opposite question. Suppose we study a large quantum graph asking ourselves whether

- global structures may emerge
- graph families can approximate a "continuous" system described by a suitable PDE

Approximation by graphs

Let us now address the opposite question. Suppose we study a large quantum graph asking ourselves whether

- global structures may emerge
- graph families can approximate a "continuous" system described by a suitable PDE
- such structures are similar to something really existing in the nature

A preliminary: some needed notions

- $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$ and $\mathcal{L}=\left\{\mathcal{L}_{j n}:(j, n) \in I_{\mathcal{L}} \subset I \times I\right\}$; we may suppose one edge between a pair of vertices

A preliminary: some needed notions

- $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$ and $\mathcal{L}=\left\{\mathcal{L}_{j n}:(j, n) \in I_{\mathcal{L}} \subset I \times I\right\}$; we may suppose one edge between a pair of vertices
- $\mathcal{N}\left(\mathcal{X}_{j}\right)=\left\{\mathcal{X}_{n}: n \in \nu(j) \subset I \backslash\{j\}\right\}$ are neighbors of \mathcal{X}_{j}

A preliminary: some needed notions

- $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$ and $\mathcal{L}=\left\{\mathcal{L}_{j n}:(j, n) \in I_{\mathcal{L}} \subset I \times I\right\}$; we may suppose one edge between a pair of vertices
- $\mathcal{N}\left(\mathcal{X}_{j}\right)=\left\{\mathcal{X}_{n}: n \in \nu(j) \subset I \backslash\{j\}\right\}$ are neighbors of \mathcal{X}_{j}
- Boundary \mathcal{B}, i.e. vertices with a single neighbor, and interior $\mathcal{I}:=\mathcal{V} \backslash \mathcal{B}$ correspond to index subsets $I_{\mathcal{B}}$ and $I_{\mathcal{I}}$

A preliminary: some needed notions

- $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$ and $\mathcal{L}=\left\{\mathcal{L}_{j n}:(j, n) \in I_{\mathcal{L}} \subset I \times I\right\}$; we may suppose one edge between a pair of vertices
- $\mathcal{N}\left(\mathcal{X}_{j}\right)=\left\{\mathcal{X}_{n}: n \in \nu(j) \subset I \backslash\{j\}\right\}$ are neighbors of \mathcal{X}_{j}
- Boundary \mathcal{B}, i.e. vertices with a single neighbor, and interior $\mathcal{I}:=\mathcal{V} \backslash \mathcal{B}$ correspond to index subsets $I_{\mathcal{B}}$ and $I_{\mathcal{I}}$
- a metric Γ has $\mathcal{L}_{j n}$ isometric to $\left[0, \ell_{j n}\right]$; this gives Hilbert space $L^{2}(\Gamma):=\bigoplus_{(j, n) \in I_{\mathcal{L}}} L^{2}\left(0, \ell_{j n}\right)$ with elements $\left\{\psi_{j n}\right\}$

A preliminary: some needed notions

- $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$ and $\mathcal{L}=\left\{\mathcal{L}_{j n}:(j, n) \in I_{\mathcal{L}} \subset I \times I\right\}$; we may suppose one edge between a pair of vertices
- $\mathcal{N}\left(\mathcal{X}_{j}\right)=\left\{\mathcal{X}_{n}: n \in \nu(j) \subset I \backslash\{j\}\right\}$ are neighbors of \mathcal{X}_{j}
- Boundary \mathcal{B}, i.e. vertices with a single neighbor, and interior $\mathcal{I}:=\mathcal{V} \backslash \mathcal{B}$ correspond to index subsets $I_{\mathcal{B}}$ and $I_{\mathcal{I}}$
- a metric Γ has $\mathcal{L}_{j n}$ isometric to $\left[0, \ell_{j n}\right]$; this gives Hilbert space $L^{2}(\Gamma):=\bigoplus_{(j, n) \in I_{\mathcal{L}}} L^{2}\left(0, \ell_{j n}\right)$ with elements $\left\{\psi_{j n}\right\}$
- operators $H_{\alpha} \equiv H_{\alpha}(\Gamma, U)$ with potentials $U:=\left\{U_{j n}\right\}$ and δ-couplings $\alpha:=\left\{\alpha_{j} \in: j \in I\right\}$ defined as above

A preliminary: some needed notions

- $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$ and $\mathcal{L}=\left\{\mathcal{L}_{j n}:(j, n) \in I_{\mathcal{L}} \subset I \times I\right\}$; we may suppose one edge between a pair of vertices
- $\mathcal{N}\left(\mathcal{X}_{j}\right)=\left\{\mathcal{X}_{n}: n \in \nu(j) \subset I \backslash\{j\}\right\}$ are neighbors of \mathcal{X}_{j}
- Boundary \mathcal{B}, i.e. vertices with a single neighbor, and interior $\mathcal{I}:=\mathcal{V} \backslash \mathcal{B}$ correspond to index subsets $I_{\mathcal{B}}$ and $I_{\mathcal{I}}$
- a metric Γ has $\mathcal{L}_{j n}$ isometric to $\left[0, \ell_{j n}\right]$; this gives Hilbert space $L^{2}(\Gamma):=\bigoplus_{(j, n) \in I_{\mathcal{L}}} L^{2}\left(0, \ell_{j n}\right)$ with elements $\left\{\psi_{j n}\right\}$
- operators $H_{\alpha} \equiv H_{\alpha}(\Gamma, U)$ with potentials $U:=\left\{U_{j n}\right\}$ and δ-couplings $\alpha:=\left\{\alpha_{j} \in: j \in I\right\}$ defined as above
- on $\mathcal{L}_{n j} \equiv\left[0, \ell_{j n}\right]$ (the right end identified with \mathcal{X}_{j}) we introduce solutions to $-f^{\prime \prime}+U_{j n} f=k^{2} f$ satisfying $u_{j n}\left(\ell_{j n}\right)=1-\left(u_{j n}\right)^{\prime}\left(\ell_{j n}\right)=0$ and $v_{j n}(0)=1-\left(v_{j n}\right)^{\prime}(0)=0$ (Dirichlet b.c. at \mathcal{B}); one has $W_{j n}=-v_{j n}\left(\ell_{j n}\right)=u_{j n}(0)$

A preliminary: graph duality

Let H_{α}^{D} be obtained Dirichlet decoupling of H_{α} and denote $\mathcal{K}:=\left\{k: k^{2} \in \sigma\left(H_{\alpha}^{D}\right)\right\}$. Moreover, assume that
(i) there is $C>0$ s.t. $\left\|U_{j n}\right\|_{\infty} \leq C$ for all $(j, n) \in I_{\mathcal{L}}$
(ii) $\ell_{0}:=\inf \left\{\ell_{j n}:(j, n) \in I_{\mathcal{L}}\right\}>0$
(iii) $L_{0}:=\sup \left\{\ell_{j n}:(j, n) \in I_{\mathcal{L}}\right\}<\infty$
(iv) $N_{0}:=\max \{\operatorname{card} \nu(j): j \in I\}<\infty$

A preliminary: graph duality

Let H_{α}^{D} be obtained Dirichlet decoupling of H_{α} and denote $\mathcal{K}:=\left\{k: k^{2} \in \sigma\left(H_{\alpha}^{D}\right)\right\}$. Moreover, assume that
(i) there is $C>0$ s.t. $\left\|U_{j n}\right\|_{\infty} \leq C$ for all $(j, n) \in I_{\mathcal{L}}$
(ii) $\ell_{0}:=\inf \left\{\ell_{j_{n}}:(j, n) \in I_{\mathcal{L}}\right\}>0$
(iii) $L_{0}:=\sup \left\{\ell_{j n}:(j, n) \in I_{\mathcal{L}}\right\}<\infty$
(iv) $N_{0}:=\max \{\operatorname{card} \nu(j): j \in I\}<\infty$

Theorem [E.'97]: (a) Suppose that (i)-(iv) are satisfied and $\psi \in D_{l o c}\left(H_{\alpha}\right)$ solves $-f^{\prime \prime}+U_{j n} f=k^{2} f$ for some $k \notin \mathcal{K}$ with $k^{2} \in \mathbb{R}, \operatorname{Im} k \geq 0$. Then the boundary values satisfy

$$
\sum_{n \in \nu(j) \cap I_{\mathcal{I}}} \frac{\psi_{n}}{W_{j n}}-\left(\sum_{n \in \nu(j)} \frac{\left(v_{j n}\right)^{\prime}\left(\ell_{j n}\right)}{W_{j n}}-\alpha_{j}\right) \psi_{j}=0
$$

Graph duality, continued

Conversely, any solution $\left\{\psi_{j}: j \in I_{\mathcal{I}}\right\}$ to the above system determines a solution of $-f^{\prime \prime}+U_{j n} f=k^{2} f$ by

$$
\begin{aligned}
\psi_{j n}(x)=\frac{\psi_{n}}{W_{j n}} u_{j n}(x)-\frac{\psi_{j}}{W_{j n}} v_{j n}(x) & \text { if } n \in \nu(j) \cap I_{\mathcal{I}}, \\
\psi_{j n}(x)=-\frac{\psi_{j}}{W_{j n}} v_{j n}(x) & \text { if } n \in \nu(j) \cap I_{\mathcal{B}} .
\end{aligned}
$$

(b) Under (i), (ii), $\psi \in L^{2}(\Gamma)$ implies that the solution $\left\{\psi_{j}\right\}$ of the "discrete" system belongs to $\ell^{2}\left(I_{\mathcal{I}}\right)$
(c) The opposite implication is valid provided (iii), (iv) also hold, and k has a positive distance from from \mathcal{K}

Graph duality, continued

Conversely, any solution $\left\{\psi_{j}: j \in I_{\mathcal{I}}\right\}$ to the above system determines a solution of $-f^{\prime \prime}+U_{j n} f=k^{2} f$ by

$$
\begin{aligned}
\psi_{j n}(x)=\frac{\psi_{n}}{W_{j n}} u_{j n}(x)-\frac{\psi_{j}}{W_{j n}} v_{j n}(x) & \text { if } n \in \nu(j) \cap I_{\mathcal{I}}, \\
\psi_{j n}(x)=-\frac{\psi_{j}}{W_{j n}} v_{j n}(x) & \text { if } n \in \nu(j) \cap I_{\mathcal{B}} .
\end{aligned}
$$

(b) Under (i), (ii), $\psi \in L^{2}(\Gamma)$ implies that the solution $\left\{\psi_{j}\right\}$ of the "discrete" system belongs to $\ell^{2}\left(I_{\mathcal{I}}\right)$
(c) The opposite implication is valid provided (iii), (iv) also hold, and k has a positive distance from from \mathcal{K}

Remark: There is a natural relation between the dual system specified above and the spectral determinant of Γ

Approximation by lattice graphs

Let us specify the above result to the situation when (a) all the graph edges have the same length $\ell>0$, and (b) all the potentials $U_{j n}$ vanish. Then we have

$$
u_{j n}(x)=\frac{1}{k} \sin k(x-\ell), \quad v_{j n}(x)=\frac{1}{k} \sin k x
$$

with $W_{j n}=-\frac{1}{k} \sin k \ell$ and the dual system becomes

$$
-\sum_{n \in \nu(j)} \frac{\psi_{n}-\psi_{j} \cos k \ell}{k^{-1} \sin k \ell}+\alpha_{j} \psi_{j}=0, \quad j \in I ;
$$

it is true even at \mathcal{B} since we assume Dirichlet b.c. there

Approximation by lattice graphs

Let us specify the above result to the situation when
(a) all the graph edges have the same length $\ell>0$, and (b) all the potentials $U_{j n}$ vanish. Then we have

$$
u_{j n}(x)=\frac{1}{k} \sin k(x-\ell), \quad v_{j n}(x)=\frac{1}{k} \sin k x,
$$

with $W_{j n}=-\frac{1}{k} \sin k \ell$ and the dual system becomes

$$
-\sum_{n \in \nu(j)} \frac{\psi_{n}-\psi_{j} \cos k \ell}{k^{-1} \sin k \ell}+\alpha_{j} \psi_{j}=0, \quad j \in I ;
$$

it is true even at \mathcal{B} since we assume Dirichlet b.c. there
Let now local metric on Γ come from embedding, the graph being a subset in \mathbb{R}^{ν}. In particular, consider a cubic lattice graph $\mathcal{C}^{\nu} \equiv \mathcal{C}^{\nu}(\ell) \subset \mathbb{R}^{\nu}$ whose vertices are lattice points $\left\{x_{j}(\ell)=\left(j_{1} \ell, \ldots, j_{\nu} \ell\right): j_{i} \in \mathbb{Z}\right\}$, as well as subgraphs of \mathcal{C}^{ν}

Approximation by lattice graphs

Theorem [E.-Hejčík-Šeba'05]: (a) Let $V: \mathbb{R}^{\nu} \rightarrow \mathbb{R}$ be C^{1} with ∇V bounded and put $\alpha_{j}(\ell):=V\left(x_{j}\right) \ell$. Let for any $\ell>0$ and k with $k^{2} \in \mathbb{R}, \operatorname{Im} k \geq 0$, the family $\left\{\psi_{j}^{\ell}\right\}$ solve the dual system, and define a step function $\psi_{\ell}: \mathbb{R}^{\nu} \rightarrow \mathbb{C}$ by

$$
\psi_{\ell}(x):=\psi_{j}^{\ell} \quad \text { if } \quad-\frac{1}{2} \ell \leq\left(x-x_{j}\right)_{i}<\frac{1}{2} \ell
$$

Suppose that $\left\{\psi_{\ell}\right\}$ converges to a function $\psi: \mathbb{R}^{\nu} \rightarrow \mathbb{C}$ as $\ell \rightarrow 0$ in the sense that $\varepsilon_{j}(\ell):=\psi\left(x_{j}\right)-\psi_{\ell}\left(x_{j}\right)$ behaves as $\sum_{n \in \nu(j)}\left(\varepsilon_{n}(\ell)-\varepsilon_{j}(\ell)\right)=o\left(\ell^{2}\right)$; then the limiting function ψ solves the equation

$$
-\Delta \psi(x)+V(x) \psi(x)=\nu k^{2} \psi(x)
$$

Approximation by lattice graphs

Theorem [E.-Hejčík-Šeba'05]: (a) Let $V: \mathbb{R}^{\nu} \rightarrow \mathbb{R}$ be C^{1} with ∇V bounded and put $\alpha_{j}(\ell):=V\left(x_{j}\right) \ell$. Let for any $\ell>0$ and k with $k^{2} \in \mathbb{R}, \operatorname{Im} k \geq 0$, the family $\left\{\psi_{j}^{\ell}\right\}$ solve the dual system, and define a step function $\psi_{\ell}: \mathbb{R}^{\nu} \rightarrow \mathbb{C}$ by

$$
\psi_{\ell}(x):=\psi_{j}^{\ell} \quad \text { if } \quad-\frac{1}{2} \ell \leq\left(x-x_{j}\right)_{i}<\frac{1}{2} \ell
$$

Suppose that $\left\{\psi_{\ell}\right\}$ converges to a function $\psi: \mathbb{R}^{\nu} \rightarrow \mathbb{C}$ as $\ell \rightarrow 0$ in the sense that $\varepsilon_{j}(\ell):=\psi\left(x_{j}\right)-\psi_{\ell}\left(x_{j}\right)$ behaves as $\sum_{n \in \nu(j)}\left(\varepsilon_{n}(\ell)-\varepsilon_{j}(\ell)\right)=o\left(\ell^{2}\right)$; then the limiting function ψ solves the equation

$$
-\Delta \psi(x)+V(x) \psi(x)=\nu k^{2} \psi(x)
$$

(b) The analogous result holds for Schrödinger equation in a region $\Omega \subset \mathbb{R}^{\nu}$ with Dirichlet b.c. if $\partial \Omega$ is piecewise smooth

Approximation by lattice graphs

Proof: For $f \in C^{2}$ we use Taylor expansion,

$$
\frac{f(x+\ell)-f(x-\ell)-2 f(x) \cos k \ell}{\ell k^{-1} \sin k \ell}=\frac{2 k}{\ell} f(x) \tan \frac{k \ell}{2}+f^{\prime \prime}(x) \frac{k \ell}{\sin k \ell}+o(\ell),
$$

so the right-hand side tends to $f^{\prime \prime}(x)+k^{2} f(x)$ as $\ell \rightarrow 0$. Applying this to ψ w.r.t. each of the ν variables we find
$\Delta \psi\left(x_{j}\right)+\nu k^{2} \psi\left(x_{j}\right)-V\left(x_{j}\right) \psi\left(x_{j}\right)=\left(\frac{\ell}{k} \sin k \ell\right)^{-1} \sum_{n \in \nu(j)}\left(\varepsilon_{n}(\ell)-\varepsilon_{j}(\ell)\right)+o(\ell)$,
where the right-hand side tends to zero by assumption.

Approximation by lattice graphs

Proof: For $f \in C^{2}$ we use Taylor expansion,

$$
\frac{f(x+\ell)-f(x-\ell)-2 f(x) \cos k \ell}{\ell k^{-1} \sin k \ell}=\frac{2 k}{\ell} f(x) \tan \frac{k \ell}{2}+f^{\prime \prime}(x) \frac{k \ell}{\sin k \ell}+o(\ell),
$$

so the right-hand side tends to $f^{\prime \prime}(x)+k^{2} f(x)$ as $\ell \rightarrow 0$. Applying this to ψ w.r.t. each of the ν variables we find
$\Delta \psi\left(x_{j}\right)+\nu k^{2} \psi\left(x_{j}\right)-V\left(x_{j}\right) \psi\left(x_{j}\right)=\left(\frac{\ell}{k} \sin k \ell\right)^{-1} \sum_{n \in \nu(j)}\left(\varepsilon_{n}(\ell)-\varepsilon_{j}(\ell)\right)+o(\ell)$,
where the right-hand side tends to zero by assumption.
Remarks: (a) We do not discuss here existence of ψ (b) The restriction $k \notin \mathcal{K}$ is satisfied for ℓ is small enough (c) The limiting energy is νk^{2}, because all the "local" momentum components are equal (and the particle moves naturally over the graph in a zig-zag way)

Example

Take a "Sinai-billiard" graph made of a $N \times N$ rectangular lattice with Dirichlet b.c. at the boundary of Γ

The computation will be made with $N=97$ and $\alpha=0, U=0$

Nodal domains

Take first an eigenfunction of the graph Hamiltonian corresponding to high enough eigenvalue

The nodal domains on the graph look similar to those of the "usual" Sinai billiard

Sinai graph transport

We attach to the above graph two external leads at points $(14,40)$ and $(59,80)$ of the 97×97 lattice

The b.c. are again supposed to be free

Billiards with leads

To have something to compare with, recall how one can describe transport through a billiard Ω with a pair of leads attached at internal points of Ω
The billiard Hamiltonian is, of course, the Dirichlet Laplacian
$-\Delta_{D}^{\Omega}$ on $L^{2}(\Omega)$ and 1D Laplacians describe the leads

Billiards with leads

To have something to compare with, recall how one can describe transport through a billiard Ω with a pair of leads attached at internal points of Ω
The billiard Hamiltonian is, of course, the Dirichlet Laplacian $-\Delta_{D}^{\Omega}$ on $L^{2}(\Omega)$ and 1D Laplacians describe the leads
The direct sum $\mathcal{H}=L^{2}\left(\mathbb{R}_{-}\right) \oplus L^{2}(\Omega) \oplus L^{2}\left(\mathbb{R}_{+}\right)$is naturally associated with the full system, so the wavefunctions are triples $\Phi=\left(\phi_{-}, \phi, \phi_{+}\right)$of square integrable functions

Coupling of the leads

It describes by b.c. which involve generalized boundary values

$$
L_{0}(\Phi):=\lim _{r \rightarrow 0} \frac{\Phi(\vec{x})}{\ln r}, L_{1}(\Phi):=\lim _{r \rightarrow 0}\left[\Phi(\vec{x})-L_{0}(\Phi) \ln r\right]
$$

Coupling of the leads

It describes by b.c. which involve generalized boundary values

$$
L_{0}(\Phi):=\lim _{r \rightarrow 0} \frac{\Phi(\vec{x})}{\ln r}, L_{1}(\Phi):=\lim _{r \rightarrow 0}\left[\Phi(\vec{x})-L_{0}(\Phi) \ln r\right]
$$

Typical b.c. determining a s-a extension

$$
\begin{aligned}
\pm \phi_{\mp}^{\prime}(0 \mp) & =A \phi_{\mp}(0 \mp)+B L_{0}(\phi), \\
L_{1}(\phi) & =C \phi_{\mp}(0 \mp)+D L_{0}(\phi),
\end{aligned}
$$

where

$$
A, D \in \mathbb{R} \quad \text { and } \quad B=2 \pi \bar{C}
$$

N.B.: If we use such a coupling between plane and halfline one can derive the S-matrix as a function of A, B, C, D

Billiard transport

Let the leads be attached at points $x_{1}, x_{2} \in \Omega$. Construction of generalized eigenfunctions means to couple plane-wave solution at leads with

$$
\phi(x)=a_{1} G\left(x, x_{1} ; k\right)+a_{2} G\left(x, x_{2} ; k\right),
$$

where $G(\cdot, \cdot ; k)$ is Green's function of $-\Delta_{D}^{\Omega}$ in the billiard

Billiard transport

Let the leads be attached at points $x_{1}, x_{2} \in \Omega$. Construction of generalized eigenfunctions means to couple plane-wave solution at leads with

$$
\phi(x)=a_{1} G\left(x, x_{1} ; k\right)+a_{2} G\left(x, x_{2} ; k\right),
$$

where $G(\cdot, \cdot ; k)$ is Green's function of $-\Delta_{D}^{\Omega}$ in the billiard
The latter has a logarithmic singularity so $L_{j}(\phi)$ express in terms of $g:=G\left(x_{1}, x_{2} ; k\right)$ and

$$
\xi_{j} \equiv \xi\left(x_{j} ; k\right):=\lim _{x \rightarrow x_{j}}\left[G\left(x, x_{j} ; k\right)+\frac{\ln \left|x-x_{j}\right|}{2 \pi}\right] ;
$$

the b.c. then determine scattering, i.e. transmission and reflection amplitudes, as well as the coefficients a_{1}, a_{2}

How to choose coupling parameters

A heuristic way to do that is to compare low-energy scattering in the plane+halfline model mentioned above with the situation when the halfline is replaced by tube of radius a (for simplicity we disregard effect of the sharp edge at interface of the two parts)

Plane plus tube scattering

Rotational symmetry allows us to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$
\psi(x):=\left\{\begin{array}{ccc}
e^{i k x}+r_{a}^{(\ell)}(t) e^{-i k x} & \ldots & x \leq 0 \\
\sqrt{\frac{\pi k r}{2}} t_{a}^{(\ell)}(k) H_{\ell}^{(1)}(k r) & \ldots & r \geq a
\end{array}\right.
$$

Plane plus tube scattering

Rotational symmetry allows us to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$
\psi(x):=\left\{\begin{array}{ccc}
e^{i k x}+r_{a}^{(\ell)}(t) e^{-i k x} & \ldots & x \leq 0 \\
\sqrt{\frac{\pi k r}{2}} t_{a}^{(\ell)}(k) H_{\ell}^{(1)}(k r) & \ldots & r \geq a
\end{array}\right.
$$

This yields

$$
r_{a}^{(\ell)}(k)=-\frac{\mathcal{D}_{-}^{a}}{\mathcal{D}_{+}^{a}}, \quad t_{a}^{(\ell)}(k)=4 i \sqrt{\frac{2 k a}{\pi}}\left(\mathcal{D}_{+}^{a}\right)^{-1}
$$

with

$$
\mathcal{D}_{ \pm}^{a}:=(1 \pm 2 i k a) H_{\ell}^{(1)}(k a)+2 k a\left(H_{\ell}^{(1)}\right)^{\prime}(k a)
$$

Choice of the parameters

This has to be compared with the plane-and-halfline result. Only the s-wave is important: for the halfline there is no scattering if $\ell \neq 0$ while for the tube transmission probability vanishes as $a^{2 \ell-1}$ for $a \rightarrow 0$

Choice of the parameters

This has to be compared with the plane-and-halfline result. Only the s-wave is important: for the halfline there is no scattering if $\ell \neq 0$ while for the tube transmission probability vanishes as $a^{2 \ell-1}$ for $a \rightarrow 0$
Comparison shows that the two amplitudes coincide, in the leading order as $k \rightarrow 0$, with plane+halfline expression if

$$
A:=\frac{1}{2 a}, \quad D:=-\ln a, \quad B=2 \pi C=\sqrt{\frac{2 \pi}{a}}
$$

Notice that the "natural" coupling depend on a single parameter, namely radius of the "thin" component In the example below we choose the tube radius a to be one tenth of the distance between the lattice graph nodes

Eigenfunctions comparison

graph with energy E

Schrödinger with energy $2 E$

Energy E refers to incident momentum $k=\sqrt{E}=1.65$

Probability currents

Apart of being less numerically demanding, study of transport with complex-valued generalized eigenfunctions allows us to analyze also phase-related effects and to compare them to their analogues in "true" billiards

Probability currents

Apart of being less numerically demanding, study of transport with complex-valued generalized eigenfunctions allows us to analyze also phase-related effects and to compare them to their analogues in "true" billiards
A primary quantity of interest is the probability current which in (an open) billiard is given conventionally by

$$
\vec{\jmath}(\vec{x})=\operatorname{Im}(\bar{\psi} \nabla \psi)(\vec{x})
$$

Probability currents

Apart of being less numerically demanding, study of transport with complex-valued generalized eigenfunctions allows us to analyze also phase-related effects and to compare them to their analogues in "true" billiards
A primary quantity of interest is the probability current which in a billiard is given conventionally by

$$
\vec{\jmath}(\vec{x})=\operatorname{Im}(\bar{\psi} \nabla \psi)(\vec{x})
$$

What is a quantity to compare on Γ ? One possibility is to take vertex values as discretization of a smooth complex function and to compute the current in analogy with the above formula, by discrete approximation of differentiation
There is also an alternative way, more or less equivalent

Graph probability flows

"Microscopically", of course, they follow graph edges

Graph probability flows, continued

Construct now the "overall" flow on the graph as a vector sum of the "red" and "blue" components:

In this way, we find the vector field on Γ, to be compared with that of the billiard with leads

Comparison with Sinai billiard

vector addition, energy E
$\operatorname{Im}(\bar{\psi} \nabla \psi)(\vec{x})$, energy $2 E$
For simplicity, we show here just the lower left corner of the two pictures

Summary and outlook

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)

Summary and outlook

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)
- Potential approximations of vertex couplings: now we understand how they can be constructed, beyond the δ-coupling case

Summary and outlook

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)
- Potential approximations of vertex couplings: now we understand how they can be constructed, beyond the δ-coupling case
- Graph approximations to PDE solutions: simplest example here, many other situations can be considered

Summary and outlook

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)
- Potential approximations of vertex couplings: now we understand how they can be constructed, beyond the δ-coupling case
- Graph approximations to PDE solutions: simplest example here, many other situations can be considered
- Emergence of global structures: a proper "microscopic" understanding needed to approximate correctly effects like phase singularities

Summary and outlook

- Fat graph approximations: progress in the Neumann-like case, free boundary conditions arise generically. The Dirichlet case is open (and frustrating)
- Potential approximations of vertex couplings: now we understand how they can be constructed, beyond the δ-coupling case
- Graph approximations to PDE solutions: simplest example here, many other situations can be considered
- Emergence of global structures: a proper "microscopic" understanding needed to approximate correctly effects like phase singularities
- Interesting applications: the obtained phase portraits of our large graphs are strikingly similar to structures observed in neural networks such a visual cortex

The talk was based on

[CE04] T. Cheon, P.E.: An approximation to δ^{\prime} couplings on graphs, J. Phys. A: Math. Gen. A37 (2004), L329-335
[E95] P.E.: Lattice Kronig-Penney models, Phys. Rev. Lett. 75 (1995), 3503-3506
[E96] P.E.: Weakly coupled states on branching graphs, Lett. Math. Phys. 38 (1996), 313-320
[E97] P.E.: A duality between Schrödinger operators on graphs and certain Jacobi matrices, Ann. Inst. H. Poincaré: Phys. Théor. 66 (1997), 359-371
[EHŠ05] P.E., P. Hejčík, P. Šeba: Emergence of global structures in large quantum graphs, in preparation
[ENZ01] P.E., H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ^{\prime} : an inverse Klauder phenomenon with norm-resolvent convergence, Commun. Math. Phys. 224 (2001), 593-612
[EP05] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys. 54 (2005), 77-115
[ET05] P.E., O. Turek: Approximations of singular coupling at graph vertices, in preparation

The talk was based on

[CE04] T. Cheon, P.E.: An approximation to δ^{\prime} couplings on graphs, J. Phys. A: Math. Gen. A37 (2004), L329-335
[E95] P.E.: Lattice Kronig-Penney models, Phys. Rev. Lett. 75 (1995), 3503-3506
[E96] P.E.: Weakly coupled states on branching graphs, Lett. Math. Phys. 38 (1996), 313-320
[E97] P.E.: A duality between Schrödinger operators on graphs and certain Jacobi matrices, Ann. Inst. H. Poincaré: Phys. Théor. 66 (1997), 359-371
[EHŠ05] P.E., P. Hejčík, P. Šeba: Emergence of global structures in large quantum graphs, in preparation
[ENZ01] P.E., H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ^{\prime} : an inverse Klauder phenomenon with norm-resolvent convergence, Commun. Math. Phys. 224 (2001), 593-612
[EP05] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys. 54 (2005), 77-115
[ET05] P.E., O. Turek: Approximations of singular coupling at graph vertices, in preparation for more information see http://www.ujf.cas.cz/ eexner

