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Introducing quantum graphs at Snowbird

is naturally the same as

to give apples to Alcinous [classical]

to carry firewood to the forest [Czech, rural]

to carry coals to Newcastle [English, industrial]

to sell refrigerators to Aleut-Americans
[American, politically correct]

or maybe, Eulen nach Athen tragen [German, it seems]

to throw a perfume on the violet [Shakespeare,
King John]

etc., etc. Let us thus go straight in medias res
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Vertex coupling
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j

Since it is second-order, the boundary condition involve
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)} being of the form

AΨ(0) +BΨ′(0) = 0 ;

by [Kostrykin-Schrader’99] the n× n matrices A,B give rise
to a self-adjoint operator if they satisfy the conditions

rank (A,B) = n

AB∗ is self-adjoint
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HFT boundary conditions
The non-uniqueness of K-S b.c. can be removed:
Proposition [Harmer’00]: Vertex couplings are uniquely
characterized by unitary n× n matrices U such that

A = U − I , B = i(U + I)

One can derive them modifying the argument used in
[Fülöp-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,
n

∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0) ± i`Ψ′(0)‖Cn with a fixed
` 6= 0 coincide, so the vectors must be related by an n× n
unitary matrix; this gives (U − I)Ψ(0) + i`(U + I)Ψ′(0) = 0
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Remarks
The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(`+ `′)U + `− `′

(`− `′)U + `+ `′

The choice ` = 1 just fixes the length scale

The HFT b.c. help to simplify the analysis done in
[Kostrykin-Schrader’99], [Kuchment’04] and other
previous work. It concerns, for instance, the null
spaces of the matrices A,B

or the on-shell scattering matrix for a star graph of n
halflines with the considered coupling which equals

SU (k) =
(k − 1)I + (k + 1)U

(k + 1)I + (k − 1)U
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Examples of vertex coupling
Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n

∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I

α = 0 corresponds to the “free motion”, the so-called
free boundary conditions (better name than Kirchhoff)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′

j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n

∑

j=1

ψj(0) = βψ′(0)

with β ∈ R; for β = ∞ we get Neumann decoupling
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Further examples
Another generalization of 1D δ′ is the δ′ coupling:

n
∑

j=1

ψ′

j(0) = 0 , ψj(0)−ψk(0) =
β

n
(ψ′

j(0)−ψ′

k(0)) , 1 ≤ j, k ≤ n

with β ∈ R and U = n−iα
n+iαI − 2

n+iαJ ; the infinite value of
β refers again to Neumann decoupling of the edges

Due to permutation symmetry the U ’s are combinations
of I and J in the examples. In general, interactions with
this property form a two-parameter family described by
U = uI + vJ s.t. |u| = 1 and |u+ nv| = 1 giving the b.c.

(u− 1)(ψj(0) − ψk(0)) + i(u− 1)(ψ′

j(0) − ψ′

k(0)) = 0

(u− 1 + nv)
n

∑

k=1

ψk(0) + i(u− 1 + nv)
n

∑

k=1

ψ′

k(0) = 0
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Why are vertices interesting?

While usually conductivity of graph structures is
controlled by external fields, vertex coupling can
serve the same purpose

It is an interesting problem in itself, recall that for the
generalized point interaction, i.e. graph with n = 2,
the spectrum has nontrivial topological structure
[Tsutsui-Fülöp-Cheon’01]

More recently, the same system has been proposed as
a way to realize a qubit , with obvious consequences:
cf. “quantum abacus” in [Cheon-Tsutsui-Fülöp’04]

Recall also that in a rectangular lattice with δ coupling
of nonzero α spectrum depends on number theoretic
properties of model parameters [E.’95]
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More on the lattice example

Basic cell is a rectangle of sides `1, `2, the δ coupling with
parameter α is assumed at every vertex

x

y

g
n

g
n+1

fm+1

fm

l 2

1l

Spectral condition for quasimomentum (θ1, θ2) reads

2
∑

j=1

cos θj`j − cos k`j
sin k`j

=
α

2k
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Lattice band spectrum
Recall a continued-fraction classification, α = [a0, a1, . . .]:

“good” irrationals have lim supj aj = ∞
(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞
(and limj aj 6= 0, of course)
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Recall a continued-fraction classification, α = [a0, a1, . . .]:

“good” irrationals have lim supj aj = ∞
(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞
(and limj aj 6= 0, of course)

Theorem [E.’95]: Call θ := `2/`1 and L := max{`1, `2}.
(a) If θ is rational or “good” irrational, there are infinitely
many gaps for any nonzero α
(b) For a “bad” irrational θ there is α0 > 0 such no gaps
open above threshold for |α| < α0

(c) There are infinitely many gaps if |α|L > π2

√
5
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(a) If θ is rational or “good” irrational, there are infinitely
many gaps for any nonzero α
(b) For a “bad” irrational θ there is α0 > 0 such no gaps
open above threshold for |α| < α0

(c) There are infinitely many gaps if |α|L > π2

√
5

This all illustrates why we seek a meaningful way to
“construct” different vertex couplings. It will be our next task
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A head-on approach
Take a more realistic situation with no ambiguity, such
as branching tubes and analyze the squeezing limit :
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Unfortunately, it is not so simple as it looks because

after a long effort the Neumann-like case was solved
[Kuchment-Zeng’01], [Rubinstein-Schatzmann’01],
[Saito’01], [E.-Post’05] leading to free b.c. only

the important Dirichlet case is open (and difficult),
apart of the (not so intriguing) case leading to full
decoupling of graph edges [Post’05], [Grieser’05]?
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Recall the Neumann-like case
The simplest situation in [KZ’01, EP’05] (weights left out)

Let M0 be a finite connected graph with vertices vk, k ∈ K
and edges ej ' Ij := [0, `j ], j ∈ J ; the state Hilbert space is

L2(M0) :=
⊕

j∈J

L2(Ij)

and in a similar way Sobolev spaces on M0 are introduced

The form u 7→ ‖u′‖2
M0

:=
∑

j∈J ‖u′‖2
Ij

with u ∈ H1(M0) is
associated with the operator which acts as −∆M0

u = −u′′j
and satisfies free b.c.,

∑

j, ej meets vk

u′j(vk) = 0
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On the other hand, Laplacian on manifolds
Consider a Riemannian manifold X of dimension d ≥ 2 and
the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
−∆X which acts in fixed chart coordinates as

−∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)

If X is compact with piecewise smooth boundary, one starts
from the form defined on C∞(X). This yields −∆X as the
Neumann Laplacian on X and allows us in this way to treat
“fat graphs” and “sleeves” on the same footing
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the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
−∆X which acts in fixed chart coordinates as

−∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)

If X is compact with piecewise smooth boundary, one starts
from the form defined on C∞(X). This yields −∆X as the
Neumann Laplacian on X and allows us in this way to treat
“fat graphs” and “sleeves” on the same footing
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Fat graphs and sleeves: manifolds

We associate with the graph M0 a family of manifolds Mε

M0 Mε

ej

vk

Uε,j

Vε,k

We suppose that Mε is a union of compact edge and vertex
components Uε,j and Vε,k such that their interiors are
mutually disjoint for all possible j ∈ J and k ∈ K
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Manifold building blocks

ε

ε

ej vk

Uε,j

Vε,k

However, Mε need not be embedded in some R
d.

It is convenient to assume that Uε,j and Vε,k depend on ε
only through their metric:

for edge regions we assume that Uε,j is diffeomorphic to
Ij × F where F is a compact and connected manifold
(with or without a boundary) of dimension m := d− 1

for vertex regions we assume that the manifold Vε,k is
diffeomorphic to an ε-independent manifold Vk
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Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that
H, H′ are separable Hilbert spaces. We want to compare
ev’s λk and λ′k of nonnegative operators Q and Q′ with
purely discrete spectra defined via quadratic forms q and q′

on D ⊂ H and D′ ⊂ H′. Set ‖u‖2
Q,n := ‖u‖2 + ‖Qn/2u‖2.

Lemma: Suppose that Φ : D → D′ is a linear map such that
there are n1, n2 ≥ 0 and δ1, δ2 ≥ 0 such that

‖u‖2 ≤ ‖Φu‖′2 + δ1‖u‖2
Q,n1

, q(u) ≥ q′(Φu) − δ2‖u‖2
Q,n2

for all u ∈ D ⊂ D(Qmax{n1,n2}/2). Then to each k there is an
ηk(λk, δ1, δ2) > 0 which tends to zero as δ1, δ2 → 0, such that

λk ≥ λ′k − ηk

Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 – p.17/50



Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that
H, H′ are separable Hilbert spaces. We want to compare
ev’s λk and λ′k of nonnegative operators Q and Q′ with
purely discrete spectra defined via quadratic forms q and q′

on D ⊂ H and D′ ⊂ H′. Set ‖u‖2
Q,n := ‖u‖2 + ‖Qn/2u‖2.

Lemma: Suppose that Φ : D → D′ is a linear map such that
there are n1, n2 ≥ 0 and δ1, δ2 ≥ 0 such that

‖u‖2 ≤ ‖Φu‖′2 + δ1‖u‖2
Q,n1

, q(u) ≥ q′(Φu) − δ2‖u‖2
Q,n2

for all u ∈ D ⊂ D(Qmax{n1,n2}/2). Then to each k there is an
ηk(λk, δ1, δ2) > 0 which tends to zero as δ1, δ2 → 0, such that

λk ≥ λ′k − ηk

Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 – p.17/50



Eigenvalue convergence
Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2h(y) ;

the two metrics coincide up to an O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges

The sought result now looks as follows.

Theorem [E.-Post’05]: Under the stated assumptions
λk(Mε) → λk(M0) as ε→ 0 (giving thus free b.c.!)
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Sketch of the proof
Proposition: λk(Mε) ≤ λk(M0) + o(1) as ε→ 0

To prove it apply the lemma to Φε : L2(M0) → L2(Mε),

Φεu(z) :=







ε−m/2u(vk) if z ∈ Vk

ε−m/2uj(x) if z = (x, y) ∈ Uj

for u ∈ H1(M0)

Proposition: λk(M0) ≤ λk(Mε) + o(1) as ε→ 0

Proof again by the lemma. Here one uses averaging:

Nju(x) :=

∫

F

u(x, ·) dF , Cku :=
1

volVk

∫

Vk

u dVk

to build the comparison map by interpolation:

(Ψε)j(x) := εm/2
(

Nju(x) + ρ(x)(Cku−Nju(x))
)

with a smooth ρ interpolating between zero and one
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More general b.c.? Recall RS argument

[Ruedenberg-Scher’53] used the heuristic argument:

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

The surface term dominates in the limit ε→ 0 giving
formally free boundary conditions

A way out could thus be to use different scaling rates of
edges and vertices. Of a particular interest is the borderline
case, voldVε ≈ vold−1∂Vε, when the integral of 〈dφ, du〉 is
expected to be negligible and we hope to obtain

λ0φ0(vk) =
∑

j∈Jk

φ′0,j(vk)
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Scaling with a power α

Let us try to do the same properly using different scaling of
the edge and vertex regions. Some technical assumptions
needed, e.g., the bottlenecks must be “simple”

transition region Aε,jk

fat edge Uε,j

vertex region Vε,k

scaled as ε

scaled as εα
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Two-speed scaling limit

Let vertices scale as εα. Using the comparison lemma
again (just more in a more complicated way) we find that

if α ∈ (1−d−1, 1] the result is as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
free b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;

if α ∈ (0, 1−d−1) the “limiting” Hilbert space is
L2(M0) ⊕ C

K , where K is # of vertices, and the
“limiting” operator acts as Dirichlet Laplacian at each
edge and as zero on C

K
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Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u′j‖2
Ij

,
the domain of which consists of u = {{uj}j∈J , {uk}k∈K}
such that u ∈ H1(M0) ⊕ C

K and the edge and vertex
parts are coupled by (vol (V −

k )1/2uj(vk) = uk

finally, if vertex regions do not scale at all, α = 0, the
manifold components decouple in the limit again,

⊕

j∈J

∆D
Ij
⊕

⊕

k∈K

∆V0,k

Hence such a straightforward limiting procedure does
not help us to justify choice of appropriate s-a extension
Hence the scaling trick does not work: one has to add
either manifold geometry or external potentials
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Potential approximation
A more modest goal: let us look what we can achieve with
potential families on the graph alone
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Consider once more star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj

Summer Research Conference Quantum Graphs and Their Applications; Snowbird, June 21, 2005 – p.24/50



Potential approximation
A more modest goal: let us look what we can achieve with
potential families on the graph alone
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Consider once more star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj

We make the following assumptions:

Vj ∈ L1
loc(R+) , j = 1, . . . , n

δ coupling with a parameter α in the vertex

Then the operator, denoted as Hα(V ), is self-adjoint
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n

Theorem [E.’96]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫ ∞
0 Wj(x) dx
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n

Theorem [E.’96]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫ ∞
0 Wj(x) dx

Proof: Analogous to that for δ interaction on the line. �
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More singular couplings
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
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More singular couplings
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
Inspiration: Recall that δ′ on the line can be approximated
by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]
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by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]
This suggests the following scheme:
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βa

b(a)

c(a)

HβHb,c
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δ′s approximation
Theorem [Cheon-E.’04]: Hb,c(a) → Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β

a2
, c(a) := −1

a
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Theorem [Cheon-E.’04]: Hb,c(a) → Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β

a2
, c(a) := −1

a

Proof : Green’s functions of both operators are found
explicitly be Krein’s formula, so the convergence can be
established by straightforward computation
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δ′s approximation
Theorem [Cheon-E.’04]: Hb,c(a) → Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β

a2
, c(a) := −1

a

Proof : Green’s functions of both operators are found
explicitly be Krein’s formula, so the convergence can be
established by straightforward computation

Remark : Similar approximation can be worked out also for
the other couplings mentioned above – cf. [E.-Turek’05]. For
the permutation symmetric ones, e.g., one has

b(a) :=
in

a2

(

u− 1 + nv

u+ 1 + nv
+
u− 1

u+ 1

)−1

, c(a) := −1

a
− i

u− 1

u+ 1
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Approximation by graphs

Let us now address the opposite question. Suppose we
study a large quantum graph asking ourselves whether

global structures may emerge

graph families can approximate a “continuous”
system described by a suitable PDE

such structures are similar to something really
existing in the nature
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A preliminary: some needed notions
V = {Xj : j ∈ I} and L = {Ljn : (j, n) ∈ IL ⊂ I × I};
we may suppose one edge between a pair of vertices

N (Xj) = {Xn : n ∈ ν(j) ⊂ I \ {j}} are neighbors of Xj

Boundary B, i.e. vertices with a single neighbor, and
interior I := V \B correspond to index subsets IB and II
a metric Γ has Ljn isometric to [0, `jn]; this gives Hilbert
space L2(Γ) :=

⊕

(j,n)∈IL
L2(0, `jn) with elements {ψjn}

operators Hα ≡ Hα(Γ, U) with potentials U := {Ujn} and
δ-couplings α := {αj ∈: j ∈ I} defined as above

on Lnj ≡ [0, `jn] (the right end identified with Xj) we
introduce solutions to −f ′′ + Ujnf = k2f satisfying
ujn(`jn) = 1−(ujn)′(`jn) = 0 and vjn(0) = 1−(vjn)′(0) = 0

(Dirichlet b.c. at B); one has Wjn = −vjn(`jn) = ujn(0)
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⊕

(j,n)∈IL L
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A preliminary: graph duality

Let HD
α be obtained Dirichlet decoupling of Hα and denote

K := {k : k2 ∈ σ(HD
α )}. Moreover, assume that

(i) there is C > 0 s.t. ‖Ujn‖∞ ≤ C for all (j, n) ∈ IL
(ii) `0 := inf{ `jn : (j, n) ∈ IL} > 0

(iii) L0 := sup{ `jn : (j, n) ∈ IL} <∞
(iv) N0 := max{ card ν(j) : j ∈ I } <∞

Theorem [E.’97]: (a) Suppose that (i)-(iv) are satisfied
and ψ ∈ Dloc(Hα) solves −f ′′ + Ujnf = k2f for some k 6∈ K
with k2 ∈ R, Im k ≥ 0. Then the boundary values satisfy

∑

n∈ν(j)∩II

ψn

Wjn
−





∑

n∈ν(j)

(vjn)′(`jn)

Wjn
− αj



ψj = 0
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Graph duality, continued
Conversely, any solution {ψj : j ∈ II} to the above system
determines a solution of −f ′′ + Ujnf = k2f by

ψjn(x) =
ψn

Wjn
ujn(x) − ψj

Wjn
vjn(x) if n ∈ ν(j) ∩ II ,

ψjn(x) = − ψj

Wjn
vjn(x) if n ∈ ν(j) ∩ IB .

(b) Under (i), (ii), ψ ∈ L2(Γ) implies that the solution {ψj} of
the “discrete” system belongs to `2(II)

(c) The opposite implication is valid provided (iii), (iv) also
hold, and k has a positive distance from from K

Remark: There is a natural relation between the dual
system specified above and the spectral determinant of Γ
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Approximation by lattice graphs
Let us specify the above result to the situation when
(a) all the graph edges have the same length ` > 0, and
(b) all the potentials Ujn vanish. Then we have

ujn(x) =
1

k
sin k(x− `) , vjn(x) =

1

k
sin kx ,

with Wjn = − 1
k sin k` and the dual system becomes

−
∑

n∈ν(j)

ψn − ψj cos k`

k−1 sin k`
+ αjψj = 0 , j ∈ I ;

it is true even at B since we assume Dirichlet b.c. there

Let now local metric on Γ come from embedding, the graph
being a subset in R

ν . In particular, consider a cubic lattice
graph Cν ≡ Cν(`) ⊂ R

ν whose vertices are lattice points
{xj(`) = (j1`, . . . , jν`) : ji ∈ Z}, as well as subgraphs of Cν
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Approximation by lattice graphs
Theorem [E.-Hejčík-Šeba’05]: (a) Let V : R

ν → R be C1

with ∇V bounded and put αj(`) := V (xj)`. Let for any ` > 0

and k with k2 ∈ R, Im k ≥ 0, the family {ψ`
j} solve the dual

system, and define a step function ψ` : R
ν → C by

ψ`(x) := ψ`
j if − 1

2
` ≤ (x− xj)i <

1

2
`

Suppose that {ψ`} converges to a function ψ : R
ν → C as

`→ 0 in the sense that εj(`) := ψ(xj) − ψ`(xj) behaves as
∑

n∈ν(j) (εn(`) − εj(`)) = o(`2); then the limiting function ψ
solves the equation

−∆ψ(x) + V (x)ψ(x) = νk2ψ(x)

(b) The analogous result holds for Schrödinger equation in
a region Ω ⊂ R

ν with Dirichlet b.c. if ∂Ω is piecewise smooth
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Approximation by lattice graphs
Proof: For f ∈ C2 we use Taylor expansion,

f(x+ `) − f(x− `) − 2f(x) cos k`

`k−1 sin k`
=

2k

`
f(x) tan

k`

2
+ f ′′(x)

k`

sin k`
+ o(`) ,

so the right-hand side tends to f ′′(x) + k2f(x) as `→ 0.
Applying this to ψ w.r.t. each of the ν variables we find

∆ψ(xj)+νk
2ψ(xj)−V (xj)ψ(xj) =

(

`

k
sin k`

)−1
∑

n∈ν(j)

(εn(`) − εj(`))+o(`) ,

where the right-hand side tends to zero by assumption. �

Remarks: (a) We do not discuss here existence of ψ
(b) The restriction k 6∈ K is satisfied for ` is small enough
(c) The limiting energy is νk2, because all the “local”
momentum components are equal (and the particle moves
naturally over the graph in a zig-zag way)
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Example
Take a “Sinai-billiard” graph made of a N ×N rectangular
lattice with Dirichlet b.c. at the boundary of Γ

The computation will be made with N = 97 and α = 0, U = 0
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Nodal domains
Take first an eigenfunction of the graph Hamiltonian
corresponding to high enough eigenvalue

The nodal domains on the graph look similar to those of the
“usual” Sinai billiard
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Sinai graph transport
We attach to the above graph two external leads at points
(14, 40) and (59, 80) of the 97 × 97 lattice

���������

���������

q

q

The b.c. are again supposed to be free
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Billiards with leads

To have something to compare with, recall how one can
describe transport through a billiard Ω with a pair of leads
attached at internal points of Ω

The billiard Hamiltonian is, of course, the Dirichlet Laplacian
−∆Ω

D on L2(Ω) and 1D Laplacians describe the leads

The direct sum H = L2(R−) ⊕ L2(Ω) ⊕ L2(R+) is naturally
associated with the full system, so the wavefunctions are
triples Φ = (φ−, φ, φ+) of square integrable functions

������

������
r

r
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Coupling of the leads

It describes by b.c. which involve generalized boundary
values

L0(Φ) := lim
r→0

Φ(~x)

ln r
, L1(Φ) := lim

r→0
[ Φ(~x) − L0(Φ) ln r ]

Typical b.c. determining a s-a extension

±φ′∓(0∓) = Aφ∓(0∓) +BL0(φ) ,

L1(φ) = Cφ∓(0∓) +DL0(φ) ,

where
A, D ∈ R and B = 2πC̄

N.B.: If we use such a coupling between plane and halfline
one can derive the S-matrix as a function of A,B,C,D
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Billiard transport

Let the leads be attached at points x1, x2 ∈ Ω. Construction
of generalized eigenfunctions means to couple plane-wave
solution at leads with

φ(x) = a1G(x, x1; k) + a2G(x, x2; k) ,

where G(·, ·; k) is Green’s function of −∆Ω
D in the billiard

The latter has a logarithmic singularity so Lj(φ) express in
terms of g := G(x1, x2; k) and

ξj ≡ ξ(xj ; k) := lim
x→xj

[

G(x, xj ; k) +
ln |x−xj |

2π

]

;

the b.c. then determine scattering, i.e. transmission and
reflection amplitudes, as well as the coefficients a1, a2
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How to choose coupling parameters

A heuristic way to do that is to compare low-energy
scattering in the plane+halfline model mentioned above
with the situation when the halfline is replaced by tube of
radius a (for simplicity we disregard effect of the sharp edge
at interface of the two parts)

������

������

pp pp pp pp pp pp pp p
pp pp pp pp pp pp pp p

pp pp pp pp pp pp pp p
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Plane plus tube scattering
Rotational symmetry allows us to treat each partial wave
separately. Given orbital quantum number ` one has to
match smoothly the corresponding solutions

ψ(x) :=







eikx + r
(`)
a (t)e−ikx . . . x ≤ 0

√

πkr
2 t

(`)
a (k)H

(1)
` (kr) . . . r ≥ a

This yields

r
(`)
a (k) = − Da

−
Da

+

, t
(`)
a (k) = 4i

√

2ka

π

(

Da
+

)−1

with

Da
± := (1 ± 2ika)H

(1)
` (ka) + 2ka

(

H
(1)
`

)′
(ka)
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Choice of the parameters

This has to be compared with the plane-and-halfline result.
Only the s-wave is important: for the halfline there is no
scattering if ` 6= 0 while for the tube transmission probability
vanishes as a2`−1 for a→ 0

Comparison shows that the two amplitudes coincide, in the
leading order as k → 0, with plane+halfline expression if

A :=
1

2a
, D := − ln a , B = 2πC =

√

2π

a

Notice that the “natural” coupling depend on a single
parameter, namely radius of the “thin” component
In the example below we choose the tube radius a to be
one tenth of the distance between the lattice graph nodes
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Eigenfunctions comparison

graph with energy E Schrödinger with energy 2E

Energy E refers to incident momentum k =
√
E = 1.65
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Probability currents

Apart of being less numerically demanding, study of
transport with complex-valued generalized eigenfunctions
allows us to analyze also phase-related effects and to
compare them to their analogues in “true” billiards
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Probability currents

Apart of being less numerically demanding, study of
transport with complex-valued generalized eigenfunctions
allows us to analyze also phase-related effects and to
compare them to their analogues in “true” billiards
A primary quantity of interest is the probability current
which in (an open) billiard is given conventionally by

~(~x) = Im
(

ψ̄∇ψ
)

(~x)
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Probability currents

Apart of being less numerically demanding, study of
transport with complex-valued generalized eigenfunctions
allows us to analyze also phase-related effects and to
compare them to their analogues in “true” billiards
A primary quantity of interest is the probability current
which in a billiard is given conventionally by

~(~x) = Im
(

ψ̄∇ψ
)

(~x)

What is a quantity to compare on Γ? One possibility is to
take vertex values as discretization of a smooth complex
function and to compute the current in analogy with the
above formula, by discrete approximation of differentiation
There is also an alternative way , more or less equivalent
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Graph probability flows

“Microscopically”, of course, they follow graph edges
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Graph probability flows, continued
Construct now the “overall” flow on the graph as a vector
sum of the “red” and “blue” components:

r

r

r

r

r

r

r

r

r

A
A
AU

--

-

-

-

-

-

-

-

-

?

?

?

?

?

?

?

?

?

In this way, we find the vector field on Γ, to be compared
with that of the billiard with leads
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Comparison with Sinai billiard

vector addition, energy E Im
(

ψ̄∇ψ
)

(~x), energy 2E

For simplicity, we show here just the lower left corner
of the two pictures
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Summary and outlook
Fat graph approximations: progress in the
Neumann-like case, free boundary conditions arise
generically. The Dirichlet case is open (and frustrating)

Potential approximations of vertex couplings: now we
understand how they can be constructed, beyond the
δ-coupling case

Graph approximations to PDE solutions: simplest
example here, many other situations can be considered

Emergence of global structures: a proper “microscopic”
understanding needed to approximate correctly effects
like phase singularities

Interesting applications: the obtained phase portraits of
our large graphs are strikingly similar to structures
observed in neural networks such a visual cortex
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