Loops and trees: spectral and resonance properties of quantum graphs

Pavel Exner
in collaboration with Brian Davies and Jiři Lipovský
exner@ujf.cas.cz
Doppler Institute
for Mathematical Physics and Applied Mathematics
Prague

Talk overview

In this talk I am going to present several recent results on spectral and resonance properties of quantum graphs:

- Geometric perturbations: resonances due to edge rationality violation in graphs with leads

Talk overview

In this talk I am going to present several recent results on spectral and resonance properties of quantum graphs:

- Geometric perturbations: resonances due to edge rationality violation in graphs with leads
- High-energy asymptotics of resonances: Weyl and non-Weyl behaviour, and when each of them occurs

Talk overview

In this talk I am going to present several recent results on spectral and resonance properties of quantum graphs:

- Geometric perturbations: resonances due to edge rationality violation in graphs with leads
- High-energy asymptotics of resonances: Weyl and non-Weyl behaviour, and when each of them occurs
- Absence of transport at trees: homogeneous trees which are "sparse" have generically empty ac spectrum

Introduction: the quantum graph concep

The idea of investigating quantum particles confined to a graph was first suggested by L. Pauling in 1936 and worked out by Ruedenberg and Scherr in 1953 in a model of aromatic hydrocarbons

Introduction: the quantum graph concep

The idea of investigating quantum particles confined to a graph was first suggested by L. Pauling in 1936 and worked out by Ruedenberg and Scherr in 1953 in a model of aromatic hydrocarbons
The concept extends, however, to graphs of arbitrary shape

Hamiltonian: $-\frac{\partial^{2}}{\partial x_{j}^{2}}+v\left(x_{j}\right)$
on graph edges,
boundary conditions at vertices

and what is important, it became practically important after experimentalists learned in the last two decades to fabricate tiny graph-like structure for which this is a good model

Remarks

- There are many graph-like systems based on semiconductor or metallic materials, carbon nanotubes, etc. The dynamics can be also simulated by microwave network built of optical cables - see [Hul et al.'04]

Remarks

- There are many graph-like systems based on semiconductor or metallic materials, carbon nanotubes, etc. The dynamics can be also simulated by microwave network built of optical cables - see [Hul et al.'04]
- Here we consider Schrödinger operators on graphs, most often free, $v_{j}=0$. Naturally one can external electric and magnetic fields, spin, etc.

Remarks

- There are many graph-like systems based on semiconductor or metallic materials, carbon nanotubes, etc. The dynamics can be also simulated by microwave network built of optical cables - see [Hul et al.'04]
- Here we consider Schrödinger operators on graphs, most often free, $v_{j}=0$. Naturally one can external electric and magnetic fields, spin, etc.
- Graphs can support also Dirac operators, see [Bulla-Trenckler'90], [Bolte-Harrison'03], and many recent applications to graphene and its derivates

Remarks

- There are many graph-like systems based on semiconductor or metallic materials, carbon nanotubes, etc. The dynamics can be also simulated by microwave network built of optical cables - see [Hul et al.'04]
- Here we consider Schrödinger operators on graphs, most often free, $v_{j}=0$. Naturally one can external electric and magnetic fields, spin, etc.
- Graphs can support also Dirac operators, see [Bulla-Trenckler'90], [Bolte-Harrison'03], and many recent applications to graphene and its derivates
- The graph literature is extensive; a good up-to-date reference are proceedings of the recent semester AGA Programme at INI Cambridge

Vertex coupling

The most simple example is a star graph with the state Hilbert space $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and the particle Hamiltonian acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}$

Vertex coupling

The most simple example is a star graph with the state Hilbert space $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and the particle Hamiltonian acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}$

Since it is second-order, the boundary condition involve $\Psi(0):=\left\{\psi_{j}(0)\right\}$ and $\Psi^{\prime}(0):=\left\{\psi_{j}^{\prime}(0)\right\}$ being of the form

$$
A \Psi(0)+B \Psi^{\prime}(0)=0 ;
$$

by [Kostrykin-Schrader'99] the $n \times n$ matrices A, B give rise to a self-adjoint operator if they satisfy the conditions

- $\operatorname{rank}(A, B)=n$
- $A B^{*}$ is self-adjoint

Unique boundary conditions

The non-uniqueness of the above b.c. can be removed: Proposition [Harmer'00, K-S'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

$$
A=U-I, \quad B=i(U+I)
$$

Unique boundary conditions

The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer'00, K-S'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

$$
A=U-I, \quad B=i(U+I)
$$

One can derive them modifying the argument used in [Fülöp-Tsutsui'00] for generalized point interactions, $n=2$ Self-adjointness requires vanishing of the boundary form,

$$
\sum_{j=1}^{n}\left(\bar{\psi}_{j} \psi_{j}^{\prime}-\bar{\psi}_{j}^{\prime} \psi_{j}\right)(0)=0
$$

which occurs iff the norms $\left\|\Psi(0) \pm i \ell \Psi^{\prime}(0)\right\|_{\mathbb{C}^{n}}$ with a fixed $\ell \neq 0$ coincide, so the vectors must be related by an $n \times n$ unitary matrix; this gives $(U-I) \Psi(0)+i \ell(U+I) \Psi^{\prime}(0)=0$

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,

$$
\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)
$$

with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,

$$
\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)
$$

with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$

- $\alpha=0$ corresponds to the "free motion", the so-called free boundary conditions (better name than Kirchhoff)

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,
$\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)$
with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$
- $\alpha=0$ corresponds to the "free motion", the so-called free boundary conditions (better name than Kirchhoff)
- Similarly, $U=I-\frac{2}{n-i \beta} \mathcal{J}$ describes the δ_{s}^{\prime} coupling $\psi_{j}^{\prime}(0)=\psi_{k}^{\prime}(0)=: \psi^{\prime}(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}(0)=\beta \psi^{\prime}(0)$
with $\beta \in \mathbb{R}$; for $\beta=\infty$ we get Neumann decoupling, etc.

A lot is known about graph spectra

- many particular examples

A lot is known about graph spectra

- many particular examples
- a spectral duality mapping the problem on a difference equation: originally by Alexander and de Gennes in the early 80's, mathematically rigorous [E'97], [Cattaneo'97]

A lot is known about graph spectra

- many particular examples
- a spectral duality mapping the problem on a difference equation: originally by Alexander and de Gennes in the early 80's, mathematically rigorous [E'97], [Cattaneo'97]
- trace formulæ expressing spectral properties a compact graph Hamiltonian in terms of closed orbits on the graph - [Kottos-Smilansky'97], [Bolte-Endres'09]

A lot is known about graph spectra

- many particular examples
- a spectral duality mapping the problem on a difference equation: originally by Alexander and de Gennes in the early 80's, mathematically rigorous [E'97], [Cattaneo'97]
- trace formulæ expressing spectral properties a compact graph Hamiltonian in terms of closed orbits on the graph - [Kottos-Smilansky'97], [Bolte-Endres'09]
- inverse problems like "Can one hear the shape of a graph?" [Gutkin-Smilansky'01] and many others

A lot is known about graph spectra

- many particular examples
- a spectral duality mapping the problem on a difference equation: originally by Alexander and de Gennes in the early 80's, mathematically rigorous [E'97], [Cattaneo'97]
- trace formulæ expressing spectral properties a compact graph Hamiltonian in terms of closed orbits on the graph - [Kottos-Smilansky'97], [Bolte-Endres'09]
- inverse problems like "Can one hear the shape of a graph?" [Gutkin-Smilansky'01] and many others
- Anderson localization on graphs [Aizenman-Sims -Warzel'06], [E-Helm-Stollmann'07], [Hislop-Post'08]

A lot is known about graph spectra

- many particular examples
- a spectral duality mapping the problem on a difference equation: originally by Alexander and de Gennes in the early 80's, mathematically rigorous [E'97], [Cattaneo'97]
- trace formulæ expressing spectral properties a compact graph Hamiltonian in terms of closed orbits on the graph - [Kottos-Smilansky'97], [Bolte-Endres'09]
- inverse problems like "Can one hear the shape of a graph?" [Gutkin-Smilansky'01] and many others
- Anderson localization on graphs [Aizenman-Sims -Warzel'06], [E-Helm-Stollmann'07], [Hislop-Post'08]
- gaps by decoration [Aizenman-Schenker'01] and others

A lot is known about graph spectra

- many particular examples
- a spectral duality mapping the problem on a difference equation: originally by Alexander and de Gennes in the early 80's, mathematically rigorous [E'97], [Cattaneo'97]
- trace formulæ expressing spectral properties a compact graph Hamiltonian in terms of closed orbits on the graph - [Kottos-Smilansky'97], [Bolte-Endres'09]
- inverse problems like "Can one hear the shape of a graph?" [Gutkin-Smilansky'01] and many others
- Anderson localization on graphs [Aizenman-Sims -Warzel'06], [E-Helm-Stollmann'07], [Hislop-Post'08]
- gaps by decoration [Aizenman-Schenker'01] and others
- and more

First problem concerning resonances

- A typical resonances situation arises for finite graphs with semiinfinite leads

First problem concerning resonances

- A typical resonances situation arises for finite graphs with semiinfinite leads
- Different resonances definitions: poles of continued resolvent, singularities of on-shell S matrix

First problem concerning resonances

- A typical resonances situation arises for finite graphs with semiinfinite leads
- Different resonances definitions: poles of continued resolvent, singularities of on-shell S matrix
- Graphs may exhibit embedded eigenvalues due to invalidity of uniform continuation

First problem concerning resonances

- A typical resonances situation arises for finite graphs with semiinfinite leads
- Different resonances definitions: poles of continued resolvent, singularities of on-shell S matrix
- Graphs may exhibit embedded eigenvalues due to invalidity of uniform continuation
- Geometric perturbations of such graphs may turn the embedded eigenvalues into resonances

Preliminaries

Consider a graph Γ with vertices $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$, finite edges $\mathcal{L}=\left\{\mathcal{L}_{j n}:\left(\mathcal{X}_{j}, \mathcal{X}_{n}\right) \in I_{\mathcal{L}} \subset I \times I\right\}$ and infinite edges $\mathcal{L}_{\infty}=\left\{\mathcal{L}_{j \infty}: \mathcal{X}_{j} \in I_{\mathcal{C}}\right\}$. The state Hilbert space is

$$
\mathcal{H}=\bigoplus_{L_{j} \in \mathcal{L}} L^{2}\left(\left[0, l_{j}\right]\right) \oplus \bigoplus_{\mathcal{L}_{j \infty} \in \mathcal{L}_{\infty}} L^{2}([0, \infty)),
$$

its elements are columns $\psi=\left(f_{j}: \mathcal{L}_{j} \in \mathcal{L}, g_{j}: \mathcal{L}_{j \infty} \in \mathcal{L}_{\infty}\right)^{T}$.

Preliminaries

Consider a graph Γ with vertices $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$, finite edges $\mathcal{L}=\left\{\mathcal{L}_{j n}:\left(\mathcal{X}_{j}, \mathcal{X}_{n}\right) \in I_{\mathcal{L}} \subset I \times I\right\}$ and infinite edges $\mathcal{L}_{\infty}=\left\{\mathcal{L}_{j \infty}: \mathcal{X}_{j} \in I_{\mathcal{C}}\right\}$. The state Hilbert space is

$$
\mathcal{H}=\bigoplus_{L_{j} \in \mathcal{L}} L^{2}\left(\left[0, l_{j}\right]\right) \oplus \bigoplus_{\mathcal{L}_{j \infty} \in \mathcal{L}_{\infty}} L^{2}([0, \infty)),
$$

its elements are columns $\psi=\left(f_{j}: \mathcal{L}_{j} \in \mathcal{L}, g_{j}: \mathcal{L}_{j \infty} \in \mathcal{L}_{\infty}\right)^{T}$.
The Hamiltonian acts as $-\mathrm{d}^{2} / \mathrm{d} x^{2}$ on each link satisfying the boundary conditions

$$
\left(U_{j}-I\right) \Psi_{j}+i\left(U_{j}+I\right) \Psi_{j}^{\prime}=0
$$

characterized by unitary matrices U_{j} at the vertices \mathcal{X}_{j}.

A universal setting for graphs with leads

A useful trick is to replace Γ "flower-like" graph with one vertex by putting all the vertices to a single point,

Its degree is $2 N+M$ where $N:=\operatorname{card} \mathcal{L}$ and $M:=\operatorname{card} \mathcal{L}_{\infty}$

A universal setting for graphs with leads

A useful trick is to replace Γ "flower-like" graph with one vertex by putting all the vertices to a single point,

Its degree is $2 N+M$ where $N:=\operatorname{card} \mathcal{L}$ and $M:=\operatorname{card} \mathcal{L}_{\infty}$
The coupling is described by "big", $(2 N+M) \times(2 N+M)$ unitary block diagonal matrix U consisting of blocks U_{j} as follows,

$$
(U-I) \Psi+i(U+I) \Psi^{\prime}=0 ;
$$

the block structure of U encodes the original topology of Γ.

Equivalence of resonance definitions

Resonances as poles of analytically continued resolvent, $(H-\lambda \mathrm{id})^{-1}$. One way to reveal the poles is to use exterior complex scaling. Looking for complex eigenvalues of the scaled operator we do not change the compact-graph part: we set $f_{j}(x)=a_{j} \sin k x+b_{j} \cos k x$ on the internal edges

Equivalence of resonance definitions

Resonances as poles of analytically continued resolvent, $(H-\lambda i d)^{-1}$. One way to reveal the poles is to use exterior complex scaling. Looking for complex eigenvalues of the scaled operator we do not change the compact-graph part: we set $f_{j}(x)=a_{j} \sin k x+b_{j} \cos k x$ on the internal edges

On the semi-infinite edges are scaled by $g_{j \theta}(x)=\mathrm{e}^{\theta / 2} g_{j}\left(x e^{\theta}\right)$ with an imaginary θ rotating the essential spectrum into the lower complex halfplane so that the poles of the resolvent on the second sheet become "uncovered" for θ large enough. The "exterior" boundary values are thus equal to

$$
g_{j}(0)=\mathrm{e}^{-\theta / 2} g_{j \theta}, \quad g_{j}^{\prime}(0)=i k \mathrm{e}^{-\theta / 2} g_{j \theta}
$$

Resolvent resonances

Substituting into the boundary conditions we get

where $C_{j}:=\operatorname{diag}\left(C_{j}^{(1)}(k), C_{j}^{(2)}(k), \ldots, C_{j}^{(N)}(k), i^{j-1} I_{M \times M}\right)$, with

$$
C_{1}^{(j)}(k)=\left(\begin{array}{cc}
0 & 1 \\
\sin k l_{j} & \cos k l_{j}
\end{array}\right), \quad C_{2}^{(j)}(k)=\left(\begin{array}{cc}
1 & 0 \\
-\cos k l_{j} & \sin k l_{j}
\end{array}\right)
$$

Scattering resonances

In this case we choose a combination of two planar waves, $g_{j}=c_{j} \mathrm{e}^{-i k x}+d_{j} \mathrm{e}^{i k x}$, as an Ansatz on the external edges; we ask about poles of the matrix $S=S(k)$ which maps the amplitudes of the incoming waves $c=\left\{c_{n}\right\}$ into amplitudes of the outgoing waves $d=\left\{d_{n}\right\}$ by $d=S c$.

Scattering resonances

In this case we choose a combination of two planar waves, $g_{j}=c_{j} \mathrm{e}^{-i k x}+d_{j} \mathrm{e}^{i k x}$, as an Ansatz on the external edges; we ask about poles of the matrix $S=S(k)$ which maps the amplitudes of the incoming waves $c=\left\{c_{n}\right\}$ into amplitudes of the outgoing waves $d=\left\{d_{n}\right\}$ by $d=S c$. The b.c. give

quivalence of resonance definitions, cont

Since we are interested in zeros of det S^{-1}, we regard the above relation as an equation for variables a_{j}, b_{j} and d_{j} while c_{j} are just parameters. Eliminating the variables a_{j}, b_{j} one derives from here a system of M equations expressing the map $S^{-1} d=c$. It is not solvable, $\operatorname{det} S^{-1}=0$, if

$$
\operatorname{det}\left[(U-I) C_{1}(k)+i k(U+I) C_{2}(k)\right]=0
$$

quivalence of resonance definitions, cont

Since we are interested in zeros of det S^{-1}, we regard the above relation as an equation for variables a_{j}, b_{j} and d_{j} while c_{j} are just parameters. Eliminating the variables a_{j}, b_{j} one derives from here a system of M equations expressing the map $S^{-1} d=c$. It is not solvable, $\operatorname{det} S^{-1}=0$, if

$$
\operatorname{det}\left[(U-I) C_{1}(k)+i k(U+I) C_{2}(k)\right]=0
$$

This is the same condition as for the previous system of equations, hence we are able to conclude:

Proposition [E-Lipovský'10]: The two above resonance notions, the resolvent and scattering one, are equivalent for quantum graphs.

Effective coupling on the finite graph

The problem can be reduced to the compact subgraph only. We write U in the block form, $U=\left(\begin{array}{cc}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$, where U_{1} is the $2 N \times 2 N$ refers to the compact subgraph, U_{4} is the $M \times M$ matrix related to the exterior part, and U_{2} and U_{3} are rectangular matrices connecting the two.

Effective coupling on the finite graph

The problem can be reduced to the compact subgraph only. We write U in the block form, $U=\left(\begin{array}{cc}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$, where U_{1} is the $2 N \times 2 N$ refers to the compact subgraph, U_{4} is the $M \times M$ matrix related to the exterior part, and U_{2} and U_{3} are rectangular matrices connecting the two.
Eliminating the external part leads to an effective coupling on the compact subgraph expressed by the condition

$$
(\tilde{U}(k)-I)\left(f_{1}, \ldots, f_{2 N}\right)^{\mathrm{T}}+i(\tilde{U}(k)+I)\left(f_{1}^{\prime}, \ldots, f_{2 N}^{\prime}\right)^{\mathrm{T}}=0,
$$

where the corresponding coupling matrix

$$
\tilde{U}(k):=U_{1}-(1-k) U_{2}\left[(1-k) U_{4}-(k+1) I\right]^{-1} U_{3}
$$

is obviously energy-dependent and, in general, non-unitary

Embedded ev's for commensurate edges

Suppose that the compact part contains a loop consisting of rationally related edges

Embedded ev's for commensurate edges

Suppose that the compact part contains a loop consisting of rationally related edges

Then the graph Hamiltonian can have eigenvalues with compactly supported eigenfunctions; they are embedded in the continuum corresponding to external semiinfinite edges

Embedded eigenvalues

Theorem [E-Lipovský'10]: Let Γ consist of a single vertex and N finite edges emanating from this vertex and ending at it, with the coupling described by a $2 N \times 2 N$ unitary matrix U. Let the lengths of the first n edges be integer multiples of a positive real number l_{0}. If the rectangular $2 N \times 2 n$ matrix
$M_{\text {even }}=\left(\begin{array}{ccccccc}u_{11} & u_{12}-1 & u_{13} & u_{14} & \cdots & u_{1,2 n-1} & u_{1,2 n} \\ u_{21}-1 & u_{22} & u_{23} & u_{24} & \cdots & u_{2,2 n-1} & u_{2,2 n} \\ u_{31} & u_{32} & u_{33} & u_{34}-1 & \cdots & u_{3,2 n-1} & u_{3,2 n} \\ u_{41} & u_{42} & u_{43}-1 & u_{44} & \cdots & u_{4,2 n-1} & u_{4,2 n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ u_{2 N-1,1} & u_{2 N-1,2} & u_{2 N-1,3} & u_{2 N-1,4} & \cdots & u_{2 N-1,2 n-1} & u_{2 N-1,2 n} \\ u_{2 N, 1} & u_{2 N, 2} & u_{2 N, 3} & u_{2 N, 4} & \cdots & u_{2 N, 2 n-1} & u_{2 N, 2 n}\end{array}\right)$
has rank smaller than $2 n$ then the spectrum of the corresponding Hamiltonian $H=H_{U}$ contains eigenvalues of the form $\epsilon=4 m^{2} \pi^{2} / l_{0}^{2}$ with $m \in \mathbb{N}$ and the multiplicity of these eigenvalues is at least the difference between $2 n$ and the rank of $M_{\text {even }}$.

Embedded eigenvalues

Theorem [E-Lipovský'10]: Let Γ consist of a single vertex and N finite edges emanating from this vertex and ending at it, with the coupling described by a $2 N \times 2 N$ unitary matrix U. Let the lengths of the first n edges be integer multiples of a positive real number l_{0}. If the rectangular $2 N \times 2 n$ matrix
$M_{\text {even }}=\left(\begin{array}{ccccccc}u_{11} & u_{12}-1 & u_{13} & u_{14} & \cdots & u_{1,2 n-1} & u_{1,2 n} \\ u_{21}-1 & u_{22} & u_{23} & u_{24} & \cdots & u_{2,2 n-1} & u_{2,2 n} \\ u_{31} & u_{32} & u_{33} & u_{34}-1 & \cdots & u_{3,2 n-1} & u_{3,2 n} \\ u_{41} & u_{42} & u_{43-1} & u_{44} & \cdots & u_{4,2 n-1} & u_{4,2 n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ u_{2 N-1,1} & u_{2 N-1,2} & u_{2 N-1,3} & u_{2 N-1,4} & \cdots & u_{2 N-1,2 n-1} & u_{2 N-1,2 n} \\ u_{2 N, 1} & u_{2 N, 2} & u_{2 N, 3} & u_{2 N, 4} & \cdots & u_{2 N, 2 n-1} & u_{2 N, 2 n}\end{array}\right)$
has rank smaller than $2 n$ then the spectrum of the corresponding Hamiltonian $H=H_{U}$ contains eigenvalues of the form $\epsilon=4 m^{2} \pi^{2} / l_{0}^{2}$ with $m \in \mathbb{N}$ and the multiplicity of these eigenvalues is at least the difference between $2 n$ and the rank of $M_{\text {even }}$. This result corresponds to $\sin k l_{0} / 2=0$, an analogous claim is valid in the odd case, $\cos k l_{0} / 2=0$.

Example: a loop with two leads

Example: a loop with two leads

The setting is as above, the b.c. at the nodes are

$$
\begin{aligned}
f_{1}(0) & =f_{2}(0), \quad f_{1}\left(l_{1}\right)=f_{2}\left(l_{2}\right) \\
f_{1}(0) & =\alpha_{1}^{-1}\left(f_{1}^{\prime}(0)+f_{2}^{\prime}(0)\right)+\gamma_{1} g_{1}^{\prime}(0) \\
f_{1}\left(l_{1}\right) & =-\alpha_{2}^{-1}\left(f_{1}^{\prime}\left(l_{1}\right)+f_{2}^{\prime}\left(l_{2}\right)\right)+\gamma_{2} g_{2}^{\prime}(0), \\
g_{1}(0) & =\bar{\gamma}_{1}\left(f_{1}^{\prime}(0)+f_{2}^{\prime}(0)\right)+\tilde{\alpha}_{1}^{-1} g_{1}^{\prime}(0) \\
g_{2}(0) & =-\bar{\gamma}_{2}\left(f_{1}^{\prime}\left(l_{1}\right)+f_{2}^{\prime}\left(l_{2}\right)\right)+\tilde{\alpha}_{2}^{-1} g_{2}^{\prime}(0)
\end{aligned}
$$

Resonance condition

Writing the loop edges as $l_{1}=l(1-\lambda), l_{2}=l(1+\lambda)$, $\lambda \in[0,1]$ - which effectively means shifting one of the connections points around the loop as λ is changing one arrives at the final resonance condition

$$
\begin{gathered}
\sin k l(1-\lambda) \sin k l(1+\lambda)-4 k^{2} \beta_{1}^{-1}(k) \beta_{2}^{-1}(k) \sin ^{2} k l \\
+k\left[\beta_{1}^{-1}(k)+\beta_{2}^{-1}(k)\right] \sin 2 k l=0
\end{gathered}
$$

where $\beta_{i}^{-1}(k):=\alpha_{i}^{-1}+\frac{i k\left|\gamma_{i}\right|^{2}}{1-i k \tilde{\alpha}_{i}^{-1}}$.

Resonance condition

Writing the loop edges as $l_{1}=l(1-\lambda), l_{2}=l(1+\lambda)$, $\lambda \in[0,1]$ - which effectively means shifting one of the connections points around the loop as λ is changing one arrives at the final resonance condition

$$
\begin{gathered}
\sin k l(1-\lambda) \sin k l(1+\lambda)-4 k^{2} \beta_{1}^{-1}(k) \beta_{2}^{-1}(k) \sin ^{2} k l \\
+k\left[\beta_{1}^{-1}(k)+\beta_{2}^{-1}(k)\right] \sin 2 k l=0,
\end{gathered}
$$

where $\beta_{i}^{-1}(k):=\alpha_{i}^{-1}+\frac{i k\left|\gamma_{i}\right|^{2}}{1-i k \tilde{a}_{i}^{-1}}$.
The condition can be solved numerically to find the resonance trajectories with respect to the variable λ.

Pole trajectory

The trajectory of the resonance pole in the lower complex halfplane starting from $k_{0}=2 \pi$ for the coefficients values $\alpha_{1}^{-1}=1, \tilde{\alpha}_{1}^{-1}=-2$, $\left|\gamma_{1}\right|^{2}=1, \alpha_{2}^{-1}=0, \tilde{\alpha}_{2}^{-1}=1,\left|\gamma_{2}\right|^{2}=1, n=2$. The colour coding shows the dependence on λ changing from red $(\lambda=0)$ to blue $(\lambda=1)$.

Pole trajectory

The trajectory of the resonance pole starting at $k_{0}=3 \pi$ for the coefficients values $\alpha_{1}^{-1}=1, \alpha_{2}^{-1}=1, \tilde{\alpha}_{1}^{-1}=1, \tilde{\alpha}_{2}^{-1}=1,\left|\gamma_{1}\right|^{2}=\left|\gamma_{2}\right|^{2}=1, n=3$. The colour coding is the same as in the previous picture.

Pole trajectory

The trajectory of the resonance pole starting at $k_{0}=2 \pi$ for the coefficients values $\alpha_{1}^{-1}=1, \alpha_{2}^{-1}=1, \tilde{\alpha}_{1}^{-1}=1, \tilde{\alpha}_{2}^{-1}=1,\left|\gamma_{1}\right|^{2}=1,\left|\gamma_{2}\right|^{2}=1, n=2$.
The colour coding is the same as above.

Example: a cross-shaped graph

Example: a cross-shaped graph

This time we restrict ourselves to the δ coupling as the boundary condition at the vertex and we consider Dirichlet conditions at the loose ends, i.e.

$$
\begin{aligned}
f_{1}(0) & =f_{2}(0)=g_{1}(0)=g_{2}(0) \\
f_{1}\left(l_{1}\right) & =f_{2}\left(l_{2}\right)=0 \\
\alpha f_{1}(0) & =f_{1}^{\prime}(0)+f_{2}^{\prime}(0)+g_{1}^{\prime}(0)+g_{2}^{\prime}(0) .
\end{aligned}
$$

leading to the resonance condition

$$
2 k \sin 2 k l+(\alpha-2 i k)(\cos 2 k l \lambda-\cos 2 k l)=0
$$

Pole trajectory

The trajectory of the resonance pole starting at $k_{0}=2 \pi$ for the coefficients values $\alpha=10, n=2$. The colour coding is the same as in the previous figures.

Pole trajectory

The trajectory of the resonance pole for the coefficients values $\alpha=1$, $n=2$. The colour coding is the same as above.

Pole trajectory

The trajectories of two resonance poles for the coefficients values $\alpha=2.596, n=2$. We can see an avoided resonance crossing - the former eigenvalue "travelling from the left to the right" interchanges with the former resonance "travelling the other way" and ending up as an embedded eigenvalue. The colour coding is the same as above.

Multiplicity preservation

In a similar way resonances can be generated in the general case. What is important, nothing is "lost":
Theorem [E-Lipovsky'10]: Let Γ have N finite edges of lengths l_{i}, M infinite edges, and the coupling given by $U=\left(\begin{array}{cc}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$, where U_{4} refers to infinite edge coupling. Let k_{0} satisfying $\operatorname{det}\left[\left(1-k_{0}\right) U_{4}-\left(1+k_{0}\right) I\right] \neq 0$ be a pole of the resolvent $(H-\lambda \mathrm{id})^{-1}$ of a multiplicity d. Let Γ_{ε} be a geometrically perturbed quantum graph with edge lengths $l_{i}(1+\varepsilon)$ and the same coupling. Then there is $\varepsilon_{0}>0$ s.t. for all $\vec{\varepsilon} \in \mathcal{U}_{\varepsilon_{0}}(0)$ the sum of multiplicities of the resolvent poles in a sufficiently small neighbourhood of k_{0} is d.

Multiplicity preservation

In a similar way resonances can be generated in the general case. What is important, nothing is "lost":
Theorem [E-Lipovsky'10]: Let Γ have N finite edges of lengths l_{i}, M infinite edges, and the coupling given by $U=\left(\begin{array}{cc}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$, where U_{4} refers to infinite edge coupling. Let k_{0} satisfying $\operatorname{det}\left[\left(1-k_{0}\right) U_{4}-\left(1+k_{0}\right) I\right] \neq 0$ be a pole of the resolvent $(H-\lambda \mathrm{id})^{-1}$ of a multiplicity d. Let Γ_{ε} be a geometrically perturbed quantum graph with edge lengths $l_{i}(1+\varepsilon)$ and the same coupling. Then there is $\varepsilon_{0}>0$ s.t. for all $\vec{\varepsilon} \in \mathcal{U}_{\varepsilon_{0}}(0)$ the sum of multiplicities of the resolvent poles in a sufficiently small neighbourhood of k_{0} is d.
Remark: The result holds only perturbatively, for larger values of ε poles may, e.g., escape to infinity.

Second problem: (non-)Weyl asymptotics

Let us now look into high-energy asymptotics of graph resonances. Introduce counting function $N(R, F)$ as the number of zeros of $F(k)$ in the circle $\{k:|k|<R\}$ of given radius $R>0$, algebraic multiplicities taken into account.
If F comes from resonance secular equation we count in this way number of resonances within a given (semi)circle

Second problem: (non-)Weyl asymptotics

Let us now look into high-energy asymptotics of graph resonances. Introduce counting function $N(R, F)$ as the number of zeros of $F(k)$ in the circle $\{k:|k|<R\}$ of given radius $R>0$, algebraic multiplicities taken into account. If F comes from resonance secular equation we count in this way number of resonances within a given (semi)circle You have heard Brian Davies talk containing an intriguing observation [Davies-Pushnitski'10]:
if the coupling is Kirchhoff and some external vertices are balanced, i.e. connecting the same number of internal and external edges, then the leading term in the asymptotics may be less than Weyl formula prediction

Second problem: (non-)Weyl asymptotics

Let us now look into high-energy asymptotics of graph resonances. Introduce counting function $N(R, F)$ as the number of zeros of $F(k)$ in the circle $\{k:|k|<R\}$ of given radius $R>0$, algebraic multiplicities taken into account. If F comes from resonance secular equation we count in this way number of resonances within a given (semi)circle You have heard Brian Davies talk containing an intriguing observation [Davies-Pushnitski'10]:
if the coupling is Kirchhoff and some external vertices are balanced, i.e. connecting the same number of internal and external edges, then the leading term in the asymptotics may be less than Weyl formula prediction
Let us look how the situation looks like for graphs with more general vertex couplings

Recall the resonance condition

Denote $e_{j}^{ \pm}:=\mathrm{e}^{ \pm i k l_{j}}$ and $e^{ \pm}:=\Pi_{j=1}^{N} e_{j}^{ \pm}$, then secular eq-n is
$0=\operatorname{det}\left\{\frac{1}{2}[(U-I)+k(U+I)] E_{1}(k)+\frac{1}{2}[(U-I)+k(U+I)] E_{2}+k(U+I) E_{3}\right.$

$$
\left.+(U-I) E_{4}+[(U-I)-k(U+I)] \operatorname{diag}\left(0, \ldots, 0, I_{M \times M}\right)\right\},
$$

where $E_{i}(k)=\operatorname{diag}\left(E_{i}^{(1)}, E_{i}^{(2)}, \ldots, E_{i}^{(N)}, 0, \ldots, 0\right)$,
$i=1,2,3,4$, consists of N nontrivial 2×2 blocks
$E_{1}^{(j)}=\left(\begin{array}{cc}0 & 0 \\ -i e_{j}^{+} & e_{j}^{+}\end{array}\right), E_{2}^{(j)}=\left(\begin{array}{cc}0 & 0 \\ i e_{j}^{-} & e_{j}^{-}\end{array}\right), E_{3}^{(j)}=\left(\begin{array}{ll}i & 0 \\ 0 & 0\end{array}\right), E_{4}^{(j)}=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$
and the trivial $M \times M$ part.

Recall the resonance condition

Denote $e_{j}^{ \pm}:=\mathrm{e}^{ \pm i k l_{j}}$ and $e^{ \pm}:=\Pi_{j=1}^{N} e_{j}^{ \pm}$, then secular eq-n is
$0=\operatorname{det}\left\{\frac{1}{2}[(U-I)+k(U+I)] E_{1}(k)+\frac{1}{2}[(U-I)+k(U+I)] E_{2}+k(U+I) E_{3}\right.$

$$
\left.+(U-I) E_{4}+[(U-I)-k(U+I)] \operatorname{diag}\left(0, \ldots, 0, I_{M \times M}\right)\right\},
$$

where $E_{i}(k)=\operatorname{diag}\left(E_{i}^{(1)}, E_{i}^{(2)}, \ldots, E_{i}^{(N)}, 0, \ldots, 0\right)$,
$i=1,2,3,4$, consists of N nontrivial 2×2 blocks
$E_{1}^{(j)}=\left(\begin{array}{cc}0 & 0 \\ -i e_{j}^{+} & e_{j}^{+}\end{array}\right), E_{2}^{(j)}=\left(\begin{array}{cc}0 & 0 \\ i e_{j}^{-} & e_{j}^{-}\end{array}\right), E_{3}^{(j)}=\left(\begin{array}{cc}i & 0 \\ 0 & 0\end{array}\right), E_{4}^{(j)}=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$
and the trivial $M \times M$ part.
Looking for zeros of the rhs we can employ a modification of a classical result on zeros of exponential sums [Langer'31]

Exponential sum zeros

Theorem: Let $F(k)=\sum_{r=0}^{n} a_{r}(k) \mathrm{e}^{i k \sigma_{r}}$, where $a_{r}(k)$ are rational functions of the complex variable k with complex coefficients, and $\sigma_{r} \in \mathbb{R}, \sigma_{0}<\sigma_{1}<\ldots<\sigma_{n}$. Suppose that $\lim _{k \rightarrow \infty} a_{0}(k) \neq 0$ and $\lim _{k \rightarrow \infty} a_{n}(k) \neq 0$. There exist a compact $\Omega \subset \mathbb{C}$, real numbers m_{r} and positive K_{r}, $r=1, \ldots, n$, such that the zeros of $F(k)$ outside Ω lie in the logarithmic strips bounded by the curves $-\operatorname{Im} k+m_{r} \log |k|= \pm K_{r}$ and the counting function behaves in the limit $R \rightarrow \infty$ as

$$
N(R, F)=\frac{\sigma_{n}-\sigma_{0}}{\pi} R+\mathcal{O}(1)
$$

Application of the theorem

We need the coefficients at $e^{ \pm}$in the resonance condition. Let us pass to the effective b.c. formulation,

$$
\begin{aligned}
0= & \operatorname{det}\left\{\frac{1}{2}[(\tilde{U}(k)-I)+k(\tilde{U}(k)+I)] \tilde{E}_{1}(k)\right. \\
& \left.+\frac{1}{2}[(\tilde{U}(k)-I)-k(\tilde{U}(k)+I)] \tilde{E}_{2}(k)+k(\tilde{U}(k)+I) \tilde{E}_{3}+(\tilde{U}(k)-I) \tilde{E}_{4}\right\},
\end{aligned}
$$

where \tilde{E}_{j} are the nontrivial $2 N \times 2 N$ parts of the matrices E_{j} and I denotes the $2 N \times 2 N$ unit matrix

Application of the theorem

We need the coefficients at $e^{ \pm}$in the resonance condition. Let us pass to the effective b.c. formulation,

$$
\begin{aligned}
0= & \operatorname{det}\left\{\frac{1}{2}[(\tilde{U}(k)-I)+k(\tilde{U}(k)+I)] \tilde{E}_{1}(k)\right. \\
& \left.+\frac{1}{2}[(\tilde{U}(k)-I)-k(\tilde{U}(k)+I)] \tilde{E}_{2}(k)+k(\tilde{U}(k)+I) \tilde{E}_{3}+(\tilde{U}(k)-I) \tilde{E}_{4}\right\},
\end{aligned}
$$

where \tilde{E}_{j} are the nontrivial $2 N \times 2 N$ parts of the matrices E_{j} and I denotes the $2 N \times 2 N$ unit matrix

By a direct computation we get
Lemma: The coefficient of $e^{ \pm}$in the above equation is
$\left(\frac{i}{2}\right)^{N} \operatorname{det}[(\tilde{U}(k)-I) \pm k(\tilde{U}(k)+I)]$

The resonance asymptotics

Theorem [Davies-E-Lipovský'10]: Consider a quantum graph (Γ, H_{U}) corresponding to Γ with finitely many edges and the coupling at vertices \mathcal{X}_{j} given by unitary matrices U_{j}. The asymptotics of the resonance counting function as $R \rightarrow \infty$ is of the form

$$
N(R, F)=\frac{2 W}{\pi} R+\mathcal{O}(1)
$$

where W is the effective size of the graph. One always has

$$
0 \leq W \leq V:=\sum_{j=1}^{N} l_{j} .
$$

Moreover $W<V$ (graph is non-Weyl in the terminology of [Davies-Pushnitski'10] if and only if there exists a vertex where the corresponding energy dependent coupling matrix $\tilde{U}_{j}(k)$ has an eigenvalue $(1-k) /(1+k)$ or $(1+k) /(1-k)$.

Permutation invariant couplings

Now we apply the result to graphs with coupling invariant w.r.t. edge permutations. These are described by matrices
$U_{j}=a_{j} J+b_{j} I$, where $a_{j}, b_{j} \in \mathbb{C}$ such that $\left|b_{j}\right|=1$ and $\left|b_{j}+a_{j} \operatorname{deg} \mathcal{X}_{j}\right|=1$; matrix J has all entries equal to one.
Note that δ and $\delta_{\mathrm{s}}^{\prime}$ are particular cases of such a coupling

Permutation invariant couplings

Now we apply the result to graphs with coupling invariant w.r.t. edge permutations. These are described by matrices
$U_{j}=a_{j} J+b_{j} I$, where $a_{j}, b_{j} \in \mathbb{C}$ such that $\left|b_{j}\right|=1$ and $\left|b_{j}+a_{j} \operatorname{deg} \mathcal{X}_{j}\right|=1$; matrix J has all entries equal to one.
Note that δ and $\delta_{\mathrm{s}}^{\prime}$ are particular cases of such a coupling
We need two simple auxiliary statements:
Lemma: The matrix $U=a J_{n \times n}+b I_{n \times n}$ has $n-1$ eigenvalues b and one eigenvalue $n a+b$. Its inverse is $U^{-1}=-\frac{a}{b(a n+b)} J_{n \times n}+\frac{1}{b} I_{n \times n}$.

Permutation invariant couplings

Now we apply the result to graphs with coupling invariant w.r.t. edge permutations. These are described by matrices $U_{j}=a_{j} J+b_{j} I$, where $a_{j}, b_{j} \in \mathbb{C}$ such that $\left|b_{j}\right|=1$ and $\left|b_{j}+a_{j} \operatorname{deg} \mathcal{X}_{j}\right|=1$; matrix J has all entries equal to one.
Note that δ and $\delta_{\mathrm{s}}^{\prime}$ are particular cases of such a coupling
We need two simple auxiliary statements:
Lemma: The matrix $U=a J_{n \times n}+b I_{n \times n}$ has $n-1$ eigenvalues b and one eigenvalue $n a+b$. Its inverse is $U^{-1}=-\frac{a}{b(a n+b)} J_{n \times n}+\frac{1}{b} I_{n \times n}$.
Lemma: Let p internal and q external edges be coupled with b.c. given by $U=a J_{(p+q) \times(p+q)}+b I_{(p+q) \times(p+q)}$. Then the energy-dependent effective matrix is

$$
\tilde{U}(k)=\frac{a b(1-k)-a(1+k)}{(a q+b)(1-k)-(k+1)} J_{p \times p}+b I_{p \times p} .
$$

Asymptotics in the symmetric case

Combining them with the above theorem we find easily that there are only two cases which exhibit non-Weyl asymptotics here

Asymptotics in the symmetric case

Combining them with the above theorem we find easily that there are only two cases which exhibit non-Weyl asymptotics here

Theorem [Davies-E-Lipovsky'10]: Let $\left(\Gamma, H_{U}\right)$ be a quantum graph with permutation-symmetric coupling conditions at the vertices, $U_{j}=a_{j} J+b_{j} I$. Then it has non-Weyl asymptotics if and only if at least one of its vertices is balanced, $p=q$, and the coupling at this vertex is either
(a) $f_{j}=f_{n}, \quad \forall j, n \leq 2 p, \quad \sum_{j=1}^{2 p} f_{j}^{\prime}=0$, i.e. $U=\frac{1}{p} J_{2 p \times 2 p}-I_{2 p \times 2 p}$, or
(b) $f_{j}^{\prime}=f_{n}^{\prime}, \quad \forall j, n \leq 2 p, \quad \sum_{j=1}^{2 p} f_{j}=0$,
i.e. $U=-\frac{1}{p} J_{2 p \times 2 p}+I_{2 p \times 2 p}$.

Unbalanced non-Weyl graphs

On the other hand, in graphs with unbalanced vertices there are many cases of non-Weyl behaviour. To this end we employ a trick based on the unitary transformation $W^{-1} U W$, where W is block diagonal with a nontrivial unitary $q \times q$ part W_{4},

$$
W=\left(\begin{array}{cc}
\mathrm{e}^{i \varphi} I_{p \times p} & 0 \\
0 & W_{4}
\end{array}\right)
$$

Unbalanced non-Weyl graphs

On the other hand, in graphs with unbalanced vertices there are many cases of non-Weyl behaviour. To this end we employ a trick based on the unitary transformation $W^{-1} U W$, where W is block diagonal with a nontrivial unitary $q \times q$ part W_{4},

$$
W=\left(\begin{array}{cc}
\mathrm{e}^{i \varphi} I_{p \times p} & 0 \\
0 & W_{4}
\end{array}\right)
$$

One can check easily the following claim
Lemma: The family of resonances of H_{U} does not change if the original coupling matrix U is replaced by $W^{-1} U W$.

Example: line with a stub

The Hamiltonian acts as $-\mathrm{d}^{2} / \mathrm{d} x^{2}$ on graph Γ consisting of two half-lines and one internal edge of length l. Its domain contains functions from $W^{2,2}(\Gamma)$ which satisfy

$$
\begin{aligned}
& 0=(U-I)\left(u(0), f_{1}(0), f_{2}(0)\right)^{\mathrm{T}}+i(U+I)\left(u^{\prime}(0), f_{1}^{\prime}(0), f_{2}^{\prime}(0)\right)^{\mathrm{T}}, \\
& 0=u(l)+c u^{\prime}(l),
\end{aligned}
$$

$f_{i}(x)$ referring to half-lines and $u(x)$ to the internal edge.

Example, continued

We start from the matrix $U_{0}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & e^{i \psi}\end{array}\right)$, describing one half-line separated from the rest of the graph. As mentioned above such a graph has non-Weyl asymptotics (obviously, it cannot have more than two resonances)

Example, continued

We start from the matrix $U_{0}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & e^{i \psi \psi}\end{array}\right)$, describing one half-line separated from the rest of the graph. As mentioned above such a graph has non-Weyl asymptotics (obviously, it cannot have more than two resonances)
Using $U_{W}=W^{-1} U W$ with $W=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & r e^{i \varphi_{1}} & \sqrt{1-r^{2}} \mathrm{e}^{i \varphi_{2}} \\ 0 & \sqrt{1-r^{2}} \mathrm{e}^{i \varphi_{3}} & -r \mathrm{e}^{i\left(\varphi_{2}+\varphi_{3}-\varphi_{1}\right)}\end{array}\right)$
we arrive at a three-parameter family with the same resonances - thus non-Weyl - described by

$$
U=\left(\begin{array}{ccc}
0 & r e^{i \varphi_{1}} & \sqrt{1-r^{2}} \mathrm{e}^{i \varphi_{2}} \\
r \mathrm{e}^{-i \varphi_{1}} & \left(1-r^{2}\right)^{i \varphi \varphi} & -r \sqrt{1-r^{2}} \mathrm{e}^{-i\left(-\psi+\varphi_{1}-\varphi_{2}\right)} \\
\sqrt{1-r^{2}} \mathrm{e}^{-i \varphi_{2}} & -r \sqrt{1-r^{2}} \mathrm{e}^{i\left(\varphi+\varphi_{1}-\varphi_{2}\right)} & r^{2} \mathrm{e}^{i \psi \psi}
\end{array}\right)
$$

Remark

In particular, for Dirichlet condition both at the end of the separated half-line, $\psi=\pi$, and at the remote end of the internal edge, $c=0$, one obtains a family of Hamiltonians which have no resonances at all. This includes $\varphi_{1}=\varphi_{2}=0$ and $r=1 / \sqrt{2}$, or the conditions

$$
f_{1}(0)=f_{2}(0), \quad u(0)=\sqrt{2} f_{1}(0), \quad f_{1}^{\prime}(0)-f_{2}^{\prime}(0)=-\sqrt{2} u^{\prime}(0),
$$

where the fact of resonance absence was first noted in [E-Šerešová'94], and a similar behavior for $\varphi_{1}=\varphi_{2}=\pi$ and $r=1 / \sqrt{2}$. Notice that the absence of resonances is easily understood if one regards the graph in question as a tree and employs a unitary equivalence proposed first in [Naimark-Solomyak'00], see also [Sobolev-Solomyak'02], etc.

Example: a loop with two leads

To illustrate how the asymptotics can change with the graph geometry, consider the above graph. The Hamiltonian acts as above with coupling conditions

$$
\begin{array}{r}
u(0)=f_{1}(0), \quad u(l)=f_{2}(0), \\
\alpha u(0)=u^{\prime}(0)+f_{1}^{\prime}(0)+\beta\left(-u^{\prime}(l)+f_{2}^{\prime}(0)\right), \\
\alpha u(l)=\beta\left(u^{\prime}(0)+f_{1}^{\prime}(0)\right)-u^{\prime}(l)+f_{2}^{\prime}(0)
\end{array}
$$

with real parameters $\alpha, \beta \in \mathbb{R}$. The choice $\beta=1$ gives the "overall" δ-condition of strength α, while $\beta=0$ corresponds to a line with two δ-interactions at the distance l.

Example, continued

Using $\mathrm{e}_{ \pm}=\mathrm{e}^{ \pm i k x}$ we write the resonance condition as

$$
8 \frac{i \alpha^{2} \mathrm{e}_{+}+4 k \alpha \beta-i\left[\alpha(\alpha-4 i k)+4 k^{2}\left(\beta^{2}-1\right)\right] \mathrm{e}_{-}}{4\left(\beta^{2}-1\right)+\alpha(\alpha-4 i)}=0 .
$$

The coefficient of e^{+}vanishes iff $\alpha=0$, the second term vanishes for $\beta=0$ or if $|\beta| \neq 1$ and $\alpha=0$, while the polynomial multiplying e^{-}does not vanish for any combination of α and β.

Example, continued

Using $\mathrm{e}_{ \pm}=\mathrm{e}^{ \pm i k x}$ we write the resonance condition as

$$
8 \frac{i \alpha^{2} \mathrm{e}_{+}+4 k \alpha \beta-i\left[\alpha(\alpha-4 i k)+4 k^{2}\left(\beta^{2}-1\right)\right] \mathrm{e}_{-}}{4\left(\beta^{2}-1\right)+\alpha(\alpha-4 i)}=0 .
$$

The coefficient of e^{+}vanishes iff $\alpha=0$, the second term vanishes for $\beta=0$ or if $|\beta| \neq 1$ and $\alpha=0$, while the polynomial multiplying e^{-}does not vanish for any combination of α and β.
In other words, the graph has a non-Weyl asymptotics iff $\alpha=0$. If, in addition, $|\beta| \neq 1$, than all resonances are confined to some circle, i.e. the graph "size" is zero. The exceptions are Kirchhoff condition, $\beta=1$ and $\alpha=0$, and its counterpart, $\beta=-1$ and $\alpha=0$, for which "one half" of the resonances is preserved, the "size" being $l / 2$.

Example, continued

Let us look at the δ-condition, $\beta=1$, to illustrate the disappearance of half of the resonances when the coupling strength vanishes. The resonance equation becomes

$$
\frac{-\alpha \sin k l+2 k(1+i \sin k l-\cos k l)}{\alpha-4 i}=0
$$

Example, continued

Let us look at the δ-condition, $\beta=1$, to illustrate the disappearance of half of the resonances when the coupling strength vanishes. The resonance equation becomes

$$
\frac{-\alpha \sin k l+2 k(1+i \sin k l-\cos k l)}{\alpha-4 i}=0
$$

A simple calculation shows that there is a sequence of embedded ev's, $k=2 n \pi / l$ with $n \in \mathbb{Z}$, and a family of resonances given by solutions to $\mathrm{e}^{i k l}=-1+\frac{4 i k}{\alpha}$. The former do not depend on α, while the latter behave for small α as

$$
\operatorname{Im} k=-\frac{1}{l} \log \frac{1}{\alpha}+\mathcal{O}(1), \quad \operatorname{Re} k=n \pi+\mathcal{O}(\alpha),
$$

thus all the (true) resonances escape to infinity as $\alpha \rightarrow 0$.

What can cause a non-Weyl asymptotics?

We will argue that (anti)Kirchhoff conditions at balanced vertices are too easy to decouple diminishing in this way effectively the graph size

What can cause a non-Weyl asymptotics?

We will argue that (anti)Kirchhoff conditions at balanced vertices are too easy to decouple diminishing in this way effectively the graph size

Consider the above graph with a balanced vertex \mathcal{X}_{1} which connects p internal edges of the same length l_{0} and p external edges with the coupling given by a unitary $U^{(1)}=a J_{2 p \times 2 p}+b I_{2 p \times 2 p}$. The coupling to the rest of the graph, denoted as Γ_{0}, is described by a $q \times q$ matrix $U^{(2)}$, where $q \geq p$; needless to say such a matrix can hide different topologies of this part of the graph

Unitary equivalence again

Proposition: Consider Γ be the the coupling given by arbitrary $U^{(1)}$ and $U^{(2)}$. Let V be an arbitrary unitary $p \times p$ matrix, $V^{(1)}:=\operatorname{diag}(V, V)$ and $V^{(2)}:=\operatorname{diag}\left(I_{(q-p) \times(q-p)}, V\right)$ be $2 p \times 2 p$ and $q \times q$ block diagonal matrices, respectively. Then H on Γ is unitarily equivalent to the Hamiltonian H_{V} on topologically the same graph with the coupling given by the matrices $\left[V^{(1)}\right]^{-1} U^{(1)} V^{(1)}$ and $\left[V^{(2)}\right]^{-1} U^{(2)} V^{(2)}$.

Unitary equivalence again

Proposition: Consider Γ be the the coupling given by arbitrary $U^{(1)}$ and $U^{(2)}$. Let V be an arbitrary unitary $p \times p$ matrix, $V^{(1)}:=\operatorname{diag}(V, V)$ and $V^{(2)}:=\operatorname{diag}\left(I_{(q-p) \times(q-p)}, V\right)$ be $2 p \times 2 p$ and $q \times q$ block diagonal matrices, respectively. Then H on Γ is unitarily equivalent to the Hamiltonian H_{V} on topologically the same graph with the coupling given by the matrices $\left[V^{(1)}\right]^{-1} U^{(1)} V^{(1)}$ and $\left[V^{(2)}\right]^{-1} U^{(2)} V^{(2)}$.

Remark: The assumption that the same edge length is made for convenience only; we can always get it fulfilled by adding Kirchhhoff vertices

Application to symmetric coupling

Let now $U^{(1)}=a J_{2 p \times 2 p}+b I_{2 p \times 2 p}$ at \mathcal{X}_{1}. We choose columns of W as an orthonormal set of eigenvectors of the $p \times p$ block $a J_{p \times p}+b I_{p \times p}$, the first one being $\frac{1}{\sqrt{p}}(1,1, \ldots, 1)^{\mathrm{T}}$. The transformed matrix $\left[V^{(1)}\right]^{-1} U^{(1)} V^{(1)}$ decouples into blocks connecting only pairs $\left(v_{j}, g_{j}\right)$.

Application to symmetric coupling

Let now $U^{(1)}=a J_{2 p \times 2 p}+b I_{2 p \times 2 p}$ at \mathcal{X}_{1}. We choose columns of W as an orthonormal set of eigenvectors of the $p \times p$ block $a J_{p \times p}+b I_{p \times p}$, the first one being $\frac{1}{\sqrt{p}}(1,1, \ldots, 1)^{\mathrm{T}}$. The transformed matrix $\left[V^{(1)}\right]^{-1} U^{(1)} V^{(1)}$ decouples into blocks connecting only pairs $\left(v_{j}, g_{j}\right)$.

The first one corresponding to a symmetrization of all the u_{j} 's and f_{j} 's, leads to the 2×2 matrix $U_{2 \times 2}=a p J_{2 \times 2}+b I_{2 \times 2}$, while the other lead to separation of the corresponding internal and external edges described by the Robin conditions, $(b-1) v_{j}(0)+i(b+1) v_{j}^{\prime}(0)=0$ and $(b-1) g_{j}(0)+i(b+1) g_{j}^{\prime}(0)=0$ for $j=2, \ldots, p$.

Application to symmetric coupling

Let now $U^{(1)}=a J_{2 p \times 2 p}+b I_{2 p \times 2 p}$ at \mathcal{X}_{1}. We choose columns of W as an orthonormal set of eigenvectors of the $p \times p$ block $a J_{p \times p}+b I_{p \times p}$, the first one being $\frac{1}{\sqrt{p}}(1,1, \ldots, 1)^{\mathrm{T}}$. The transformed matrix $\left[V^{(1)}\right]^{-1} U^{(1)} V^{(1)}$ decouples into blocks connecting only pairs $\left(v_{j}, g_{j}\right)$.

The first one corresponding to a symmetrization of all the u_{j} 's and f_{j} 's, leads to the 2×2 matrix $U_{2 \times 2}=a p J_{2 \times 2}+b I_{2 \times 2}$, while the other lead to separation of the corresponding internal and external edges described by the Robin conditions, $(b-1) v_{j}(0)+i(b+1) v_{j}^{\prime}(0)=0$ and $(b-1) g_{j}(0)+i(b+1) g_{j}^{\prime}(0)=0$ for $j=2, \ldots, p$.

The "overall" Kirchhoff/anti-Kirchhoff condition at \mathcal{X}_{1} is transformed to the "line" Kirchhoff/anti-Kirchhoff condition in the subspace of permutationsymmetric functions, reducing the graph size by l_{0}. In all the other cases the point interaction corresponding to the matrix $a p J_{2 \times 2}+b I_{2 \times 2}$ is nontrivial, and consequently, the graph size is preserved.

Effective size is a global property

One may ask whether there are geometrical rules that would quantify the effect of each balanced vertex on the asymptotics. The following example shows that this is not likely:

Effective size is a global property

One may ask whether there are geometrical rules that would quantify the effect of each balanced vertex on the asymptotics. The following example shows that this is not likely:

For a fixed integer $n \geq 3$ we start with a regular n-gon, each edge having length ℓ, and attach two semi-infinite leads to each vertex, so that each vertex is balanced; thus the effective size W_{n} is strictly less than $V_{n}=n \ell$.

Example, continued

Proposition: The effective size of the graph Γ_{n} is given by

$$
W_{n}= \begin{cases}n \ell / 2 & \text { if } n \neq 0 \bmod 4, \\ (n-2) \ell / 2 & \text { if } n=0 \bmod 4 .\end{cases}
$$

Example, continued

Proposition: The effective size of the graph Γ_{n} is given by

$$
W_{n}= \begin{cases}n \ell / 2 & \text { if } n \neq 0 \bmod 4, \\ (n-2) \ell / 2 & \text { if } n=0 \bmod 4 .\end{cases}
$$

Sketch of the proof: We employ Bloch/Floquet decomposition of H w.r.t. the cyclic rotation group \mathbb{Z}_{n}. It leads to analysis of one segment with "quasimomentum" ω satisfying $\omega^{n}=1$; after a short computation we find that H_{ω} has a resonance iff

$$
-2\left(\omega^{2}+1\right)+4 \omega \mathrm{e}^{-i k \ell}=0 .
$$

Hence the effective size W_{ω} of the system of resonances of H_{ω} is $\ell / 2$ if $\omega^{2}+1 \neq 0$ but it is zero if $\omega^{2}+1=0$. Now $\omega^{2}+1=0$ is not soluble if $\omega^{n}=1$ and $n \neq 0 \bmod 4$, but it has two solutions if $n=0 \bmod 4$.

Finally, a spectral problem for trees

As the third problem of this talk, we consider Laplacian on a radial rooted trees.

Finally, a spectral problem for trees

As the third problem of this talk, we consider Laplacian on a radial rooted trees.

Recently [Breuer-Frank'09] demonstrated that $\sigma_{\text {ac }}\left(H_{\text {tree }}\right)=\emptyset$ is the coupling is Kirchoff and the tree is "sparse"

Finally, a spectral problem for trees

As the third problem of this talk, we consider Laplacian on a radial rooted trees.

Recently [Breuer-Frank'09] demonstrated that $\sigma_{\text {ac }}\left(H_{\text {tree }}\right)=\emptyset$ is the coupling is Kirchoff and the tree is "sparse"

Let us look what will happen for a more general coupling

Preliminaries

- The method: we are going to employ the Solomyak trick mentioned above by which we can rephrase the question as a family of halfline problems

Preliminaries

- The method: we are going to employ the Solomyak trick mentioned above by which we can rephrase the question as a family of halfline problems
- it is possible if the tree is radial, i.e. the branching number $b(v)$ is the same in each generation, and the same for the edge lenghts

Preliminaries

- The method: we are going to employ the Solomyak trick mentioned above by which we can rephrase the question as a family of halfline problems
- it is possible if the tree is radial, i.e. the branching number $b(v)$ is the same in each generation, and the same for the edge lenghts
- For radial graphs t_{k} is the distance between the root and the vertices in the k-th generation, and b_{k} as the branching number of the k-th generation vertices; for the root we put $b_{0}=1$ and $t_{0}=0$. We defines the branching function $g_{0}(t): \mathbb{R}_{+} \rightarrow \mathbb{N}$ by

$$
g_{0}(t):=b_{0} b_{1} \ldots b_{k} \quad \text { for } \quad t \in\left(t_{k}, t_{k+1}\right) .
$$

Preliminaries

- Tree graph vertices are naturally ordered, we write $w \succeq v$ and defines the vertex subtree $\Gamma_{\succeq v}$ as the set of vertices and edges succeeding v, and the edge subtree $\Gamma_{\succeq e}$ as the union of the edge e and the vertex subtree corresponding to its vertex remoter from the origin.

Preliminaries

- Tree graph vertices are naturally ordered, we write $w \succeq v$ and defines the vertex subtree $\Gamma_{\succeq v}$ as the set of vertices and edges succeeding v, and the edge subtree $\Gamma_{\succeq e}$ as the union of the edge e and the vertex subtree corresponding to its vertex remoter from the origin.
- Permutation properties of graph edges: fix a radial tree v of degree $b \equiv b_{k}$. Denote edges emanating from v by $e_{j}, j \in\{1, \ldots, b\}$. We define Q_{v} on $L^{2}\left(\Gamma_{\succeq v}\right)$ acting as

$$
Q_{v}: f_{j} \mapsto f_{j+1} ;
$$

each f_{j} refers to functions on all the edges $\succeq e_{j}$.

Preliminaries

- Tree graph vertices are naturally ordered, we write $w \succeq v$ and defines the vertex subtree $\Gamma_{\succeq v}$ as the set of vertices and edges succeeding v, and the edge subtree $\Gamma_{\succeq e}$ as the union of the edge e and the vertex subtree corresponding to its vertex remoter from the origin.
- Permutation properties of graph edges: fix a radial tree v of degree $b \equiv b_{k}$. Denote edges emanating from v by $e_{j}, j \in\{1, \ldots, b\}$. We define Q_{v} on $L^{2}\left(\Gamma_{\succeq v}\right)$ acting as

$$
Q_{v}: f_{j} \mapsto f_{j+1} ;
$$

each f_{j} refers to functions on all the edges $\succeq e_{j}$.

- Since $Q_{v}^{b}=\mathrm{id}$, the operator has eigenvalues $\mathrm{e}^{2 \pi i s / b}, s \in\{0, \ldots, b-1\}$ with the eigenspaces denoted by $L_{s}^{2}\left(\Gamma_{\succeq v}\right):=\operatorname{Ker}\left(Q_{v}-\mathrm{e}^{2 \pi i s / b} \mathrm{id}\right)$. The function $f \in L^{2}\left(\Gamma_{\succeq v}\right)$ is s-radial at the vertex v if $f \in L_{s}^{2}\left(\Gamma_{\succeq v}\right)$ and $f \in L_{0}^{2}\left(\Gamma_{\succeq v^{\prime}}\right)$ holds for all $v^{\prime} \succeq v$; we write $f \in L_{s, \text { rad }}^{2}\left(\Gamma_{\succeq v}\right)$. In particular, the 0 -radial functions will be simply called radial.

Vertex coupling

By assumption, they are the same for vertices of the same generation. Out of possible $\left(b_{k}+1\right)^{2}$ real parameters we choose a $\left[\left(b_{k}-1\right)^{2}+4\right]$-parameter subfamily

Vertex coupling

By assumption, they are the same for vertices of the same generation. Out of possible $\left(b_{k}+1\right)^{2}$ real parameters we choose a $\left[\left(b_{k}-1\right)^{2}+4\right]$-parameter subfamily

$$
\begin{aligned}
& \sum_{j=1}^{b_{k}} f_{v j+}^{\prime}-f_{v-}^{\prime}=\frac{\alpha_{t k}}{2}\left(\frac{1}{b_{k}} \sum_{j=1}^{b_{k}} f_{v j+}+f_{v-}\right)+\frac{\gamma_{t k}}{2}\left(\sum_{j=1}^{b_{k}} f_{v j+}^{\prime}+f_{v-}^{\prime}\right), \\
& \frac{1}{b_{k}} \sum_{j=1}^{b_{k}} f_{v j+}-f_{v-}=-\frac{\bar{\gamma}_{t k}}{2}\left(\frac{1}{b_{k}} \sum_{j=1}^{b_{k}} f_{v j+}+f_{v-}\right)+\frac{\beta_{t k}}{2}\left(\sum_{j=1}^{b_{k}} f_{v j+}^{\prime}+f_{v-}^{\prime}\right), \\
&\left(U_{k}-I\right) V_{k} \Psi_{v}+i\left(U_{k}+I\right) V_{k} \Psi_{v}^{\prime}=0,
\end{aligned}
$$

where j distinguishes the edges emanating from v, the subscript - refers to the ingoing (or preceding) edge, and

$$
\Psi_{v}:=\left(f_{v 1+}, f_{v 2+}, \ldots, f_{v b_{k}+}\right)^{\mathrm{T}}, \quad \Psi_{v}^{\prime}:=\left(f_{v 1+}^{\prime}, f_{v 2+}^{\prime}, \ldots, f_{v b_{k}+}^{\prime}\right)^{\mathrm{T}}
$$

Vertex coupling, continued

Coupling of Ψ_{v} and Ψ_{v}^{\prime} is described by a $\left(b_{k}-1\right) \times\left(b_{k}-1\right)$ unitary matrix U_{k}, while V_{k} is the $\left(b_{k}-1\right)$-dimensional projection to the orthogonal complement of $(1,1, \ldots, 1)$, and the vectors $V_{k}\left(f_{1}(\cdot), \ldots, f_{b_{k}}(\cdot)\right)^{\mathrm{T}}$ form an orthonormal basis in the "non-radial" subspace $L^{2}\left(\Gamma_{\succeq v}\right) \ominus L_{0, \text { rad }}^{2}\left(\Gamma_{\succeq v}\right)$

Vertex coupling, continued

Coupling of Ψ_{v} and Ψ_{v}^{\prime} is described by a $\left(b_{k}-1\right) \times\left(b_{k}-1\right)$ unitary matrix U_{k}, while V_{k} is the $\left(b_{k}-1\right)$-dimensional projection to the orthogonal complement of $(1,1, \ldots, 1)$, and the vectors $V_{k}\left(f_{1}(\cdot), \ldots, f_{b_{k}}(\cdot)\right)^{\mathrm{T}}$ form an orthonormal basis in the "non-radial" subspace $L^{2}\left(\Gamma_{\succeq v}\right) \ominus L_{0, \text { rad }}^{2}\left(\Gamma_{\succeq v}\right)$
At the tree root, we assume Robin boundary conditions

$$
f_{o}^{\prime}+f_{o} \tan \frac{\theta_{0}}{2}=0, \quad \theta_{0} \in(-\pi / 2, \pi / 2] .
$$

Vertex coupling, continued

Coupling of Ψ_{v} and Ψ_{v}^{\prime} is described by a $\left(b_{k}-1\right) \times\left(b_{k}-1\right)$ unitary matrix U_{k}, while V_{k} is the $\left(b_{k}-1\right)$-dimensional projection to the orthogonal complement of $(1,1, \ldots, 1)$, and the vectors $V_{k}\left(f_{1}(\cdot), \ldots, f_{b_{k}}(\cdot)\right)^{\mathrm{T}}$ form an orthonormal basis in the "non-radial" subspace $L^{2}\left(\Gamma_{\succeq v}\right) \ominus L_{0, \text { rad }}^{2}\left(\Gamma_{\succeq v}\right)$
At the tree root, we assume Robin boundary conditions

$$
f_{o}^{\prime}+f_{o} \tan \frac{\theta_{0}}{2}=0, \quad \theta_{0} \in(-\pi / 2, \pi / 2] .
$$

By a direct computation we get
Lemma: Laplacian on the radial tree with the above boundary conditions is a self-adjoint operator

Generalized point interactions

For Laplacian on a halfline we consider the conditions

$$
\begin{aligned}
& y_{+}^{\prime}-y_{-}^{\prime}=\frac{\alpha}{2}\left(y_{+}+y_{-}\right)+\frac{\gamma}{2}\left(y_{+}^{\prime}+y_{-}^{\prime}\right), \\
& y_{+}-y_{-}=-\frac{\bar{\gamma}}{2}\left(y_{+}+y_{-}\right)+\frac{\beta}{2}\left(y_{+}^{\prime}+y_{-}^{\prime}\right)
\end{aligned}
$$

characterized by a $\mathcal{A}=\left(\begin{array}{cc}\alpha & \gamma \\ -\bar{\gamma} & \beta\end{array}\right)$ with $\alpha, \beta \in \mathbb{R}$ and $\gamma \in \mathbb{C}$

- not universal, but describe almost all s-a extensions

Generalized point interactions

For Laplacian on a halfline we consider the conditions

$$
\begin{aligned}
& y_{+}^{\prime}-y_{-}^{\prime}=\frac{\alpha}{2}\left(y_{+}+y_{-}\right)+\frac{\gamma}{2}\left(y_{+}^{\prime}+y_{-}^{\prime}\right), \\
& y_{+}-y_{-}=-\frac{\bar{\gamma}}{2}\left(y_{+}+y_{-}\right)+\frac{\beta}{2}\left(y_{+}^{\prime}+y_{-}^{\prime}\right)
\end{aligned}
$$

characterized by a $\mathcal{A}=\left(\begin{array}{cc}\alpha & \gamma \\ -\bar{\gamma} & \beta\end{array}\right)$ with $\alpha, \beta \in \mathbb{R}$ and $\gamma \in \mathbb{C}$

- not universal, but describe almost all s-a extensions

There are other possible forms, e.g.

$$
\binom{y_{+}^{\prime}}{-y_{-}^{\prime}}=\left(\begin{array}{ll}
a & c \\
\bar{c} & d
\end{array}\right)\binom{y_{+}}{y_{-}} \quad \text { or }(U-I)\binom{y_{+}}{y_{-}}+i(U+I)\binom{y_{+}^{\prime}}{-y_{-}^{\prime}}=0
$$

with $a, d \in \mathbb{R}$ and $c \in \mathbb{C}$ and U unitary; we will not need them

Tree-to-halfline map

The main idea of Solomyak trick is to identify "symmetric" functions, $f \in L_{0, \text { rad }}^{2}(\Gamma)$, with the function on the halfline through the isometry $\Pi: f \rightarrow \varphi, \varphi(t)=f(x)$ for $t=|x|$ of $L_{0, \text { rad }}^{2}(\Gamma)$ into the weighted space $L^{2}\left(\mathbb{R}_{+}, g_{0}\right)$ with the norm

$$
\|\varphi\|_{L^{2}\left(\mathbb{R}_{+}, g_{0}\right)}^{2}=\int_{\mathbb{R}_{+}}|\varphi(t)|^{2} g_{0}(t) \mathrm{d} t,
$$

and then isometrically to $L^{2}(\mathbb{R})$ by $y(t):=g_{0}^{1 / 2}(t) \varphi(t)$ and the relations $y_{k+}=\left(b_{0} \cdot \ldots \cdot b_{k}\right)^{1 / 2} \varphi_{k+}, y_{k-}=\left(b_{0} \cdot \ldots \cdot b_{k-1}\right)^{1 / 2} \varphi_{k-}$ for the boundary values at the vertices.

Tree-to-halfline map

The main idea of Solomyak trick is to identify "symmetric" functions, $f \in L_{0, \text { rad }}^{2}(\Gamma)$, with the function on the halfline through the isometry $\Pi: f \rightarrow \varphi, \varphi(t)=f(x)$ for $t=|x|$ of $L_{0, \text { rad }}^{2}(\Gamma)$ into the weighted space $L^{2}\left(\mathbb{R}_{+}, g_{0}\right)$ with the norm

$$
\|\varphi\|_{L^{2}\left(\mathbb{R}_{+}, g_{0}\right)}^{2}=\int_{\mathbb{R}_{+}}|\varphi(t)|^{2} g_{0}(t) \mathrm{d} t,
$$

and then isometrically to $L^{2}(\mathbb{R})$ by $y(t):=g_{0}^{1 / 2}(t) \varphi(t)$ and the relations $y_{k+}=\left(b_{0} \cdot \ldots \cdot b_{k}\right)^{1 / 2} \varphi_{k+}, y_{k-}=\left(b_{0} \cdot \ldots \cdot b_{k-1}\right)^{1 / 2} \varphi_{k-}$ for the boundary values at the vertices. In our case

$$
f_{v-} \rightarrow y_{k-}, \quad f_{v-}^{\prime} \rightarrow y_{k-}^{\prime},
$$

$$
\frac{1}{b_{k}} \sum_{j=1}^{b_{k}} f_{v j+} \rightarrow b_{k}^{-1 / 2} y_{k+},
$$

$$
\sum_{j=1}^{b_{k}} f_{j v+}^{\prime} \rightarrow b_{k}^{1 / 2} y_{k+}^{\prime}
$$

Tree-to-halfline map, continued

By a direct computation we get

Proposition: The tree vertex coupling is mapped into

$$
\begin{aligned}
y_{k+}^{\prime}-y_{k-}^{\prime} & =\frac{\alpha_{\mathrm{h} k}}{2}\left(y_{k+}+y_{k-}\right)+\frac{\gamma_{\mathrm{h} k}}{2}\left(y_{k+}^{\prime}+y_{k-}^{\prime}\right) \\
y_{k+}-y_{k-} & =-\frac{\bar{\gamma}_{\mathrm{h} k}}{2}\left(y_{k+}+y_{k-}\right)+\frac{\beta_{\mathrm{h} k}}{2}\left(y_{k+}^{\prime}+y_{k-}^{\prime}\right) \\
y(0+)^{\prime} & +y(0+) \tan \frac{\theta_{0}}{2}=0
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha_{\mathrm{h} k} & :=\frac{16 \alpha_{\mathrm{tk}}}{4\left(b_{k}^{1 / 2}+1\right)^{2}+\operatorname{det} \mathcal{A}_{\mathrm{t} k}\left(b_{k}^{1 / 2}-1\right)^{2}+4\left(1-b_{k}\right) \operatorname{Re} \gamma_{\mathrm{t} k}}, \\
\beta_{\mathrm{h} k} & :=\frac{16 b_{k} \beta_{\mathrm{tk}}}{4\left(b_{k}^{1 / 2}+1\right)^{2}+\operatorname{det} \mathcal{A}_{\mathrm{t} k}\left(b_{k}^{1 / 2}-1\right)^{2}+4\left(1-b_{k}\right) \operatorname{Re} \gamma_{\mathrm{tk}}}, \\
\gamma_{\mathrm{h} k} & :=2 \cdot \frac{\left(1-b_{k}\right)\left(4+\operatorname{det} \mathcal{A}_{\mathrm{tk}}\right)+8 i b_{k}^{1 / 2} \operatorname{Im} \gamma_{\mathrm{t} k}+4\left(b_{k}+1\right) \operatorname{Re} \gamma_{\mathrm{tk}}}{4\left(b_{k}^{1 / 2}+1\right)^{2}+\operatorname{det} \mathcal{A}_{\mathrm{tk}}\left(b_{k}^{1 / 2}-1\right)^{2}+4\left(1-b_{k}\right) \operatorname{Re} \gamma_{\mathrm{t} k}} .
\end{aligned}
$$

Tree-to-halfline map, continued

Proposition, continued: The conditions $f_{v+}=f_{v-}=0$ or
$\sum_{j=1}^{b_{k}} f_{v j+}^{\prime}=f_{v-}^{\prime}=0$ transform similarly to $y_{k+}=y_{k-}=0$ or $y_{k+}^{\prime}=y_{k-}^{\prime}=0$, respectively. Finally, the tree coupling with $\alpha_{\mathrm{t} k}=0, \beta_{\mathrm{t} k} \neq 0, \gamma_{\mathrm{t} k}=2 \frac{b_{k}^{1 / 2}+1}{b_{k}^{1 / 2}-1}$ changes to

$$
y_{k+}^{\prime}=-y_{k-}^{\prime}, \quad y_{k+}+y_{k-}=\frac{\beta_{\mathrm{t} k}}{2}\left(b_{k}^{1 / 2}-1\right)^{2}\left(-y_{k-}^{\prime}\right),
$$

while conditions $\alpha_{\mathrm{t} k} \neq 0, \beta_{\mathrm{t} k}=0, \gamma_{\mathrm{t} k}=2 \frac{b_{k}^{1 / 2}+1}{b_{k}^{1 / 2}-1}$ change to

$$
y_{k+}=-y_{k-}, \quad y_{k+}^{\prime}+y_{k-}^{\prime}=-\frac{\alpha_{\mathrm{t} k}}{2}\left(b_{k}^{-1 / 2}-1\right)^{2} y_{k-} .
$$

The unitary equivalence

Since U_{k} is unitary, there are $\theta_{k, j}, j=1, \ldots, b_{k}-1$, such that $U_{k}=W_{k}^{-1} D_{k} W_{k}$, where $D_{k}:=\operatorname{diag}\left(\mathrm{e}^{i \theta_{k, 1}}, \ldots, \mathrm{e}^{i \theta_{k, b_{k}-1}}\right)$. For a given vertex v of the k-th generation we can then define the operator R_{v} on $H^{2}\left(\Gamma_{\succeq v}\right) \ominus L_{0, \text { rad }}^{2}\left(\Gamma_{\succeq v}\right)$ by

$$
R_{v}:\left(\begin{array}{r}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{b_{k}}(x)
\end{array}\right) \mapsto\left(\begin{array}{r}
\sum_{j=1}^{b_{k}}\left(W_{k} \cdot V_{k}\right)_{1 j} f_{j}(x) \\
\sum_{j=1}^{b_{k}}\left(W_{k} \cdot V_{k}\right)_{2} f_{j}(x) \\
\vdots \\
\sum_{j=1}^{b_{k}}\left(W_{k} \cdot V_{k}\right)\left(b_{k}-1\right)_{j} f_{j}(x)
\end{array}\right),
$$

where $f_{j}(x)$ is the function component on the j-th subtree.

The unitary equivalence

Since U_{k} is unitary, there are $\theta_{k, j}, j=1, \ldots, b_{k}-1$, such that $U_{k}=W_{k}^{-1} D_{k} W_{k}$, where $D_{k}:=\operatorname{diag}\left(\mathrm{e}^{i \theta_{k, 1}}, \ldots, \mathrm{e}^{i \theta_{k, b_{k}-1}}\right)$. For a given vertex v of the k-th generation we can then define the operator R_{v} on $H^{2}\left(\Gamma_{\succeq v}\right) \ominus L_{0, \text { rad }}^{2}\left(\Gamma_{\succeq v}\right)$ by

$$
R_{v}:\left(\begin{array}{r}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{b_{k}}(x)
\end{array}\right) \mapsto\left(\begin{array}{r}
\sum_{j=1}^{b_{k}}\left(W_{k} \cdot V_{k}\right)_{1 j} f_{j}(x) \\
\sum_{j=1}^{b_{1}}\left(W_{k} \cdot V_{k}\right)_{2 j} f_{j}(x) \\
\vdots \\
\sum_{j=1}^{b_{k}}\left(W_{k} \cdot V_{k}\right)\left(b_{k}-1\right)_{j} f_{j}(x)
\end{array}\right),
$$

where $f_{j}(x)$ is the function component on the j-th subtree.
Lemma: f satisfies tree coupling conditions iff $R_{v} f$ satisfies $\left(R_{v} f\right)_{v s+}^{\prime}+\left(R_{v} f\right)_{v s+} \tan \frac{\theta_{k s}}{2}=0$ for all $s \in\{1, \ldots, b(v)-1\}$.

The unitary equivalence, continued

Let v be a vertex belonging to the n-th generation. Denoting $n:=$ gen v we introduce the operator acting as $H_{L_{n s}}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}$ with the domain consisting of all the $f \in \bigoplus_{k=n}^{\infty} H^{2}\left(t_{k}, t_{k+1}\right)$ satisfying conditions of the Proposition at the points t_{k}, $k>n$, and $y^{\prime}+\tan \frac{\theta_{n s}}{2} y=0$ at t_{n}.

The unitary equivalence, continued

Let v be a vertex belonging to the n-th generation. Denoting $n:=$ gen v we introduce the operator acting as $H_{L_{n s}}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}$ with the domain consisting of all the $f \in \bigoplus_{k=n}^{\infty} H^{2}\left(t_{k}, t_{k+1}\right)$ satisfying conditions of the Proposition at the points t_{k}, $k>n$, and $y^{\prime}+\tan \frac{\theta_{n s}}{2} y=0$ at t_{n}.
Theorem [E-Lipovský'10]: The radial-tree Hamiltonian H is unitarily equivalent to

$$
\mathbf{H} \cong H_{L_{0}} \oplus \bigoplus_{n=1}^{\infty} \bigoplus_{s=1}^{b_{n}-1}\left(\oplus b_{0} \ldots b_{n-1}\right) H_{L_{n s}},
$$

where $(\oplus m) H_{L_{n s}}$ is the m-tuple copy of the operator $H_{L_{n s}}$.

The unitary equivalence, continued

Let v be a vertex belonging to the n-th generation. Denoting $n:=$ gen v we introduce the operator acting as $H_{L_{n s}}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}$ with the domain consisting of all the $f \in \bigoplus_{k=n}^{\infty} H^{2}\left(t_{k}, t_{k+1}\right)$ satisfying conditions of the Proposition at the points t_{k}, $k>n$, and $y^{\prime}+\tan \frac{\theta_{n s}}{2} y=0$ at t_{n}.
Theorem [E-Lipovský'10]: The radial-tree Hamiltonian H is unitarily equivalent to

$$
\mathbf{H} \cong H_{L_{0}} \oplus \bigoplus_{n=1}^{\infty} \bigoplus_{s=1}^{b_{n}-1}\left(\oplus b_{0} \ldots b_{n-1}\right) H_{L_{n s}},
$$

where $(\oplus m) H_{L_{n s}}$ is the m-tuple copy of the operator $H_{L_{n s}}$.
Remarks: The claim remain valid when a regular radial potential is added, as well as for tree-like graphs, i.e. when edges are replaced by identical compact graphs

Sparse point interactions

Modifying result of [Remling'07], [Breuer-Frank'09] we get
Theorem [E-Lipovský'10]: Let H be the halfline GPI Hamiltonian with Dirichlet b.c. at $t=0$ and described coupling at $t=t_{n}$. Suppose that there are $N \in \mathbb{N}$, $K \in(0, \infty)$ and $\delta>0$ such that for all $n>N$ one of the following hypotheses holds: either
(a) $\left|\beta_{n}\right|>\delta>0$ and $\left|c_{n}\right|>\delta>0$, or
(b) $\beta_{n}=0,\left|\gamma_{n}\right|<K$, and at least one of the following conditions is valid for all $n>N$: $\operatorname{Re} \gamma_{n}>\delta$ or $\operatorname{Re} \gamma_{n}<-\delta$ or $\alpha_{n}>\delta$ or $\alpha_{n}<-\delta$.
Let further the number of GPl's described by separating conditions be at most finite. Let $\varepsilon=\inf _{n, m ; n \neq m}\left|t_{n}-t_{m}\right|>0$. If $\lim \sup _{n \rightarrow \infty}\left(t_{n+1}-t_{n}\right)=\infty$, the ac spectrum of H is empty.

Absence of transport on trees

Putting now the above results together we get

Theorem [E-Lipovský'10]: Let H act as $-\mathrm{d}^{2} / \mathrm{d} x^{2}$ on a radial tree graph with branching numbers b_{n} and the domain consisting of all functions $f \in \bigoplus_{e \in \Gamma} H^{2}(e)$ satisfying the above coupling conditions at $t_{n}, n \in \mathbb{N}$, among which the number of separating ones is at most finite. Suppose that there are $K \in(0, \infty)$ and $N \in \mathbb{N}$ such that for all $n>N$ the following conditions hold:
(i) $\limsup \sup _{n \rightarrow \infty}\left(t_{n+1}-t_{n}\right)=\infty$,
(ii) $\inf _{m, n}\left(t_{m}-t_{n}\right)>0$,
(iii) either $\operatorname{Im} \gamma_{\mathrm{t} n} \neq 0$, or both $\operatorname{det} \mathcal{A}_{\mathrm{t} n} \neq 4$ and condition $\operatorname{det} \mathcal{A}_{\mathrm{t} n}\left(\sqrt{b_{k}}-1\right)+4\left(1-b_{n}\right) \operatorname{Re} \gamma_{\text {tn }}+4\left(1+\sqrt{b_{n}}\right) \neq 0$ are valid,

Absence of transport on trees, continued

Theorem, continued:

(iv) the following conditions hold

$$
\begin{aligned}
& \frac{1}{K}<\left|4-2 \sqrt{b_{n}}\left(\operatorname{det} \mathcal{A}_{\mathrm{t} n}-4\right)+\operatorname{det} \mathcal{A}_{\mathrm{t} n}+b_{n}\left(4+\operatorname{det} \mathcal{A}_{\mathrm{t} n}-4 \operatorname{Re} \gamma_{\mathrm{t} n}\right)+4 \operatorname{Re} \gamma_{\mathrm{t} n}\right|<K \\
& \frac{1}{K}<4 b_{n} \operatorname{det} \mathcal{A}_{\mathrm{t} n}+\left(1-b_{n}\right)\left[\left(4+\operatorname{det} \mathcal{A}_{\mathrm{t} n}+4 \operatorname{Re} \gamma_{\mathrm{t} n}\right)^{2}-b_{n}\left(4+\operatorname{det} \mathcal{A}_{\mathrm{t} n}-4 \operatorname{Re} \gamma_{\mathrm{t} n}\right)^{2}\right]<K
\end{aligned}
$$

(v) finally, one of the following conditions holds:
(a) $b_{n}\left|\beta_{\mathrm{t} n}\right|>\frac{1}{K}$ and $\frac{b_{n}^{1 / 2}}{\beta_{t n} \mid} \sqrt{\left(-4+\operatorname{det} \mathcal{A}_{\mathrm{t} n}\right)^{2}+\left(4 \operatorname{Im} \gamma_{t n}\right)^{2}}>1 / K$ is valid for all $n>N$,
(b) $\beta_{\mathrm{t} n}=0$, and either the right-hand side of $\alpha_{\mathrm{t} k}$ is larger than $1 / K$ for all $n>N$ or smaller than $-1 / K$ for all $n>N$, or the rhs of $\beta_{\mathrm{t} k}$ is larger than $1 / K$ for all $n>N$ or smaller than $-1 / K$ for all $n>N$.
Then the absolutely continuous spectrum of \mathbf{H} is empty.

Existence of transport on sparse trees

While generically the ac spectrum of a sparse tree graph is thus empty, there are exceptions:

Examples: Suppose that there is an N that for all
$n \in \mathbb{N}, n \geq N$ one has $\alpha_{\mathrm{t} n}=\beta_{\mathrm{t} n}=0$, while $\gamma_{\mathrm{t} n}=2 \frac{b_{n}^{1 / 2}-1}{b_{n}^{1 / 2}+1}$.
Then the spectrum of H contains an ac part, in particular, if $N=1$, then the spectrum is purely absolutely continuous.

Existence of transport on sparse trees

While generically the ac spectrum of a sparse tree graph is thus empty, there are exceptions:

Examples: Suppose that there is an N that for all $n \in \mathbb{N}, n \geq N$ one has $\alpha_{\mathrm{t} n}=\beta_{\mathrm{t} n}=0$, while $\gamma_{\mathrm{t} n}=2 \frac{b_{n}^{1 / 2}-1}{b_{n}^{1 / 2}+1}$.
Then the spectrum of H contains an ac part, in particular, if $N=1$, then the spectrum is purely absolutely continuous.

It is obvious since the "transformed" coupling constants at t_{n} are those of the free Hamiltonian, $\alpha_{\mathrm{h} n}=\beta_{\mathrm{h} n}=\gamma_{\mathrm{h} n}=0$ (note that the above conclusions are not sensitive to the distribution of the points $\left\{t_{n}\right\}$).

Existence of transport on sparse trees

While generically the ac spectrum of a sparse tree graph is thus empty, there are exceptions:

Examples: Suppose that there is an N that for all $n \in \mathbb{N}, n \geq N$ one has $\alpha_{\mathrm{t} n}=\beta_{\mathrm{t} n}=0$, while $\gamma_{\mathrm{t} n}=2 \frac{b_{n}^{1 / 2}-1}{b_{n}^{1 / 2}+1}$.
Then the spectrum of H contains an ac part, in particular, if $N=1$, then the spectrum is purely absolutely continuous.

It is obvious since the "transformed" coupling constants at t_{n} are those of the free Hamiltonian, $\alpha_{\mathrm{h} n}=\beta_{\mathrm{h} n}=\gamma_{\mathrm{h} n}=0$ (note that the above conclusions are not sensitive to the distribution of the points $\left\{t_{n}\right\}$).

The same conclusion can be made, with the classical Deift-Killip result in mind, if a radial L^{2} potential is added.

Concluding remarks

The present results inspire various questions, e.g.

- Can the inequality for resonances be valid not only asymptotically, in the spirit of Pólya conjecture for Dirichlet Laplacians?

Concluding remarks

The present results inspire various questions, e.g.

- Can the inequality for resonances be valid not only asymptotically, in the spirit of Pólya conjecture for Dirichlet Laplacians?
- How these effects will look like for more general operators? in [DEL'10] criteria for occurrence of non-Weyl asymptotics were derived for weighted Laplacians, but there are others

Concluding remarks

The present results inspire various questions, e.g.

- Can the inequality for resonances be valid not only asymptotically, in the spirit of Pólya conjecture for Dirichlet Laplacians?
- How these effects will look like for more general operators? in [DEL'10] criteria for occurrence of non-Weyl asymptotics were derived for weighted Laplacians, but there are others
- Can the above tree result extended to some classes of non-radial tree graphs?

Concluding remarks

The present results inspire various questions, e.g.

- Can the inequality for resonances be valid not only asymptotically, in the spirit of Pólya conjecture for Dirichlet Laplacians?
- How these effects will look like for more general operators? in [DEL'10] criteria for occurrence of non-Weyl asymptotics were derived for weighted Laplacians, but there are others
- Can the above tree result extended to some classes of non-radial tree graphs?
- etc.

The results discussed here come from

[AGA08] P.E., J.P. Keating, P. Kuchment, T. Sunada, A. Teplyaev, eds.: Analysis on Graphs and Applications, Proceedings of a Isaac Newton Institute programme, January 8-June 29, 2007; 670 p.; AMS "Proceedings of Symposia in Pure Mathematics" Series, vol. 77, Providence, R.I., 2008
[BF09] J. Breuer, R. Frank: Singular spectrum for radial trees, Rev. Math. Phys. 21 (2009), 1-17.
[DP10] E.B. Davies, A. Pushnitski: Non-Weyl resonance asymptotics for quantum graphs, arXiv: 1003.0051 [math.SP]
[DEL10] E.B. Davies, P.E., J. Lipovský: Non-Weyl asymptotics for quantum graphs with general coupling conditions, J. Phys. A: Math. Theor. A43 (2010), to appear; arXiv: 1004.08560 [math-phys]
[EL10] P.E., J. Lipovský: Resonances from perturbations of quantum graphs with rationally related edges, J. Phys. A: Math. Theor. A43 (2010), 105301

Thank you for your attention!

