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What a mathematician can say here

When I was invited to give a talk here I thought what I can
say without boring you with our ǫ’s and δ’s

I decided to show you some things a mathematician’s eye
may observe in quantum mechanics
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What a mathematician can say here

When I was invited to give a talk here I thought what I can
say without boring you with our ǫ’s and δ’s

I decided to show you some things a mathematician’s eye
may observe in quantum mechanics

Having said that I am afraid that you may say with Kipling:

If ye find that the Bullock can toss you, or the heavy-browed
Sambhur can gore; Ye need not stop work to inform us: we
knew it ten seasons before.
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What a mathematician can say here

When I was invited to give a talk here I thought what I can
say without boring you with our ǫ’s and δ’s

I decided to show you some things a mathematician’s eye
may observe in quantum mechanics

Having said that I am afraid that you may say with Kipling:

If ye find that the Bullock can toss you, or the heavy-browed
Sambhur can gore; Ye need not stop work to inform us: we
knew it ten seasons before.

Indeed, is something can be called a substance of modern
material science it is without any doubt quantum mechanics

Properties of materials we use are determined primarily by
their atomic and molecular structure which is described by
well-understood quantum mechanical equations
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But all the same ...
There are more things in heaven and earth, Horatio,

Than are dreamt of in your philosophy

I will nevertheless try to convince you that there are various
quantum effects which defy our intuition based of everyday
classical-physics experience

The 2012 WPI-AIMR Annual Workshop; Sendai, February 21, 2012 – p. 3/43



But all the same ...
There are more things in heaven and earth, Horatio,

Than are dreamt of in your philosophy

I will nevertheless try to convince you that there are various
quantum effects which defy our intuition based of everyday
classical-physics experience

I will do that the usual theoretical simplifications speaking
about lines, planes, manifolds, etc., as geometric entities
neglecting the detailed structure of the real-world objects
they are supposed model
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But all the same ...
There are more things in heaven and earth, Horatio,

Than are dreamt of in your philosophy

I will nevertheless try to convince you that there are various
quantum effects which defy our intuition based of everyday
classical-physics experience

I will do that the usual theoretical simplifications speaking
about lines, planes, manifolds, etc., as geometric entities
neglecting the detailed structure of the real-world objects
they are supposed model

If an excuse is needed, I can quote [Bratelli-Robinson’79]:
... while the experimentalist might collect all his data between breakfast and lunch in a small
cluttered laboratory, his theoretical colleagues interpret those interpret those results in term
of isolated systems moving eternally in an infinitely extended space. The validity of such
idealizations is the heart and soul of theoretical physics and has the same fundamental
significance as the reproducibility of experimental data
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Geometrically induced bound states
As the first example let me show that in some quantum
systems bending induces binding

Consider a nonrelativistic quantum particle in a 2D or 3D
infinite tube Ω of width d. Since values of physical constants
will not be important, we put ~

2

2m = 1 so the Hamiltonian is

H = −∆Ω
D

with Dirichlet (or hard-wall) boundary conditions
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Geometrically induced bound states
As the first example let me show that in some quantum
systems bending induces binding

Consider a nonrelativistic quantum particle in a 2D or 3D
infinite tube Ω of width d. Since values of physical constants
will not be important, we put ~

2

2m = 1 so the Hamiltonian is

H = −∆Ω
D

with Dirichlet (or hard-wall) boundary conditions

If Ω is straight, the spectrum is continuous starting at
(

π
d

)2

Let us now bend the tube. Note that
from the classical-physics point of view
not much changes: the set of trapped
trajectories has measure zero

�
�
�

�
�

Ω

The 2012 WPI-AIMR Annual Workshop; Sendai, February 21, 2012 – p. 4/43



Geometrically induced bound states

In a quantum waveguide, however, bending gives rise
to true bound states with localized wave functions

0
(

π
d

)2 (

2π
d

)2
r r
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Geometrically induced bound states

In a quantum waveguide, however, bending gives rise
to true bound states with localized wave functions

0
(

π
d

)2 (

2π
d

)2
r r

Theorem [E-Šeba’89, Goldstone-Jaffe’92]: If the tube Ω
is non-straight but asymptotically straight (expressed in
proper technical terms), then σdisc(−∆Ω

D) 6= ∅

The 2012 WPI-AIMR Annual Workshop; Sendai, February 21, 2012 – p. 5/43



Geometrically induced bound states

In a quantum waveguide, however, bending gives rise
to true bound states with localized wave functions

0
(

π
d

)2 (

2π
d

)2
r r

Theorem [E-Šeba’89, Goldstone-Jaffe’92]: If the tube Ω
is non-straight but asymptotically straight (expressed in
proper technical terms), then σdisc(−∆Ω

D) 6= ∅

Theorem [E-Šeba-Št’ovíček’89]: If Ω is L–shaped , there
is exactly one eigenvalue λ ≡ 0.929...

(

π
d

)2 of −∆Ω
D
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L-shaped guide bound state

The ground-state eigenfunction ψ(~x) in an L-shaped guide
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Binding mechanism

The best way to understand the effect is to consider a
smoothly bent tube and to rewrite the Laplacian in the
natural curvilinear coordinates (s, u) obtaining

H = −∂s(1 + uκ(s))−2∂s − (∂2
u)D + Veff(s, u) ,

where κ(s) is the strip-axis curvature
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Binding mechanism

The best way to understand the effect is to consider a
smoothly bent tube and to rewrite the Laplacian in the
natural curvilinear coordinates (s, u) obtaining

H = −∂s(1 + uκ(s))−2∂s − (∂2
u)D + Veff(s, u) ,

where κ(s) is the strip-axis curvature

If the strip is thin we get around the first threshold

H = −∂2
s +

(π

d

)2
−

1

4
κ2(s) + O(d)

and in one dimension, any weak attractive potential binds
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Binding mechanism

The best way to understand the effect is to consider a
smoothly bent tube and to rewrite the Laplacian in the
natural curvilinear coordinates (s, u) obtaining

H = −∂s(1 + uκ(s))−2∂s − (∂2
u)D + Veff(s, u) ,

where κ(s) is the strip-axis curvature

If the strip is thin we get around the first threshold

H = −∂2
s +

(π

d

)2
−

1

4
κ2(s) + O(d)

and in one dimension, any weak attractive potential binds

However, a variational argument [Goldstone-Jaffe’92,
Duclos-E’95] shows that the binding occurs for any d
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Laterally coupled QWG

There are other examples of “non-
classical” bound states, e.g., in parallel
waveguides coupled through window in
the common boundary

a

d1

d2
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Laterally coupled QWG

There are other examples of “non-
classical” bound states, e.g., in parallel
waveguides coupled through window in
the common boundary

a

d1

d2

Theorem [E-Šeba-Tater-Vaněk’96]:
σdisc(−∆Ω

D) 6= ∅ holds for any win-
dow width a > 0. The number
of bound states increases (roughly)
linearly with a
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Window-coupled ground state
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A window-coupled excited state
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One more example: scissor guide

Similar bound states appear in crossed strips. They are
present for any crossing angle, their number increases
as the angle diminishes
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One more example: scissor guide

Similar bound states appear in crossed strips. They are
present for any crossing angle, their number increases
as the angle diminishes

For θ = 30o, e.g., the crossed strips have four bound states
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Remarks
The same mechanism gives rise to resonances
associated with higher transverse modes in bent
strips. They are exponentially narrow as d→ 0
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Remarks
The same mechanism gives rise to resonances
associated with higher transverse modes in bent
strips. They are exponentially narrow as d→ 0

Similar resonances can be observed in crossed or
laterally coupled strips, tubes, and other systems
exhibiting such effective attractive couplings
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Remarks
The same mechanism gives rise to resonances
associated with higher transverse modes in bent
strips. They are exponentially narrow as d→ 0

Similar resonances can be observed in crossed or
laterally coupled strips, tubes, and other systems
exhibiting such effective attractive couplings

The same Helmholtz equation, −∆Ω
Dψ = λψ, can

also be used to describe the TE0m modes in flat
electromagnetic waveguides. Using this observation,
the above conclusions were tested experimentally is
microwave systems [Londergan-Carini-Murdock’99]
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Remarks
The same mechanism gives rise to resonances
associated with higher transverse modes in bent
strips. They are exponentially narrow as d→ 0

Similar resonances can be observed in crossed or
laterally coupled strips, tubes, and other systems
exhibiting such effective attractive couplings

The same Helmholtz equation, −∆Ω
Dψ = λψ, can

also be used to describe the TE0m modes in flat
electromagnetic waveguides. Using this observation,
the above conclusions were tested experimentally is
microwave systems [Londergan-Carini-Murdock’99]
A caveat: Not every geometrically induced coupling is
attractive. For instance, twisting of a non-circular tube
gives rise to an effective repulsive interaction, cf.
[Ekholm-Kovařík-Krejčiřík’08]
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Binding in curved layers

reference surface Σ

Ω

2a

Consider a quantum parti-
cle confined to a hard-wall
layer Ω of width d = 2a
built over a surface Σ

Modulo physical constants the Hamiltonian of such a
system is Dirichlet Laplacian −∆Ω

D
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Binding in curved layers

reference surface Σ

Ω

2a

Consider a quantum parti-
cle confined to a hard-wall
layer Ω of width d = 2a
built over a surface Σ

Modulo physical constants the Hamiltonian of such a
system is Dirichlet Laplacian −∆Ω

D

If Σ is smooth we can employ the natural curvilinear
which now include the intrinsic geometry of Σ
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Binding in curved layers

reference surface Σ

Ω

2a

Consider a quantum parti-
cle confined to a hard-wall
layer Ω of width d = 2a
built over a surface Σ

Modulo physical constants the Hamiltonian of such a
system is Dirichlet Laplacian −∆Ω

D

If Σ is smooth we can employ the natural curvilinear
which now include the intrinsic geometry of Σ

If the layer is thin the Hamiltonian can be rewritten as

H = −g−1/2∂µg
1/2gµν∂ν − (∂2

u)D +K −M2 + O(a) ;

K,M are Gauss and mean curvature of Σ, respectively
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Remarks

Notice that in distinction to the tube case the surface
cannot be fully “ironed”, the surface geometry
expressed by the metric tensor gµν persists
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Remarks

Notice that in distinction to the tube case the surface
cannot be fully “ironed”, the surface geometry
expressed by the metric tensor gµν persists

The leading term K −M2 of the effective potential can
be rewritten in terms of principal curvatures of the
surface Σ as −1

4(k1 − k2)
2. It is thus attractive unless

Σ is planar , k1 = k2 = 0

Σ is spherical, k1 = k2, however, an infinite surface
Σ clearly cannot be spherical globally
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E�ective Potential Ve� = �14 (k+ � k�)2Paraboloid of Revolution z = x2 + y2
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Some layer results

Theorem [Duclos-E-Krejčiřík’01]: Let Σ be smooth, simply
connected and asymptotically flat , then σdisc(−∆Ω

D) 6= ∅ if

the total Gauss curvature K ≤ 0, or

the layer width is small enough

S'

S

H
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Some layer results

Theorem [Duclos-E-Krejčiřík’01]: Let Σ be smooth, simply
connected and asymptotically flat , then σdisc(−∆Ω

D) 6= ∅ if

the total Gauss curvature K ≤ 0, or

the layer width is small enough

Theorem [Carron-E-Krejčiřík’04]: Let Σ be
smooth, asymptotically flat, not necessarily
simply connected , then

σdisc(−∆Ω
D) 6= ∅ holds for genus g ≥ 1

If Σ has a cylindrical end , there are
infinitely many bound states; the same
is true if Ω is locally deformed

S'

S

H
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Example: a conical layer

Consider the layer Ωθ obtained by
rotating the figure around the axis
y = x tan θ for which we have by
the above result ♯σdisc(−∆Ωθ

D ) = ∞ q

x

y

2a

2   cota q

y=x tanq
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Example: a conical layer

Consider the layer Ωθ obtained by
rotating the figure around the axis
y = x tan θ for which we have by
the above result ♯σdisc(−∆Ωθ

D ) = ∞ q

x

y

2a

2   cota q

y=x tanq

Theorem [E-Tater’10]: For the layer Ωθ described above

σdisc(−∆Ωθ

D ) contains s-states only

Fix a λ satisfying
(

π
d

)2
> λ > j20,1d

−2 ≈ 5.783 d−2

and a natural number n, then −∆Ωθ

D has at least
n eigenvalues below λ for all θ small enough
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Eigenvalues vs. cone opening angle
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Eigenfunctions for θ = 2.5o

The contour plot of the first seven eigenfunctions
(five times vertically contracted)

The 2012 WPI-AIMR Annual Workshop; Sendai, February 21, 2012 – p. 19/43



Nodal period doubling

In view of the − 1
r2 character of

the effective potential the eigen-
functions exhibit a certain kind
of self-similar behavior

We illustrate it with the side view
of probability density |ψ|2 for the
first seven eigenfunctions
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Forcing a particle to change dimension

My second topic may seem even more exotic: a quantum
motion constrained to a manifold composed of components
of generally different dimensions, e.g.

attaching 1D leads to a 2D surface or 3D volume
coupling 2D surfaces through a point contact, etc.
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Forcing a particle to change dimension

My second topic may seem even more exotic: a quantum
motion constrained to a manifold composed of components
of generally different dimensions, e.g.

attaching 1D leads to a 2D surface or 3D volume
coupling 2D surfaces through a point contact, etc.
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Coupling different dimensions

Using again “rational” units, we describe motion on each
part of the configuration space by the Laplacian −∆; the
question is how to couple wave functions at the junction
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Coupling different dimensions

Using again “rational” units, we describe motion on each
part of the configuration space by the Laplacian −∆; the
question is how to couple wave functions at the junction

Without a detailed information about the point contact, the
only principle any admissible coupling has to respect is the
conservation of probability current
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Coupling different dimensions

Using again “rational” units, we describe motion on each
part of the configuration space by the Laplacian −∆; the
question is how to couple wave functions at the junction

Without a detailed information about the point contact, the
only principle any admissible coupling has to respect is the
conservation of probability current

In an archetypal example, H = L2(R−) ⊕ L2(R2), the wave
functions are pairs φ :=

(φ1

Φ2

)

of square integrable functions

������

������
r
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Attaching a lead to a plane

We restrict
(

− d2

dx2

)

D
⊕−∆ to functions vanishing in the

vicinity of the junction; the resulting operator is “too small”,
in math language it is symmetric but not self-adjoint
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Attaching a lead to a plane

We restrict
(

− d2

dx2

)

D
⊕−∆ to functions vanishing in the

vicinity of the junction; the resulting operator is “too small”,
in math language it is symmetric but not self-adjoint

Self-adjointness is equivalent to the probability current
conservation. Constructing self-adjoint extensions is a
method going back to J. von Neumann. To characterize
them we need generalized boundary values at ~x0 = 0

Φ2(~x) = L0(Φ) ln |~x| + L1(Φ2) + O(|~x|)

(since the plane two-dimensional, in the 3D analogue
L0 would be the coefficient at the pole singularity)
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Admissible couplings

A convenient way to describe s-a couplings is through
boundary conditions, which can have the following form

φ′1(0−) = Aφ1(0−) +BL0(Φ2) ,

L1(Φ2) = Cφ1(0−) +DL0(Φ2) ,

with the coefficients satisfying A, D ∈ R and B = 2πC̄
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Admissible couplings

A convenient way to describe s-a couplings is through
boundary conditions, which can have the following form

φ′1(0−) = Aφ1(0−) +BL0(Φ2) ,

L1(Φ2) = Cφ1(0−) +DL0(Φ2) ,

with the coefficients satisfying A, D ∈ R and B = 2πC̄

More generally, one requires A
(φ1

L0

)

+ B
(φ′

1

L1

)

= 0 where

(A|B) has maximum rank

AB∗ is Hermitean
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Admissible couplings

A convenient way to describe s-a couplings is through
boundary conditions, which can have the following form

φ′1(0−) = Aφ1(0−) +BL0(Φ2) ,

L1(Φ2) = Cφ1(0−) +DL0(Φ2) ,

with the coefficients satisfying A, D ∈ R and B = 2πC̄

More generally, one requires A
(φ1

L0

)

+ B
(φ′

1

L1

)

= 0 where

(A|B) has maximum rank

AB∗ is Hermitean

It is straightforward to check that any coupling described by
these boundary conditions conserves the probability current
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Transport through point contact

We match the scattering solution eikx + r(k)e−ikx on the

lead with the solution t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

using the described boundary conditions.
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Transport through point contact

We match the scattering solution eikx + r(k)e−ikx on the

lead with the solution t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

using the described boundary conditions. It gives

r(k) = −
D−(k)

D+(k)
, t(k) =

2iCk

D+(k)
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Transport through point contact

We match the scattering solution eikx + r(k)e−ikx on the

lead with the solution t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

using the described boundary conditions. It gives

r(k) = −
D−(k)

D+(k)
, t(k) =

2iCk

D+(k)

with the quantities D±(k) given by

D±(k) := (A± ik)

[

1 +
2i

π

(

γE −D + ln
k

2

)]

+
2i

π
BC ,

where γE ≈ 0.5772 is Euler’s constant
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A few remarks

Notice that the lead is coupled only to the s-wave part
of the wave function in the plane, the other partial
waves are shielded by a centrifugal barrier

The 2012 WPI-AIMR Annual Workshop; Sendai, February 21, 2012 – p. 26/43



A few remarks

Notice that the lead is coupled only to the s-wave part
of the wave function in the plane, the other partial
waves are shielded by a centrifugal barrier

Scattering is nontrivial if A =
(A B
C D

)

is not diagonal. For
any choice of s-a extension, the on-shell S-matrix is
unitary , in particular, we have |r(k)|2 + |t(k)|2 = 1
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A few remarks

Notice that the lead is coupled only to the s-wave part
of the wave function in the plane, the other partial
waves are shielded by a centrifugal barrier

Scattering is nontrivial if A =
(A B
C D

)

is not diagonal. For
any choice of s-a extension, the on-shell S-matrix is
unitary , in particular, we have |r(k)|2 + |t(k)|2 = 1

Notice that reflection dominates at high energies, since
|t(k)|2 = O((ln k)−2) holds as k → ∞
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A few remarks

Notice that the lead is coupled only to the s-wave part
of the wave function in the plane, the other partial
waves are shielded by a centrifugal barrier

Scattering is nontrivial if A =
(A B
C D

)

is not diagonal. For
any choice of s-a extension, the on-shell S-matrix is
unitary , in particular, we have |r(k)|2 + |t(k)|2 = 1

Notice that reflection dominates at high energies, since
|t(k)|2 = O((ln k)−2) holds as k → ∞

a similar analysis can be done also in a more general
model where the electron is subject to spin-orbit
coupling and mg field , cf. [E-Šeba’07, Carlone-E’11]
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Single-mode geometric scatterers

As an example, consider a sphere with two leads attached
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Single-mode geometric scatterers

As an example, consider a sphere with two leads attached

The system was examined in [Kiselev’97; E-Tater-Vaněk’01;
Brüning-Geyler-Margulis-Pyataev’02] showing, in particular,
the following properties

scattering en gross is not very sensitive to the choice of
the coupling, it is sensitive to relative junction positions

there are numerous resonances in such systems

the background reflection dominates the picture at
high energies, k → ∞
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Transmission through the sphere

(a) Junctions at opposed poles, (b) tilt 2
o, (c) tilt 4

o

(reproduced from [Brüning-Geyler-Margulis-Pyataev’02])
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Arrays of geometric scatterers

In a similar way one can analyze scattering on various
“hedgehog” manifolds composed of compact scatterers,
connecting edges and external leads [Brüning-Geyler’03]
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Arrays of geometric scatterers

In a similar way one can analyze scattering on various
“hedgehog” manifolds composed of compact scatterers,
connecting edges and external leads [Brüning-Geyler’03]

Infinite periodic systems can be treated by the usual trick,
Bloch decomposition (or “Floquet” for mathematicians)

eiθ

One has to analyze the discrete spectrum of a single
element as a function of the quasimomentum θ
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How do gaps behave ask → ∞?

Q: Are the scattering properties of such junctions reflected
in gap behavior of periodic families of geometric scatterers
at high energies? And why it should be interesting?
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How do gaps behave ask → ∞?

Q: Are the scattering properties of such junctions reflected
in gap behavior of periodic families of geometric scatterers
at high energies? And why it should be interesting?

Recall the properties of singular Wannier-Stark systems,
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How do gaps behave ask → ∞?

Q: Are the scattering properties of such junctions reflected
in gap behavior of periodic families of geometric scatterers
at high energies? And why it should be interesting?

Recall the properties of singular Wannier-Stark systems,

PPPPPPPPPPPPPPPPPP

r
r

r
r

r
r

linear potential

δ′
δ′

δ′
δ′

δ′
δ′

described by the Hamiltonian

H = −
d2

dx2
+ α

∑

j∈Z

(δ′ja, ·)δ
′
ja − Fx

The 2012 WPI-AIMR Annual Workshop; Sendai, February 21, 2012 – p. 30/43



Observations

There is no transport , σac(H) = ∅ [Avron-E-Last’94]
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Observations

There is no transport , σac(H) = ∅ [Avron-E-Last’94]

The spectrum is purely discrete – this claim is proved
for “most” values of the model parameters α, a, F
[Asch-Duclos-E’98] and conjectured for all values
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The spectrum is purely discrete – this claim is proved
for “most” values of the model parameters α, a, F
[Asch-Duclos-E’98] and conjectured for all values

The spectrum is dense point if the quantity
(

a
π

)2
Fa

is irrational and nowhere dense otherwise
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[Asch-Duclos-E’98] and conjectured for all values

The spectrum is dense point if the quantity
(
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is irrational and nowhere dense otherwise

The reason behind this behavior are large gaps of δ′

Kronig-Penney systems at high energies
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Observations

There is no transport , σac(H) = ∅ [Avron-E-Last’94]

The spectrum is purely discrete – this claim is proved
for “most” values of the model parameters α, a, F
[Asch-Duclos-E’98] and conjectured for all values

The spectrum is dense point if the quantity
(

a
π

)2
Fa

is irrational and nowhere dense otherwise

The reason behind this behavior are large gaps of δ′

Kronig-Penney systems at high energies

The δ′ interaction has a similar behavior as a sphere
scatterer but simpler, without resonances. It is
conjectured that coarse-grained sphere transmission
coincides asymptotically with that of δ′
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Some periodic systems

In−1 In

S
2
n−1

S
2
n

S
2
n+1

A zigzag bead array
Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets” )
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Consider periodic combinations
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periodicity in one or two directions (one can speak
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Some periodic systems

In−1 In

S
2
n−1

S
2
n

S
2
n+1

A zigzag bead array
Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets” )

angular distance between contacts equals π or π/2

sphere-segment coupling A =

(

0 2πα−1

ᾱ−1 0

)
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A bead carpet
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A bead carpet

We will call such structures loose; we can also consider
their tight counterparts when the spheres are touching
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Tightly coupled spheres

S
2
m,n+1

S2
m−1,n

S2
m,n

S2
m+1,n

S2
m,n−1
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Tightly coupled spheres

S
2
m,n+1

S2
m−1,n

S2
m,n

S2
m+1,n

S2
m,n−1

Self-adjoint tightly-coupled systems can be described by
the following b.c.

L1(Φ1) = AL0(Φ1) + CL0(Φ2) ,

L1(Φ2) = C̄L0(Φ1) +DL0(Φ2)

with A,D ∈ R, C ∈ C. For simplicity we can put A = D = 0
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Large gaps in periodic manifolds

Denote by Bn, Gn the widths of the nth band and gap,
respectively; then we have the following claim
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Large gaps in periodic manifolds

Denote by Bn, Gn the widths of the nth band and gap,
respectively; then we have the following claim

Theorem [Brüning-E-Geyler’03]: There is a c > 0 s.t.

Bn

Gn
≤ c n−ǫ

holds as n→ ∞ for loosely connected systems, where
ǫ = 1

2 for arrays and ǫ = 1
4 for carpets. For tightly coupled

systems to any ǫ ∈ (0, 1) there is a c̃ > 0 such that the
inequality Bn/Gn ≤ c̃ (lnn)−ǫ holds as n→ ∞
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Large gaps in periodic manifolds

Denote by Bn, Gn the widths of the nth band and gap,
respectively; then we have the following claim

Theorem [Brüning-E-Geyler’03]: There is a c > 0 s.t.

Bn

Gn
≤ c n−ǫ

holds as n→ ∞ for loosely connected systems, where
ǫ = 1

2 for arrays and ǫ = 1
4 for carpets. For tightly coupled

systems to any ǫ ∈ (0, 1) there is a c̃ > 0 such that the
inequality Bn/Gn ≤ c̃ (lnn)−ǫ holds as n→ ∞

Conjecture: The same should hold for other couplings and
angular junction distances. The problem is just technical;
the dispersion curves are less regular in general
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How to choose the coupling?

It depends on detailed knowledge of the junction; the
question is about the simplest or “natural” coupling

A possibility is to replace the lead by a tube of radius a,
disregard effect of the sharp edge at interface, and to
compare the low-energy scattering in the two cases
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Plane plus tube scattering

Rotational symmetry allows us again to treat each partial
wave separately. Given orbital quantum number ℓ one has
to match smoothly the corresponding solutions

ψ(x) :=







eikx + r
(ℓ)
a (t)e−ikx . . . x ≤ 0

√

πkr
2 t

(ℓ)
a (k)H

(1)
ℓ (kr) . . . r ≥ a
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Plane plus tube scattering

Rotational symmetry allows us again to treat each partial
wave separately. Given orbital quantum number ℓ one has
to match smoothly the corresponding solutions

ψ(x) :=







eikx + r
(ℓ)
a (t)e−ikx . . . x ≤ 0

√

πkr
2 t

(ℓ)
a (k)H

(1)
ℓ (kr) . . . r ≥ a

This yields

r
(ℓ)
a (k) = −

Da
−(k)

Da
+(k)

, t
(ℓ)
a (k) = 4i

√

2ka

π

(

Da
+(k)

)−1

with

Da
±(k) := (1 ± 2ika)H

(1)
ℓ (ka) + 2ka

(

H
(1)
ℓ

)′

(ka)
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Choice of coupling parameters

We have
|t

(ℓ)
a (k)|2 ≈

4π

((ℓ− 1)!)2

(

ka

2

)2ℓ−1

for ℓ 6= 0, so the transmission probability vanishes fast as
k → 0 for higher partial waves
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Choice of coupling parameters

We have
|t

(ℓ)
a (k)|2 ≈

4π

((ℓ− 1)!)2

(

ka

2

)2ℓ−1

for ℓ 6= 0, so the transmission probability vanishes fast as
k → 0 for higher partial waves

On the other hand, t(0)
a (k) coincides in the leading order as

k → 0 with the plane+halfline expression if

A :=
1

2a
, D := − ln a , B = 2πC =

√

2π

a
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Choice of coupling parameters

We have
|t

(ℓ)
a (k)|2 ≈

4π

((ℓ− 1)!)2

(

ka

2

)2ℓ−1

for ℓ 6= 0, so the transmission probability vanishes fast as
k → 0 for higher partial waves

On the other hand, t(0)
a (k) coincides in the leading order as

k → 0 with the plane+halfline expression if

A :=
1

2a
, D := − ln a , B = 2πC =

√

2π

a

Notice that the “right” s-a extensions depend on a single
parameter , namely radius of the “thin” component

The 2012 WPI-AIMR Annual Workshop; Sendai, February 21, 2012 – p. 38/43



A digression: Sinaivs. Šeba billiard

x

a prime example of
chaotic classical dynamics

q

squeezing obstacle to a point
makes the system solvable
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A digression: Sinaivs. Šeba billiard

x

a prime example of
chaotic classical dynamics

q

squeezing obstacle to a point
makes the system solvable

In quantum mechanics the spectrum of a rectangular
billiard with a point perturbation can be found [Šeba’90]
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A digression: Sinaivs. Šeba billiard

x

a prime example of
chaotic classical dynamics

q

squeezing obstacle to a point
makes the system solvable

In quantum mechanics the spectrum of a rectangular
billiard with a point perturbation can be found [Šeba’90]

In particular, the eigenvalue spacing distribution is not
Poissonian as one would expect from a solvable system
but exhibits a Wigner-type level repulsion characteristic
for a chaotic dynamics
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Resonator with an antenna
We mentioned that our models can can also be applied to
flat electromagnetic resonators, specifically TE0m modes
are described by the appropriate Helmholz equation
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Resonator with an antenna
We mentioned that our models can can also be applied to
flat electromagnetic resonators, specifically TE0m modes
are described by the appropriate Helmholz equation

Let a rectangular resonator be equipped with an antenna
which serves a source. Such a system has many
resonances; we ask about distribution of their spacings
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Resonator with an antenna
We mentioned that our models can can also be applied to
flat electromagnetic resonators, specifically TE0m modes
are described by the appropriate Helmholz equation

Let a rectangular resonator be equipped with an antenna
which serves a source. Such a system has many
resonances; we ask about distribution of their spacings

The reflection amplitude for a compact manifold with one
lead naturally attached at x0 is easily

r(k) = −
πZ(k)(1 − 2ika) − 1

πZ(k)(1 + 2ika) − 1
,

where Z(k) := ξ(~x0; k) −
ln a
2π with ξ(~x0; k) being the

regularized value of Green’s function Gk(~x0, ~x) as ~x→ ~x0
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Comparison with experiment

Match now the model prediction with experimental results
obtained at Universität Marburg using the value a = 1 mm
and averaging over various ~x0 and c1, c2 = 20 ∼ 50 cm
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Match now the model prediction with experimental results
obtained at Universität Marburg using the value a = 1 mm
and averaging over various ~x0 and c1, c2 = 20 ∼ 50 cm
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Remark: Agreement was achieved with the lower third of
measured frequencies – confirming thus validity of our
approximation, since shorter wavelengths are comparable
with the antenna radius a and ka≪ 1 is no longer valid
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What to say in conclusion

I have shown you examples how nontrivial geometry
or topology of quantum systems can produce effects
which defy our intuition based on everyday experience
rooted in the macroscopic world
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rooted in the macroscopic world

the examples we have been discussing are by far
not isolated — there are many more
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What to say in conclusion

I have shown you examples how nontrivial geometry
or topology of quantum systems can produce effects
which defy our intuition based on everyday experience
rooted in the macroscopic world

the examples we have been discussing are by far
not isolated — there are many more

if anything of that inspired you to some thoughts
I would be happy to discuss them with you
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Thank you for your attention!

Domo arigato!
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