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A nontrivial configuration space

In both classical and QM there are systems with constraints
for which the configuration space is a nontrivivial subset of
R

n. Sometimes it happens that one can idealize as a union
of components of lower dimension
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A nontrivial configuration space

In CM it is not a big problem: few examples, and moreover,
the motion is “local” so we can “magnify” the junction region
and study trajectories there

In contrast, QM offers interesting examples, e.g.

point-contact spectroscopy,

STEM-type devices,

compositions of nanotubes with fullerene molecules,

etc. Similarly one can consider some electromagnetic
systems such as flat microwave resonators with attached
antennas
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Coupling by means of s-a extensions

Among other things we owe to J. von Neumann the theory
of self-adjoint extensions of symmetric operators is not the
least. Let us apply it to our problem.
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Coupling by means of s-a extensions

Among other things we owe to J. von Neumann the theory
of self-adjoint extensions of symmetric operators is not the
least. Let us apply it to our problem.

The idea: Quantum dynamics on M1 ∪M2 coupled by a
point contact x0 ∈M1 ∩M2. Take Hamiltonians Hj on the
isolated manifold Mj and restrict them to functions
vanishing in the vicinity of x0

The operator H0 := H1,0 ⊕H2,0 is symmetric, in general not
s-a. We seek Hamiltonian of the coupled system among its
self-adjoint extensions
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Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where
Hj is a second-order operator the method works for
dimMj ≤ 3 (more generally, codimension of the contact
should not exceed three), since otherwise the restriction is
e.s.a. [similarly for Dirac operators we require the
codimension to be at most one]
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Non-uniqueness: Apart of the trivial case, there are many
s-a extensions. A junction where n configuration-space
components meet contributes typically by n to deficiency
indices of H0, and thus adds n2 parameters to the resulting
Hamiltonian class
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Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where
Hj is a second-order operator the method works for
dimMj ≤ 3 (more generally, codimension of the contact
should not exceed three), since otherwise the restriction is
e.s.a. [similarly for Dirac operators we require the
codimension to be at most one]

Non-uniqueness: Apart of the trivial case, there are many
s-a extensions. A junction where n configuration-space
components meet contributes typically by n to deficiency
indices of H0, and thus adds n2 parameters to the resulting
Hamiltonian class

Physical meaning: The construction guarantees that the
probability current is conserved at the junction
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Quantum graphs

Most known example is represented by quantum graphs
where the components Mj are line segments,
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∂x2

j

+ v(xj)

on graph edges,
boundary conditions at vertices

and the parameters classify the b.c. at graph vertices –
for a review see [Kostrykin-Schrader, 1999; Kuchment,
2004] and other papers
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Different dimensions

Here we will be mostly concerned with cases “2+1” and
“2+2”, i.e. manifolds of these dimensions coupled through
point contacts. Other combinations are similar
We use “rational” units, in particular, the Hamiltonian acts at
each configuration component as −∆ (or Laplace-Beltrami
operator if Mj has a nontrivial metric)

An archetypal example, H = L2(R−)⊕ L2(R2), so the
wavefunctions are pairs φ :=

(φ1

Φ2

)

of square integrable
functions
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A model: point-contact spectroscopy

Restricting
(

− d2

dx2

)

D
⊕−∆ to functions vanishing in the

vicinity of the junction gives symmetric operator with
deficiency indices (2, 2).

von Neumann theory gives a general prescription to
construct the s-a extensions, however, it is practical to
characterize the by means of boundary conditions. We
need generalized boundary values

L0(Φ) := lim
r→0

Φ(~x)

ln r
, L1(Φ) := lim

r→0
[ Φ(~x)− L0(Φ) ln r ]

(in view of the 2D character, in three dimensions L0 would
be the coefficient at the pole singularity)
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2 + 1 point-contact coupling

Typical b.c. determining a s-a extension

φ′1(0−) = Aφ1(0−) +BL0(Φ2) ,

L1(Φ2) = Cφ1(0−) +DL0(Φ2) ,
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2 + 1 point-contact coupling

Typical b.c. determining a s-a extension

φ′1(0−) = Aφ1(0−) +BL0(Φ2) ,

L1(Φ2) = Cφ1(0−) +DL0(Φ2) ,

where
A, D ∈ R and B = 2πC̄

The easiest way to see that is to compute the boundary
form to H∗

0 , recall that the latter is given by the same
differential expression.
Notice that only the s-wave part of Φ in the plane,
Φ2(r, ϕ) = (2π)−1/2φ2(r) can be coupled nontrivially
to the halfline
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2 + 1 point-contact coupling

An integration by parts gives

(φ,H∗
0ψ)− (H∗

0φ, ψ) = φ̄′1(0)ψ1(0)− φ̄1(0)ψ′
1(0)

+ lim
ε→0+

ε
(

φ̄2(ε)ψ
′
1(ε)− φ̄′2(ε)ψ2(ε)

)

,
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2 + 1 point-contact coupling

An integration by parts gives

(φ,H∗
0ψ)− (H∗

0φ, ψ) = φ̄′1(0)ψ1(0)− φ̄1(0)ψ′
1(0)

+ lim
ε→0+

ε
(

φ̄2(ε)ψ
′
1(ε)− φ̄′2(ε)ψ2(ε)

)

,

and using the asymptotic behaviour

φ2(ε) =
√

2π [L0(Φ2) ln ε+ L1(Φ2) +O(ε) ] ,
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2 + 1 point-contact coupling

An integration by parts gives

(φ,H∗
0ψ)− (H∗

0φ, ψ) = φ̄′1(0)ψ1(0)− φ̄1(0)ψ′
1(0)

+ lim
ε→0+

ε
(

φ̄2(ε)ψ
′
1(ε)− φ̄′2(ε)ψ2(ε)

)

,

and using the asymptotic behaviour

φ2(ε) =
√

2π [L0(Φ2) ln ε+ L1(Φ2) +O(ε) ] ,

we can express the above limit term as

2π [L1(Φ2)L0(Ψ2)− L0(Φ2)L1(Ψ2)] ,

so the form vanishes under the stated boundary conditions
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Transport through point contact

Using the b.c. we match plane wave solution eikx + r(k)e−ikx

on the halfline with t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

obtaining

r(k) = − D−

D+
, t(k) =

2iCk

D+
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Transport through point contact

Using the b.c. we match plane wave solution eikx + r(k)e−ikx

on the halfline with t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

obtaining

r(k) = − D−

D+
, t(k) =

2iCk

D+

with

D± := (A± ik)
[

1 +
2i

π

(

γE −D + ln
k

2

)]

+
2i

π
BC ,

where γE ≈ 0.5772 is Euler’s number
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Transport through point contact

Using the b.c. we match plane wave solution eikx + r(k)e−ikx

on the halfline with t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

obtaining

r(k) = − D−

D+
, t(k) =

2iCk

D+

with

D± := (A± ik)
[

1 +
2i

π

(

γE −D + ln
k

2

)]

+
2i

π
BC ,

where γE ≈ 0.5772 is Euler’s number

Remark: More general coupling, A
(φ1

L0

)

+ B
(φ′

1

L1

)

= 0, gives
rise to similar formulae (an invertible B can be put to one)
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Transport through point contact

Let us finish discussion of this “point contact spectroscopy”
model by a few remarks:

Scattering in nontrivial if A =
(A B
C D

)

is not diagonal. For
any choice of s-a extension, the on-shell S-matrix is
unitary , in particular, we have |r(k)|2 + |t(k)|2 = 1

Notice that reflection dominates at high energies, since
|t(k)|2 = O((ln k)−2) holds as k →∞
For some A there are also bound states decaying
exponentially away of the junction, at most two
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Single-mode geometric scatterers

Consider a sphere with two leads attached

&%
'$r

x1 x2

with the coupling at both vertices given by the same A

Three one-parameter families of A were investigated
[Kiselev, 1997; E.-Tater-Vaněk, 2001; Brüning-Geyler-
Margulis-Pyataev, 2002]; it appears that scattering
properties en gross are not very sensitive to the coupling:

there numerous resonances

in the background reflection dominates as k →∞
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Geometric scatterer transport

Let us describe the argument in more details: construction
of generalized eigenfunctions means to couple plane-wave
solution at leads with

u(x) = a1G(x, x1; k) + a2G(x, x2; k) ,

where G(·, ·; k) is Green’s function of ∆LB on the sphere

The latter has a logarithmic singularity so Lj(u) express in
terms of g := G(x1, x2; k) and

ξj ≡ ξ(xj ; k) := lim
x→xj

[

G(x, xj ; k) +
ln |x−xj |

2π

]
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Geometric scatterer transport

Introduce Zj := Dj

2π + ξj and ∆ := g2− Z1Z2, and consider,

e.g., Aj =

(

(2a)−1 (2π/a)1/2

(2πa)−1/2 − ln a

)

with a > 0. Then the

solution of the matching condition is given by

r(k) = − π∆ + Z1 + Z2 − π−1 + 2ika(Z2−Z1) + 4πk2a2∆

π∆ + Z1+ Z2− π−1 + 2ika(Z1+Z2+2π∆)− 4πk2a2∆
,

t(k) = − 4ikag

π∆ + Z1+ Z2− π−1 + 2ika(Z1+Z2+2π∆)− 4πk2a2∆
.

Tokyo Metropolitan University, March 12, 2004 – p.16/43



Geometric scatterer transport

Introduce Zj := Dj

2π + ξj and ∆ := g2− Z1Z2, and consider,

e.g., Aj =

(

(2a)−1 (2π/a)1/2

(2πa)−1/2 − ln a

)

with a > 0. Then the

solution of the matching condition is given by

r(k) = − π∆ + Z1 + Z2 − π−1 + 2ika(Z2−Z1) + 4πk2a2∆

π∆ + Z1+ Z2− π−1 + 2ika(Z1+Z2+2π∆)− 4πk2a2∆
,

t(k) = − 4ikag

π∆ + Z1+ Z2− π−1 + 2ika(Z1+Z2+2π∆)− 4πk2a2∆
.

Tokyo Metropolitan University, March 12, 2004 – p.16/43



Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold G. To
make use of them we need to know g, Z1, Z2, ∆. The
spectrum {λn}∞n=1 of ∆LB on G is purely discrete with
eigenfunctions {φ(x)n}∞n=1. Then we find easily

g(k) =
∞
∑

n=1

φn(x1)φn(x2)

λn− k2

and

ξ(xj , k) =
∞
∑

n=1

( |φn(xj)|2
λn− k2

− 1

4πn

)

+ c(G) ,

where c(G) depends of the manifold only (changing it is
equivalent to a coupling constant renormalization)
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A symmetric spherical scatterer

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l
large enough the interval (l(l−1), l(l+1)) contains a point
µl such that ∆(

√
µl) = 0. Let ε(·) be a positive, strictly

increasing function which tends to∞ and obeys the
inequality |ε(x)| ≤ x ln x for x > 1. Furthermore, denote
Kε := \⋃∞

l=2

(

µl−ε(l)(ln l)−2, µl+ε(l)(ln l)
−2
)

.

Then there
is c > 0 such that the transmission probability satisfies

|t(k)|2 ≤ cε(l)−2

in the background, i.e. for k2 ∈ Kε ∩ (l(l−1), l(l+1)) and any
l large enough. On the other hand, there are resonance
peaks localized at Kε with the property

|t(√µl)|2 = 1 +O
(

(ln l)−1
)

as l →∞
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A symmetric spherical scatterer
The high-energy behavior shares features with strongly
singular interaction such as δ′, for which |t(k)|2 = O(k−2).
We conjecture that coarse-grained transmission through
our “bubble” has the same decay as k →∞
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An asymmetric spherical scatterer
While the above general features are expected to be the
same if the angular distance of junctions is less than π, the
detailed transmission plot changes [Brüning et al., 2002]:
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Arrays of geometric scatterers

In a similar way one can construct general scattering theory
on such “hedgehog” manifolds composed of compact
scatterers, connecting edges and external leads
[Brüning-Geyler, 2003]

Furthermore, infinite periodic systems can be treated by
Floquet-Bloch decomposition

&%
'$ppp r

&%
'$r
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eiθ
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Sphere array spectrum
A band spectrum example from [E.-Tater-Vaněk, 2001]:
radius R = 1, segment length ` = 1, 0.01 and coupling ρ
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How do gaps behave as k →∞?
Question: Are the scattering properties of such junctions
reflected in gap behaviour of periodic families of geometric
scatterers at high energies? And if we ask so, why it should
be interesting?

Tokyo Metropolitan University, March 12, 2004 – p.23/43



How do gaps behave as k →∞?
Question: Are the scattering properties of such junctions
reflected in gap behaviour of periodic families of geometric
scatterers at high energies? And if we ask so, why it should
be interesting?

Recall properties of singular Wannier-Stark systems:

PPPPPPPPPPPPPPPPPP

r r r r r rlinear potential

δ′
δ′

δ′
δ′

δ′
δ′

Tokyo Metropolitan University, March 12, 2004 – p.23/43



How do gaps behave as k →∞?
Question: Are the scattering properties of such junctions
reflected in gap behaviour of periodic families of geometric
scatterers at high energies? And if we ask so, why it should
be interesting?

Recall properties of singular Wannier-Stark systems:

PPPPPPPPPPPPPPPPPP

r r r r r rlinear potential

δ′
δ′

δ′
δ′

δ′
δ′

Spectrum of such systems is purely discrete which is
proved for “most” values of the parameters [Asch-Duclos-
E., 1998] and conjectured for all values. The reason behind
are large gaps of δ′ Kronig-Penney systems
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Periodic systems – assumptions
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Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)

angular distance between contacts equals π or π/2

sphere-segment coupling A =

(

0 2πα−1

ᾱ−1 0

)

we allow also tight coupling when the spheres touch

Tokyo Metropolitan University, March 12, 2004 – p.24/43



Periodic systems – assumptions

&%
'$

&%
'$&%

'$
�

�
@

@@
�

��
@
@

r r r r
r rIn−1 In

S
2
n−1

S
2
n

S
2
n+1

Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)

angular distance between contacts equals π or π/2

sphere-segment coupling A =

(

0 2πα−1
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Tightly coupled spheres
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The tight-coupling boundary conditions will be

L1(Φ1) = AL0(Φ1) + CL0(Φ2) ,

L1(Φ2) = C̄L0(Φ1) +DL0(Φ2)

with A,D ∈, C ∈ C. For simplicity we put A = D = 0
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Large gaps in periodic manifolds
We analyze how spectra of the fibre operators depend on
quasimomentum θ. Denote by Bn, Gn the widths ot the nth
band and gap, respectively; then we have
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Large gaps in periodic manifolds
We analyze how spectra of the fibre operators depend on
quasimomentum θ. Denote by Bn, Gn the widths ot the nth
band and gap, respectively; then we have
Theorem [Brüning-E.-Geyler, 2003]: There is a c > 0 s.t.

Bn

Gn
≤ c n−ε

holds as n→∞ for loosely connected systems, where
ε = 1

2 for arrays and ε = 1
4 for carpets. For tightly coupled

systems to any ε ∈ (0, 1) there is a c̃ > 0 such that the
inequality Bn/Gn ≤ c̃ (lnn)−ε holds as n→∞
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Large gaps in periodic manifolds
We analyze how spectra of the fibre operators depend on
quasimomentum θ. Denote by Bn, Gn the widths ot the nth
band and gap, respectively; then we have
Theorem [Brüning-E.-Geyler, 2003]: There is a c > 0 s.t.

Bn

Gn
≤ c n−ε

holds as n→∞ for loosely connected systems, where
ε = 1

2 for arrays and ε = 1
4 for carpets. For tightly coupled

systems to any ε ∈ (0, 1) there is a c̃ > 0 such that the
inequality Bn/Gn ≤ c̃ (lnn)−ε holds as n→∞
Conjecture: Similar results hold for other couplings and
angular distances of the junctions. The problem is just
technical; the dispersion curves are less in general
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Justification? Shrinking manifolds
Inspiration in fat-graph limit [Kuchment-Zeng, 2001]

@
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@
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@
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�r−→

If the graph is compact and the fat graph supports
Laplacian with Neumann boundary conditions, then in the
shrinking limit “most” ev’s diverge as width→ 0 and a finite
number of them tend to ev’s of the graph Laplacian with
Kirchhoff b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;

one uses minimax and suitable embedding operators
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Shrinking “sleeved” manifolds

An analogous results holds more general “graph-shaped”
manifolds, for instance graph-type sleeves, not necessarily
embedded in R

d [E.-Post, 2003]

For a compact graph, one compares Schrödinger operators
supported by the following structures
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More general scaling

Furthermore, one can try to do the same using different
scaling of the edge and vertex regions. Some technical
assumptions needed, e.g., the bottlenecks must be “simple”
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Scaling limit of a sleeved manifold

Let vertices scale as εα. We find that

if α ∈ (1−d−1, 1] the result is as in [Kuchment-Zeng,
2001]: the ev’s at the spectrum bottom converge the
graph Laplacian with Kirchhoff b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;

if α ∈ (0, 1−d−1) the “limiting” Hilbert space is
L2(M0)⊕ C

K , where K is # of vertices, and the
“limiting” operator acts as Dirichlet Laplacian at each
edge and as zero on C

K
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Scaling limit of a sleeved manifold

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u′j‖2Ij
,

the domain of which consists of u = {{uj}j∈J , {uk}k∈K}
such that u ∈ H1(M0)⊕ C

K and the edge and vertex
parts are coupled by (vol (V −

k )1/2uj(vk) = uk

finally, if vertex regions do not scale at all, α = 0, the
manifold components decouple in the limit again,

⊕

j∈J

∆D
Ij
⊕
⊕

k∈K

∆V0,k

Hence such a straightforward limiting procedure does
not help us to justify choice of appropriate s-a extension
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A heuristic way to choose the coupling

Try something else: return to the plane+halfline model and
compare low-energy scattering to situation when the
halfline is replaced by tube of radius a (we disregard effect
of the sharp edge at interface of the two parts)

������

������
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pp pp pp pp pp pp pp p
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Plane plus tube scattering
Rotational symmetry allows us again to treat each partial
wave separately. Given orbital quantum number ` one has
to match smoothly the corresponding solutions

ψ(x) :=







eikx + r
(`)
a (t)e−ikx . . . x ≤ 0

√

πkr
2 t

(`)
a (k)H

(1)
` (kr) . . . r ≥ a

This yields

r
(`)
a (k) = − D

a
−

Da
+

, t
(`)
a (k) = 4i

√

2ka

π

(

Da
+

)−1

with

Da
± := (1± 2ika)H

(1)
` (ka) + 2ka

(

H
(1)
`

)′

(ka)
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Plane plus point: low energy behavior

Wronskian relation W (Jν(z), Yν(z)) = 2/πz implies
scattering unitarity, in particular, it shows that

|r(`)a (k)|2+ |t(`)a (k)|2 = 1

Using asymptotic properties of Bessel functions with for
small values of the argument we get

|t(`)a (k)|2 ≈ 4π

((`− 1)!)2

(

ka

2

)2`−1

for ` 6= 0, so the transmission probability vanishes fast as
k → 0 for higher partial waves
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Heuristic choice of coupling parameters

The situation is different for ` = 0 where

H
(1)
0 (z) = 1 +

2i

π

(

γ + ln
ka

2

)

+O(z2 ln z)
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+O(z2 ln z)

Comparison shows that t(0)
a (k) coincides, in the leading

order as k → 0, with the plane+halfline expression if

A :=
1

2a
, D := − ln a , B = 2πC =

√

2π

a

Notice that the “right” s-a extensions depend on a single
parameter, namely radius of the “thin” component
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Illustration on microwave experiments

Our models do not apply to QM only. Consider an
electromagnetic resonator. If it is very flat, Maxwell
equations simplify: TE modes effectively decouple from TM
ones and one can describe them by Helmholz equation
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Let a rectangular resonator be equipped with an antenna
which serves a source. Such a system has many
resonances; we ask about distribution of their spacings
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Illustration on microwave experiments

Our models do not apply to QM only. Consider an
electromagnetic resonator. If it is very flat, Maxwell
equations simplify: TE modes effectively decouple from TM
ones and one can describe them by Helmholz equation
Let a rectangular resonator be equipped with an antenna
which serves a source. Such a system has many
resonances; we ask about distribution of their spacings
The reflection amplitude for a compact manifold with one
lead attached at x0 is found as above: we have

r(k) = − πZ(k)(1− 2ika)− 1

πZ(k)(1 + 2ika)− 1
,

where Z(k) := ξ(~x0; k)− ln a
2π
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Finding the resonances

To evaluate regularized Green’s function we use ev’s and
ef’s of Dirichlet Laplacian in M = [0, c1]× [0, c2], namely

φnm(x, y) =
2√
c1c2

sin(n
π

c1
x) sin(m

π

c2
y) ,

λnm =
n2π2

c21
+
m2π2

c22

Resonances are given by complex zeros of the denominator
of r(k), i.e. by solutions of the algebraic equation

ξ(~x0, k) =
ln(a)

2π
+

1

π(1 + ika)
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Comparison with experiment
Compare now experimental results obtained at University of
Marburg with the model for a = 1 mm, averaging over x0 and
c1, c2 = 20 ∼ 50 cm
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0.4

0.5

0.6

0.7

0.8

P(s)
Figure 1

antenna

resonator

Important: An agreement is achieved with the lower third of
measured frequencies – confirming thus validity of our
approximation, since shorter wavelengths are comparable
with the antenna radius a and ka� 1 is no longer valid
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Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial
entities. Illustration: a spin conductance problem:
[Hu et al., 2001] measured conductance of polarized
electrons through an InAs sample; the results depended on
length L of the semiconductor “bar”, in particular, that for
some L spin-flip processes dominated
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Physical mechanism of the spin flip is the spin-orbit
interaction with impurity atoms. It is complicated and no
realistic transport theory of that type was constructed
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Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial
entities. Illustration: a spin conductance problem:
[Hu et al., 2001] measured conductance of polarized
electrons through an InAs sample; the results depended on
length L of the semiconductor “bar”, in particular, that for
some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit
interaction with impurity atoms. It is complicated and no
realistic transport theory of that type was constructed
We construct a model in which spin-flipping interaction has
a point character. Semiconductor bar is described as two
strips coupled at the impurity sites by the boundary
condition described above
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Spin-orbit coupled strips

We assume that impurities are randomly distributed with
the same coupling, A = D and C ∈ R. Then we can instead
study a pair of decoupled strips,

L1(Φ1 ± Φ2) = (A± C)L0(Φ1 ± Φ2) ,

which have naturally different localizations lengths
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Compare with measured conductance

Returning to original functions Φj, spin conductance
oscillations are expected. This is indeed what we see
if the parameters assume realistic values:

0 0.5 1 1.5

-0.2

0.0

0.2

0.4

0.6

Tokyo Metropolitan University, March 12, 2004 – p.41/43



Some open questions

General geometric scatterer systems: asymptotic
behavior at high energies, localization of resonances
and background dominance

Reduced Green’s function on a compact manifold: how
does the number c(G) depend on the manifold G?

Wannier-Stark: how does the spectrum of sphere
arrays look like when a linear potential is added?
The stated gap-width theorem suggests pure point
spectrum, but the question is obviously difficult

General periodic systems: gap behavior as k →∞
Coupling parameter choice: can one formulate the
presented heuristic argument rigorously?
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