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Talk overview

Motivation — a nontrivial configuration space
Coupling by means of s-a extensions

A model: point-contact spectroscopy

A model: single-mode geometric scatterers

Large gaps in periodic systems

Justification? Shrinking manifolds

A heuristic way to choose the coupling

An illustration on microwave experiments

And something else: spin conductance oscillations
Finally, some open gquestions
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A nontrivial configuration space

o |

In both classical and QM there are systems with constraints
for which the configuration space is a nontrivivial subset of
R™. Sometimes it happens that one can idealize as a union
of components of lower dimension
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In both classical and QM there are systems with constraints
for which the configuration space is a nontrivivial subset of
R™. Sometimes it happens that one can idealize as a union
of components of lower dimension
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A nontrivial configuration space

-

In CM it is not a big problem: few examples, and moreover, T
the motion is “local” so we can “magnify” the junction region
and study trajectories there
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A nontrivial configuration space

-

In CM it is not a big problem: few examples, and moreover, T
the motion is “local” so we can “magnify” the junction region
and study trajectories there

In contrast, QM offers interesting examples, e.g.

# point-contact spectroscopy,

#» STEM-type devices,

#® compositions of nanotubes with fullerene molecules,

etc. Similarly one can consider some electromagnetic
systems such as flat microwave resonators with attached
antennas
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Coupling by means of s-a extensions

o N

Among other things we owe to J. von Neumann the theory
of self-adjoint extensions of symmetric operators is not the
least. Let us apply it to our problem.

|

Tokyo Metropolitan University, March 12, 2004 — p.5/43

S



Coupling by means of s-a extensions

o N

Among other things we owe to J. von Neumann the theory
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Isolated manifold A/; and restrict them to functions
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Coupling by means of s-a extensions

o N

Among other things we owe to J. von Neumann the theory
of self-adjoint extensions of symmetric operators is not the
least. Let us apply it to our problem.

The idea: Quantum dynamics on M; U M, coupled by a
point contact o € M; N Ms. Take Hamiltonians H; on the

Isolated manifold A/; and restrict them to functions
vanishing in the vicinity of xz

The operator Hy := H; g & Ha o IS Ssymmetric, in general not
s-a. We seek Hamiltonian of the coupled system among its
self-adjoint extensions
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Coupling by means of s-a extensions

o N

Limitations: In nonrelativistic QM considered here, where
H; is a second-order operator the method works for

dim M; < 3 (more generally, codimension of the contact
should not exceed three), since otherwise the restriction is
e.s.a. [similarly for Dirac operators we require the
codimension to be at most one]
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H; is a second-order operator the method works for

dim M; < 3 (more generally, codimension of the contact
should not exceed three), since otherwise the restriction is
e.s.a. [similarly for Dirac operators we require the
codimension to be at most one]

Non-uniqueness: Apart of the trivial case, there are many
s-a extensions. A junction where n configuration-space
components meet contributes typically by »n to deficiency
indices of Hy, and thus adds n? parameters to the resulting
Hamiltonian class
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Coupling by means of s-a extensions

-

Limitations: In nonrelativistic QM considered here, where
H; is a second-order operator the method works for

dim M; < 3 (more generally, codimension of the contact
should not exceed three), since otherwise the restriction is
e.s.a. [similarly for Dirac operators we require the
codimension to be at most one]

Non-uniqueness: Apart of the trivial case, there are many
s-a extensions. A junction where n configuration-space
components meet contributes typically by »n to deficiency
indices of Hy, and thus adds n? parameters to the resulting
Hamiltonian class

Physical meaning: The construction guarantees that the
probability current is conserved at the junction
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Quantum graphs

o N

Most known example is represented by quantum graphs
where the components )M are line segments,

Hamiltonian: —2, + v(z;)
on graph edges, ‘7
boundary conditions at vertices

and the parameters classify the b.c. at graph vertices —
for a review see [Kostrykin-Schrader, 1999; Kuchment,
2004] and other papers
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Different dimensions

o N

Here we will be mostly concerned with cases “2+7” and
“2+2”, 1.e. manifolds of these dimensions coupled through
point contacts. Other combinations are similar

We use “rational” units, in particular, the Hamiltonian acts at
each configuration component as —A (or Laplace-Beltrami
operator if M; has a nontrivial metric)
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Different dimensions

o N

Here we will be mostly concerned with cases “2+7” and
“2+2”, 1.e. manifolds of these dimensions coupled through
point contacts. Other combinations are similar

We use “rational” units, in particular, the Hamiltonian acts at
each configuration component as —A (or Laplace-Beltrami
operator if M; has a nontrivial metric)

An archetypal example, H = L*(R_) & L*(R?), so the
wavefunctions are pairs ¢ := (51‘;12) of square integrable
functions

/ [ /
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A model: point-contact spectroscopy

o N

Restricting (—dd—;)D ® —A to functions vanishing in the

vicinity of the junction gives symmetric operator with
deficiency indices (2, 2).
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A model: point-contact spectroscopy

o N

Restricting (—dd—;)D ® —A to functions vanishing in the

vicinity of the junction gives symmetric operator with
deficiency indices (2, 2).

von Neumann theory gives a general prescription to
construct the s-a extensions, however, it is practical to
characterize the by means of boundary conditions. We
need generalized boundary values

Lo(®) := lim () Li(®) := lim [®(Z) — Lo(P)Inr]

r—0 Inr ’ r—0

(in view of the 2D character, in three dimensions Ly would
be the coefficient at the pole singularity)

|
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2 + 1 point-contact coupling

Typical b.c. determining a s-a extension

¢1(0—)
L1(®2)

A¢1(0—) + BLo(P2),
C¢1(0—) + DLo(P2),
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2 + 1 point-contact coupling
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Typical b.c. determining a s-a extension

$1(0—) = A¢1(0—) + BLo(P2),
L1(®2) = C¢1(0—) + DLo(P2),

where
A DeR and B=2rC
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2 + 1 point-contact coupling

where

Typical b.c. determining a s-a extension

-

¢1(0—) = A¢p1(0—) + BLo(P2),
L1(®2) = C¢1(0—) + DLo(P2),

A, DeR and B =2rC

The easiest way to see that is to compute the boundary
form to H, recall that the latter is given by the same

differential expression.
Notice that only the s-wave part of ® in the plane,

Do (r, ) = (2m) " 2¢9(r) can be coupled nontrivially

to the halfline
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2 + 1 point-contact coupling

o N

An integration by parts gives

(¢, Hyp) — (Hpo,v) = ¢1(0)11(0) — ¢1(0)91(0)
+ lim e (da(e)(e) — da(e)thale))

—0-+



2 + 1 point-contact coupling

-

An integration by parts gives

(¢, Hyv) — (Hyo, ) = ¢7(0)¥1(0) — ¢1(0)41(0)
+ lim e (P2(e)¥1(e) — da(e)a(e)) |

—0-+

and using the asymptotic behaviour

do(e) = V21 [Lo(P2) Ine + Li(P2) + O(e)] ,
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2 + 1 point-contact coupling

o N

An integration by parts gives

(¢, Hyw) — (Hyo,¥) = ¢1(0)11(0) — ¢1(0)2p1(0)
+ lim e (pa(e)hy(e) — dale)iba(e)) |

—0+

and using the asymptotic behaviour

Pa(e) = Vor [Lo(®P2)Ine 4+ L1(P2) + O(e) ],
we can express the above limit term as
21 |L1(®2) Lo(V2) — Lo(P2) L1(V2)] ,

so the form vanishes under the stated boundary conditions
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Transport through point contact

-

Using the b.c. we match plane wave solution e?** 4 r(k)e =
on the halfline with t(k)(wkr/2)Y/2H " (kr) in the plane
obtaining

(k) = — 2= 4(k) = Q;ik
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Transport through point contact

-

X

Using the b.c. we match plane wave solution e?** 4 r(k)e~ %

on the halfline with t(k)(wkr/2)Y/2H " (kr) in the plane
obtaining
D_ 2iC'k
() = =50 Hh) =5

with
21 k 21
Dy = (A+ik) ll—l——Z (WE—D—I—IH§>] —I——ZBC,
7

-

where vg =~ 0.5772 is Euler's number
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Transport through point contact

-

Using the b.c. we match plane wave solution e?** 4 r(k)e =

on the halfline with ¢(k)(rkr/2)/2H\" (kr) in the plane
obtaining

D_ 2iCk
"”(k)——D—Jra t(k) = D,
with
21 21
Dy = (A+ik) ll—l——Z <7E—D—|—1n§>] —I——ZBC,
70 70

where vg =~ 0.5772 is Euler's number

Remark: More general coupling, A({") + B(}") = 0, gives
LWrise to similar formulae (an invertible 3 can be put to one) J
!
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Transport through point contact

o N

Let us finish discussion of this “point contact spectroscopy”
model by a few remarks:

® Scattering in nontrivial it A = (5 %) is not diagonal. For

any choice of s-a extension, the on-shell S-matrix is
unitary, in particular, we have |r(k)|* + [t(k)|* =1
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model by a few remarks:

® Scattering in nontrivial it A = (5 %) is not diagonal. For
any choice of s-a extension, the on-shell S-matrix is
unitary, in particular, we have |r(k)|* + [t(k)|* = 1

# Notice that reflection dominates at high energies, since
t(k)|* = O((Ink)™2) holds as k — oo

" -

Tokyo Metropolitan University, March 12, 2004 — p.13/43



Transport through point contact

o N

Let us finish discussion of this “point contact spectroscopy”
model by a few remarks:

® Scattering in nontrivial it A = (5 %) is not diagonal. For

any choice of s-a extension, the on-shell S-matrix is
unitary, in particular, we have |r(k)|* + [t(k)|* =1

# Notice that reflection dominates at high energies, since
t(k)|* = O((Ink)™2) holds as k — oo

o For some A there are also bound states decaying
exponentially away of the junction, at most two

" .
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Single-mode geometric scatterers

o N

Consider a sphere with two leads attached

L1 L2

with the coupling at both vertices given by the same A
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Single-mode geometric scatterers

fConsider a sphere with two leads attached T

L1 L2

with the coupling at both vertices given by the same A

Three one-parameter families of A were investigated
[Kiselev, 1997; E.-Tater-Vanek, 2001; Brining-Geyler-
Margulis-Pyataev, 2002]; it appears that scattering
properties en gross are not very sensitive to the coupling:

® there numerous resonances
# in the background reflection dominates as k£ — oo
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Geometric scatterer transport

o N

Let us describe the argument in more details: construction
of generalized eigenfunctions means to couple plane-wave
solution at leads with

u(x) = a1G(x, z15 k) + aoG(x, x5 k) |

where G(-, -; k) is Green’s function of A;g on the sphere
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Geometric scatterer transport

o N

Let us describe the argument in more details: construction
of generalized eigenfunctions means to couple plane-wave
solution at leads with

u(x) = a1G(x, z15 k) + aoG(x, x5 k) |

where G(-, -; k) is Green’s function of A;g on the sphere
The latter has a logarithmic singularity so L;(u) express in
terms of g := G(x1,z2; k) and

& = &xy k) = lim Gz, 255 k) +

T—XT; 2T

) i
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Geometric scatterer transport

o N

Introduce Z; := 22 + ¢; and A := g2 — Z, Z», and consider,

—1 1/2
e.g., Aj = ( (2(2“))1 . (QW/I 2 ) with a > 0. Then the
ma —ina

solution of the matching condition is given by
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Geometric scatterer transport

o N

Introduce Z; := 22 + ¢; and A := g2 — Z, Z», and consider,

—1 1/2
e.g., Aj = ( (2(2“))1 . (QW/I 2 ) with a > 0. Then the
ma —ina

solution of the matching condition is given by

TN+ Zy + Zy — 4+ 2ika(Zy— Zy) + Amk*a A
TN+ 21+ Zo— w1 + 2ika(Zy+ Zy+2w A) — dwk2a? A

dikag
A+ Z1+ Zo— w7t + 2ika(Zy+ Zo+27 A) — dwk2a? A
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Geometric scatterers: needed quantities

o N

So far formulae are valid for any compact manifold G. To
make use of them we need to know ¢, 71, 75, A. The
spectrum {\,}>° , of A on G is purely discrete with
eigenfunctions {¢(x),}>> ;. Then we find easily

On (1) Pn
z ont)
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Geometric scatterers: needed quantities

o N

So far formulae are valid for any compact manifold G. To
make use of them we need to know ¢, 71, 75, A. The
spectrum {\,}>° , of A on G is purely discrete with
eigenfunctions {¢(x),}>> ;. Then we find easily

On(T1)Pn
-3 e

and

c(ash) =3 (S - ) + @)

n=1

where ¢(G) depends of the manifold only (changing it is
%equivalent to a coupling constant renormalization) J
!
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A symmetric spherical scatterer

o N

Theorem [Kiselev, 1997, E.-Tater-Vanék, 2001]: For any {
large enough the interval (I(I—1),1(l+1)) contains a point
p such that A(, /i) = 0. Let (-) be a positive, strictly
increasing function which tends to oo and obeys the
inequality |¢(x)| < xInx for > 1. Furthermore, denote

Ko = \U, (—e()(Ind) 2, p+e(t)(In) ),
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A symmetric spherical scatterer

o N

Theorem [Kiselev, 1997, E.-Tater-Vanek, 2001]: For any !
large enough the interval (I(I—1),1(l+1)) contains a point
p such that A(, /i) = 0. Let (-) be a positive, strictly
increasing function which tends to oo and obeys the
inequality |¢(x)| < xInx for > 1. Furthermore, denote
K :=\U2y (u—e()(Inl)~2, p+e(l)(Inl)~%). Then there
IS ¢ > 0 such that the transmission probability satisfies

t(k)|* < ee(l)

in the background, i.e. for k* € K. N (I(I-1),1(I+1)) and any
[ large enough. On the other hand, there are resonance
peaks localized at K. with the property

% tHVm)> =140 ()™ as [— oo |
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A symmetric spherical scatterer

fThe high-energy behavior shares features with strongly T
singular interaction such as &', for which [t(k)|? = O(k2).
We conjecture that coarse-grained transmission through
our “bubble” has the same decay as k£ — o
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A symmetric spherical scatterer

fThe high-energy behavior shares features with strongly T
singular interaction such as &', for which [t(k)|? = O(k2).
We conjecture that coarse-grained transmission through
our “bubble” has the same decay as k£ — o

Figure 7

2

d’ transmission probability

\ coarse-grained |t(k)|?

|
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An asymmetric spherical scatterer

fWhiIe the above general features are expected to be the T
same if the angular distance of junctions is less than =, the
detailed transmission plot changes [Bruning et al., 2002]:
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An asymmetric spherical scatterer

fWhiIe the above general features are expected to be the T
same if the angular distance of junctions is less than =, the
detailed transmission plot changes [Bruning et al., 2002]:

-
=]

Tronsmission coefficient
ot
in

e
(=

ent

effici

Trensmission co

Transmission cocfficient -

Fipore I, The francmission cosfBcient as s function of £l arg = s {a}r = mai{bir = 0%, J
&) F = 00Era, )

)

w Tokyo Metropolitan University, March 12, 2004 — p.20/43



Arrays of geometric scatterers

o |

In a similar way one can construct general scattering theory
on such “hedgehog” manifolds composed of compact
scatterers, connecting edges and external leads
[Braning-Geyler, 2003]
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Arrays of geometric scatterers

o |

In a similar way one can construct general scattering theory
on such “hedgehog” manifolds composed of compact
scatterers, connecting edges and external leads
Brining-Geyler, 2003]

Furthermore, infinite periodic systems can be treated by
~loquet-Bloch decomposition
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Sphere array spectrum

fA band spectrum example from [E.-Tater-Vanek, 2001]: T
radius R = 1, segment length ¢ = 1, 0.01 and coupling p
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Sphere array spectrum

fA band spectrum example from [E.-Tater-Vanek, 2001]: T
radius R = 1, segment length ¢ = 1, 0.01 and coupling p

oy - >
oy
-a‘ . iy b
W ) &
¢
F . : : !
1 ol | L i Il i . " 1 i £ g "
] 05 1 15 2 L5 k3 A% 4 4.5 s
k
FUR. B, Baml spectiam of an infinide “bubbbe" ammay. The spheres am of unit mdivs, the ueng o 1= 1 (oppor Ggare) and
L= 000 {lower igum], pis the conbect mdive,
Nt “ . . .
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How do gaps behave as &k — 00?

fQuestion: Are the scattering properties of such junctions T

reflected in gap behaviour of periodic families of geometric
scatterers at high energies? And if we ask so, why it should
be interesting?

|
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How do gaps behave as &k — 00?

fQuestion: Are the scattering properties of such junctions T
reflected in gap behaviour of periodic families of geometric

scatterers at high energies? And if we ask so, why it should
be interesting?

Recall properties of singular Wannier-Stark systems:

5/

5/

linear potential

" -
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How do gaps behave as &k — 00?

fQuestion: Are the scattering properties of such junctions T
reflected in gap behaviour of periodic families of geometric
scatterers at high energies? And if we ask so, why it should
be interesting?

Recall properties of singular Wannier-Stark systems:

5/

6/

linear potential

Spectrum of such systems is purely discrete which is
proved for “most” values of the parameters [Asch-Duclos-
E., 1998] and conjectured for all values. The reason behind

%are large gaps of ' Kronig-Penney systems J
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Periodic systems — assumptions

-

Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

# periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)
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Periodic systems — assumptions

-

Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

# periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)

# angular distance between contacts equals = or 7 /2
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Periodic systems — assumptions

-

Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

# periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)

# angular distance between contacts equals = or 7 /2

0
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Periodic systems — assumptions

-

Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

# periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)

# angular distance between contacts equals = or 7 /2

—1
#® sphere-segment coupling A = ( @?1 ng )

% » we allow also tight coupling when the spheres touch |
o
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Tightly coupled spheres




Tightly coupled spheres

The tight-coupling boundary conditions will be

Ll(q)l) — AL()(QH) -+ CL()((I)Q) :
L1(®2) = CLo(®P1)+ DLo(P2)

%with A, D e, CeC. Forsimplicityweput A=D =0 J
&)
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Large gaps in periodic manifolds
fWe analyze how spectra of the fibre operators depend on T

quasimomentum 6. Denote by B,,, ,, the widths ot the nth
band and gap, respectively; then we have
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Large gaps in periodic manifolds

fWe analyze how spectra of the fibre operators depend on T
quasimomentum 6. Denote by B,,, ,, the widths ot the nth
band and gap, respectively; then we have

Theorem [Bruning-E.-Geyler, 2003]: There is a ¢ > 0 s.t.

holds as n — oo for loosely connected systems, where

e = 5 for arrays and ¢ = 1 for carpets. For tightly coupled
systems to any ¢ € (0,1) there is a ¢ > 0 such that the
iInequality B,,/G,, < ¢(Inn)~€ holds as n — oo
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Large gaps in periodic manifolds

fWe analyze how spectra of the fibre operators depend on T

quasimomentum 6. Denote by B,,, ,, the widths ot the nth
band and gap, respectively; then we have

Theorem [Bruning-E.-Geyler, 2003]: There is a ¢ > 0 s.t.

holds as n — oo for loosely connected systems, where

e = 5 for arrays and ¢ = 1 for carpets. For tightly coupled
systems to any ¢ € (0,1) there is a ¢ > 0 such that the
iInequality B,,/G,, < ¢(Inn)~€ holds as n — oo

Conjecture: Similar results hold for other couplings and
angular distances of the junctions. The problem is just
technical; the dispersion curves are less in general J
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Justification? Shrinking manifolds

flnspiration in fat-graph limit [Kuchment-Zeng, 2001] T
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Justification? Shrinking manifolds

flnspiration in fat-graph limit [Kuchment-Zeng, 2001] T

If the graph is compact and the fat graph supports
Laplacian with Neumann boundary conditions, then in the
shrinking limit “most” ev’'s diverge as width — 0 and a finite

number of them tend to ev’s of the graph Laplacian with
Kirchhoff b.c., i.e. continuity and

> wj(vg) = 0;

edges meeting at vy

one uses minimax and suitable embedding operators J
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Shrinking ‘‘sleeved’” manifolds

o N

An analogous results holds more general “graph-shaped”
manifolds, for instance graph-type sleeves, not necessarily

embedded in R [E.-Post, 2003]

|
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Shrinking ‘‘sleeved’” manifolds

-

An analogous results holds more general “graph-shaped”
manifolds, for instance graph-type sleeves, not necessarily
embedded in R? [E.-Post, 2003]

For a compact graph, one compares Schrodinger operators
supported by the following structures

e

oy : H>
N

i -

Ficure 1. On the left, we have the graph M, on the right, the
acsociated graph-like manifold [in this rase, ¥ = 8" and M, iz a
2-dimensional menifold).

|
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More general scaling

-

Furthermore, one can try to do the same using different T
scaling of the edge and vertex regions. Some technical
assumptions needed, e.g., the bottlenecks must be “simple”

: Vei N
: (scaling inbetween = and g“')

Ue i (transversal scaling ¢)
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Scaling limit of a sleeved manifold

o N

Let vertices scale as %. We find that

® if a € (1—-d~1,1] the result is as in [Kuchment-Zeng,
2001]: the ev’s at the spectrum bottom converge the
graph Laplacian with Kirchhoff b.c., i.e. continuity and

> wj(vg) = 0;

edges meeting at vi

|

Tokyo Metropolitan University, March 12, 2004 — p.30/43

S



Scaling limit of a sleeved manifold

o N

Let vertices scale as %. We find that

® if a € (1—-d~1,1] the result is as in [Kuchment-Zeng,
2001]: the ev’s at the spectrum bottom converge the
graph Laplacian with Kirchhoff b.c., i.e. continuity and

> wj(vg) = 0;
edges meeting at vi
® if a € (0,1—d 1) the “limiting” Hilbert space is
L?(My) ® CH, where K is # of vertices, and the
“limiting” operator acts as Dirichlet Laplacian at each

edge and as zero on C&
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Scaling limit of a sleeved manifold

f o if o =1—-d~ !, Hilbert space is the same but the limiting T
operator is given by quadratic form go(u) := 3= [[u/ |7 ,
the domain of which consists of v = {{u;} e, {vr rer }
such that v € H'(My) @ C* and the edge and vertex
parts are coupled by (vol (V7 )1/ 2u;(vy) = uy,

|
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Scaling limit of a sleeved manifold

f o if o =1—-d~ !, Hilbert space is the same but the limiting T
operator is given by quadratic form go(u) := 3= [[u/ |7 ,
the domain of which consists of v = {{u;} e, {vr rer }
such that v € H'(My) @ C* and the edge and vertex
parts are coupled by (vol (V7 )1/ 2u;(vy) = uy,

o finally, if vertex regions do not scale at all, a = 0, the
manifold components decouple in the limit again,

DAL & D A

jeJ ke K

|
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Scaling limit of a sleeved manifold

f o if o =1—-d~ !, Hilbert space is the same but the limiting T
operator is given by quadratic form go(u) := 3= [[u/ |7 ,
the domain of which consists of v = {{u;} e, {vr rer }
such that v € H'(My) @ C* and the edge and vertex
parts are coupled by (vol (V7 )1/ 2u;(vy) = uy,

o finally, if vertex regions do not scale at all, a = 0, the
manifold components decouple in the limit again,

DAL & D A

jeJ ke K

# Hence such a straightforward limiting procedure does
not help us to justify choice of appropriate s-a extension
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A heuristic way to choose the coupling

o N

Iry something else: return to the plane+halfline model and
compare low-energy scattering to situation when the
halfline is replaced by tube of radius « (we disregard effect
of the sharp edge at interface of the two parts)

|
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A heuristic way to choose the coupling

o N

Iry something else: return to the plane+halfline model and
compare low-energy scattering to situation when the
halfline is replaced by tube of radius « (we disregard effect
of the sharp edge at interface of the two parts)

U7
|

Tokyo Metropolitan University, March 12, 2004 — p.32/43

S



Plane plus tube scattering

fRotationaI symmetry allows us again to treat each partial T
wave separately. Given orbital quantum number ¢ one has
to match smoothly the corresponding solutions
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Plane plus tube scattering

fRotationaI symmetry allows us again to treat each partial T
wave separately. Given orbital quantum number ¢ one has
to match smoothly the corresponding solutions

Oy — —P= 0y _ g [ (pay
Ta (k) T ,DEI{_ ) tCL (k) = 41 . ( —I—)
with

/
% D = (1 + 2ika)H" (ka) + 2ka (Hél)) (ka) B
2

Tokyo Metropolitan University, March 12, 2004 — p.33/43



Plane plus point: low energy behavior

o N

Wronskian relation W (J,(z),Y,(z)) = 2/7z implies
scattering unitarity, in particular, it shows that

e ()24 1887 (B) 2 =1

|
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Plane plus point: low energy behavior

o N

Wronskian relation W (J,(z),Y,(z)) = 2/7z implies
scattering unitarity, in particular, it shows that

e ()24 1887 (B) 2 =1

Using asymptotic properties of Bessel functions with for
small values of the argument we get

0) 112 47 ka2
0~ = (7)

for ¢ # 0, so the transmission probability vanishes fast as
k — 0 for higher partial waves

|
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fThe situation is different for / = 0 where T
Hé”(z) =1+ % (7 + In %) + O(2*1nz)



Heuristic choice of coupling parameters

o N

The situation is different for ¢/ = 0 where

Hé”(z) =1+ % (7 + In %) + O(2*1nz)
Comparison shows that t\”) (k) coincides, in the leading
order as k£ — 0, with the plane+halfline expression if

1 2
A= — D:=—Ina, B=2nC= n

2a a

|
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Heuristic choice of coupling parameters

o N

The situation is different for ¢/ = 0 where

T

Hé”(z) =1+ 20 (7—1— In %) + O(2*1nz)

Comparison shows that t\”) (k) coincides, in the leading
order as k£ — 0, with the plane+halfline expression if

1 /2
A= —, D:=—Ina, B=2nC= il
2a a

Notice that the “right” s-a extensions depend on a single
parameter, namely radius of the “thin” component

|
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Illustration on microwave experiments

o N

Our models do not apply to QM only. Consider an
electromagnetic resonator. If it is very flat, Maxwell
equations simplify: TE modes effectively decouple from TM
ones and one can describe them by Helmholz equation

|
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Illustration on microwave experiments

o N

Our models do not apply to QM only. Consider an
electromagnetic resonator. If it is very flat, Maxwell
equations simplify: TE modes effectively decouple from TM
ones and one can describe them by Helmholz equation

Let a rectanqular resonator be equipped with an antenna
which serves a source. Such a system has many
resonances; we ask about distribution of their spacings

|
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Illustration on microwave experiments

o N

Our models do not apply to QM only. Consider an
electromagnetic resonator. If it is very flat, Maxwell
equations simplify: TE modes effectively decouple from TM
ones and one can describe them by Helmholz equation

Let a rectanqular resonator be equipped with an antenna
which serves a source. Such a system has many
resonances; we ask about distribution of their spacings

The reflection amplitude for a compact manifold with one
lead attached at z( is found as above: we have

nZ(k)(1 — 2ika) — 1

nZ(k)(1+ 2ika) — 1"

r(k) = —

where Z(k) := £(Zo; k) — 13—7? J
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Finding the resonances

o N

To evaluate regularized Green’s function we use ev’s and
ef’s of Dirichlet Laplacian in M = [0, ¢;]| x [0, co], namely

2 T T

272 22
Anm = —5—+
1 €y
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Finding the resonances

o N

To evaluate regularized Green’s function we use ev’s and
ef’s of Dirichlet Laplacian in M = [0, ¢1| x [0, co], namely

2 T T

Grm (T,y) = @sin(naw)sin(may),
n27.‘.2 m2772
>\nm — 9 + 9
1 Co

Resonances are given by complex zeros of the denominator
of r(k), I.e. by solutions of the algebraic equation

, ~ In(a) 1
S0 k) =5 A ke
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Comparison with experiment

fCompare now experimental results obtained at University oﬂ
Marburg with the model for « = 1 mm, averaging over zy and
C1,C9 = 20 ~ 50 cm

|
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Comparison with experiment

fCompare now experimental results obtained at University oﬂ
Marburg with the model for « = 1 mm, averaging over zy and
C1,C9 = 20 ~ 50 cm

Figure 1
P(s) ; g ;
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Important: An agreement is achieved with the lower third of

measured frequencies — confirming thus validity of our

approximation, since shorter wavelengths are comparable
%with the antenna radius ¢ and ka < 1 is no longer valid J
o)
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Spin conductance oscillations

o N

Finally, manifolds we consider need not be separate spatial
entities. lllustration: a spin conductance problem:

[Hu et al., 2001] measured conductance of polarized
electrons through an InAs sample; the results depended on
length L of the semiconductor “bar”, in particular, that for
some L spin-flip processes dominated
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Spin conductance oscillations

-

Finally, manifolds we consider need not be separate spatial
entities. lllustration: a spin conductance problem:

[Hu et al., 2001] measured conductance of polarized
electrons through an InAs sample; the results depended on
length L of the semiconductor “bar”, in particular, that for
some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit
interaction with impurity atoms. It is complicated and no
realistic transport theory of that type was constructed
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Spin conductance oscillations

-

Finally, manifolds we consider need not be separate spatial
entities. lllustration: a spin conductance problem:

[Hu et al., 2001] measured conductance of polarized
electrons through an InAs sample; the results depended on
length L of the semiconductor “bar”, in particular, that for
some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit
interaction with impurity atoms. It is complicated and no
realistic transport theory of that type was constructed

We construct a model in which spin-flipping interaction has

a point character. Semiconductor bar is described as fwo
strips coupled at the impurity sites by the boundary

condition described above J
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Spin-orbit coupled strips

ideal lead scattering ideal lead
- -
SZ // - E - 2 wmmme- — SZ
- .
5 . - -
w _SZ e L] :// 6 - - mmmemee- — _SZ
-
L

We assume that impurities are randomly distributed with
the same coupling, A = D and C € R. Then we can instead

study a pair of decoupled strips,
Li(®1+P2) = (A+C)Lo(Py £ Do),

%which have naturally different localizations lengths J
&)
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Compare with measured conductance

o N

Returning to original functions ®;, spin conductance
oscillations are expected. This is indeed what we see
If the parameters assume realistic values:

0.6 —

04 -

0.2 —

0.0

02 F .

| | | | | | | | | | | | | |
0 0.5 1 1.5
L/w
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Some open questions

o N

o General geometric scatterer systems: asymptotic
behavior at high energies, localization of resonances
and background dominance
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#® General geometric scatterer systems: asymptotic
behavior at high energies, localization of resonances
and background dominance

#® Reduced Green’s function on a compact manifold: how
does the number ¢(G) depend on the manifold G?
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Some open questions

o N

o General geometric scatterer systems: asymptotic
behavior at high energies, localization of resonances
and background dominance

#® Reduced Green’s function on a compact manifold: how
does the number ¢(G) depend on the manifold G?

o Wannier-Stark: how does the spectrum of sphere
arrays look like when a linear potential is added?
The stated gap-width theorem suggests pure point
spectrum, but the question is obviously difficult
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Some open questions

-

General geometric scatterer systems: asymptotic
behavior at high energies, localization of resonances
and background dominance

Reduced Green’s function on a compact manifold: how
does the number ¢(G) depend on the manifold G?

Wannier-Stark: how does the spectrum of sphere
arrays look like when a linear potential is added?
The stated gap-width theorem suggests pure point
spectrum, but the question is obviously difficult

General periodic systems: gap behavior as k£ —
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Some open questions

-

General geometric scatterer systems: asymptotic
behavior at high energies, localization of resonances
and background dominance

Reduced Green’s function on a compact manifold: how
does the number ¢(G) depend on the manifold G?

Wannier-Stark: how does the spectrum of sphere
arrays look like when a linear potential is added?
The stated gap-width theorem suggests pure point
spectrum, but the question is obviously difficult

General periodic systems: gap behavior as k£ —

Coupling parameter choice: can one formulate the
presented heuristic argument rigorously?

|
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