Quantum systems coupling manifolds of different dimensionality

Pavel Exner

in collaboration with Petr Šeba, Vladimir Geyler, Olaf Post,

Miloš Tater, and also Jochen Brüning and David Vaněk

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Tokyo Metropolitan University, March 12, 2004 - p.1/43

Motivation – a nontrivial configuration space

Tokyo Metropolitan University, March 12, 2004 - p.2/43

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions

Tokyo Metropolitan University, March 12, 2004 - p.2/43

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- Justification? Shrinking manifolds

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- Justification? Shrinking manifolds
- A heuristic way to choose the coupling

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- Justification? Shrinking manifolds
- A heuristic way to choose the coupling
- An illustration on microwave experiments

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- Justification? Shrinking manifolds
- A heuristic way to choose the coupling
- An illustration on microwave experiments
- And something else: spin conductance oscillations

- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- Justification? Shrinking manifolds
- A heuristic way to choose the coupling
- An illustration on microwave experiments
- And something else: spin conductance oscillations
- Finally, some open questions

In both classical and QM there are systems with constraints for which the configuration space is a nontrivivial subset of \mathbb{R}^n . Sometimes it happens that one can idealize as a *union of components of lower dimension*

In both classical and QM there are systems with constraints for which the configuration space is a nontrivivial subset of \mathbb{R}^n . Sometimes it happens that one can idealize as a *union of components of lower dimension*

In CM it is not a big problem: few examples, and moreover, the motion is "local" so we can "magnify" the junction region and study trajectories there

In CM it is not a big problem: few examples, and moreover, the motion is "local" so we can "magnify" the junction region and study trajectories there

In contrast, QM offers interesting examples, e.g.

- point-contact spectroscopy,
- STEM-type devices,
- compositions of nanotubes with fullerene molecules,

etc. Similarly one can consider some *electromagnetic systems* such as flat microwave resonators with attached antennas

Among other things we owe to J. von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.

Among other things we owe to J. von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.

The idea: Quantum dynamics on $M_1 \cup M_2$ coupled by a point contact $x_0 \in M_1 \cap M_2$. Take Hamiltonians H_j on the *isolated* manifold M_j and restrict them to functions vanishing in the vicinity of x_0

Among other things we owe to J. von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.

The idea: Quantum dynamics on $M_1 \cup M_2$ coupled by a point contact $x_0 \in M_1 \cap M_2$. Take Hamiltonians H_j on the *isolated* manifold M_j and restrict them to functions vanishing in the vicinity of x_0

The operator $H_0 := H_{1,0} \oplus H_{2,0}$ is symmetric, in general not s-a. We seek Hamiltonian of the coupled system among *its self-adjoint extensions*

Limitations: In nonrelativistic QM considered here, where H_j is a *second-order operator* the method works for $\dim M_j \leq 3$ (more generally, codimension of the contact should not exceed *three*), since otherwise the restriction is *e.s.a.* [similarly for Dirac operators we require the codimension to be at most *one*]

Limitations: In nonrelativistic QM considered here, where H_j is a *second-order operator* the method works for $\dim M_j \leq 3$ (more generally, codimension of the contact should not exceed *three*), since otherwise the restriction is *e.s.a.* [similarly for Dirac operators we require the codimension to be at most *one*]

Non-uniqueness: Apart of the trivial case, there are many s-a extensions. A junction where *n* configuration-space components meet contributes typically by *n* to deficiency indices of H_0 , and thus adds n^2 parameters to the resulting Hamiltonian class

Limitations: In nonrelativistic QM considered here, where H_j is a *second-order operator* the method works for $\dim M_j \leq 3$ (more generally, codimension of the contact should not exceed *three*), since otherwise the restriction is *e.s.a.* [similarly for Dirac operators we require the codimension to be at most *one*]

Non-uniqueness: Apart of the trivial case, there are many s-a extensions. A junction where *n* configuration-space components meet contributes typically by *n* to deficiency indices of H_0 , and thus adds n^2 parameters to the resulting Hamiltonian class

Physical meaning: The construction guarantees that the probability current is conserved at the junction

Quantum graphs

Most known example is represented by *quantum graphs* where the components M_j are line segments,

Hamiltonian: $-\frac{\partial^2}{\partial x_j^2} + v(x_j)$ on graph edges, boundary conditions at vertices

and the parameters classify the b.c. at graph vertices – for a review see [Kostrykin-Schrader, 1999; Kuchment, 2004] and other papers

Different dimensions

Here we will be mostly concerned with cases "2+1" and "2+2", i.e. manifolds of these dimensions coupled through point contacts. Other combinations are similar

We use "rational" units, in particular, the Hamiltonian acts at each configuration component as $-\Delta$ (or Laplace-Beltrami operator if M_j has a nontrivial metric)

Different dimensions

Here we will be mostly concerned with cases "2+1" and "2+2", i.e. manifolds of these dimensions coupled through point contacts. Other combinations are similar

We use "rational" units, in particular, the Hamiltonian acts at each configuration component as $-\Delta$ (or Laplace-Beltrami operator if M_j has a nontrivial metric)

An archetypal example, $\mathcal{H} = L^2(\mathbb{R}_-) \oplus L^2(\mathbb{R}^2)$, so the wavefunctions are pairs $\phi := \begin{pmatrix} \phi_1 \\ \Phi_2 \end{pmatrix}$ of square integrable functions

A model: point-contact spectroscopy

Restricting $\left(-\frac{d^2}{dx^2}\right)_D \oplus -\Delta$ to functions vanishing in the vicinity of the junction gives symmetric operator with deficiency indices (2, 2).

A model: point-contact spectroscopy

Restricting $\left(-\frac{d^2}{dx^2}\right)_D \oplus -\Delta$ to functions vanishing in the vicinity of the junction gives symmetric operator with deficiency indices (2, 2).

von Neumann theory gives a general prescription to construct the s-a extensions, however, it is practical to characterize the by means of *boundary conditions*. We need *generalized boundary values*

$$L_0(\Phi) := \lim_{r \to 0} \frac{\Phi(\vec{x})}{\ln r}, \ L_1(\Phi) := \lim_{r \to 0} \left[\Phi(\vec{x}) - L_0(\Phi) \ln r \right]$$

(in view of the 2D character, in three dimensions L_0 would be the coefficient at the pole singularity)

Typical b.c. determining a s-a extension

$$\phi_1'(0-) = A\phi_1(0-) + BL_0(\Phi_2),$$

$$L_1(\Phi_2) = C\phi_1(0-) + DL_0(\Phi_2),$$

Typical b.c. determining a s-a extension

$$\phi_1'(0-) = A\phi_1(0-) + BL_0(\Phi_2),$$

$$L_1(\Phi_2) = C\phi_1(0-) + DL_0(\Phi_2),$$

where

$$A, D \in \mathbb{R}$$
 and $B = 2\pi \overline{C}$

Typical b.c. determining a s-a extension

$$\phi_1'(0-) = A\phi_1(0-) + BL_0(\Phi_2),$$

$$L_1(\Phi_2) = C\phi_1(0-) + DL_0(\Phi_2),$$

where

$$A, D \in \mathbb{R}$$
 and $B = 2\pi \overline{C}$

The easiest way to see that is to compute the boundary form to H_0^* , recall that the latter is given by the same differential expression.

Notice that only the s-wave part of Φ in the plane, $\Phi_2(r,\varphi) = (2\pi)^{-1/2}\phi_2(r)$ can be coupled nontrivially to the halfline

An integration by parts gives

$$(\phi, H_0^*\psi) - (H_0^*\phi, \psi) = \bar{\phi}_1'(0)\psi_1(0) - \bar{\phi}_1(0)\psi_1'(0) + \lim_{\varepsilon \to 0+} \varepsilon \left(\bar{\phi}_2(\varepsilon)\psi_1'(\varepsilon) - \bar{\phi}_2'(\varepsilon)\psi_2(\varepsilon)\right),$$

An integration by parts gives

$$(\phi, H_0^*\psi) - (H_0^*\phi, \psi) = \bar{\phi}_1'(0)\psi_1(0) - \bar{\phi}_1(0)\psi_1'(0) + \lim_{\varepsilon \to 0+} \varepsilon \left(\bar{\phi}_2(\varepsilon)\psi_1'(\varepsilon) - \bar{\phi}_2'(\varepsilon)\psi_2(\varepsilon)\right),$$

and using the asymptotic behaviour

$$\phi_2(\varepsilon) = \sqrt{2\pi} \left[L_0(\Phi_2) \ln \varepsilon + L_1(\Phi_2) + \mathcal{O}(\varepsilon) \right] \,,$$

An integration by parts gives

$$(\phi, H_0^*\psi) - (H_0^*\phi, \psi) = \bar{\phi}'_1(0)\psi_1(0) - \bar{\phi}_1(0)\psi'_1(0) + \lim_{\varepsilon \to 0+} \varepsilon \left(\bar{\phi}_2(\varepsilon)\psi'_1(\varepsilon) - \bar{\phi}'_2(\varepsilon)\psi_2(\varepsilon)\right),$$

and using the asymptotic behaviour

$$\phi_2(\varepsilon) = \sqrt{2\pi} \left[L_0(\Phi_2) \ln \varepsilon + L_1(\Phi_2) + \mathcal{O}(\varepsilon) \right] \,,$$

we can express the above limit term as

$$2\pi \left[L_1(\Phi_2) L_0(\Psi_2) - L_0(\Phi_2) L_1(\Psi_2) \right] \,,$$

so the form vanishes under the stated boundary conditions

Using the b.c. we match plane wave solution $e^{ikx} + r(k)e^{-ikx}$ on the halfline with $t(k)(\pi kr/2)^{1/2}H_0^{(1)}(kr)$ in the plane obtaining

$$r(k) = -\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k) = \frac{2iCk}{\mathcal{D}_{+}}$$

Using the b.c. we match plane wave solution $e^{ikx} + r(k)e^{-ikx}$ on the halfline with $t(k)(\pi kr/2)^{1/2}H_0^{(1)}(kr)$ in the plane obtaining

$$r(k) = -\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k) = \frac{2iCk}{\mathcal{D}_{+}}$$

with

$$\mathcal{D}_{\pm} := (A \pm ik) \left[1 + \frac{2i}{\pi} \left(\gamma_{\mathrm{E}} - D + \ln \frac{k}{2} \right) \right] + \frac{2i}{\pi} BC \,,$$

where $\gamma_{\rm E}\approx 0.5772$ is Euler's number

Using the b.c. we match plane wave solution $e^{ikx} + r(k)e^{-ikx}$ on the halfline with $t(k)(\pi kr/2)^{1/2}H_0^{(1)}(kr)$ in the plane obtaining

$$r(k) = -\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k) = \frac{2iCk}{\mathcal{D}_{+}}$$

with

$$\mathcal{D}_{\pm} := (A \pm ik) \left[1 + \frac{2i}{\pi} \left(\gamma_{\mathrm{E}} - D + \ln \frac{k}{2} \right) \right] + \frac{2i}{\pi} BC \,,$$

where $\gamma_{\rm E}\approx 0.5772$ is Euler's number

Remark: More general coupling, $\mathcal{A}\begin{pmatrix}\phi_1\\L_0\end{pmatrix} + \mathcal{B}\begin{pmatrix}\phi_1\\L_1\end{pmatrix} = 0$, gives rise to similar formulae (an invertible \mathcal{B} can be put to one)

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

Scattering in *nontrivial* if $\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is *unitary*, in particular, we have $|r(k)|^2 + |t(k)|^2 = 1$

Transport through point contact

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

- Scattering in *nontrivial* if $\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is *unitary*, in particular, we have $|r(k)|^2 + |t(k)|^2 = 1$
- Notice that *reflection dominates at high energies*, since $|t(k)|^2 = O((\ln k)^{-2})$ holds as $k \to \infty$

Transport through point contact

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

- Scattering in *nontrivial* if $\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is *unitary*, in particular, we have $|r(k)|^2 + |t(k)|^2 = 1$
- Notice that *reflection dominates at high energies*, since $|t(k)|^2 = O((\ln k)^{-2})$ holds as $k \to \infty$
- For some A there are also bound states decaying exponentially away of the junction, at most two

Single-mode geometric scatterers

Consider a sphere with two leads attached

with the coupling at both vertices given by the same ${\cal A}$

Single-mode geometric scatterers

Consider a sphere with two leads attached

with the coupling at both vertices given by the same ${\cal A}$

Three one-parameter families of \mathcal{A} were investigated [Kiselev, 1997; E.-Tater-Vaněk, 2001; Brüning-Geyler-Margulis-Pyataev, 2002]; it appears that scattering properties *en gross* are not very sensitive to the coupling:

- there numerous resonances
- in the background reflection dominates as $k \to \infty$

Let us describe the argument in more details: construction of generalized eigenfunctions means to couple plane-wave solution at leads with

 $u(x) = a_1 G(x, x_1; k) + a_2 G(x, x_2; k) ,$

where $G(\cdot, \cdot; k)$ is Green's function of Δ_{LB} on the sphere

Let us describe the argument in more details: construction of generalized eigenfunctions means to couple plane-wave solution at leads with

$$u(x) = a_1 G(x, x_1; k) + a_2 G(x, x_2; k) ,$$

where $G(\cdot, \cdot; k)$ is Green's function of Δ_{LB} on the sphere The latter has a logarithmic singularity so $L_j(u)$ express in terms of $g := G(x_1, x_2; k)$ and

$$\xi_j \equiv \xi(x_j;k) := \lim_{x \to x_j} \left[G(x, x_j;k) + \frac{\ln|x - x_j|}{2\pi} \right]$$

Introduce
$$Z_j := \frac{D_j}{2\pi} + \xi_j$$
 and $\Delta := g^2 - Z_1 Z_2$, and consider,
e.g., $\mathcal{A}_j = \begin{pmatrix} (2a)^{-1} & (2\pi/a)^{1/2} \\ (2\pi a)^{-1/2} & -\ln a \end{pmatrix}$ with $a > 0$. Then the

solution of the matching condition is given by

Introduce
$$Z_j := \frac{D_j}{2\pi} + \xi_j$$
 and $\Delta := g^2 - Z_1 Z_2$, and consider,
e.g., $\mathcal{A}_j = \begin{pmatrix} (2a)^{-1} & (2\pi/a)^{1/2} \\ (2\pi a)^{-1/2} & -\ln a \end{pmatrix}$ with $a > 0$. Then the

solution of the matching condition is given by

$$r(k) = -\frac{\pi\Delta + Z_1 + Z_2 - \pi^{-1} + 2ika(Z_2 - Z_1) + 4\pi k^2 a^2 \Delta}{\pi\Delta + Z_1 + Z_2 - \pi^{-1} + 2ika(Z_1 + Z_2 + 2\pi\Delta) - 4\pi k^2 a^2 \Delta},$$

$$t(k) = -\frac{4ikag}{\pi\Delta + Z_1 + Z_2 - \pi^{-1} + 2ika(Z_1 + Z_2 + 2\pi\Delta) - 4\pi k^2 a^2 \Delta}.$$

Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold *G*. To make use of them we need to know g, Z_1, Z_2, Δ . The spectrum $\{\lambda_n\}_{n=1}^{\infty}$ of Δ_{LB} on *G* is purely discrete with eigenfunctions $\{\phi(x)_n\}_{n=1}^{\infty}$. Then we find easily

$$g(k) = \sum_{n=1}^{\infty} \frac{\phi_n(x_1)\overline{\phi_n(x_2)}}{\lambda_n - k^2}$$

Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold *G*. To make use of them we need to know g, Z_1, Z_2, Δ . The spectrum $\{\lambda_n\}_{n=1}^{\infty}$ of Δ_{LB} on *G* is purely discrete with eigenfunctions $\{\phi(x)_n\}_{n=1}^{\infty}$. Then we find easily

$$g(k) = \sum_{n=1}^{\infty} \frac{\phi_n(x_1)\overline{\phi_n(x_2)}}{\lambda_n - k^2}$$

and

$$\xi(x_j, k) = \sum_{n=1}^{\infty} \left(\frac{|\phi_n(x_j)|^2}{\lambda_n - k^2} - \frac{1}{4\pi n} \right) + c(G) \,,$$

where c(G) depends of the manifold only (changing it is equivalent to a coupling constant renormalization)

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l large enough the interval (l(l-1), l(l+1)) contains a point μ_l such that $\Delta(\sqrt{\mu_l}) = 0$. Let $\varepsilon(\cdot)$ be a positive, strictly increasing function which tends to ∞ and obeys the inequality $|\varepsilon(x)| \leq x \ln x$ for x > 1. Furthermore, denote $K_{\varepsilon} := \setminus \bigcup_{l=2}^{\infty} (\mu_l - \varepsilon(l)(\ln l)^{-2}, \mu_l + \varepsilon(l)(\ln l)^{-2}).$

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l large enough the interval (l(l-1), l(l+1)) contains a point μ_l such that $\Delta(\sqrt{\mu_l}) = 0$. Let $\varepsilon(\cdot)$ be a positive, strictly increasing function which tends to ∞ and obeys the inequality $|\varepsilon(x)| \leq x \ln x$ for x > 1. Furthermore, denote $K_{\varepsilon} := \setminus \bigcup_{l=2}^{\infty} (\mu_l - \varepsilon(l)(\ln l)^{-2}, \mu_l + \varepsilon(l)(\ln l)^{-2})$. Then there is c > 0 such that the transmission probability satisfies

 $|t(k)|^2 \le c\varepsilon(l)^{-2}$

in the *background*, i.e. for $k^2 \in K_{\varepsilon} \cap (l(l-1), l(l+1))$ and any l large enough. On the other hand, there are *resonance peaks* localized at K_{ε} with the property

 $|t(\sqrt{\mu_l})|^2 = 1 + \mathcal{O}\left((\ln l)^{-1}\right) \quad \text{as} \quad l \to \infty$

The high-energy behavior shares features with strongly singular interaction such as δ' , for which $|t(k)|^2 = O(k^{-2})$. We conjecture that coarse-grained transmission through our "bubble" has the same decay as $k \to \infty$

The high-energy behavior shares features with strongly singular interaction such as δ' , for which $|t(k)|^2 = O(k^{-2})$. *We conjecture* that *coarse-grained* transmission through our "bubble" has the same decay as $k \to \infty$

While the above general features are expected to be the same if the angular distance of junctions is less than π , the detailed transmission plot changes [Brüning et al., 2002]:

While the above general features are expected to be the same if the angular distance of junctions is less than π , the detailed transmission plot changes [Brüning et al., 2002]:

Figure 2. The transmission coefficient as a function of $k\lambda$ at $a = 10\lambda$: (a) $r = \pi a$; (b) $r = 0.98\pi a$; (c) $r = 0.96\pi a$.

Arrays of geometric scatterers

In a similar way one can construct *general scattering theory* on such "hedgehog" manifolds composed of compact scatterers, connecting edges and external leads [Brüning-Geyler, 2003]

Arrays of geometric scatterers

In a similar way one can construct *general scattering theory* on such "hedgehog" manifolds composed of compact scatterers, connecting edges and external leads [Brüning-Geyler, 2003]

Furthermore, infinite periodic systems can be treated by Floquet-Bloch decomposition

Sphere array spectrum

A band spectrum example from [E.-Tater-Vaněk, 2001]: radius R = 1, segment length $\ell = 1, 0.01$ and coupling ρ

Sphere array spectrum

A band spectrum example from [E.-Tater-Vaněk, 2001]: radius R = 1, segment length $\ell = 1, 0.01$ and coupling ρ

FIG. 8. Band spectrum of an infinite "bubble" array. The spheres are of unit radius, the sphereg is i = 1 (upper figure) and i = 0.01 (lower figure), ρ is the contact radius.

How do gaps behave as $k \to \infty$?

Question: Are the scattering properties of such junctions reflected in *gap behaviour* of periodic families of geometric scatterers *at high energies?* And if we ask so, why it should be interesting?

How do gaps behave as $k \to \infty$?

Question: Are the scattering properties of such junctions reflected in *gap behaviour* of periodic families of geometric scatterers *at high energies?* And if we ask so, why it should be interesting?

Recall properties of *singular Wannier-Stark* systems:

How do gaps behave as $k \to \infty$?

Question: Are the scattering properties of such junctions reflected in *gap behaviour* of periodic families of geometric scatterers *at high energies?* And if we ask so, why it should be interesting?

Recall properties of *singular Wannier-Stark* systems:

Spectrum of such systems is *purely discrete* which is proved for "most" values of the parameters [Asch-Duclos-E., 1998] and conjectured for *all* values. The reason behind are *large gaps* of δ' Kronig-Penney systems

 \mathbb{S}_{n}^2

 I_{n-1}

 \mathbb{S}^2_{m}

Consider *periodic combinations of spheres and segments* and adopt the following assumptions:

periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")

Tokyo Metropolitan University, March 12, 2004 – p.24/43

 \mathbb{S}_{n+1}^2

 \mathbb{S}_{n}^2

 I_{n-1}

 \mathbb{S}^2_{m}

Consider *periodic combinations of spheres and segments* and adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi/2$

 \mathbb{S}^2_{n+1}

 \mathbb{S}_{n-1}^2

 \mathbb{S}_{m}^{2}

Consider *periodic combinations of spheres and segments* and adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi/2$
- sphere-segment coupling $\mathcal{A} = \begin{pmatrix} 0 & 2\pi\alpha^{-1} \\ \bar{\alpha}^{-1} & 0 \end{pmatrix}$

 \mathbb{S}^2_{n-1}

 \mathbb{S}^2_{-}

Consider *periodic combinations of spheres and segments* and adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi/2$
- sphere-segment coupling $\mathcal{A} = \begin{pmatrix} 0 & 2\pi\alpha^{-1} \\ \bar{\alpha}^{-1} & 0 \end{pmatrix}$
 - we allow also tight coupling when the spheres touch

Tightly coupled spheres

Tightly coupled spheres

The tight-coupling boundary conditions will be

$$L_1(\Phi_1) = AL_0(\Phi_1) + CL_0(\Phi_2),$$

$$L_1(\Phi_2) = \bar{C}L_0(\Phi_1) + DL_0(\Phi_2)$$

with $A, D \in$, $C \in \mathbb{C}$. For simplicity we put A = D = 0

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ . Denote by B_n , G_n the widths of the *n*th band and gap, respectively; then we have

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ . Denote by B_n , G_n the widths of the *n*th band and gap, respectively; then we have

Theorem [Brüning-E.-Geyler, 2003]: There is a c > 0 s.t.

holds as $n \to \infty$ for *loosely connected* systems, where $\epsilon = \frac{1}{2}$ for arrays and $\epsilon = \frac{1}{4}$ for carpets. For *tightly coupled* systems to any $\epsilon \in (0, 1)$ there is a $\tilde{c} > 0$ such that the inequality $B_n/G_n \leq \tilde{c} (\ln n)^{-\epsilon}$ holds as $n \to \infty$

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ . Denote by B_n , G_n the widths of the *n*th band and gap, respectively; then we have

Theorem [Brüning-E.-Geyler, 2003]: There is a c > 0 s.t.

holds as $n \to \infty$ for *loosely connected* systems, where $\epsilon = \frac{1}{2}$ for arrays and $\epsilon = \frac{1}{4}$ for carpets. For *tightly coupled* systems to any $\epsilon \in (0, 1)$ there is a $\tilde{c} > 0$ such that the inequality $B_n/G_n \leq \tilde{c} (\ln n)^{-\epsilon}$ holds as $n \to \infty$

Conjecture: Similar results hold for other couplings and angular distances of the junctions. The problem is just technical; the dispersion curves are less in general

Justification? Shrinking manifolds

Inspiration in fat-graph limit [Kuchment-Zeng, 2001]

Justification? Shrinking manifolds

Inspiration in fat-graph limit [Kuchment-Zeng, 2001]

If the graph is *compact* and the fat graph supports Laplacian with *Neumann* boundary conditions, then in the shrinking limit "most" ev's diverge as width $\rightarrow 0$ and a finite number of them tend to ev's of the graph Laplacian with *Kirchhoff b.c.*, i.e. continuity and

 $\sum_{\text{edges meeting at } v_k} u'_j(v_k) = 0;$

_one uses minimax and suitable embedding operators

Shrinking "sleeved" manifolds

An analogous results holds more general "graph-shaped" manifolds, for instance *graph-type sleeves*, not necessarily embedded in \mathbb{R}^d [E.-Post, 2003]

Shrinking "sleeved" manifolds

An analogous results holds more general "graph-shaped" manifolds, for instance *graph-type sleeves*, not necessarily embedded in \mathbb{R}^d [E.-Post, 2003]

For a compact graph, one compares Schrödinger operators supported by the following structures

FIGURE 1. On the left, we have the graph M_0 , on the right, the associated graph-like manifold (in this case, $F = \mathbb{S}^1$ and M_{ε} is a 2-dimensional manifold).

More general scaling

Furthermore, one can try to do the same using *different scaling* of the *edge* and *vertex* regions. Some technical assumptions needed, e.g., the bottlenecks must be "simple"

Let vertices scale as ε^{α} . We find that

■ if $\alpha \in (1-d^{-1}, 1]$ the result is as in [Kuchment-Zeng, 2001]: the ev's at the spectrum bottom converge the graph Laplacian with *Kirchhoff b.c.*, i.e. continuity and

Let vertices scale as ε^{α} . We find that

• if $\alpha \in (1-d^{-1}, 1]$ the result is as in [Kuchment-Zeng, 2001]: the ev's at the spectrum bottom converge the graph Laplacian with *Kirchhoff b.c.*, i.e. continuity and

edges meeting at
$$v_k$$
 $u'_j(v_k) = 0$

• if $\alpha \in (0, 1-d^{-1})$ the "limiting" Hilbert space is $L^2(M_0) \oplus \mathbb{C}^K$, where K is # of vertices, and the "limiting" operator acts as Dirichlet Laplacian at each edge and as zero on \mathbb{C}^K

• if $\alpha = 1 - d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_0(u) := \sum_j ||u'_j||^2_{I_j}$, the domain of which consists of $u = \{\{u_j\}_{j \in J}, \{u_k\}_{k \in K}\}$ such that $u \in H^1(M_0) \oplus \mathbb{C}^K$ and the *edge and vertex parts are coupled* by $(\operatorname{vol}(V_k^-)^{1/2}u_j(v_k) = u_k$

- if $\alpha = 1 d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_0(u) := \sum_j ||u'_j||_{I_j}^2$, the domain of which consists of $u = \{\{u_j\}_{j \in J}, \{u_k\}_{k \in K}\}$ such that $u \in H^1(M_0) \oplus \mathbb{C}^K$ and the *edge and vertex parts are coupled* by $(\operatorname{vol}(V_k^-)^{1/2}u_j(v_k) = u_k$
- finally, if vertex regions do not scale at all, $\alpha = 0$, the manifold components decouple in the limit again,

$$\bigoplus_{j\in J} \Delta^{\mathrm{D}}_{I_j} \oplus \bigoplus_{k\in K} \Delta_{V_{0,k}}$$

- if $\alpha = 1 d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_0(u) := \sum_j ||u'_j||_{I_j}^2$, the domain of which consists of $u = \{\{u_j\}_{j \in J}, \{u_k\}_{k \in K}\}$ such that $u \in H^1(M_0) \oplus \mathbb{C}^K$ and the *edge and vertex parts are coupled* by $(\operatorname{vol}(V_k^-)^{1/2}u_j(v_k) = u_k$
- finally, if vertex regions do not scale at all, $\alpha = 0$, the manifold components decouple in the limit again,

$$\bigoplus_{j\in J} \Delta_{I_j}^{\mathbf{D}} \oplus \bigoplus_{k\in K} \Delta_{V_{0,k}}$$

Hence such a straightforward limiting procedure *does not help* us to justify choice of appropriate s-a extension

A heuristic way to choose the coupling

Try something else: return to the *plane+halfline* model and compare *low-energy scattering* to situation when the halfline is replaced by tube of radius *a* (we disregard effect of the sharp edge at interface of the two parts)

A heuristic way to choose the coupling

Try something else: return to the *plane+halfline* model and compare *low-energy scattering* to situation when the halfline is replaced by tube of radius *a* (we disregard effect of the sharp edge at interface of the two parts)

Plane plus tube scattering

Rotational symmetry allows us again to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$\psi(x) := \begin{cases} e^{ikx} + r_a^{(\ell)}(t)e^{-ikx} & \dots & x \le 0\\ \sqrt{\frac{\pi kr}{2}} t_a^{(\ell)}(k)H_\ell^{(1)}(kr) & \dots & r \ge a \end{cases}$$

Plane plus tube scattering

Rotational symmetry allows us again to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$\psi(x) := \begin{cases} e^{ikx} + r_a^{(\ell)}(t)e^{-ikx} & \dots & x \le 0\\ \sqrt{\frac{\pi kr}{2}} t_a^{(\ell)}(k)H_\ell^{(1)}(kr) & \dots & r \ge a \end{cases}$$

This yields

$$r_a^{(\ell)}(k) = -\frac{\mathcal{D}_-^a}{\mathcal{D}_+^a}, \quad t_a^{(\ell)}(k) = 4i\sqrt{\frac{2ka}{\pi}} \left(\mathcal{D}_+^a\right)^{-1}$$

with

$$\mathcal{D}^{a}_{\pm} := (1 \pm 2ika)H^{(1)}_{\ell}(ka) + 2ka\left(H^{(1)}_{\ell}\right)'(ka)$$

Plane plus point: low energy behavior

Wronskian relation $W(J_{\nu}(z), Y_{\nu}(z)) = 2/\pi z$ implies scattering unitarity, in particular, it shows that

 $|r_a^{(\ell)}(k)|^2 + |t_a^{(\ell)}(k)|^2 = 1$

Plane plus point: low energy behavior

Wronskian relation $W(J_{\nu}(z), Y_{\nu}(z)) = 2/\pi z$ implies scattering unitarity, in particular, it shows that

 $|r_a^{(\ell)}(k)|^2 + |t_a^{(\ell)}(k)|^2 = 1$

Using asymptotic properties of Bessel functions with for small values of the argument we get

$$|t_a^{(\ell)}(k)|^2 \approx \frac{4\pi}{((\ell-1)!)^2} \left(\frac{ka}{2}\right)^{2\ell-1}$$

for $\ell \neq 0$, so the *transmission probability vanishes fast* as $k \rightarrow 0$ for higher partial waves

Heuristic choice of coupling parameters

The situation is different for $\ell = 0$ where

$$H_0^{(1)}(z) = 1 + \frac{2i}{\pi} \left(\gamma + \ln \frac{ka}{2}\right) + \mathcal{O}(z^2 \ln z)$$

Heuristic choice of coupling parameters

The situation is different for $\ell = 0$ where

$$H_0^{(1)}(z) = 1 + \frac{2i}{\pi} \left(\gamma + \ln \frac{ka}{2}\right) + \mathcal{O}(z^2 \ln z)$$

Comparison shows that $t_a^{(0)}(k)$ coincides, in the leading order as $k \to 0$, with the *plane+halfline* expression if

$$A := \frac{1}{2a}, \quad D := -\ln a, \quad B = 2\pi C = \sqrt{\frac{2\pi}{a}}$$

Heuristic choice of coupling parameters

The situation is different for $\ell = 0$ where

$$H_0^{(1)}(z) = 1 + \frac{2i}{\pi} \left(\gamma + \ln \frac{ka}{2}\right) + \mathcal{O}(z^2 \ln z)$$

Comparison shows that $t_a^{(0)}(k)$ coincides, in the leading order as $k \to 0$, with the *plane+halfline* expression if

$$A := \frac{1}{2a}, \quad D := -\ln a, \quad B = 2\pi C = \sqrt{\frac{2\pi}{a}}$$

Notice that the "right" s-a extensions depend on a *single parameter*, namely radius of the "thin" component

Illustration on microwave experiments

Our models do not apply to QM only. Consider an *electromagnetic resonator*. If it is *very flat*, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation

Illustration on microwave experiments

Our models do not apply to QM only. Consider an *electromagnetic resonator*. If it is *very flat*, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation

Let a *rectangular resonator* be equipped with an *antenna* which serves a source. Such a system has many resonances; we ask about distribution of their spacings

Illustration on microwave experiments

Our models do not apply to QM only. Consider an *electromagnetic resonator*. If it is *very flat*, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation

Let a *rectangular resonator* be equipped with an *antenna* which serves a source. Such a system has many resonances; we ask about distribution of their spacings

The reflection amplitude for a compact manifold with one lead attached at x_0 is found as above: we have

$$r(k) = -\frac{\pi Z(k)(1 - 2ika) - 1}{\pi Z(k)(1 + 2ika) - 1},$$

where $Z(k) := \xi(\vec{x}_0; k) - \frac{\ln a}{2\pi}$

Finding the resonances

To evaluate regularized Green's function we use ev's and ef's of Dirichlet Laplacian in $M = [0, c_1] \times [0, c_2]$, namely

$$\phi_{nm}(x,y) = \frac{2}{\sqrt{c_1 c_2}} \sin(n\frac{\pi}{c_1}x) \sin(m\frac{\pi}{c_2}y),$$
$$\lambda_{nm} = \frac{n^2 \pi^2}{c_1^2} + \frac{m^2 \pi^2}{c_2^2}$$

Finding the resonances

To evaluate regularized Green's function we use ev's and ef's of Dirichlet Laplacian in $M = [0, c_1] \times [0, c_2]$, namely

$$\phi_{nm}(x,y) = \frac{2}{\sqrt{c_1 c_2}} \sin(n\frac{\pi}{c_1}x) \sin(m\frac{\pi}{c_2}y),$$
$$\lambda_{nm} = \frac{n^2 \pi^2}{c_1^2} + \frac{m^2 \pi^2}{c_2^2}$$

Resonances are given by complex zeros of the denominator of r(k), i.e. by solutions of the algebraic equation

$$\xi(\vec{x}_0, k) = \frac{\ln(a)}{2\pi} + \frac{1}{\pi(1 + ika)}$$

Comparison with experiment

Compare now *experimental results* obtained at University of Marburg with the model for a = 1 mm, averaging over x_0 and $c_1, c_2 = 20 \sim 50 \text{ cm}$

Comparison with experiment

Compare now *experimental results* obtained at University of Marburg with the model for a = 1 mm, averaging over x_0 and $c_1, c_2 = 20 \sim 50 \text{ cm}$

Important: An agreement is achieved with the *lower third* of measured frequencies – confirming thus validity of our approximation, since shorter wavelengths are comparable with the antenna radius a and $ka \ll 1$ is no longer valid _____

Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:

[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results *depended on length L* of the semiconductor "bar", in particular, that for some *L* spin-flip processes dominated

Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:

[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results *depended on length L* of the semiconductor "bar", in particular, that for some *L* spin-flip processes dominated

Physical mechanism of the spin flip is the *spin-orbit interaction with impurity atoms.* It is complicated and no realistic transport theory of that type was constructed

Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:

[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results *depended on length L* of the semiconductor "bar", in particular, that for some *L* spin-flip processes dominated

Physical mechanism of the spin flip is the *spin-orbit interaction with impurity atoms.* It is complicated and no realistic transport theory of that type was constructed

We construct a *model* in which spin-flipping interaction has a *point character*. Semiconductor bar is described as *two strips coupled at the impurity sites* by the boundary condition described above

Spin-orbit coupled strips

We assume that impurities are randomly distributed with the same coupling, A = D and $C \in \mathbb{R}$. Then we can instead study a pair of decoupled strips,

$$L_1(\Phi_1 \pm \Phi_2) = (A \pm C)L_0(\Phi_1 \pm \Phi_2),$$

_which have naturally different localizations lengths

Compare with measured conductance

Returning to original functions Φ_j , *spin conductance oscillations* are expected. This is indeed what we see if the parameters assume realistic values:

 General geometric scatterer systems: asymptotic behavior at high energies, localization of resonances and background dominance

- General geometric scatterer systems: asymptotic behavior at high energies, localization of resonances and background dominance
- Reduced Green's function on a compact manifold: how does the number c(G) depend on the manifold G?

- General geometric scatterer systems: asymptotic behavior at high energies, localization of resonances and background dominance
- Reduced Green's function on a compact manifold: how does the number c(G) depend on the manifold G?
- Wannier-Stark: how does the spectrum of sphere arrays look like when a *linear potential* is added? The stated gap-width theorem suggests pure point spectrum, but the question is obviously difficult

- General geometric scatterer systems: asymptotic behavior at high energies, localization of resonances and background dominance
- Reduced Green's function on a compact manifold: how does the number c(G) depend on the manifold G?
- Wannier-Stark: how does the spectrum of sphere arrays look like when a *linear potential* is added? The stated gap-width theorem suggests pure point spectrum, but the question is obviously difficult
- General periodic systems: gap behavior as $k \to \infty$

- General geometric scatterer systems: asymptotic behavior at high energies, localization of resonances and background dominance
- Reduced Green's function on a compact manifold: how does the number c(G) depend on the manifold G?
- Wannier-Stark: how does the spectrum of sphere arrays look like when a *linear potential* is added? The stated gap-width theorem suggests pure point spectrum, but the question is obviously difficult
- General periodic systems: gap behavior as $k \to \infty$
- Coupling parameter choice: can one formulate the presented heuristic argument rigorously?

The talk was based on

[ADE98] J. Asch, P. Duclos, P.E.: Stability of driven systems with growing gaps. Quantum rings and Wannier ladders, J. Stat. Phys. 92 (1998), 1053-1069 [BEG03] J.Brüning, P.E., V.A. Geyler: Large gaps in point-coupled periodic systems of manifolds, J. Phys. A36 (2003), 4875-4890 [EP03] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, math-ph/0312028 [ETV01] P.E., M. Tater, D. Vaněk: A single-mode quantum transport in serial-structure geometric scatterers, J. Math. Phys. 42 (2001), 4050-4078 [EŠ86] P.E., P. Šeba: Quantum motion on two planes connected at one point, Lett. Math. *Phys.* **12** (1986), 193-198 [EŠ87] P.E., P. Šeba: Quantum motion on a halfline connected to a plane, J. Math. Phys. 28 (1987), 386-391[EŠ89] P. Exner, P. Šeba: Free quantum motion on a branching graph, Rep. Math. Phys. 28 (1989), 7-26[EŠ97] P.E., P. Šeba: Resonance statistics in a microwave cavity with a thin antenna, *Phys. Lett.* **A228** (1997), 146-150 [ŠEPVS01] P. Šeba, P.E., K.N. Pichugin, A. Vyhnal, P. Středa: Two-component interference effect: model of a spin-polarized transport, Phys. Rev. Lett. 86 (2001), 1598-1601

The talk was based on

[ADE98] J. Asch, P. Duclos, P.E.: Stability of driven systems with growing gaps. Quantum rings and Wannier ladders, J. Stat. Phys. 92 (1998), 1053-1069 [BEG03] J.Brüning, P.E., V.A. Geyler: Large gaps in point-coupled periodic systems of manifolds, J. Phys. A36 (2003), 4875-4890 [EP03] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, math-ph/0312028 [ETV01] P.E., M. Tater, D. Vaněk: A single-mode quantum transport in serial-structure geometric scatterers, J. Math. Phys. 42 (2001), 4050-4078 [EŠ86] P.E., P. Šeba: Quantum motion on two planes connected at one point, Lett. Math. Phys. 12 (1986), 193-198 [EŠ87] P.E., P. Šeba: Quantum motion on a halfline connected to a plane, J. Math. Phys. 28 (1987), 386-391[EŠ89] P. Exner, P. Šeba: Free quantum motion on a branching graph, Rep. Math. Phys. 28 (1989), 7-26[EŠ97] P.E., P. Šeba: Resonance statistics in a microwave cavity with a thin antenna, *Phys.* Lett. A228 (1997), 146-150 [ŠEPVS01] P. Šeba, P.E., K.N. Pichugin, A. Vyhnal, P. Středa: Two-component interference effect: model of a spin-polarized transport, Phys. Rev. Lett. 86 (2001), 1598-1601

for more information see *http://www.ujf.cas.cz/~exner*

