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Motivation
Isoperimetric problems are traditional in mathematical
physics. Recall, e.g., the Faber-Krahn inequality for the
Dirichlet Laplacian −∆M

D in a compact M ⊂ R
2: among all

regions with a fixed area the ground state is uniquely
minimized by the circle,

inf σ(−∆M
D ) ≥ π j20,1 |M |−1

(we restrict to two dimensions in this talk, the analogous
results naturally hold for any compact M ⊂ R

d, d ≥ 3)

Another classical example is the PPW conjecture proved by
Ashbaugh and Benguria: in the same situation we have

λ2(M)

λ1(M)
≤

(

j1,1

j0,1

)2
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However, topology is important

If M is not simply connected, rotational symmetry may
again lead to an extremum but its nature can be different.
Recall a a strip of fixed length and width [E.-Harrell-Loss’99]
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ground state of ground state of<

whenever the strip is not a circular annulus

Another example is a circular obstacle in circular cavity
[Harrell-Kröger-Kurata’01]
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whenever the obstacle is off center
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Potential confinement
The topological distinction loses meaning if the particle
is kept in a region by a (regular or singular) potential. To
see what will happen we will analyze two models:
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confinement is due to a closed array of δ potentials, so the
Hamiltonian can be written formally as

−∆ + α̃

N
∑

j=1

δ(x− yj) in L2(R2) ,

where the yj ’s are vertices of an equilateral polygon PN
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Hamiltonian can be written formally as

−∆ + α̃

N
∑

j=1

δ(x− yj) in L2(R2) ,

where the yj ’s are vertices of an equilateral polygon PN

Next we will consider an attractive δ potential supported by
a closed loop Γ of fixed length, so formally we have

−∆ − αδ(x− Γ) in L2(R2)
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Remarks

The two examples are related yet different in the
character of the coupling, due the codimension of the
interaction support. Roughly speaking, the 2D point
interactions are a lot “more singular”

The Dirichlet annulus result suggests that for strong
attraction the shape with the maximum symmetry,
respectively a regular polygon P̃N of the edge length `
with vertices lying on a circle of radius `

(

2 sin π
N

)−1, and
a circle will be the ground-state maximizer

It is not apriori clear whether the same is true for any
coupling (in our models the ground state always exists)

There are extensions to higher dimension, which will
mentioned later at appropriate places
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A preliminary: 2D point interactions
Fixing the site y and “coupling constant” α we define them
by b.c. which change locally the domain of −∆: we require

ψ(x) = −
1

2π
log |x− y|L0(ψ, y) + L1(ψ, y) + O(|x− y|) ,

where the generalized b.v. L0(ψ, y) and L1(ψ, y) satisfy

L1(ψ, y) + 2παL0(ψ, y) = 0 , α ∈ R

In this way we define our Hamiltonian −∆α,PN
in L2(R2) with

N point interactions. We have σdisc

(

−∆α,PN

)

6= ∅, i.e.

ε1 ≡ ε1(α,PN ) := inf σ
(

−∆α,PN

)

< 0 ,

which is always true in two dimensions – cf. [AGHH’88, 05]
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The point-interaction result

Theorem [E.’05]: Under the stated conditions, ε1(α,PN )
is for fixed α and ` locally sharply maximized by a regular
polygon, PN = P̃N .

Proof will be reduced to the following geometric problem:
Let PN be an equilateral polygon. Given a fixed integer
m = 2, . . . , [12N ] we denote by Dm the sum of lengths of all
m-diagonals, i.e. we put Dm :=

∑N
i=1 |yi − yi+m|

D1
N,`(m) The quantity Dm is, in the set of equilateral
polygons PN ⊂ R

2 with a fixed edge length ` > 0,
uniquely maximized by D̃m referring to the (family
of) regular polygon(s) P̃N .
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Geometric reformulation
By Krein’s formula, the spectral condition is reduced to an
algebraic problem. Using k = iκ with κ > 0, we find the ev’s
−κ2 of our operator from

det Γk = 0 with (Γk)ij := (α− ξk)δij − (1 − δij)g
k
ij ,

where the off-diagonal elements are gk
ij := Gk(yi − yj), or

equivalently

gk
ij =

1

2π
K0(κ|yi − yj |)

and the regularized Green’s function at the interaction site is

ξk = −
1

2π

(

ln
κ

2
+ γE

)
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Geometric reformulation, continued
The ground state refers to the point where the lowest ev
of Γiκ vanishes. Using smoothness and monotonicity
of the κ-dependence we have to check that

minσ(Γiκ̃1
) < minσ(Γ̃iκ̃1

)

holds locally for PN 6= P̃N , where −κ̃2
1 := ε1(α, P̃N )

There is a one-to-one relation between an ef c = (c1, . . . , cN )
of Γiκ at that point and the corresponding ef of −∆α,PN

given by c↔
∑N

j=1 cjGiκ(· − yj), up to normalization. In
particular, the lowest ev of Γ̃iκ̃1

corresponds to the
eigenvector φ̃1 = N−1/2(1, . . . , 1). Hence

minσ(Γ̃iκ̃1
) = (φ̃1, Γ̃iκ̃1

φ̃1) = α− ξiκ̃1 −
2

N

∑

i<j

g̃iκ̃1

ij
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Geometric reformulation, continued
On the other hand, we have minσ(Γiκ̃1

) ≤ (φ̃1,Γiκ̃1
φ̃1), and

therefore it is sufficient to check that
∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj)

holds for all κ > 0 and PN 6= P̃N .

Call `ij := |yi − yj | and
˜̀
ij := |ỹi − ỹj | and define F : (R+)N(N−3)/2 → R by

F ({`ij}) :=

[N/2]
∑

m=2

∑

|i−j|=m

[

Giκ(`ij) − Giκ(˜̀ij)
]

;

Using the convexity of Giκ(·) for a fixed κ > 0 we get

F ({`ij}) ≥

[N/2]
∑

m=2

νm



Giκ





1

νm

∑

|i−j|=m

`ij



− Giκ(˜̀1,1+m)



 ,

where νn is the number of the appropriate diagonals
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Geometric reformulation, continued
Since Giκ(·) is also monotonously decreasing in (0,∞),
we need

˜̀
1,m+1 ≥

1

νn

∑

|i−j|=m

`ij

with the sharp inequality for at least one m if PN 6= P̃N .
In this way the problem becomes purely geometric
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we need

˜̀
1,m+1 ≥

1

νn

∑

|i−j|=m

`ij

with the sharp inequality for at least one m if PN 6= P̃N .
In this way the problem becomes purely geometric

The claim we made is then implied by the following result:

Proposition: The property D1
N,`(m) holds locally for

any m = 2, . . . , [12N ]
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Geometric reformulation, continued
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νn
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In this way the problem becomes purely geometric

The claim we made is then implied by the following result:

Proposition: The property D1
N,`(m) holds locally for

any m = 2, . . . , [12N ]

Remark: The argument carries through for point
interactions in R

3 because the Green’s function is
again convex and monotonous
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Local validity of D1
N,`(m)

We are looking for constrained local maxima of the function

fm : fm(y1, . . . , yN ) =
1

N

N
∑

i=1

|yi − yi+m|

with gi(y1, . . . , yn) := `− |yi − yi+1| = 0, i = 1, . . . , N . There
are in fact (N − 2)(d− 1)− 1 independent variables because
2d− 1 parameters are related to Euclidean transformations

It is straightforward to check that ∇jKm(y1, . . . , yN ) vanish
for a regular polygon, Km := fm +

∑N
r=1 λrgr, with all the

Lagrange multipliers taking the same value

λ =
σm

NΥm
with σm :=

sin2 πm
N

sin2 π
N

, Υm := `−1|ỹj − ỹj±m|
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Local validity of D1
N,`(m), continued

Negative definiteness of the Hessian needs more
computation. A simple estimate then shows that it is
sufficient to establish negative definiteness of the form

ξ 7→ Sm[ξ] :=
∑

j

{

|ξj − ξj+m|2 − σm|ξj − ξj+1|
2
}

on R
2N (the case m = 2 needs an additional argument)

The two parts can be simultaneously diagonalized; using
their ev’s one rewrites the condition as the inequality

Um−1

(

cos
π

N

)

>
∣

∣

∣
Um−1

(

cos
πr

N

)∣

∣

∣ , r = 2, . . . ,m− 1 ,

for Chebyshev polynomials of the second kind which can
be checked directly �
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Attractive δ loops
To formulate the continuous analogue we have first to give
meaning the formal operator

Hα,Γ = −∆ − αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is a loop in the plane; we suppose that it
has no zero-angle self-intersections

Hα,Γ can be naturally associated with the quadratic form,

ψ 7→ ‖∇ψ‖2
L2(R2) − α

∫

Γ
|ψ(x)|2dx ,

which is closed and below bounded in W 1,2(R2); the second
term makes sense in view of Sobolev embedding. This
definition also works for various “wilder” sets Γ
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Definition by boundary conditions
If Γ is piecewise smooth with no cusps we can use an
alternative definition by boundary conditions: Hα,Γ acts as
−∆ on functions from W 2,1

loc (R2 \ Γ), which are continuous
and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣

∣

∣

∣

+

−
∂ψ

∂n
(x)

∣

∣

∣

∣

−

= −αψ(x)

Remarks:

this definition has an illustrative meaning which
corresponds to a δ potential in the cross cut of Γ

using the quadratic form associated with Hα,Γ one can
check directly that the discrete spectrum is not void for
any α > 0; one has, of course, σess(Hα,Γ) = [0,∞)
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The loop result

Let Γ : [0, L] → R
2 be a closed curve, Γ(0) = Γ(L),

parametrized by its arc length, which is C1-smooth,
piecewise C2, and has no cusps. We will always consider
classes of Euclidean transforms of Γ; it is clear that the
circle class, C := { ((L/2π) cos s, (L/2π) sin s) : s ∈ [0, L] },
belongs to this family

Theorem [E.’05]: Within the specified class of curves,

ε1 ≡ ε1(α,Γ) := inf σ
(

Hα,Γ

)

is for any fixed α > 0 and L > 0 locally sharply maximized
by a circle, Γ = C.
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Birman-Schwinger reformulation
We employ the generalized Birman-Schwinger principle
[BEKŠ’94]. One starts from the free resolvent Rk

0 which is
an integral operator in L2(R2) with the kernel

Gk(x−y) =
i

4
H

(1)
0 (k|x−y|)

Then we introduce embedding operators associated with
Rk

0 for measures µ, ν which are the Dirac measure m
supported by Γ and the Lebesgue measure dx on R

2; by
Rk

ν,µ we denote the integral operator from L2(µ) to L2(ν)

with the kernel Gk, i.e. we suppose that

Rk
ν,µφ = Gk ∗ φµ

holds ν-a.e. for all φ ∈ D(Rk
ν,µ) ⊂ L2(µ)
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BS reformulation, continued
Proposition [BEKŠ’94, Posilicano’04]: (i) There is κ0 > 0

s.t. I−αRiκ
m,m on L2(m) has a bounded inverse for κ ≥ κ0

(ii) Let Im k > 0 and I − αRk
m,m be invertible with

Rk := Rk
0 + αRk

dx,m[I − αRk
m,m]−1Rk

m,dx

from L2(R2) to L2(R2) everywhere defined. Then k2 belongs
to ρ(Hα,Γ) and (Hα,Γ − k2)−1 = Rk

(iii) dim ker(Hα,Γ − k2) = dim ker(I − αRk
m,m) for Im k > 0

(iv) an ef of Hα,Γ associated with k2 can be written as

ψ(x) =

∫ L

0
Rk

dx,m(x, s)φ(s) ds ,

where φ is the corresponding ef of αRk
m,m with the ev one
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BS reformulation, continued
Putting k = iκ with κ > 0 we look thus for solutions to the
integral-operator equation

Rκ
α,Γφ = φ , Rκ

α,Γ(s, s′) :=
α

2π
K0(κ|Γ(s)−Γ(s′)|) ,

on L2([0, L]). The function κ 7→ Rκ
α,Γ is strictly decreasing in

(0,∞) and ‖Rκ
α,Γ‖ → 0 as κ→ ∞, hence we seek the point

where the largest ev of Rκ
α,Γ crosses one

We observe that this ev is simple, since Rκ
α,Γ is positivity

improving and ergodic. The ground state of Hα,Γ is, of
course, also simple. Using its rotational symmetry and the
claim (iv) of the Proposition we find that the respective
eigenfunction of Rκ̃1

α,C corresponding to the unit eigenvalue

is constant; we can choose it as φ̃1(s) = L−1/2.
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BS reformulation, continued
Then we have

maxσ(Rκ̃1

α,C) = (φ̃1,R
κ̃1

α,Cφ̃1) =
1

L

∫ L

0

∫ L

0
Rκ̃1

α,C(s, s
′) dsds′ ,

and on the other hand, for the same quantity referring to a
general Γ a simple variational estimate gives

maxσ(Rκ̃1

α,Γ) ≥ (φ̃1,R
κ̃1

α,Γφ̃1) =
1

L

∫ L

0

∫ L

0
Rκ̃1

α,Γ(s, s′) dsds′ .

Hence it is sufficient to show that
∫ L

0

∫ L

0
K0(κ|Γ(s)−Γ(s′)|) dsds′ ≥

∫ L

0

∫ L

0
K0(κ|C(s)−C(s′)|) dsds′

holds for all κ > 0 and Γ in the vicinity of C
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Convexity argument
By a simple change of variables the claim is equivalent to
positivity of the functional

Fκ(Γ) :=

∫ L/2

0

du

∫ L

0

ds

[

K0

(

κ|Γ(s+u)− Γ(s)|
)

−K0

(

κ|C(s+u)−C(s)|
)

]

;

the s-independent second term is equal to K0(
κL
π sin πu

L )

The (strict) convexity of K0 yields by means of Jensen
inequality the estimate

1

L
Fκ(Γ) ≥

∫ L/2

0

[

K0

(

κ

L

∫ L

0

|Γ(s+u) − Γ(s)|ds

)

− K0

(

κL

π
sin

πu

L

)

]

du ,

where the inequality is sharp unless
∫ L
0 |Γ(s+u) − Γ(s)|ds is

independent of s
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Monotonicity argument

Finally, we observe that K0 is decreasing in (0,∞), hence it
is sufficient to check the inequality

∫ L

0
|Γ(s+u) − Γ(s)| ds ≤

L2

π
sin

πu

L

for all u ∈ (0, 1
2L] and furthermore, to show that is sharp

unless Γ is a circle

Remark: There was nothing local so far, hence proving
the above inequality for all Γ would give the global result.
Likewise, we have not used the C2 smoothness
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Common feature: summing chord lengths

A
AA

�
��

�
��

A
AA

�
�

��

Q
Q

QQ

Q
Q

QQ

�
�

�� �� 

� �

�@
@

q
q

s + u

s

�
�

Both geometric reformulations have a common feature: for
polygons we sum diagonal lengths between vertices whose
indices differ by a fixed m, for a loop we integrate chord
lengths between points separated by a fixed arc length u
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Mean-chord inequalities
Consider a wider family of inequalities – without knowing
whether they are valid. Let Γ : [0, L] → R

2 be again a loop
in the plane, with unspecified regularity properties. Take all
the arcs of Γ having length u ∈ (0, 1

2L] and write

Cp
L(u) :

∫ L
0 |Γ(s+u) − Γ(s)|p ds ≤ L1+p

πp sinp πu
L , p > 0 ,

C−p
L (u) :

∫ L
0 |Γ(s+u) − Γ(s)|−p ds ≥ πpL1−p

sinp πu

L

, p > 0 .

A discrete counterpart for an equilateral polygon PN of N
vertices {yn}, side length ` > 0, and m = 1, . . . , [12N ] reads

Dp
N,`(m) :

∑N
n=1 |yn+m − yn|

p ≤
N`p sinp πm

N

sinp π

N

, p > 0 ,

D−p
N,`(m) :

∑N
n=1 |yn+m − yn|

−p ≥
N sinp π

N

`p sinp πm

N

, p > 0 .
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Observations

The right-hand sides correspond to the cases with
maximum symmetry, i.e. to the circle and regular
polygon P̃N , respectively

If p = 0 the inequalities turn into trivial identities

By scaling one can put, for instance, L = 1 and
` = 1 without loss if generality

In the polygon case it is clear that the claim may
not be true for p > 2 as the example of a rhomboid
shows: Dp

4,`(2) is equivalent to sinp φ+ cosp φ ≤ 21−(p/2)

for 0 < φ < π
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Properties and conjecture

Using convexity of x 7→ xα in (0,∞) for α > 1 we get

Proposition: Cp
L(u) ⇒ Cp′

L (u) and Dp
N,`(m) ⇒ Dp′

N,`(m) if
p > p′ > 0
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Using convexity of x 7→ xα in (0,∞) for α > 1 we get

Proposition: Cp
L(u) ⇒ Cp′

L (u) and Dp
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N,`(m) if
p > p′ > 0

Furthermore, Schwarz inequality implies

Proposition: Cp
L(u) ⇒ C−p

L (u) and Dp
N,`(m) ⇒ D−p

N,`(m)

for any p > 0

Conjecture: We expect the above inequalities to be valid
for any p ≤ 2, without substantial regularity restrictions in
the continuous case
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What is known for Dp
N,`(m)?

We have shown that D1
N,`(m) holds locally for any

m = 2, . . . , [12N ], i.e. in the vicinity of the regular polygon,
and consequently, D±p

N,`(m) holds locally for any p ∈ (0, 1]
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and consequently, D±p
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As for the global validity we have a particular result:

Proposition: D1
N,`(2) holds globally , and so does D±p

N,`(2)

for each p ∈ (0, 1]
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As for the global validity we have a particular result:

Proposition: D1
N,`(2) holds globally , and so does D±p

N,`(2)

for each p ∈ (0, 1]

Proof: Call βi the “bending angle” at i-th vertex, then the
mean length of the 2-diagonals is M2 = 2`

N

∑N
i=1 cos βi

2 . Using
strict convexity of the function u 7→ − cos u

2 in (−π, π) together
with ∑N

i=1 βi = 2πw, w ∈ Z, we find

−
N
∑

i=1

cos
βi

2
≥ −N cos

(

N
∑

i=1

βi

2

)

= −N cos
π

N
;

the inequality is sharp unless all the βi’s are the same �
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Cp
L(u) in terms of curvature

Under our regularity assumption we can characterize Γ by
its (signed) curvature γ := Γ̇2Γ̈1 − Γ̇1Γ̈2 which is piecewise
continuous in [0, L]. Up to Euclidean transf’s we have

Γ(s) =

(∫ s

0
cos β(s′) ds′,

∫ s

0
sin β(s′) ds′

)

,

where β(s) :=
∫ s
0 γ(s

′) ds′ is bending angle relative to s = 0
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Γ(s) =
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0
cos β(s′) ds′,

∫ s

0
sin β(s′) ds′

)

,

where β(s) :=
∫ s
0 γ(s

′) ds′ is bending angle relative to s = 0

To ensure that the curve is closed, we have to require
∫ L

0

cos β(s′) ds′ =

∫ L

0

sinβ(s′) ds′ = 0
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∫ s
0 γ(s

′) ds′ is bending angle relative to s = 0

To ensure that the curve is closed, we have to require
∫ L

0

cos β(s′) ds′ =

∫ L

0

sinβ(s′) ds′ = 0

The left-hand side of Cp
L(u) can be now rewritten as

cpΓ(u) =

∫ L

0
ds

[∫ s+u

s
ds′
∫ s+u

s
ds′′ cos(β(s′) − β(s′′)

]p/2
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Proof of C2
L(u)

It is sufficient to check that c2Γ(u) is maximized by the circle,
i.e. by β(s) = 2πs

L . Rearranging the integrals we get

c2Γ(u) =

∫ L

0
ds′
∫ s′+u

s′−u
ds′′

[

u− |s′− s′′|
]

cos(β(s′) − β(s′′))

Next we change the integration variables to x := s′− s′′

and z := 1
2(s′+ s′′), and use the even parity of the functions

involved to obtain

c2Γ(u) = 2

∫ u

0
dx (u− x)

∫ L

0
dz cos

(

∫ z+ 1

2
x

z− 1

2
x
γ(s) ds

)
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c2Γ(u) =

∫ L

0
ds′
∫ s′+u

s′−u
ds′′

[

u− |s′− s′′|
]

cos(β(s′) − β(s′′))

Next we change the integration variables to x := s′− s′′

and z := 1
2(s′+ s′′), and use the even parity of the functions

involved to obtain

c2Γ(u) = 2

∫ u

0
dx (u− x)

∫ L

0
dz cos

(

∫ z+ 1

2
x

z− 1

2
x
γ(s) ds

)
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A partial global result
In an analogy with D1

N,`(2) we can get a global result for u
small enough:

Proposition: Let Γ have no self-intersections and the
inequality β(z + 1

2u) − β(z − 1
2u) ≤

1
2π is valid for all

z ∈ [0, L], then C2
L(u) holds

Proof: We employ concavity of cosine in (0, 1
2π) obtaining

c2
Γ(u) ≤ 2L

∫ u

0

dx (u − x) cos

(

1

L

∫ L

0

dz

∫ z+ 1

2
x

z− 1

2
x

γ(s) ds

)

= 2L

∫ u

0

dx (u − x) cos
2πx

L
=

L3

π2
sin2 πu

L
,

since
∫ L
0 γ(s) ds = ±2π. The function z 7→

∫ z+ 1

2
x

z− 1

2
x
γ(s) ds is

constant for x ∈ (0, u) iff γ(·) is constant, hence the circle
gives a sharp maximum. �
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Local validity of C2
L(u)

Proposition: If Γ is C1, piecewise C2, the inequality
C2

L(u) holds locally for any L > 0 and u ∈ (0, 1
2L], and

consequently, C±p
L (u) holds locally for any p ∈ (0, 2]

Proof: Gentle deformations of C can be characterized by

γ(s) =
2π

L
+ g(s) ,

where g is a piecewise continuous function, small in
the sense that ‖g‖∞ � L−1 and satisfying the condition
∫ L
0 g(s) ds = 0. We employ the expansion

cos
2πx

L
− sin

2πx

L

∫ z+ 1

2
x

z− 1

2
x

g(s) ds −
1

2
cos

2πx

L

(

∫ z+ 1

2
x

z− 1

2
x

g(s) ds

)2

+ O(g3) ,

where the error term is a shorthand for O(‖Lg‖3
∞)
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Proof, continued
Substituting into the expression for c2Γ(u) we find that the
term linear in g vanishes, because

∫ L

0

dz

∫ z+ 1

2
x

z− 1

2
x

g(s) ds =

∫ L

0

ds g(s)

∫ s+ 1

2
x

s− 1

2
x

dz = 0 ,

Hence the deformation shows in the 2nd order term only,

c2Γ(u) =
L3

π2
sin2 πu

L
− Ig(u) + O(g3) ,

where

Ig(u) :=

∫ u

0

dx (u − x) cos
2πx

L

∫ L

0

dz

(

∫ z+ 1

2
x

z− 1

2
x

g(s) ds

)2

and we need to show that Ig(u) > 0 unless g = 0 identically.
Notice that for u ≤ 1

4L this property holds trivially
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Proof, continued
For u ∈ (1

4L,
1
2L] we notice that g is periodic and piecewise

C0, so we write it as Fourier series with zero term missing,

g(s) =

∞
∑

n=1

(

an sin
2πns

L
+ bn cos

2πns

L

)

,

where
∑

n(a2
n + b2n) <∞ (and small).

We have

∫ z+ 1

2
x

z− 1

2
x

g(s) ds =
L

π

∞
∑

n=1

1

n

(

an sin
2πnz

L
+ bn cos

2πnz

L

)

sin
πnx

L
,

so using orthogonality of the Fourier basis one gets

Ig(u) =

∫ u

0
dx (u− x) cos

2πx

L

∞
∑

n=1

L3

2π2

a2
n + b2n
n2

sin
πnx

L
.
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Proof, continued
Summation and integration can be interchanged giving

Ig(u) =
L5

2π4

∞
∑

n=1

a2
n + b2n
n2

Fn

(πu

L

)

,

where
Fn(v) :=

∫ v

0

(v − y) cos 2y sinny dy .

These integrals are equal to

F1(v) =
1

18
( 9 sin v − sin 3v − 6v) ,

F2(v) =
1

32
( 4v − sin 4v) ,

Fn(v) =
nv

n2 − 4
−

sin(n − 2)v

2(n − 2)2
−

sin(n + 2)v

2(n + 2)2
, n ≥ 3 .

It is easy to see that Fn(v) > 0 for v > 0 and n ≥ 2 and
F1(v) > 0 in the interval (0, π

2 ). Thus we have found that
Ig(u) > 0 unless all the coefficients an, bn are zero. �

UAB05 Conference “Differential Equations and Mathematical Physisc”; Birmingham, Al., April 1, 2005 – p.35/40



Proof, continued
Summation and integration can be interchanged giving

Ig(u) =
L5

2π4

∞
∑

n=1

a2
n + b2n
n2

Fn

(πu

L

)

,

where
Fn(v) :=

∫ v

0

(v − y) cos 2y sinny dy .

These integrals are equal to

F1(v) =
1

18
( 9 sin v − sin 3v − 6v) ,

F2(v) =
1

32
( 4v − sin 4v) ,

Fn(v) =
nv

n2 − 4
−

sin(n − 2)v

2(n − 2)2
−

sin(n + 2)v

2(n + 2)2
, n ≥ 3 .

It is easy to see that Fn(v) > 0 for v > 0 and n ≥ 2 and
F1(v) > 0 in the interval (0, π

2 ). Thus we have found that
Ig(u) > 0 unless all the coefficients an, bn are zero. �

UAB05 Conference “Differential Equations and Mathematical Physisc”; Birmingham, Al., April 1, 2005 – p.35/40



Remark

One may wonder what happened with the closedness
requirement,

∫ L
0 cos β(s′) ds′ =

∫ L
0 sin β(s′) ds′ = 0. We

proved the claim using the weaker property β(0) = β(L).
This is possible for small deformations only!

�
 �	Γ

As an illustration, consider Γ in the form of an “overgrown
paperclip” which satisfies the condition β(0) = β(L) but not
the closedness requirement. Making the U-turns small one
can get c2Γ(1

2L) arbitrarily close to 1
3L

3 which is, of course,
larger than L3/π2
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Global validity of C2
L(u): an example

Let Γ be a curve consisting of two circular segments of
radius R > L

4π , i.e. it is given by the equations

(

x±R cos
L

2R

)2

+ y2 = R2 for ± x ≥ 0

being “lens-shaped” for R > L
2π , “apple-shaped” for

L
4π < R < L

2π “apple-shaped” and a circle for R = L
2π

$
&

�
��
�



R > L

2π
L
4π < R < L

2π
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Example, continued
It is straightforward exercise to compute

c2
Γ(u) = 8R3

{

L

2R
sin2 u

2R
+ 4

( u

2R
cos

u

2R
− sin

u

2R

)

cos
L

4R
cos

L − 2u

4R

}

Let us plot c2Γ(u)
(

L3

π2 sin2 πu
L

)−1
for L = 1 w.r.t. R and u
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Some open questions

Prove D2
N,`(m), locally and globally

Prove global validity of Cp
L(u)

Prove higher-dimensional analogues of these
inequalities for loops in R

d (notice that the local
proof of D1

N,`(m) works for polygons in any R
d)

Prove higher-dimensional analogues of these
inequalities for codimension-one surfaces in R

d

Find maximizers in classes not containing C or PN

Find maximizers if the interaction strength changes
along the curve (or surface), so the problem ceases
to be purely geometric
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The talk was based on
[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38

(2005), to appear; math-ph/0406017

[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities,
J. Math. Phys. 46 (2005), to appear; math-ph/0501066

for more information see http://www.ujf.cas.cz/ ẽxner
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