Isoperimetric problems for singular interactions in the plane

Pavel Exner

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

UAB05 Conference "Differential Equations and Mathematical Physisc"; Birmingham, Al., April 1, 2005 - p.1/40

Motivation: some classical and less classical isoperimetric results

- Motivation: some classical and less classical isoperimetric results
- *Point-interaction polygons:* formulation of the problem

- Motivation: some classical and less classical isoperimetric results
- *Point-interaction polygons:* formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument

- Motivation: some classical and less classical isoperimetric results
- *Point-interaction polygons:* formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- *Existence of a maximizer:* a local result

- Motivation: some classical and less classical isoperimetric results
- *Point-interaction polygons:* formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- *Existence of a maximizer:* a local result
- A continuous analogue: δ interaction supported by a loop in the plane

- Motivation: some classical and less classical isoperimetric results
- *Point-interaction polygons:* formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- *Existence of a maximizer:* a local result
- A continuous analogue: δ interaction supported by a loop in the plane
- Mean-chord inequalities: what they are and some of their elementary properties

- Motivation: some classical and less classical isoperimetric results
- *Point-interaction polygons:* formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- *Existence of a maximizer:* a local result
- A continuous analogue: δ interaction supported by a loop in the plane
- Mean-chord inequalities: what they are and some of their elementary properties
- *Existence of a maximizer:* a local "continuous" result

- Motivation: some classical and less classical isoperimetric results
- *Point-interaction polygons:* formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- *Existence of a maximizer:* a local result
- A continuous analogue: δ interaction supported by a loop in the plane
- Mean-chord inequalities: what they are and some of their elementary properties
- *Existence of a maximizer:* a local "continuous" result
- Open questions

Motivation

Isoperimetric problems are traditional in mathematical physics. Recall, e.g., the *Faber-Krahn inequality* for the Dirichlet Laplacian $-\Delta_D^M$ in a compact $M \subset \mathbb{R}^2$: among all regions with a fixed area the ground state is *uniquely minimized by the circle*,

$$\inf \sigma(-\Delta_D^M) \ge \pi \, j_{0,1}^2 \, |M|^{-1}$$

(we restrict to two dimensions in this talk, the analogous results naturally hold for any compact $M \subset \mathbb{R}^d$, $d \ge 3$)

Motivation

Isoperimetric problems are traditional in mathematical physics. Recall, e.g., the *Faber-Krahn inequality* for the Dirichlet Laplacian $-\Delta_D^M$ in a compact $M \subset \mathbb{R}^2$: among all regions with a fixed area the ground state is *uniquely minimized by the circle*,

$$\inf \sigma(-\Delta_D^M) \ge \pi \, j_{0,1}^2 \, |M|^{-1}$$

(we restrict to two dimensions in this talk, the analogous results naturally hold for any compact $M \subset \mathbb{R}^d$, $d \ge 3$)

Another classical example is the *PPW conjecture* proved by *Ashbaugh* and *Benguria*: in the same situation we have

However, topology is important

If *M* is not simply connected, rotational symmetry may again lead to an extremum but its nature can be different. Recall a *a strip of fixed length and width* [E.-Harrell-Loss'99]

< ground state of

whenever the strip is not a circular annulus

However, topology is important

If *M* is not simply connected, rotational symmetry may again lead to an extremum but its nature can be different. Recall a *a strip of fixed length and width* [E.-Harrell-Loss'99]

ground state of

< ground state of

whenever the strip is not a circular annulus

Another example is a *circular obstacle in circular cavity* [Harrell-Kröger-Kurata'01]

ground state of

$$\overline{\bigcirc}$$

< ground state of

whenever the obstacle is off center

Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) *potential*. To see what will happen we will analyze two models:

Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) *potential*. To see what will happen we will analyze two models:

First we take the simplest possible example where the confinement is due to a *closed array of* δ *potentials*, so the Hamiltonian can be written formally as

$$-\Delta + \tilde{\alpha} \sum_{j=1}^{N} \delta(x - y_j) \quad \text{in } L^2(\mathbb{R}^2),$$

where the y_j 's are vertices of an *equilateral polygon* \mathcal{P}_N

Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) *potential*. To see what will happen we will analyze two models:

First we take the simplest possible example where the confinement is due to a *closed array of* δ *potentials*, so the Hamiltonian can be written formally as

$$-\Delta + \tilde{\alpha} \sum_{j=1}^{N} \delta(x - y_j) \quad \text{in } L^2(\mathbb{R}^2),$$

where the y_j 's are vertices of an *equilateral polygon* \mathcal{P}_N Next we will consider an attractive δ potential supported by a *closed loop* Γ *of fixed length*, so formally we have

$$-\Delta - \alpha \delta(x - \Gamma)$$
 in $L^2(\mathbb{R}^2)$

The two examples are related yet different in the character of the coupling, due the *codimension* of the interaction support. Roughly speaking, the 2D point interactions are a lot "more singular"

- The two examples are related yet different in the character of the coupling, due the *codimension* of the interaction support. Roughly speaking, the 2D point interactions are a lot "more singular"
- The Dirichlet annulus result suggests that for *strong attraction* the shape with the maximum symmetry, respectively a *regular polygon* $\tilde{\mathcal{P}}_N$ of the edge length ℓ with vertices lying on a circle of radius $\ell \left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a *circle* will be the ground-state maximizer

- The two examples are related yet different in the character of the coupling, due the *codimension* of the interaction support. Roughly speaking, the 2D point interactions are a lot "more singular"
- The Dirichlet annulus result suggests that for *strong attraction* the shape with the maximum symmetry, respectively a *regular polygon* $\tilde{\mathcal{P}}_N$ of the edge length ℓ with vertices lying on a circle of radius $\ell \left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a *circle* will be the ground-state maximizer
- It is not apriori clear whether the same is true for any coupling (in our models the ground state always exists)

- The two examples are related yet different in the character of the coupling, due the *codimension* of the interaction support. Roughly speaking, the 2D point interactions are a lot "more singular"
- The Dirichlet annulus result suggests that for *strong attraction* the shape with the maximum symmetry, respectively a *regular polygon* $\tilde{\mathcal{P}}_N$ of the edge length ℓ with vertices lying on a circle of radius $\ell \left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a *circle* will be the ground-state maximizer
- It is not apriori clear whether the same is true for any coupling (in our models the ground state always exists)
- There are extensions to *higher dimension*, which will mentioned later at appropriate places

A preliminary: 2D point interactions

Fixing the site y and "coupling constant" α we define them by b.c. which change *locally* the domain of $-\Delta$: we require

$$\psi(x) = -\frac{1}{2\pi} \log |x - y| L_0(\psi, y) + L_1(\psi, y) + \mathcal{O}(|x - y|),$$

where the generalized b.v. $L_0(\psi, y)$ and $L_1(\psi, y)$ satisfy

$$L_1(\psi, y) + 2\pi \alpha L_0(\psi, y) = 0, \quad \alpha \in \mathbb{R}$$

A preliminary: 2D point interactions

Fixing the site y and "coupling constant" α we define them by b.c. which change *locally* the domain of $-\Delta$: we require

$$\psi(x) = -\frac{1}{2\pi} \log |x - y| L_0(\psi, y) + L_1(\psi, y) + \mathcal{O}(|x - y|),$$

where the generalized b.v. $L_0(\psi, y)$ and $L_1(\psi, y)$ satisfy

$$L_1(\psi, y) + 2\pi \alpha L_0(\psi, y) = 0, \quad \alpha \in \mathbb{R}$$

In this way we define our Hamiltonian $-\Delta_{\alpha,\mathcal{P}_N}$ in $L^2(\mathbb{R}^2)$ with N point interactions. We have $\sigma_{\text{disc}}(-\Delta_{\alpha,\mathcal{P}_N}) \neq \emptyset$, i.e.

$$\epsilon_1 \equiv \epsilon_1(\alpha, \mathcal{P}_N) := \inf \sigma \left(-\Delta_{\alpha, \mathcal{P}_N} \right) < 0,$$

which is always true in two dimensions - cf. [AGHH'88, 05]

The point-interaction result

Theorem [E.'05]: Under the stated conditions, $\epsilon_1(\alpha, \mathcal{P}_N)$ is for fixed α and ℓ *locally sharply maximized* by a regular polygon, $\mathcal{P}_N = \tilde{\mathcal{P}}_N$.

The point-interaction result

Theorem [E.'05]: Under the stated conditions, $\epsilon_1(\alpha, \mathcal{P}_N)$ is for fixed α and ℓ *locally sharply maximized* by a regular polygon, $\mathcal{P}_N = \tilde{\mathcal{P}}_N$.

Proof will be reduced to the following *geometric problem:* Let \mathcal{P}_N be an equilateral polygon. Given a fixed integer $m = 2, \ldots, [\frac{1}{2}N]$ we denote by \mathcal{D}_m the *sum of lengths of all m*-*diagonals*, i.e. we put $\mathcal{D}_m := \sum_{i=1}^N |y_i - y_{i+m}|$

 $D^1_{N,\ell}(m)$ The quantity \mathcal{D}_m is, in the set of equilateral polygons $\mathcal{P}_N \subset \mathbb{R}^2$ with a fixed edge length $\ell > 0$, *uniquely maximized* by $\tilde{\mathcal{D}}_m$ referring to the (family of) regular polygon(s) $\tilde{\mathcal{P}}_N$.

Geometric reformulation

By Krein's formula, the spectral condition is reduced to an algebraic problem. Using $k = i\kappa$ with $\kappa > 0$, we find the ev's $-\kappa^2$ of our operator from

det $\Gamma_k = 0$ with $(\Gamma_k)_{ij} := (\alpha - \xi^k) \delta_{ij} - (1 - \delta_{ij}) g_{ij}^k$,

where the off-diagonal elements are $g_{ij}^k := G_k(y_i - y_j)$, or equivalently

$$g_{ij}^k = \frac{1}{2\pi} K_0(\kappa |y_i - y_j|)$$

and the regularized Green's function at the interaction site is

$$\xi^k = -\frac{1}{2\pi} \left(\ln \frac{\kappa}{2} + \gamma_{\rm E} \right)$$

The ground state refers to the point where the *lowest* ev of $\Gamma_{i\kappa}$ vanishes. Using smoothness and monotonicity of the κ -dependence we have to check that

 $\min \sigma(\Gamma_{i\tilde{\kappa}_1}) < \min \sigma(\tilde{\Gamma}_{i\tilde{\kappa}_1})$

holds locally for $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$, where $-\tilde{\kappa}_1^2 := \epsilon_1(\alpha, \tilde{\mathcal{P}}_N)$

The ground state refers to the point where the *lowest* ev of $\Gamma_{i\kappa}$ vanishes. Using smoothness and monotonicity of the κ -dependence we have to check that

 $\min \sigma(\Gamma_{i\tilde{\kappa}_1}) < \min \sigma(\tilde{\Gamma}_{i\tilde{\kappa}_1})$

holds locally for $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$, where $-\tilde{\kappa}_1^2 := \epsilon_1(\alpha, \tilde{\mathcal{P}}_N)$ There is a *one-to-one relation* between an ef $c = (c_1, \ldots, c_N)$ of $\Gamma_{i\kappa}$ at that point and the corresponding ef of $-\Delta_{\alpha,\mathcal{P}_N}$ given by $c \leftrightarrow \sum_{j=1}^N c_j G_{i\kappa}(\cdot - y_j)$, up to normalization. In particular, the lowest ev of $\tilde{\Gamma}_{i\tilde{\kappa}_1}$ corresponds to the eigenvector $\tilde{\phi}_1 = N^{-1/2}(1, \ldots, 1)$. Hence

$$\min \sigma(\tilde{\Gamma}_{i\tilde{\kappa}_1}) = (\tilde{\phi}_1, \tilde{\Gamma}_{i\tilde{\kappa}_1}\tilde{\phi}_1) = \alpha - \xi^{i\tilde{\kappa}_1} - \frac{2}{N} \sum_{i < i} \tilde{g}_{ij}^{i\tilde{\kappa}_1}$$

On the other hand, we have $\min \sigma(\Gamma_{i\tilde{\kappa}_1}) \leq (\tilde{\phi}_1, \Gamma_{i\tilde{\kappa}_1}\tilde{\phi}_1)$, and therefore it is sufficient to check that

$$\sum_{i < j} G_{i\kappa}(y_i - y_j) > \sum_{i < j} G_{i\kappa}(\tilde{y}_i - \tilde{y}_j)$$

holds for all $\kappa > 0$ and $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$.

On the other hand, we have $\min \sigma(\Gamma_{i\tilde{\kappa}_1}) \leq (\tilde{\phi}_1, \Gamma_{i\tilde{\kappa}_1}\tilde{\phi}_1)$, and therefore it is sufficient to check that

$$\sum_{i < j} G_{i\kappa}(y_i - y_j) > \sum_{i < j} G_{i\kappa}(\tilde{y}_i - \tilde{y}_j)$$

holds for all $\kappa > 0$ and $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$. Call $\ell_{ij} := |y_i - y_j|$ and
 $\tilde{\ell}_{ij} := |\tilde{y}_i - \tilde{y}_j|$ and define $F : (\mathbb{R}_+)^{N(N-3)/2} \to \mathbb{R}$ by

$$F(\{\ell_{ij}\}) := \sum_{m=2}^{[N/2]} \sum_{|i-j|=m} \left[G_{i\kappa}(\ell_{ij}) - G_{i\kappa}(\tilde{\ell}_{ij}) \right] ;$$

Using the *convexity* of $G_{i\kappa}(\cdot)$ for a fixed $\kappa > 0$ we get

$$F(\{\ell_{ij}\}) \ge \sum_{m=2}^{[N/2]} \nu_m \left[G_{i\kappa} \left(\frac{1}{\nu_m} \sum_{|i-j|=m} \ell_{ij} \right) - G_{i\kappa}(\tilde{\ell}_{1,1+m}) \right],$$

where ν_n is the number of the appropriate diagonals

Since $G_{i\kappa}(\cdot)$ is also *monotonously decreasing* in $(0, \infty)$, we need

$$\tilde{\ell}_{1,m+1} \ge \frac{1}{\nu_n} \sum_{|i-j|=m} \ell_{ij}$$

with the sharp inequality for at least one m if $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$. In this way the problem becomes purely geometric

Since $G_{i\kappa}(\cdot)$ is also *monotonously decreasing* in $(0, \infty)$, we need

$$\tilde{\ell}_{1,m+1} \ge \frac{1}{\nu_n} \sum_{|i-j|=m} \ell_{ij}$$

with the sharp inequality for at least one m if $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$. In this way the problem becomes purely geometric

The claim we made is then implied by the following result:

Proposition: The property $D^1_{N,\ell}(m)$ holds *locally* for any $m = 2, \ldots, [\frac{1}{2}N]$

Since $G_{i\kappa}(\cdot)$ is also *monotonously decreasing* in $(0, \infty)$, we need

$$\tilde{\ell}_{1,m+1} \ge \frac{1}{\nu_n} \sum_{|i-j|=m} \ell_{ij}$$

with the sharp inequality for at least one m if $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$. In this way the problem becomes purely geometric

The claim we made is then implied by the following result:

Proposition: The property $D^1_{N,\ell}(m)$ holds *locally* for any $m = 2, \ldots, [\frac{1}{2}N]$

Remark: The argument carries through *for point interactions in* \mathbb{R}^3 because the Green's function is again convex and monotonous

Local validity of $D^1_{N,\ell}(m)$

We are looking for constrained local maxima of the function

$$f_m: f_m(y_1, \dots, y_N) = \frac{1}{N} \sum_{i=1}^N |y_i - y_{i+m}|$$

with $g_i(y_1, \ldots, y_n) := \ell - |y_i - y_{i+1}| = 0$, $i = 1, \ldots, N$. There are in fact (N-2)(d-1) - 1 independent variables because 2d - 1 parameters are related to Euclidean transformations

Local validity of $D^1_{N,\ell}(m)$

We are looking for constrained local maxima of the function

$$f_m: f_m(y_1, \dots, y_N) = \frac{1}{N} \sum_{i=1}^N |y_i - y_{i+m}|$$

with $g_i(y_1, \ldots, y_n) := \ell - |y_i - y_{i+1}| = 0$, $i = 1, \ldots, N$. There are in fact (N-2)(d-1) - 1 independent variables because 2d - 1 parameters are related to Euclidean transformations It is straightforward to check that $\nabla_j K_m(y_1, \ldots, y_N)$ vanish for a regular polygon, $K_m := f_m + \sum_{r=1}^N \lambda_r g_r$, with all the Lagrange multipliers taking the same value

$$\lambda = \frac{\sigma_m}{N\Upsilon_m} \quad \text{with} \quad \sigma_m := \frac{\sin^2 \frac{\pi m}{N}}{\sin^2 \frac{\pi}{N}}, \ \Upsilon_m := \ell^{-1} |\tilde{y}_j - \tilde{y}_{j\pm m}|$$

Local validity of $D^1_{N,\ell}(m)$, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$\xi \mapsto S_m[\xi] := \sum_j \left\{ |\xi_j - \xi_{j+m}|^2 - \sigma_m |\xi_j - \xi_{j+1}|^2 \right\}$$

on \mathbb{R}^{2N} (the case m = 2 needs an additional argument)

Local validity of $D^1_{N,\ell}(m)$, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$\xi \mapsto S_m[\xi] := \sum_j \left\{ |\xi_j - \xi_{j+m}|^2 - \sigma_m |\xi_j - \xi_{j+1}|^2 \right\}$$

on \mathbb{R}^{2N} (the case m = 2 needs an additional argument)

The two parts can be simultaneously diagonalized; using their ev's one rewrites the condition as the inequality

$$U_{m-1}\left(\cos\frac{\pi}{N}\right) > \left|U_{m-1}\left(\cos\frac{\pi r}{N}\right)\right|, \ r = 2, \dots, m-1,$$

for Chebyshev polynomials of the second kind which can be checked directly $\ \square$

Attractive δ loops

To formulate the continuous analogue we have first to give meaning the formal operator

$$H_{\alpha,\Gamma} = -\Delta - \alpha\delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^2)$, where Γ is a loop in the plane; we suppose that it has no *zero-angle* self-intersections

Attractive δ loops

To formulate the continuous analogue we have first to give meaning the formal operator

$$H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^2)$, where Γ is a loop in the plane; we suppose that it has no *zero-angle* self-intersections

 $H_{\alpha,\Gamma}$ can be naturally associated with the quadratic form,

$$\psi \mapsto \|\nabla \psi\|_{L^2(\mathbb{R}^2)}^2 - \alpha \int_{\Gamma} |\psi(x)|^2 \mathrm{d}x,$$

which is closed and below bounded in $W^{1,2}(\mathbb{R}^2)$; the second term makes sense in view of Sobolev embedding. This definition also works for various "wilder" sets Γ

Definition by boundary conditions

If Γ is *piecewise smooth* with *no cusps* we can use an *alternative definition* by boundary conditions: $H_{\alpha,\Gamma}$ acts as $-\Delta$ on functions from $W_{\text{loc}}^{2,1}(\mathbb{R}^2 \setminus \Gamma)$, which are continuous and exhibit a normal-derivative jump,

$$\left. \frac{\partial \psi}{\partial n}(x) \right|_{+} - \left. \frac{\partial \psi}{\partial n}(x) \right|_{-} = -\alpha \psi(x)$$

Definition by boundary conditions

If Γ is *piecewise smooth* with *no cusps* we can use an *alternative definition* by boundary conditions: $H_{\alpha,\Gamma}$ acts as $-\Delta$ on functions from $W_{\text{loc}}^{2,1}(\mathbb{R}^2 \setminus \Gamma)$, which are continuous and exhibit a normal-derivative jump,

$$\left. \frac{\partial \psi}{\partial n}(x) \right|_{+} - \left. \frac{\partial \psi}{\partial n}(x) \right|_{-} = -\alpha \psi(x)$$

Remarks:

- this definition has an illustrative meaning which corresponds to a δ potential in the cross cut of Γ
- using the quadratic form associated with $H_{\alpha,\Gamma}$ one can check directly that the discrete spectrum *is not void* for any $\alpha > 0$; one has, of course, $\sigma_{ess}(H_{\alpha,\Gamma}) = [0,\infty)$

The loop result

Let $\Gamma : [0, L] \to \mathbb{R}^2$ be *a closed curve*, $\Gamma(0) = \Gamma(L)$, parametrized by its arc length, which is C^1 -smooth, piecewise C^2 , and has no cusps. We will always consider classes of Euclidean transforms of Γ ; it is clear that the circle class, $C := \{ ((L/2\pi) \cos s, (L/2\pi) \sin s) : s \in [0, L] \},$ belongs to this family

The loop result

Let $\Gamma : [0, L] \to \mathbb{R}^2$ be *a closed curve*, $\Gamma(0) = \Gamma(L)$, parametrized by its arc length, which is C^1 -smooth, *piecewise* C^2 , and has *no cusps*. We will always consider classes of Euclidean transforms of Γ ; it is clear that the *circle* class, $C := \{ ((L/2\pi) \cos s, (L/2\pi) \sin s) : s \in [0, L] \},$ belongs to this family

Theorem [E.'05]: Within the specified class of curves,

 $\epsilon_1 \equiv \epsilon_1(\alpha, \Gamma) := \inf \sigma \left(H_{\alpha, \Gamma} \right)$

is for any fixed $\alpha > 0$ and L > 0 *locally sharply maximized* by a circle, $\Gamma = C$.

Birman-Schwinger reformulation

We employ the generalized Birman-Schwinger principle [BEKŠ'94]. One starts from the free resolvent R_0^k which is an integral operator in $L^2(\mathbb{R}^2)$ with the kernel

$$G_k(x-y) = \frac{i}{4} H_0^{(1)}(k|x-y|)$$

Birman-Schwinger reformulation

We employ the generalized Birman-Schwinger principle [BEKŠ'94]. One starts from the free resolvent R_0^k which is an integral operator in $L^2(\mathbb{R}^2)$ with the kernel

$$G_k(x-y) = \frac{i}{4} H_0^{(1)}(k|x-y|)$$

Then we introduce embedding operators associated with R_0^k for measures μ, ν which are the Dirac measure m supported by Γ and the Lebesgue measure dx on \mathbb{R}^2 ; by $R_{\nu,\mu}^k$ we denote the integral operator from $L^2(\mu)$ to $L^2(\nu)$ with the kernel G_k , i.e. we suppose that

$$R^k_{\nu,\mu}\phi = G_k * \phi\mu$$

holds ν -a.e. for all $\phi \in D(R^k_{\nu,\mu}) \subset L^2(\mu)$

Proposition [BEKŠ'94, Posilicano'04]: (i) There is $\kappa_0 > 0$ s.t. $I - \alpha R_{m,m}^{i\kappa}$ on $L^2(m)$ has a bounded inverse for $\kappa \ge \kappa_0$ (ii) Let Im k > 0 and $I - \alpha R_{m,m}^k$ be invertible with $R^k := R_0^k + \alpha R_{dx,m}^k [I - \alpha R_{m,m}^k]^{-1} R_{m,dx}^k$ from $L^2(\mathbb{R}^2)$ to $L^2(\mathbb{R}^2)$ everywhere defined. Then k^2 belongs to $\rho(H_{\alpha,\Gamma})$ and $(H_{\alpha,\Gamma} - k^2)^{-1} = R^k$

(iii) dim ker $(H_{\alpha,\Gamma} - k^2)$ = dim ker $(I - \alpha R_{m,m}^k)$ for Im k > 0

(iv) an ef of $H_{\alpha,\Gamma}$ associated with k^2 can be written as

$$\psi(x) = \int_0^L R_{\mathrm{d}x,m}^k(x,s)\phi(s)\,\mathrm{d}s\,,$$

where ϕ is the corresponding of of $\alpha R_{m,m}^k$ with the ev one

Putting $k = i\kappa$ with $\kappa > 0$ we look thus for solutions to the integral-operator equation

$$\mathcal{R}^{\kappa}_{\alpha,\Gamma}\phi = \phi, \quad \mathcal{R}^{\kappa}_{\alpha,\Gamma}(s,s') := \frac{\alpha}{2\pi} K_0(\kappa|\Gamma(s) - \Gamma(s')|),$$

on $L^2([0, L])$. The function $\kappa \mapsto \mathcal{R}_{\alpha,\Gamma}^{\kappa}$ is strictly decreasing in $(0, \infty)$ and $\|\mathcal{R}_{\alpha,\Gamma}^{\kappa}\| \to 0$ as $\kappa \to \infty$, hence we seek the point where the *largest* ev of $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ crosses one

Putting $k = i\kappa$ with $\kappa > 0$ we look thus for solutions to the integral-operator equation

$$\mathcal{R}^{\kappa}_{\alpha,\Gamma}\phi = \phi, \quad \mathcal{R}^{\kappa}_{\alpha,\Gamma}(s,s') := \frac{\alpha}{2\pi} K_0(\kappa|\Gamma(s) - \Gamma(s')|),$$

on $L^2([0, L])$. The function $\kappa \mapsto \mathcal{R}_{\alpha,\Gamma}^{\kappa}$ is strictly decreasing in $(0, \infty)$ and $\|\mathcal{R}_{\alpha,\Gamma}^{\kappa}\| \to 0$ as $\kappa \to \infty$, hence we seek the point where the *largest* ev of $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ crosses one

We observe that this ev is *simple*, since $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ is positivity improving and ergodic. The ground state of $H_{\alpha,\Gamma}$ is, of course, also simple. Using its rotational symmetry and the claim (iv) of the Proposition we find that the respective eigenfunction of $\mathcal{R}_{\alpha,\mathcal{C}}^{\tilde{\kappa}_1}$ corresponding to the unit eigenvalue is constant; we can choose it as $\tilde{\phi}_1(s) = L^{-1/2}$.

Then we have

$$\max \sigma(\mathcal{R}_{\alpha,\mathcal{C}}^{\tilde{\kappa}_1}) = (\tilde{\phi}_1, \mathcal{R}_{\alpha,\mathcal{C}}^{\tilde{\kappa}_1} \tilde{\phi}_1) = \frac{1}{L} \int_0^L \int_0^L \mathcal{R}_{\alpha,\mathcal{C}}^{\tilde{\kappa}_1}(s, s') \, \mathrm{d}s \mathrm{d}s' \,,$$

and on the other hand, for the same quantity referring to a general Γ a simple variational estimate gives

$$\max \sigma(\mathcal{R}_{\alpha,\Gamma}^{\tilde{\kappa}_1}) \ge (\tilde{\phi}_1, \mathcal{R}_{\alpha,\Gamma}^{\tilde{\kappa}_1} \tilde{\phi}_1) = \frac{1}{L} \int_0^L \int_0^L \mathcal{R}_{\alpha,\Gamma}^{\tilde{\kappa}_1}(s, s') \, \mathrm{d}s \mathrm{d}s'.$$

Then we have

$$\max \sigma(\mathcal{R}_{\alpha,\mathcal{C}}^{\tilde{\kappa}_1}) = (\tilde{\phi}_1, \mathcal{R}_{\alpha,\mathcal{C}}^{\tilde{\kappa}_1} \tilde{\phi}_1) = \frac{1}{L} \int_0^L \int_0^L \mathcal{R}_{\alpha,\mathcal{C}}^{\tilde{\kappa}_1}(s, s') \, \mathrm{d}s \mathrm{d}s' \,,$$

and on the other hand, for the same quantity referring to a general Γ a simple variational estimate gives

$$\max \sigma(\mathcal{R}_{\alpha,\Gamma}^{\tilde{\kappa}_1}) \ge (\tilde{\phi}_1, \mathcal{R}_{\alpha,\Gamma}^{\tilde{\kappa}_1} \tilde{\phi}_1) = \frac{1}{L} \int_0^L \int_0^L \mathcal{R}_{\alpha,\Gamma}^{\tilde{\kappa}_1}(s, s') \, \mathrm{d}s \mathrm{d}s' \, .$$

Hence it is sufficient to show that

 $\int_0^L \int_0^L K_0(\kappa |\Gamma(s) - \Gamma(s')|) \, \mathrm{d}s \mathrm{d}s' \ge \int_0^L \int_0^L K_0(\kappa |\mathcal{C}(s) - \mathcal{C}(s')|) \, \mathrm{d}s \mathrm{d}s'$

holds for all $\kappa > 0$ and Γ in the vicinity of C

Convexity argument

By a simple change of variables the claim is equivalent to positivity of the functional

$$F_{\kappa}(\Gamma) := \int_0^{L/2} \mathrm{d}u \int_0^L \mathrm{d}s \left[K_0(\kappa |\Gamma(s+u) - \Gamma(s)|) - K_0(\kappa |\mathcal{C}(s+u) - \mathcal{C}(s)|) \right];$$

the *s*-independent second term is equal to $K_0(\frac{\kappa L}{\pi}\sin\frac{\pi u}{L})$

Convexity argument

By a simple change of variables the claim is equivalent to positivity of the functional

$$F_{\kappa}(\Gamma) := \int_0^{L/2} \mathrm{d}u \int_0^L \mathrm{d}s \left[K_0(\kappa |\Gamma(s+u) - \Gamma(s)|) - K_0(\kappa |\mathcal{C}(s+u) - \mathcal{C}(s)|) \right];$$

the *s*-independent second term is equal to $K_0(\frac{\kappa L}{\pi} \sin \frac{\pi u}{L})$ The (strict) convexity of K_s yields by means of lenson

The (strict) convexity of K_0 yields by means of Jensen inequality the estimate

$$\frac{1}{L}F_{\kappa}(\Gamma) \ge \int_{0}^{L/2} \left[K_0\left(\frac{\kappa}{L}\int_{0}^{L} |\Gamma(s+u) - \Gamma(s)| \mathrm{d}s\right) - K_0\left(\frac{\kappa L}{\pi}\sin\frac{\pi u}{L}\right) \right] \mathrm{d}u \,,$$

where the inequality is sharp unless $\int_0^L |\Gamma(s+u) - \Gamma(s)| ds$ is independent of s

Monotonicity argument

Finally, we observe that K_0 is decreasing in $(0, \infty)$, hence it is sufficient to check the inequality

$$\int_0^L |\Gamma(s+u) - \Gamma(s)| \, \mathrm{d}s \, \le \, \frac{L^2}{\pi} \sin \frac{\pi u}{L}$$

for all $u \in (0, \frac{1}{2}L]$ and furthermore, to show that is sharp unless Γ is a circle

Monotonicity argument

Finally, we observe that K_0 is decreasing in $(0, \infty)$, hence it is sufficient to check the inequality

$$\int_0^L |\Gamma(s+u) - \Gamma(s)| \, \mathrm{d}s \, \le \, \frac{L^2}{\pi} \sin \frac{\pi u}{L}$$

for all $u \in (0, \frac{1}{2}L]$ and furthermore, to show that is sharp unless Γ is a circle

Remark: There was nothing *local* so far, hence proving the above inequality for all Γ would give the global result. Likewise, we have not used the C^2 smoothness

Common feature: summing chord lengths

Both geometric reformulations have a common feature: for polygons *we sum diagonal lengths* between vertices whose indices differ by a fixed *m*, for a loop *we integrate chord lengths* between points separated by a fixed arc length *u*

Mean-chord inequalities

Consider a wider family of inequalities – without knowing whether they are valid. Let $\Gamma : [0, L] \to \mathbb{R}^2$ be again a loop in the plane, with unspecified regularity properties. Take all the arcs of Γ having length $u \in (0, \frac{1}{2}L]$ and write

$$C_{L}^{p}(u): \quad \int_{0}^{L} |\Gamma(s+u) - \Gamma(s)|^{p} \, \mathrm{d}s \leq \frac{L^{1+p}}{\pi^{p}} \sin^{p} \frac{\pi u}{L} \,, \quad p > 0 \,,$$

$$C_{L}^{-p}(u): \quad \int_{0}^{L} |\Gamma(s+u) - \Gamma(s)|^{-p} \, \mathrm{d}s \geq \frac{\pi^{p} L^{1-p}}{\sin^{p} \frac{\pi u}{L}} \,, \qquad p > 0 \,.$$

Mean-chord inequalities

Consider a wider family of inequalities – without knowing whether they are valid. Let $\Gamma : [0, L] \to \mathbb{R}^2$ be again a loop in the plane, with unspecified regularity properties. Take all the arcs of Γ having length $u \in (0, \frac{1}{2}L]$ and write

$$C_{L}^{p}(u): \quad \int_{0}^{L} |\Gamma(s+u) - \Gamma(s)|^{p} \, \mathrm{d}s \leq \frac{L^{1+p}}{\pi^{p}} \sin^{p} \frac{\pi u}{L} \,, \quad p > 0 \,,$$

$$C_{L}^{-p}(u): \quad \int_{0}^{L} |\Gamma(s+u) - \Gamma(s)|^{-p} \, \mathrm{d}s \geq \frac{\pi^{p} L^{1-p}}{\sin^{p} \frac{\pi u}{L}} \,, \qquad p > 0 \,.$$

A discrete counterpart for an equilateral polygon \mathcal{P}_N of N vertices $\{y_n\}$, side length $\ell > 0$, and $m = 1, \ldots, [\frac{1}{2}N]$ reads

$$D_{N,\ell}^{p}(m): \quad \sum_{n=1}^{N} |y_{n+m} - y_{n}|^{p} \leq \frac{N\ell^{p} \sin^{p} \frac{\pi m}{N}}{\sin^{p} \frac{\pi}{N}}, \quad p > 0,$$

$$D_{N,\ell}^{-p}(m): \quad \sum_{n=1}^{N} |y_{n+m} - y_{n}|^{-p} \geq \frac{N \sin^{p} \frac{\pi}{N}}{\ell^{p} \sin^{p} \frac{\pi m}{N}}, \quad p > 0.$$

• The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_N$, respectively

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_N$, respectively
- If p = 0 the inequalities turn into trivial identities

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_N$, respectively
- If p = 0 the inequalities turn into trivial identities
- By scaling one can put, for instance, L = 1 and $\ell = 1$ without loss if generality

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_N$, respectively
- If p = 0 the inequalities turn into trivial identities
- By scaling one can put, for instance, L = 1 and $\ell = 1$ without loss if generality
- In the polygon case it is clear that the claim *may not be true for* p > 2 as the example of a rhomboid shows: $D_{4,\ell}^p(2)$ is equivalent to $\sin^p \phi + \cos^p \phi \le 2^{1-(p/2)}$ for $0 < \phi < \pi$

Properties and conjecture

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha > 1$ we get

Proposition: $C_L^p(u) \Rightarrow C_L^{p'}(u)$ and $D_{N,\ell}^p(m) \Rightarrow D_{N,\ell}^{p'}(m)$ if p > p' > 0

Properties and conjecture

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha > 1$ we get

Proposition: $C_L^p(u) \Rightarrow C_L^{p'}(u)$ and $D_{N,\ell}^p(m) \Rightarrow D_{N,\ell}^{p'}(m)$ if p > p' > 0

Furthermore, Schwarz inequality implies

Proposition: $C_L^p(u) \Rightarrow C_L^{-p}(u)$ and $D_{N,\ell}^p(m) \Rightarrow D_{N,\ell}^{-p}(m)$ for any p > 0

Properties and conjecture

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha > 1$ we get

Proposition: $C_L^p(u) \Rightarrow C_L^{p'}(u)$ and $D_{N,\ell}^p(m) \Rightarrow D_{N,\ell}^{p'}(m)$ if p > p' > 0

Furthermore, Schwarz inequality implies

Proposition: $C_L^p(u) \Rightarrow C_L^{-p}(u)$ and $D_{N,\ell}^p(m) \Rightarrow D_{N,\ell}^{-p}(m)$ for any p > 0

Conjecture: We expect the above inequalities to be valid for any $p \le 2$, without substantial regularity restrictions in the continuous case

What is known for $D^p_{N,\ell}(m)$?

We have shown that $D^1_{N,\ell}(m)$ holds *locally* for any $m = 2, \ldots, [\frac{1}{2}N]$, i.e. in the vicinity of the regular polygon, and consequently, $D^{\pm p}_{N,\ell}(m)$ holds locally for any $p \in (0,1]$

What is known for $D^p_{N,\ell}(m)$?

We have shown that $D_{N,\ell}^1(m)$ holds *locally* for any $m = 2, \ldots, [\frac{1}{2}N]$, i.e. in the vicinity of the regular polygon, and consequently, $D_{N,\ell}^{\pm p}(m)$ holds locally for any $p \in (0,1]$ As for the *global validity* we have a particular result: **Proposition**: $D_{N,\ell}^1(2)$ holds *globally*, and so does $D_{N,\ell}^{\pm p}(2)$ for each $p \in (0,1]$

What is known for $D^p_{N,\ell}(m)$?

We have shown that $D^1_{N,\ell}(m)$ holds *locally* for any $m = 2, \ldots, \lfloor \frac{1}{2}N \rfloor$, i.e. in the vicinity of the regular polygon, and consequently, $D_{N,\ell}^{\pm p}(m)$ holds locally for any $p \in (0,1]$ As for the global validity we have a particular result: **Proposition**: $D^1_{N,\ell}(2)$ holds *globally*, and so does $D^{\pm p}_{N,\ell}(2)$ for each $p \in (0, 1]$ *Proof:* Call β_i the "bending angle" at *i*-th vertex, then the mean length of the 2-diagonals is $M_2 = \frac{2\ell}{N} \sum_{i=1}^N \cos \frac{\beta_i}{2}$. Using *strict convexity* of the function $u \mapsto -\cos \frac{u}{2}$ in $(-\pi, \pi)$ together with $\sum_{i=1}^{N} \beta_i = 2\pi w, w \in \mathbb{Z}$, we find

the inequality is sharp unless all the β_i 's are the same \Box

 $-\sum_{i=1}^{N} \cos \frac{\beta_i}{2} \ge -N \cos \left(\sum_{i=1}^{N} \frac{\beta_i}{2}\right) = -N \cos \frac{\pi}{N};$

$C_L^p(u)$ in terms of curvature

Under our regularity assumption we can characterize Γ by its (signed) *curvature* $\gamma := \dot{\Gamma}_2 \ddot{\Gamma}_1 - \dot{\Gamma}_1 \ddot{\Gamma}_2$ which is piecewise continuous in [0, L]. Up to Euclidean transf's we have

$$\Gamma(s) = \left(\int_0^s \cos\beta(s') \,\mathrm{d}s', \int_0^s \sin\beta(s') \,\mathrm{d}s'\right) \,,$$

where $\beta(s) := \int_0^s \gamma(s') ds'$ is bending angle relative to s = 0

$C_L^p(u)$ in terms of curvature

Under our regularity assumption we can characterize Γ by its (signed) *curvature* $\gamma := \dot{\Gamma}_2 \ddot{\Gamma}_1 - \dot{\Gamma}_1 \ddot{\Gamma}_2$ which is piecewise continuous in [0, L]. Up to Euclidean transf's we have

$$\Gamma(s) = \left(\int_0^s \cos\beta(s') \,\mathrm{d}s', \int_0^s \sin\beta(s') \,\mathrm{d}s'\right) \,,$$

where $\beta(s) := \int_0^s \gamma(s') ds'$ is bending angle relative to s = 0To ensure that the curve is closed, we have to require

$$\int_0^L \cos\beta(s') \,\mathrm{d}s' = \int_0^L \sin\beta(s') \,\mathrm{d}s' = 0$$

$C_L^p(u)$ in terms of curvature

Under our regularity assumption we can characterize Γ by its (signed) *curvature* $\gamma := \dot{\Gamma}_2 \ddot{\Gamma}_1 - \dot{\Gamma}_1 \ddot{\Gamma}_2$ which is piecewise continuous in [0, L]. Up to Euclidean transf's we have

$$\Gamma(s) = \left(\int_0^s \cos\beta(s') \,\mathrm{d}s', \int_0^s \sin\beta(s') \,\mathrm{d}s'\right) \,,$$

where $\beta(s) := \int_0^s \gamma(s') ds'$ is bending angle relative to s = 0To ensure that the curve is closed, we have to require

$$\int_0^L \cos\beta(s') \,\mathrm{d}s' = \int_0^L \sin\beta(s') \,\mathrm{d}s' = 0$$

The left-hand side of $C_L^p(u)$ can be now rewritten as

$$c_{\Gamma}^{p}(u) = \int_{0}^{L} \mathrm{d}s \left[\int_{s}^{s+u} \mathrm{d}s' \int_{s}^{s+u} \mathrm{d}s'' \cos(\beta(s') - \beta(s'')) \right]^{p/2}$$

Proof of $C_L^2(u)$

It is sufficient to check that $c_{\Gamma}^2(u)$ is maximized by the circle, i.e. by $\beta(s) = \frac{2\pi s}{L}$. Rearranging the integrals we get

$$c_{\Gamma}^{2}(u) = \int_{0}^{L} \mathrm{d}s' \int_{s'-u}^{s'+u} \mathrm{d}s'' \left[u - |s'-s''| \right] \, \cos(\beta(s') - \beta(s''))$$

Proof of $C_L^2(u)$

It is sufficient to check that $c_{\Gamma}^2(u)$ is maximized by the circle, i.e. by $\beta(s) = \frac{2\pi s}{L}$. Rearranging the integrals we get

$$c_{\Gamma}^{2}(u) = \int_{0}^{L} \mathrm{d}s' \int_{s'-u}^{s'+u} \mathrm{d}s'' \left[u - |s'-s''| \right] \cos(\beta(s') - \beta(s''))$$

Next we change the integration variables to x := s' - s''and $z := \frac{1}{2}(s' + s'')$, and use the even parity of the functions involved to obtain

$$c_{\Gamma}^{2}(u) = 2 \int_{0}^{u} \mathrm{d}x \left(u - x\right) \int_{0}^{L} \mathrm{d}z \, \cos\left(\int_{z - \frac{1}{2}x}^{z + \frac{1}{2}x} \gamma(s) \, \mathrm{d}s\right)$$

A partial global result

In an analogy with $D^1_{N,\ell}(2)$ we can get a global result for u small enough:

Proposition: Let Γ have no self-intersections and the inequality $\beta(z + \frac{1}{2}u) - \beta(z - \frac{1}{2}u) \le \frac{1}{2}\pi$ is valid for all $z \in [0, L]$, then $C_L^2(u)$ holds

A partial global result

In an analogy with $D^1_{N,\ell}(2)$ we can get a global result for u small enough:

Proposition: Let Γ have no self-intersections and the inequality $\beta(z + \frac{1}{2}u) - \beta(z - \frac{1}{2}u) \leq \frac{1}{2}\pi$ is valid for all $z \in [0, L]$, then $C_L^2(u)$ holds

Proof: We employ concavity of cosine in $(0, \frac{1}{2}\pi)$ obtaining

$$\begin{split} c_{\Gamma}^{2}(u) &\leq 2L \int_{0}^{u} \mathrm{d}x \, (u-x) \cos \left(\frac{1}{L} \int_{0}^{L} \mathrm{d}z \, \int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} \gamma(s) \, \mathrm{d}s \right) \\ &= 2L \int_{0}^{u} \mathrm{d}x \, (u-x) \cos \frac{2\pi x}{L} = \frac{L^{3}}{\pi^{2}} \sin^{2} \frac{\pi u}{L} \,, \\ \text{since } \int_{0}^{L} \gamma(s) \, \mathrm{d}s = \pm 2\pi. \text{ The function } z \mapsto \int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} \gamma(s) \, \mathrm{d}s \text{ is } \\ \text{constant for } x \in (0, u) \text{ iff } \gamma(\cdot) \text{ is constant, hence the circle } \\ \text{-gives a sharp maximum. } \Box \end{split}$$

Local validity of $C_L^2(u)$

Proposition: If Γ is C^1 , piecewise C^2 , the inequality $C_L^2(u)$ holds locally for any L > 0 and $u \in (0, \frac{1}{2}L]$, and consequently, $C_L^{\pm p}(u)$ holds locally for any $p \in (0, 2]$

Local validity of $C_L^2(u)$

Proposition: If Γ is C^1 , piecewise C^2 , the inequality $C_L^2(u)$ holds locally for any L > 0 and $u \in (0, \frac{1}{2}L]$, and consequently, $C_L^{\pm p}(u)$ holds locally for any $p \in (0, 2]$ *Proof:* Gentle deformations of C can be characterized by

$$\gamma(s) = \frac{2\pi}{L} + g(s) \,,$$

where g is a piecewise continuous function, small in the sense that $||g||_{\infty} \ll L^{-1}$ and satisfying the condition $\int_0^L g(s) \, ds = 0$. We employ the expansion

$$\cos\frac{2\pi x}{L} - \sin\frac{2\pi x}{L} \int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \,\mathrm{d}s - \frac{1}{2}\cos\frac{2\pi x}{L} \left(\int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \,\mathrm{d}s\right)^2 + \mathcal{O}(g^3) \,,$$

where the error term is a shorthand for $\mathcal{O}(\|Lg\|_{\infty}^3)$

Substituting into the expression for $c_{\Gamma}^2(u)$ we find that the term linear in g vanishes, because

$$\int_0^L \mathrm{d}z \int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \,\mathrm{d}s = \int_0^L \mathrm{d}s \,g(s) \int_{s-\frac{1}{2}x}^{s+\frac{1}{2}x} \mathrm{d}z = 0\,,$$

Substituting into the expression for $c_{\Gamma}^2(u)$ we find that the term linear in g vanishes, because

$$\int_0^L \mathrm{d}z \int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \,\mathrm{d}s = \int_0^L \mathrm{d}s \,g(s) \int_{s-\frac{1}{2}x}^{s+\frac{1}{2}x} \mathrm{d}z = 0\,,$$

Hence the deformation shows in the 2nd order term only,

$$c_{\Gamma}^{2}(u) = \frac{L^{3}}{\pi^{2}} \sin^{2} \frac{\pi u}{L} - I_{g}(u) + \mathcal{O}(g^{3}),$$

where

$$I_g(u) := \int_0^u dx \, (u-x) \, \cos \frac{2\pi x}{L} \int_0^L dz \, \left(\int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \, ds \right)^2$$

and we need to show that $I_g(u) > 0$ unless g = 0 identically. Notice that for $u \leq \frac{1}{4}L$ this property holds trivially

For $u \in (\frac{1}{4}L, \frac{1}{2}L]$ we notice that g is periodic and piecewise C^0 , so we write it as Fourier series with zero term missing,

$$g(s) = \sum_{n=1}^{\infty} \left(a_n \sin \frac{2\pi ns}{L} + b_n \cos \frac{2\pi ns}{L} \right) \,,$$

where $\sum_{n}(a_{n}^{2}+b_{n}^{2})<\infty$ (and small).

For $u \in (\frac{1}{4}L, \frac{1}{2}L]$ we notice that g is periodic and piecewise C^0 , so we write it as Fourier series with zero term missing,

$$g(s) = \sum_{n=1}^{\infty} \left(a_n \sin \frac{2\pi ns}{L} + b_n \cos \frac{2\pi ns}{L} \right) \,,$$

where $\sum_{n}(a_{n}^{2}+b_{n}^{2})<\infty$ (and small). We have

$$\int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \, \mathrm{d}s = \frac{L}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(a_n \sin \frac{2\pi nz}{L} + b_n \cos \frac{2\pi nz}{L} \right) \sin \frac{\pi nx}{L} \,,$$

so using orthogonality of the Fourier basis one gets

$$I_g(u) = \int_0^u \mathrm{d}x \,(u-x) \,\cos\frac{2\pi x}{L} \sum_{n=1}^\infty \frac{L^3}{2\pi^2} \,\frac{a_n^2 + b_n^2}{n^2} \,\sin\frac{\pi n x}{L}$$

Summation and integration can be interchanged giving

$$I_g(u) = \frac{L^5}{2\pi^4} \sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{n^2} F_n\left(\frac{\pi u}{L}\right) ,$$
$$F_n(v) := \int_0^v (v - y) \cos 2y \sin ny \, dy .$$

where

Summation and integration can be interchanged giving

$$I_g(u) = \frac{L^5}{2\pi^4} \sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{n^2} F_n\left(\frac{\pi u}{L}\right) ,$$
$$F_n(v) := \int_0^v (v - y) \cos 2y \sin ny \, \mathrm{d}y .$$

where

These integrals are equal to

$$F_{1}(v) = \frac{1}{18} (9 \sin v - \sin 3v - 6v),$$

$$F_{2}(v) = \frac{1}{32} (4v - \sin 4v),$$

$$F_{n}(v) = \frac{nv}{n^{2} - 4} - \frac{\sin(n - 2)v}{2(n - 2)^{2}} - \frac{\sin(n + 2)v}{2(n + 2)^{2}}, \quad n \ge 3.$$

It is easy to see that $F_n(v) > 0$ for v > 0 and $n \ge 2$ and $F_1(v) > 0$ in the interval $(0, \frac{\pi}{2})$. Thus we have found that $I_g(u) > 0$ unless all the coefficients a_n, b_n are zero. \Box

Remark

One may wonder what happened with the *closedness* requirement, $\int_0^L \cos \beta(s') ds' = \int_0^L \sin \beta(s') ds' = 0$. We proved the claim using the weaker property $\beta(0) = \beta(L)$. This is possible *for small deformations only!*

Remark

One may wonder what happened with the *closedness* requirement, $\int_0^L \cos \beta(s') ds' = \int_0^L \sin \beta(s') ds' = 0$. We proved the claim using the weaker property $\beta(0) = \beta(L)$. This is possible *for small deformations only!*

As an illustration, consider Γ in the form of an "overgrown paperclip" which satisfies the condition $\beta(0) = \beta(L)$ but not the *closedness requirement*. Making the U-turns small one can get $c_{\Gamma}^2(\frac{1}{2}L)$ arbitrarily close to $\frac{1}{3}L^3$ which is, of course, larger than L^3/π^2

Global validity of $C_L^2(u)$: an example

Let Γ be a curve consisting of two circular segments of radius $R > \frac{L}{4\pi}$, i.e. it is given by the equations

$$\left(x \pm R\cos\frac{L}{2R}\right)^2 + y^2 = R^2 \quad \text{for} \quad \pm x \ge 0$$

being "lens-shaped" for $R > \frac{L}{2\pi}$, "apple-shaped" for $\frac{L}{4\pi} < R < \frac{L}{2\pi}$ "apple-shaped" and a circle for $R = \frac{L}{2\pi}$

Example, continued

It is straightforward exercise to compute

$$c_{\Gamma}^{2}(u) = 8R^{3} \left\{ \frac{L}{2R} \sin^{2} \frac{u}{2R} + 4 \left(\frac{u}{2R} \cos \frac{u}{2R} - \sin \frac{u}{2R} \right) \cos \frac{L}{4R} \cos \frac{L-2u}{4R} \right\}$$

Let us plot $c_{\Gamma}^{2}(u) \left(\frac{L^{3}}{\pi^{2}} \sin^{2} \frac{\pi u}{L} \right)^{-1}$ for $L = 1$ w.r.t. R and u

Example, continued

It is straightforward exercise to compute

$$c_{\Gamma}^{2}(u) = 8R^{3} \left\{ \frac{L}{2R} \sin^{2} \frac{u}{2R} + 4 \left(\frac{u}{2R} \cos \frac{u}{2R} - \sin \frac{u}{2R} \right) \cos \frac{L}{4R} \cos \frac{L-2u}{4R} \right\}$$

Let us plot $c_{\Gamma}^{2}(u) \left(\frac{L^{3}}{\pi^{2}} \sin^{2} \frac{\pi u}{L} \right)^{-1}$ for $L = 1$ w.r.t. R and u

Prove $D^2_{N,\ell}(m)$, locally and globally

- Prove $D^2_{N,\ell}(m)$, locally and globally
- Prove global validity of $C_L^p(u)$

- Prove $D^2_{N,\ell}(m)$, locally and globally
- Prove global validity of $C_L^p(u)$
- Prove *higher-dimensional analogues* of these inequalities for loops in \mathbb{R}^d (notice that the local proof of $D^1_{N,\ell}(m)$ works for polygons in any \mathbb{R}^d)

- Prove $D^2_{N,\ell}(m)$, locally and globally
- Prove global validity of $C_L^p(u)$
- Prove *higher-dimensional analogues* of these inequalities for loops in \mathbb{R}^d (notice that the local proof of $D^1_{N,\ell}(m)$ works for polygons in any \mathbb{R}^d)
- Prove higher-dimensional analogues of these inequalities for codimension-one surfaces in \mathbb{R}^d

- Prove $D^2_{N,\ell}(m)$, locally and globally
- Prove global validity of $C_L^p(u)$
- Prove *higher-dimensional analogues* of these inequalities for loops in \mathbb{R}^d (notice that the local proof of $D^1_{N,\ell}(m)$ works for polygons in any \mathbb{R}^d)
- Prove higher-dimensional analogues of these inequalities for codimension-one surfaces in \mathbb{R}^d
- Find maximizers in classes not containing C or \mathcal{P}_N

- Prove $D^2_{N,\ell}(m)$, locally and globally
- Prove global validity of $C_L^p(u)$
- Prove *higher-dimensional analogues* of these inequalities for loops in \mathbb{R}^d (notice that the local proof of $D^1_{N,\ell}(m)$ works for polygons in any \mathbb{R}^d)
- Prove higher-dimensional analogues of these inequalities for codimension-one surfaces in \mathbb{R}^d
- Find maximizers in classes not containing C or \mathcal{P}_N
- Find maximizers if the *interaction strength changes* along the curve (or surface), so the problem ceases to be purely geometric

The talk was based on

[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38 (2005), to appear; math-ph/0406017

[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities, *J. Math. Phys.* 46 (2005), to appear; math-ph/0501066

The talk was based on

[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38 (2005), to appear; math-ph/0406017

[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities, *J. Math. Phys.* 46 (2005), to appear; math-ph/0501066

for more information see *http://www.ujf.cas.cz/~exner*

