Isoperimetric problems for singular interactions in the plane

Pavel Exner
exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences
and Doppler Institute, Czech Technical University

Talk overview

- Motivation: some classical and less classical isoperimetric results

Talk overview

- Motivation: some classical and less classical isoperimetric results
- Point-interaction polygons: formulation of the problem

Talk overview

- Motivation: some classical and less classical isoperimetric results
- Point-interaction polygons: formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument

Talk overview

- Motivation: some classical and less classical isoperimetric results
- Point-interaction polygons: formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- Existence of a maximizer: a local result

Talk overview

- Motivation: some classical and less classical isoperimetric results
- Point-interaction polygons: formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- Existence of a maximizer: a local result
- A continuous analogue: δ interaction supported by a loop in the plane

Talk overview

- Motivation: some classical and less classical isoperimetric results
- Point-interaction polygons: formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- Existence of a maximizer: a local result
- A continuous analogue: δ interaction supported by a loop in the plane
- Mean-chord inequalities: what they are and some of their elementary properties

Talk overview

- Motivation: some classical and less classical isoperimetric results
- Point-interaction polygons: formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- Existence of a maximizer: a local result
- A continuous analogue: δ interaction supported by a loop in the plane
- Mean-chord inequalities: what they are and some of their elementary properties
- Existence of a maximizer: a local "continuous" result

Talk overview

- Motivation: some classical and less classical isoperimetric results
- Point-interaction polygons: formulation of the problem
- A geometric reformulation using Krein's formula (or BS principle) and a convexity argument
- Existence of a maximizer: a local result
- A continuous analogue: δ interaction supported by a loop in the plane
- Mean-chord inequalities: what they are and some of their elementary properties
- Existence of a maximizer: a local "continuous" result
- Open questions

Motivation

Isoperimetric problems are traditional in mathematical physics. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta_{D}^{M}$ in a compact $M \subset \mathbb{R}^{2}$: among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$
\inf \sigma\left(-\Delta_{D}^{M}\right) \geq \pi j_{0,1}^{2}|M|^{-1}
$$

(we restrict to two dimensions in this talk, the analogous results naturally hold for any compact $M \subset \mathbb{R}^{d}, d \geq 3$)

Motivation

Isoperimetric problems are traditional in mathematical physics. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta_{D}^{M}$ in a compact $M \subset \mathbb{R}^{2}$: among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$
\inf \sigma\left(-\Delta_{D}^{M}\right) \geq \pi j_{0,1}^{2}|M|^{-1}
$$

(we restrict to two dimensions in this talk, the analogous results naturally hold for any compact $M \subset \mathbb{R}^{d}, d \geq 3$)
Another classical example is the PPW conjecture proved by Ashbaugh and Benguria: in the same situation we have

$$
\frac{\lambda_{2}(M)}{\lambda_{1}(M)} \leq\left(\frac{j_{1,1}}{j_{0,1}}\right)^{2}
$$

However, topology is important

If M is not simply connected, rotational symmetry may again lead to an extremum but its nature can be different. Recall a a strip of fixed length and width [E.-Harrell-Loss'99]

whenever the strip is not a circular annulus

However, topology is important

If M is not simply connected, rotational symmetry may again lead to an extremum but its nature can be different. Recall a a strip of fixed length and width [E.-Harrell-Loss'99]

whenever the strip is not a circular annulus
Another example is a circular obstacle in circular cavity
[Harrell-Kröger-Kurata'01]

whenever the obstacle is off center

Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) potential. To see what will happen we will analyze two models:

Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) potential. To see what will happen we will analyze two models:
First we take the simplest possible example where the confinement is due to a closed array of δ potentials, so the Hamiltonian can be written formally as

$$
-\Delta+\tilde{\alpha} \sum_{j=1}^{N} \delta\left(x-y_{j}\right) \quad \text { in } L^{2}\left(\mathbb{R}^{2}\right)
$$

where the y_{j} 's are vertices of an equilateral polygon \mathcal{P}_{N}

Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) potential. To see what will happen we will analyze two models:
First we take the simplest possible example where the confinement is due to a closed array of δ potentials, so the Hamiltonian can be written formally as

$$
-\Delta+\tilde{\alpha} \sum_{j=1}^{N} \delta\left(x-y_{j}\right) \quad \text { in } L^{2}\left(\mathbb{R}^{2}\right)
$$

where the y_{j} 's are vertices of an equilateral polygon \mathcal{P}_{N}
Next we will consider an attractive δ potential supported by a closed loop Г of fixed length, so formally we have

$$
-\Delta-\alpha \delta(x-\Gamma) \quad \text { in } L^{2}\left(\mathbb{R}^{2}\right)
$$

Remarks

- The two examples are related yet different in the character of the coupling, due the codimension of the interaction support. Roughly speaking, the 2D point interactions are a lot "more singular"

Remarks

- The two examples are related yet different in the character of the coupling, due the codimension of the interaction support. Roughly speaking, the 2D point interactions are a lot "more singular"
- The Dirichlet annulus result suggests that for strong attraction the shape with the maximum symmetry, respectively a regular polygon $\tilde{\mathcal{P}}_{N}$ of the edge length ℓ with vertices lying on a circle of radius $\ell\left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a circle will be the ground-state maximizer

Remarks

- The two examples are related yet different in the character of the coupling, due the codimension of the interaction support. Roughly speaking, the 2D point interactions are a lot "more singular"
- The Dirichlet annulus result suggests that for strong attraction the shape with the maximum symmetry, respectively a regular polygon $\tilde{\mathcal{P}}_{N}$ of the edge length ℓ with vertices lying on a circle of radius $\ell\left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a circle will be the ground-state maximizer
- It is not apriori clear whether the same is true for any coupling (in our models the ground state always exists)

Remarks

- The two examples are related yet different in the character of the coupling, due the codimension of the interaction support. Roughly speaking, the 2D point interactions are a lot "more singular"
- The Dirichlet annulus result suggests that for strong attraction the shape with the maximum symmetry, respectively a regular polygon $\tilde{\mathcal{P}}_{N}$ of the edge length ℓ with vertices lying on a circle of radius $\ell\left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a circle will be the ground-state maximizer
- It is not apriori clear whether the same is true for any coupling (in our models the ground state always exists)
- There are extensions to higher dimension, which will mentioned later at appropriate places

A preliminary: 2D point interactions

Fixing the site y and "coupling constant" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-y| L_{0}(\psi, y)+L_{1}(\psi, y)+\mathcal{O}(|x-y|)
$$

where the generalized b.v. $L_{0}(\psi, y)$ and $L_{1}(\psi, y)$ satisfy

$$
L_{1}(\psi, y)+2 \pi \alpha L_{0}(\psi, y)=0, \quad \alpha \in \mathbb{R}
$$

A preliminary: 2D point interactions

Fixing the site y and "coupling constant" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-y| L_{0}(\psi, y)+L_{1}(\psi, y)+\mathcal{O}(|x-y|)
$$

where the generalized b.v. $L_{0}(\psi, y)$ and $L_{1}(\psi, y)$ satisfy

$$
L_{1}(\psi, y)+2 \pi \alpha L_{0}(\psi, y)=0, \quad \alpha \in \mathbb{R}
$$

In this way we define our Hamiltonian $-\Delta_{\alpha, \mathcal{P}_{N}}$ in $L^{2}\left(\mathbb{R}^{2}\right)$ with N point interactions. We have $\sigma_{\text {disc }}\left(-\Delta_{\alpha, \mathcal{P}_{N}}\right) \neq \emptyset$, i.e.

$$
\epsilon_{1} \equiv \epsilon_{1}\left(\alpha, \mathcal{P}_{N}\right):=\inf \sigma\left(-\Delta_{\alpha, \mathcal{P}_{N}}\right)<0,
$$

which is always true in two dimensions - cf. [AGHH'88, 05]

The point-interaction result

Theorem [E.'05]: Under the stated conditions, $\epsilon_{1}\left(\alpha, \mathcal{P}_{N}\right)$ is for fixed α and ℓ locally sharply maximized by a regular polygon, $\mathcal{P}_{N}=\tilde{\mathcal{P}}_{N}$.

The point-interaction result

Theorem [E.'05]: Under the stated conditions, $\epsilon_{1}\left(\alpha, \mathcal{P}_{N}\right)$ is for fixed α and ℓ locally sharply maximized by a regular polygon, $\mathcal{P}_{N}=\tilde{\mathcal{P}}_{N}$.

Proof will be reduced to the following geometric problem: Let \mathcal{P}_{N} be an equilateral polygon. Given a fixed integer $m=2, \ldots,\left[\frac{1}{2} N\right]$ we denote by \mathcal{D}_{m} the sum of lengths of all m-diagonals, i.e. we put $\mathcal{D}_{m}:=\sum_{i=1}^{N}\left|y_{i}-y_{i+m}\right|$
$D_{N, \ell}^{1}(m)$ The quantity \mathcal{D}_{m} is, in the set of equilateral polygons $\mathcal{P}_{N} \subset \mathbb{R}^{2}$ with a fixed edge length $\ell>0$, uniquely maximized by $\tilde{\mathcal{D}}_{m}$ referring to the (family of) regular polygon(s) $\tilde{\mathcal{P}}_{N}$.

Geometric reformulation

By Krein's formula, the spectral condition is reduced to an algebraic problem. Using $k=i \kappa$ with $\kappa>0$, we find the ev's $-\kappa^{2}$ of our operator from

$$
\operatorname{det} \Gamma_{k}=0 \quad \text { with } \quad\left(\Gamma_{k}\right)_{i j}:=\left(\alpha-\xi^{k}\right) \delta_{i j}-\left(1-\delta_{i j}\right) g_{i j}^{k},
$$

where the off-diagonal elements are $g_{i j}^{k}:=G_{k}\left(y_{i}-y_{j}\right)$, or equivalently

$$
g_{i j}^{k}=\frac{1}{2 \pi} K_{0}\left(\kappa\left|y_{i}-y_{j}\right|\right)
$$

and the regularized Green's function at the interaction site is

$$
\xi^{k}=-\frac{1}{2 \pi}\left(\ln \frac{\kappa}{2}+\gamma_{\mathrm{E}}\right)
$$

Geometric reformulation, continued

The ground state refers to the point where the lowest ev of $\Gamma_{i \kappa}$ vanishes. Using smoothness and monotonicity of the κ-dependence we have to check that

$$
\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right)<\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)
$$

holds locally for $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$, where $-\tilde{\kappa}_{1}^{2}:=\epsilon_{1}\left(\alpha, \tilde{\mathcal{P}}_{N}\right)$

Geometric reformulation, continued

The ground state refers to the point where the lowest ev of $\Gamma_{i \kappa}$ vanishes. Using smoothness and monotonicity of the κ-dependence we have to check that

$$
\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right)<\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)
$$

holds locally for $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$, where $-\tilde{\kappa}_{1}^{2}:=\epsilon_{1}\left(\alpha, \tilde{\mathcal{P}}_{N}\right)$
There is a one-to-one relation between an ef $c=\left(c_{1}, \ldots, c_{N}\right)$ of $\Gamma_{i \kappa}$ at that point and the corresponding ef of $-\Delta_{\alpha, \mathcal{P}_{N}}$ given by $c \leftrightarrow \sum_{j=1}^{N} c_{j} G_{i \kappa}\left(\cdot-y_{j}\right)$, up to normalization. In particular, the lowest ev of $\tilde{\Gamma}_{i \tilde{\kappa}_{1}}$ corresponds to the eigenvector $\tilde{\phi}_{1}=N^{-1 / 2}(1, \ldots, 1)$. Hence

$$
\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)=\left(\tilde{\phi}_{1}, \tilde{\Gamma}_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)=\alpha-\xi^{i \tilde{\kappa}_{1}}-\frac{2}{N} \sum_{i<j} \tilde{g}_{i j}^{i \tilde{\kappa}_{1}}
$$

Geometric reformulation, continued

On the other hand, we have $\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right) \leq\left(\tilde{\phi}_{1}, \Gamma_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)$, and therefore it is sufficient to check that

$$
\sum_{i<j} G_{i \kappa}\left(y_{i}-y_{j}\right)>\sum_{i<j} G_{i \kappa}\left(\tilde{y}_{i}-\tilde{y}_{j}\right)
$$

holds for all $\kappa>0$ and $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$.

Geometric reformulation, continued

On the other hand, we have $\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right) \leq\left(\tilde{\phi}_{1}, \Gamma_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)$, and therefore it is sufficient to check that

$$
\sum_{i<j} G_{i \kappa}\left(y_{i}-y_{j}\right)>\sum_{i<j} G_{i \kappa}\left(\tilde{y}_{i}-\tilde{y}_{j}\right)
$$

holds for all $\kappa>0$ and $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. Call $\ell_{i j}:=\left|y_{i}-y_{j}\right|$ and $\tilde{\ell}_{i j}:=\left|\tilde{y}_{i}-\tilde{y}_{j}\right|$ and define $F:\left(\mathbb{R}_{+}\right)^{N(N-3) / 2} \rightarrow \mathbb{R}$ by

$$
F\left(\left\{\ell_{i j}\right\}\right):=\sum_{m=2}^{[N / 2]} \sum_{|i-j|=m}\left[G_{i \kappa}\left(\ell_{i j}\right)-G_{i \kappa}\left(\tilde{\ell}_{i j}\right)\right] ;
$$

Using the convexity of $G_{i \kappa}(\cdot)$ for a fixed $\kappa>0$ we get

$$
F\left(\left\{\ell_{i j}\right\}\right) \geq \sum_{m=2}^{[N / 2]} \nu_{m}\left[G_{i \kappa}\left(\frac{1}{\nu_{m}} \sum_{|i-j|=m} \ell_{i j}\right)-G_{i k}\left(\tilde{\ell}_{1,1+m}\right)\right],
$$

where ν_{n} is the number of the appropriate diagonals

Geometric reformulation, continued

Since $G_{i \kappa}(\cdot)$ is also monotonously decreasing in $(0, \infty)$, we need

$$
\tilde{\ell}_{1, m+1} \geq \frac{1}{\nu_{n}} \sum_{|i-j|=m} \ell_{i j}
$$

with the sharp inequality for at least one m if $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. In this way the problem becomes purely geometric

Geometric reformulation, continued

Since $G_{i \kappa}(\cdot)$ is also monotonously decreasing in $(0, \infty)$, we need

$$
\tilde{\ell}_{1, m+1} \geq \frac{1}{\nu_{n}} \sum_{|i-j|=m} \ell_{i j}
$$

with the sharp inequality for at least one m if $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. In this way the problem becomes purely geometric
The claim we made is then implied by the following result:
Proposition: The property $D_{N, \ell}^{1}(m)$ holds locally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$

Geometric reformulation, continued

Since $G_{i \kappa}(\cdot)$ is also monotonously decreasing in $(0, \infty)$, we need

$$
\tilde{\ell}_{1, m+1} \geq \frac{1}{\nu_{n}} \sum_{|i-j|=m} \ell_{i j}
$$

with the sharp inequality for at least one m if $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. In this way the problem becomes purely geometric
The claim we made is then implied by the following result:
Proposition: The property $D_{N, \ell}^{1}(m)$ holds locally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$

Remark: The argument carries through for point interactions in \mathbb{R}^{3} because the Green's function is again convex and monotonous

Local validity of $D_{N, \ell}^{1}(m)$

We are looking for constrained local maxima of the function

$$
f_{m}: f_{m}\left(y_{1}, \ldots, y_{N}\right)=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-y_{i+m}\right|
$$

with $g_{i}\left(y_{1}, \ldots, y_{n}\right):=\ell-\left|y_{i}-y_{i+1}\right|=0, i=1, \ldots, N$. There are in fact $(N-2)(d-1)-1$ independent variables because $2 d-1$ parameters are related to Euclidean transformations

Local validity of $D_{N, \ell}^{1}(m)$

We are looking for constrained local maxima of the function

$$
f_{m}: f_{m}\left(y_{1}, \ldots, y_{N}\right)=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-y_{i+m}\right|
$$

with $g_{i}\left(y_{1}, \ldots, y_{n}\right):=\ell-\left|y_{i}-y_{i+1}\right|=0, i=1, \ldots, N$. There are in fact $(N-2)(d-1)-1$ independent variables because $2 d-1$ parameters are related to Euclidean transformations It is straightforward to check that $\nabla_{j} K_{m}\left(y_{1}, \ldots, y_{N}\right)$ vanish for a regular polygon, $K_{m}:=f_{m}+\sum_{r=1}^{N} \lambda_{r} g_{r}$, with all the Lagrange multipliers taking the same value

$$
\lambda=\frac{\sigma_{m}}{N \Upsilon_{m}} \quad \text { with } \quad \sigma_{m}:=\frac{\sin ^{2} \frac{\pi m}{N}}{\sin ^{2} \frac{\pi}{N}}, \Upsilon_{m}:=\ell^{-1}\left|\tilde{y}_{j}-\tilde{y}_{j \pm m}\right|
$$

Local validity of $D_{N, \ell}^{1}(m)$, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$
\xi \mapsto S_{m}[\xi]:=\sum_{j}\left\{\left|\xi_{j}-\xi_{j+m}\right|^{2}-\sigma_{m}\left|\xi_{j}-\xi_{j+1}\right|^{2}\right\}
$$

on $\mathbb{R}^{2 N}$ (the case $m=2$ needs an additional argument)

Local validity of $D_{N, \ell}^{1}(m)$, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$
\xi \mapsto S_{m}[\xi]:=\sum_{j}\left\{\left|\xi_{j}-\xi_{j+m}\right|^{2}-\sigma_{m}\left|\xi_{j}-\xi_{j+1}\right|^{2}\right\}
$$

on $\mathbb{R}^{2 N}$ (the case $m=2$ needs an additional argument) The two parts can be simultaneously diagonalized; using their ev's one rewrites the condition as the inequality

$$
U_{m-1}\left(\cos \frac{\pi}{N}\right)>\left|U_{m-1}\left(\cos \frac{\pi r}{N}\right)\right|, r=2, \ldots, m-1,
$$

for Chebyshev polynomials of the second kind which can be checked directly \square

Attractive δ loops

To formulate the continuous analogue we have first to give meaning the formal operator

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where Γ is a loop in the plane; we suppose that it has no zero-angle self-intersections

Attractive δ loops

To formulate the continuous analogue we have first to give meaning the formal operator

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where Γ is a loop in the plane; we suppose that it has no zero-angle self-intersections
$H_{\alpha, \Gamma}$ can be naturally associated with the quadratic form,

$$
\psi \mapsto\|\nabla \psi\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}-\alpha \int_{\Gamma}|\psi(x)|^{2} \mathrm{~d} x
$$

which is closed and below bounded in $W^{1,2}\left(\mathbb{R}^{2}\right)$; the second term makes sense in view of Sobolev embedding. This definition also works for various "wilder" sets Γ

Definition by boundary conditions

If Γ is piecewise smooth with no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\text {loc }}^{2,1}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

Definition by boundary conditions

If Γ is piecewise smooth with no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\mathrm{loc}}^{2,1}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

Remarks:

- this definition has an illustrative meaning which corresponds to a δ potential in the cross cut of Γ
- using the quadratic form associated with $H_{\alpha, \Gamma}$ one can check directly that the discrete spectrum is not void for any $\alpha>0$; one has, of course, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=[0, \infty)$

The loop result

Let $\Gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be a closed curve, $\Gamma(0)=\Gamma(L)$, parametrized by its arc length, which is C^{1}-smooth, piecewise C^{2}, and has no cusps. We will always consider classes of Euclidean transforms of Γ; it is clear that the circle class, $\mathcal{C}:=\{((L / 2 \pi) \cos s,(L / 2 \pi) \sin s): s \in[0, L]\}$, belongs to this family

The loop result

Let $\Gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be a closed curve, $\Gamma(0)=\Gamma(L)$, parametrized by its arc length, which is C^{1}-smooth, piecewise C^{2}, and has no cusps. We will always consider classes of Euclidean transforms of Γ; it is clear that the circle class, $\mathcal{C}:=\{((L / 2 \pi) \cos s,(L / 2 \pi) \sin s): s \in[0, L]\}$, belongs to this family

Theorem [E.'05]: Within the specified class of curves,

$$
\epsilon_{1} \equiv \epsilon_{1}(\alpha, \Gamma):=\inf \sigma\left(H_{\alpha, \Gamma}\right)
$$

is for any fixed $\alpha>0$ and $L>0$ locally sharply maximized by a circle, $\Gamma=\mathcal{C}$.

Birman-Schwinger reformulation

We employ the generalized Birman-Schwinger principle [BEKŠ'94]. One starts from the free resolvent R_{0}^{k} which is an integral operator in $L^{2}\left(\mathbb{R}^{2}\right)$ with the kernel

$$
G_{k}(x-y)=\frac{i}{4} H_{0}^{(1)}(k|x-y|)
$$

Birman-Schwinger reformulation

We employ the generalized Birman-Schwinger principle [BEKŠ'94]. One starts from the free resolvent R_{0}^{k} which is an integral operator in $L^{2}\left(\mathbb{R}^{2}\right)$ with the kernel

$$
G_{k}(x-y)=\frac{i}{4} H_{0}^{(1)}(k|x-y|)
$$

Then we introduce embedding operators associated with R_{0}^{k} for measures μ, ν which are the Dirac measure m supported by Γ and the Lebesgue measure $\mathrm{d} x$ on \mathbb{R}^{2}; by $R_{\nu, \mu}^{k}$ we denote the integral operator from $L^{2}(\mu)$ to $L^{2}(\nu)$ with the kernel G_{k}, i.e. we suppose that

$$
R_{\nu, \mu}^{k} \phi=G_{k} * \phi \mu
$$

holds ν-a.e. for all $\phi \in D\left(R_{\nu, \mu}^{k}\right) \subset L^{2}(\mu)$

BS reformulation, continued

Proposition [BEKŠ'94, Posilicano'04]: (i) There is $\kappa_{0}>0$ s.t. $I-\alpha R_{m, m}^{i \kappa}$ on $L^{2}(m)$ has a bounded inverse for $\kappa \geq \kappa_{0}$
(ii) Let $\operatorname{Im} k>0$ and $I-\alpha R_{m, m}^{k}$ be invertible with

$$
R^{k}:=R_{0}^{k}+\alpha R_{\mathrm{d} x, m}^{k}\left[I-\alpha R_{m, m}^{k}\right]^{-1} R_{m, \mathrm{~d} x}^{k}
$$

from $L^{2}\left(\mathbb{R}^{2}\right)$ to $L^{2}\left(\mathbb{R}^{2}\right)$ everywhere defined. Then k^{2} belongs to $\rho\left(H_{\alpha, \Gamma}\right)$ and $\left(H_{\alpha, \Gamma}-k^{2}\right)^{-1}=R^{k}$
(iii) $\operatorname{dim} \operatorname{ker}\left(H_{\alpha, \Gamma}-k^{2}\right)=\operatorname{dim} \operatorname{ker}\left(I-\alpha R_{m, m}^{k}\right)$ for $\operatorname{Im} k>0$ (iv) an ef of $H_{\alpha, \Gamma}$ associated with k^{2} can be written as

$$
\psi(x)=\int_{0}^{L} R_{\mathrm{d} x, m}^{k}(x, s) \phi(s) \mathrm{d} s
$$

where ϕ is the corresponding ef of $\alpha R_{m, m}^{k}$ with the ev one

BS reformulation, continued

Putting $k=i \kappa$ with $\kappa>0$ we look thus for solutions to the integral-operator equation

$$
\mathcal{R}_{\alpha, \Gamma}^{\kappa} \phi=\phi, \quad \mathcal{R}_{\alpha, \Gamma}^{\kappa}\left(s, s^{\prime}\right):=\frac{\alpha}{2 \pi} K_{0}\left(\kappa\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|\right),
$$

on $L^{2}([0, L])$. The function $\kappa \mapsto \mathcal{R}_{\alpha, \Gamma}^{\kappa}$ is strictly decreasing in $(0, \infty)$ and $\left\|\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right\| \rightarrow 0$ as $\kappa \rightarrow \infty$, hence we seek the point where the largest ev of $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ crosses one

BS reformulation, continued

Putting $k=i \kappa$ with $\kappa>0$ we look thus for solutions to the integral-operator equation

$$
\mathcal{R}_{\alpha, \Gamma}^{\kappa} \phi=\phi, \quad \mathcal{R}_{\alpha, \Gamma}^{\kappa}\left(s, s^{\prime}\right):=\frac{\alpha}{2 \pi} K_{0}\left(\kappa\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|\right),
$$

on $L^{2}([0, L])$. The function $\kappa \mapsto \mathcal{R}_{\alpha, \Gamma}^{\kappa}$ is strictly decreasing in $(0, \infty)$ and $\left\|\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right\| \rightarrow 0$ as $\kappa \rightarrow \infty$, hence we seek the point where the largest ev of $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ crosses one
We observe that this ev is simple, since $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ is positivity improving and ergodic. The ground state of $H_{\alpha, \Gamma}$ is, of course, also simple. Using its rotational symmetry and the claim (iv) of the Proposition we find that the respective eigenfunction of $\mathcal{R}_{\alpha, \mathcal{C}}^{\tilde{\mathcal{L}}_{1}}$ corresponding to the unit eigenvalue is constant; we can choose it as $\tilde{\phi}_{1}(s)=L^{-1 / 2}$.

BS reformulation, continued

Then we have

$$
\max \sigma\left(\mathcal{R}_{\alpha, \mathcal{C}}^{\tilde{\mathcal{L}}_{1}}\right)=\left(\tilde{\phi}_{1}, \mathcal{R}_{\alpha, \mathcal{C}}^{\tilde{\mathcal{H}}_{1}} \tilde{\phi}_{1}\right)=\frac{1}{L} \int_{0}^{L} \int_{0}^{L} \mathcal{R}_{\alpha, \mathcal{C}}^{\tilde{\mathcal{L}}_{1}}\left(s, s^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime}
$$

and on the other hand, for the same quantity referring to a general Γ a simple variational estimate gives

$$
\max \sigma\left(\mathcal{R}_{\alpha, \Gamma}^{\tilde{\kappa}_{1}}\right) \geq\left(\tilde{\phi}_{1}, \mathcal{R}_{\alpha, \Gamma}^{\tilde{\mathcal{F}}_{1}} \tilde{\phi}_{1}\right)=\frac{1}{L} \int_{0}^{L} \int_{0}^{L} \mathcal{R}_{\alpha, \Gamma}^{\tilde{\kappa}_{1}}\left(s, s^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime} .
$$

BS reformulation, continued

Then we have

$$
\max \sigma\left(\mathcal{R}_{\alpha, \mathcal{C}}^{\tilde{\mathcal{K}}_{1}}\right)=\left(\tilde{\phi}_{1}, \mathcal{R}_{\alpha, \mathcal{C}}^{\tilde{\mathcal{H}}_{1}} \tilde{\phi}_{1}\right)=\frac{1}{L} \int_{0}^{L} \int_{0}^{L} \mathcal{R}_{\alpha, \mathcal{C}}^{\tilde{\mathcal{L}}_{1}}\left(s, s^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime}
$$

and on the other hand, for the same quantity referring to a general Γ a simple variational estimate gives

$$
\max \sigma\left(\mathcal{R}_{\alpha, \Gamma}^{\tilde{\kappa}_{1}}\right) \geq\left(\tilde{\phi}_{1}, \mathcal{R}_{\alpha, \Gamma}^{\tilde{\mathcal{F}}_{1}} \tilde{\phi}_{1}\right)=\frac{1}{L} \int_{0}^{L} \int_{0}^{L} \mathcal{R}_{\alpha, \Gamma}^{\tilde{\kappa}_{1}}\left(s, s^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime} .
$$

Hence it is sufficient to show that
$\int_{0}^{L} \int_{0}^{L} K_{0}\left(\kappa\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|\right) \mathrm{d} s \mathrm{~d} s^{\prime} \geq \int_{0}^{L} \int_{0}^{L} K_{0}\left(\kappa\left|\mathcal{C}(s)-\mathcal{C}\left(s^{\prime}\right)\right|\right) \mathrm{d} s \mathrm{~d} s^{\prime}$ holds for all $\kappa>0$ and Γ in the vicinity of \mathcal{C}

Convexity argument

By a simple change of variables the claim is equivalent to positivity of the functional
$F_{\kappa}(\Gamma):=\int_{0}^{L / 2} \mathrm{~d} u \int_{0}^{L} \mathrm{~d} s\left[K_{0}(\kappa|\Gamma(s+u)-\Gamma(s)|)-K_{0}(\kappa|\mathcal{C}(s+u)-\mathcal{C}(s)|)\right] ;$
the s-independent second term is equal to $K_{0}\left(\frac{\kappa L}{\pi} \sin \frac{\pi u}{L}\right)$

Convexity argument

By a simple change of variables the claim is equivalent to positivity of the functional
$F_{\kappa}(\Gamma):=\int_{0}^{L / 2} \mathrm{~d} u \int_{0}^{L} \mathrm{~d} s\left[K_{0}(\kappa|\Gamma(s+u)-\Gamma(s)|)-K_{0}(\kappa|\mathcal{C}(s+u)-\mathcal{C}(s)|)\right] ;$
the s-independent second term is equal to $K_{0}\left(\frac{\kappa L}{\pi} \sin \frac{\pi u}{L}\right)$
The (strict) convexity of K_{0} yields by means of Jensen inequality the estimate

$$
\frac{1}{L} F_{\kappa}(\Gamma) \geq \int_{0}^{L / 2}\left[K_{0}\left(\frac{\kappa}{L} \int_{0}^{L}|\Gamma(s+u)-\Gamma(s)| \mathrm{d} s\right)-K_{0}\left(\frac{\kappa L}{\pi} \sin \frac{\pi u}{L}\right)\right] \mathrm{d} u,
$$

where the inequality is sharp unless $\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)| \mathrm{d} s$ is independent of s

Monotonicity argument

Finally, we observe that K_{0} is decreasing in $(0, \infty)$, hence it is sufficient to check the inequality

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)| \mathrm{d} s \leq \frac{L^{2}}{\pi} \sin \frac{\pi u}{L}
$$

for all $u \in\left(0, \frac{1}{2} L\right]$ and furthermore, to show that is sharp unless Γ is a circle

Monotonicity argument

Finally, we observe that K_{0} is decreasing in $(0, \infty)$, hence it is sufficient to check the inequality

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)| \mathrm{d} s \leq \frac{L^{2}}{\pi} \sin \frac{\pi u}{L}
$$

for all $u \in\left(0, \frac{1}{2} L\right]$ and furthermore, to show that is sharp unless Γ is a circle

Remark: There was nothing local so far, hence proving the above inequality for all Γ would give the global result. Likewise, we have not used the C^{2} smoothness

Common feature: summing chord lengths

Both geometric reformulations have a common feature: for polygons we sum diagonal lengths between vertices whose indices differ by a fixed m, for a loop we integrate chord lengths between points separated by a fixed arc length u

Mean-chord inequalities

Consider a wider family of inequalities - without knowing whether they are valid. Let $\Gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be again a loop in the plane, with unspecified regularity properties. Take all the arcs of Γ having length $u \in\left(0, \frac{1}{2} L\right]$ and write

$$
\begin{array}{rcl}
C_{L}^{p}(u): & \int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, & p>0, \\
C_{L}^{-p}(u): & \int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{-p} \mathrm{~d} s \geq \frac{\pi^{p} L^{1} L^{1-p}}{\sin ^{p} \frac{\pi}{L}}, & p>0 .
\end{array}
$$

Mean-chord inequalities

Consider a wider family of inequalities - without knowing whether they are valid. Let $\Gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be again a loop in the plane, with unspecified regularity properties. Take all the arcs of Γ having length $u \in\left(0, \frac{1}{2} L\right]$ and write

$$
\begin{array}{rcc}
C_{L}^{p}(u): & \int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, & p>0, \\
C_{L}^{-p}(u): & \int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{-p} \mathrm{~d} s \geq \frac{\pi^{p} L^{1-p}}{\sin ^{p} \frac{\pi}{L}}, & p>0 .
\end{array}
$$

A discrete counterpart for an equilateral polygon \mathcal{P}_{N} of N vertices $\left\{y_{n}\right\}$, side length $\ell>0$, and $m=1, \ldots,\left[\frac{1}{2} N\right]$ reads

$$
\begin{array}{lll}
D_{N, \ell}^{p}(m): & \sum_{n=1}^{N}\left|y_{n+m}-y_{n}\right|^{p} \leq \frac{N \ell^{p} \sin ^{p} \frac{m}{\sin ^{p}} \frac{\pi}{N}}{\sin ^{n}}, & p>0, \\
D_{N, \ell}^{-p}(m): & \sum_{n=1}^{N}\left|y_{n+m}-y_{n}\right|^{-p} \geq \frac{N \sin ^{p}}{\ell^{p} \sin ^{p} \frac{\pi}{m}} \frac{\pi}{N} & p>0 .
\end{array}
$$

Observations

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_{N}$, respectively

Observations

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_{N}$, respectively
- If $p=0$ the inequalities turn into trivial identities

Observations

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_{N}$, respectively
- If $p=0$ the inequalities turn into trivial identities
- By scaling one can put, for instance, $L=1$ and $\ell=1$ without loss if generality

Observations

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_{N}$, respectively
- If $p=0$ the inequalities turn into trivial identities
- By scaling one can put, for instance, $L=1$ and $\ell=1$ without loss if generality
- In the polygon case it is clear that the claim may not be true for $p>2$ as the example of a rhomboid shows: $D_{4, \ell}^{p}(2)$ is equivalent to $\sin ^{p} \phi+\cos ^{p} \phi \leq 2^{1-(p / 2)}$ for $0<\phi<\pi$

Properties and conjecture

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha>1$ we get
Proposition: $C_{L}^{p}(u) \Rightarrow C_{L}^{p^{\prime}}(u)$ and $D_{N, \ell}^{p}(m) \Rightarrow D_{N, \ell}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$

Properties and conjecture

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha>1$ we get
Proposition: $C_{L}^{p}(u) \Rightarrow C_{L}^{p^{\prime}}(u)$ and $D_{N, \ell}^{p}(m) \Rightarrow D_{N, \ell}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$

Furthermore, Schwarz inequality implies
Proposition: $C_{L}^{p}(u) \Rightarrow C_{L}^{-p}(u)$ and $D_{N, \ell}^{p}(m) \Rightarrow D_{N, \ell}^{-p}(m)$ for any $p>0$

Properties and conjecture

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha>1$ we get
Proposition: $C_{L}^{p}(u) \Rightarrow C_{L}^{p^{\prime}}(u)$ and $D_{N, \ell}^{p}(m) \Rightarrow D_{N, \ell}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$

Furthermore, Schwarz inequality implies
Proposition: $C_{L}^{p}(u) \Rightarrow C_{L}^{-p}(u)$ and $D_{N, \ell}^{p}(m) \Rightarrow D_{N, \ell}^{-p}(m)$ for any $p>0$

Conjecture: We expect the above inequalities to be valid for any $p \leq 2$, without substantial regularity restrictions in the continuous case

What is known for $D_{N, \ell}^{p}(m)$?

We have shown that $D_{N, \ell}^{1}(m)$ holds locally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$, i.e. in the vicinity of the regular polygon, and consequently, $D_{N, \ell}^{ \pm p}(m)$ holds locally for any $p \in(0,1]$

What is known for $D_{N, \ell}^{p}(m)$?

We have shown that $D_{N, \ell}^{1}(m)$ holds locally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$, i.e. in the vicinity of the regular polygon, and consequently, $D_{N, \ell}^{ \pm p}(m)$ holds locally for any $p \in(0,1]$
As for the global validity we have a particular result:
Proposition: $D_{N, \ell}^{1}(2)$ holds globally, and so does $D_{N, \ell}^{ \pm p}(2)$ for each $p \in(0,1]$

What is known for $D_{N, \ell}^{p}(m)$?

We have shown that $D_{N, \ell}^{1}(m)$ holds locally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$, i.e. in the vicinity of the regular polygon, and consequently, $D_{N, \ell}^{ \pm p}(m)$ holds locally for any $p \in(0,1]$ As for the global validity we have a particular result:
Proposition: $D_{N, \ell}^{1}(2)$ holds globally, and so does $D_{N, \ell}^{ \pm p}(2)$ for each $p \in(0,1]$
Proof: Call β_{i} the "bending angle" at i-th vertex, then the mean length of the 2 -diagonals is $M_{2}=\frac{2 \ell}{N} \sum_{i=1}^{N} \cos \frac{\beta_{i}}{2}$. Using strict convexity of the function $u \mapsto-\cos \frac{u}{2}$ in $(-\pi, \pi)$ together with $\sum_{i=1}^{N} \beta_{i}=2 \pi w, w \in \mathbb{Z}$, we find

$$
-\sum_{i=1}^{N} \cos \frac{\beta_{i}}{2} \geq-N \cos \left(\sum_{i=1}^{N} \frac{\beta_{i}}{2}\right)=-N \cos \frac{\pi}{N}
$$

the inequality is sharp unless all the β_{i} 's are the same \square

$C_{L}^{p}(u)$ in terms of curvature

Under our regularity assumption we can characterize Γ by its (signed) curvature $\gamma:=\dot{\Gamma}_{2} \ddot{\Gamma}_{1}-\dot{\Gamma}_{1} \ddot{\Gamma}_{2}$ which is piecewise continuous in $[0, L]$. Up to Euclidean transf's we have

$$
\Gamma(s)=\left(\int_{0}^{s} \cos \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}, \int_{0}^{s} \sin \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right),
$$

where $\beta(s):=\int_{0}^{s} \gamma\left(s^{\prime}\right) \mathrm{d} s^{\prime}$ is bending angle relative to $s=0$

$C_{L}^{p}(u)$ in terms of curvature

Under our regularity assumption we can characterize Γ by its (signed) curvature $\gamma:=\dot{\Gamma}_{2} \ddot{\Gamma}_{1}-\dot{\Gamma}_{1} \ddot{\Gamma}_{2}$ which is piecewise continuous in $[0, L]$. Up to Euclidean transf's we have

$$
\Gamma(s)=\left(\int_{0}^{s} \cos \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}, \int_{0}^{s} \sin \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right),
$$

where $\beta(s):=\int_{0}^{s} \gamma\left(s^{\prime}\right) \mathrm{d} s^{\prime}$ is bending angle relative to $s=0$ To ensure that the curve is closed, we have to require

$$
\int_{0}^{L} \cos \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}=\int_{0}^{L} \sin \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}=0
$$

$C_{L}^{p}(u)$ in terms of curvature

Under our regularity assumption we can characterize Γ by its (signed) curvature $\gamma:=\dot{\Gamma}_{2} \ddot{\Gamma}_{1}-\dot{\Gamma}_{1} \ddot{\Gamma}_{2}$ which is piecewise continuous in $[0, L]$. Up to Euclidean transf's we have

$$
\Gamma(s)=\left(\int_{0}^{s} \cos \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}, \int_{0}^{s} \sin \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right),
$$

where $\beta(s):=\int_{0}^{s} \gamma\left(s^{\prime}\right) \mathrm{d} s^{\prime}$ is bending angle relative to $s=0$ To ensure that the curve is closed, we have to require

$$
\int_{0}^{L} \cos \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}=\int_{0}^{L} \sin \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}=0
$$

The left-hand side of $C_{L}^{p}(u)$ can be now rewritten as

$$
c_{\Gamma}^{p}(u)=\int_{0}^{L} \mathrm{~d} s\left[\int_{s}^{s+u} \mathrm{~d} s^{\prime} \int_{s}^{s+u} \mathrm{~d} s^{\prime \prime} \cos \left(\beta\left(s^{\prime}\right)-\beta\left(s^{\prime \prime}\right)\right]^{p / 2}\right.
$$

Proof of $C_{L}^{2}(u)$

It is sufficient to check that $c_{\Gamma}^{2}(u)$ is maximized by the circle, i.e. by $\beta(s)=\frac{2 \pi s}{L}$. Rearranging the integrals we get

$$
c_{\Gamma}^{2}(u)=\int_{0}^{L} \mathrm{~d} s^{\prime} \int_{s^{\prime}-u}^{s^{\prime}+u} \mathrm{~d} s^{\prime \prime}\left[u-\left|s^{\prime}-s^{\prime \prime}\right|\right] \cos \left(\beta\left(s^{\prime}\right)-\beta\left(s^{\prime \prime}\right)\right)
$$

Proof of $C_{L}^{2}(u)$

It is sufficient to check that $c_{\Gamma}^{2}(u)$ is maximized by the circle, i.e. by $\beta(s)=\frac{2 \pi s}{L}$. Rearranging the integrals we get

$$
c_{\Gamma}^{2}(u)=\int_{0}^{L} \mathrm{~d} s^{\prime} \int_{s^{\prime}-u}^{s^{\prime}+u} \mathrm{~d} s^{\prime \prime}\left[u-\left|s^{\prime}-s^{\prime \prime}\right|\right] \cos \left(\beta\left(s^{\prime}\right)-\beta\left(s^{\prime \prime}\right)\right)
$$

Next we change the integration variables to $x:=s^{\prime}-s^{\prime \prime}$ and $z:=\frac{1}{2}\left(s^{\prime}+s^{\prime \prime}\right)$, and use the even parity of the functions involved to obtain

$$
c_{\Gamma}^{2}(u)=2 \int_{0}^{u} \mathrm{~d} x(u-x) \int_{0}^{L} \mathrm{~d} z \cos \left(\int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} \gamma(s) \mathrm{d} s\right)
$$

A partial global result

In an analogy with $D_{N, \ell}^{1}(2)$ we can get a global result for u small enough:

Proposition: Let Γ have no self-intersections and the inequality $\beta\left(z+\frac{1}{2} u\right)-\beta\left(z-\frac{1}{2} u\right) \leq \frac{1}{2} \pi$ is valid for all $z \in[0, L]$, then $C_{L}^{2}(u)$ holds

A partial global result

In an analogy with $D_{N, \ell}^{1}(2)$ we can get a global result for u small enough:
Proposition: Let Γ have no self-intersections and the inequality $\beta\left(z+\frac{1}{2} u\right)-\beta\left(z-\frac{1}{2} u\right) \leq \frac{1}{2} \pi$ is valid for all $z \in[0, L]$, then $C_{L}^{2}(u)$ holds
Proof: We employ concavity of cosine in ($0, \frac{1}{2} \pi$) obtaining

$$
\begin{aligned}
c_{\Gamma}^{2}(u) & \leq 2 L \int_{0}^{u} \mathrm{~d} x(u-x) \cos \left(\frac{1}{L} \int_{0}^{L} \mathrm{~d} z \int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} \gamma(s) \mathrm{d} s\right) \\
& =2 L \int_{0}^{u} \mathrm{~d} x(u-x) \cos \frac{2 \pi x}{L}=\frac{L^{3}}{\pi^{2}} \sin ^{2} \frac{\pi u}{L},
\end{aligned}
$$

since $\int_{0}^{L} \gamma(s) \mathrm{d} s= \pm 2 \pi$. The function $z \mapsto \int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} \gamma(s) \mathrm{d} s$ is constant for $x \in(0, u)$ iff $\gamma(\cdot)$ is constant, hence the circle gives a sharp maximum. \square

Local validity of $C_{L}^{2}(u)$

Proposition: If Γ is C^{1}, piecewise C^{2}, the inequality $C_{L}^{2}(u)$ holds locally for any $L>0$ and $u \in\left(0, \frac{1}{2} L\right]$, and consequently, $C_{L}^{ \pm p}(u)$ holds locally for any $p \in(0,2]$

Local validity of $C_{L}^{2}(u)$

Proposition: If Γ is C^{1}, piecewise C^{2}, the inequality $C_{L}^{2}(u)$ holds locally for any $L>0$ and $u \in\left(0, \frac{1}{2} L\right]$, and consequently, $C_{L}^{ \pm p}(u)$ holds locally for any $p \in(0,2]$
Proof: Gentle deformations of \mathcal{C} can be characterized by

$$
\gamma(s)=\frac{2 \pi}{L}+g(s),
$$

where g is a piecewise continuous function, small in the sense that $\|g\|_{\infty} \ll L^{-1}$ and satisfying the condition $\int_{0}^{L} g(s) \mathrm{d} s=0$. We employ the expansion
$\cos \frac{2 \pi x}{L}-\sin \frac{2 \pi x}{L} \int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} g(s) \mathrm{d} s-\frac{1}{2} \cos \frac{2 \pi x}{L}\left(\int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} g(s) \mathrm{d} s\right)^{2}+\mathcal{O}\left(g^{3}\right)$,
where the error term is a shorthand for $\mathcal{O}\left(\|L g\|_{\infty}^{3}\right)$

Proof, continued

Substituting into the expression for $c_{\Gamma}^{2}(u)$ we find that the term linear in g vanishes, because

$$
\int_{0}^{L} \mathrm{~d} z \int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} g(s) \mathrm{d} s=\int_{0}^{L} \mathrm{~d} s g(s) \int_{s-\frac{1}{2} x}^{s+\frac{1}{2} x} \mathrm{~d} z=0,
$$

Proof, continued

Substituting into the expression for $c_{\Gamma}^{2}(u)$ we find that the term linear in g vanishes, because

$$
\int_{0}^{L} \mathrm{~d} z \int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} g(s) \mathrm{d} s=\int_{0}^{L} \mathrm{~d} s g(s) \int_{s-\frac{1}{2} x}^{s+\frac{1}{2} x} \mathrm{~d} z=0,
$$

Hence the deformation shows in the 2nd order term only,
where

$$
c_{\Gamma}^{2}(u)=\frac{L^{3}}{\pi^{2}} \sin ^{2} \frac{\pi u}{L}-I_{g}(u)+\mathcal{O}\left(g^{3}\right),
$$

$$
I_{g}(u):=\int_{0}^{u} \mathrm{~d} x(u-x) \cos \frac{2 \pi x}{L} \int_{0}^{L} \mathrm{~d} z\left(\int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} g(s) \mathrm{d} s\right)^{2}
$$

and we need to show that $I_{g}(u)>0$ unless $g=0$ identically. Notice that for $u \leq \frac{1}{4} L$ this property holds trivially

Proof, continued

For $u \in\left(\frac{1}{4} L, \frac{1}{2} L\right]$ we notice that g is periodic and piecewise C^{0}, so we write it as Fourier series with zero term missing,

$$
g(s)=\sum_{n=1}^{\infty}\left(a_{n} \sin \frac{2 \pi n s}{L}+b_{n} \cos \frac{2 \pi n s}{L}\right),
$$

where $\sum_{n}\left(a_{n}^{2}+b_{n}^{2}\right)<\infty$ (and small).

Proof, continued

For $u \in\left(\frac{1}{4} L, \frac{1}{2} L\right]$ we notice that g is periodic and piecewise C^{0}, so we write it as Fourier series with zero term missing,

$$
g(s)=\sum_{n=1}^{\infty}\left(a_{n} \sin \frac{2 \pi n s}{L}+b_{n} \cos \frac{2 \pi n s}{L}\right),
$$

where $\sum_{n}\left(a_{n}^{2}+b_{n}^{2}\right)<\infty$ (and small). We have

$$
\int_{z-\frac{1}{2} x}^{z+\frac{1}{2} x} g(s) \mathrm{d} s=\frac{L}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left(a_{n} \sin \frac{2 \pi n z}{L}+b_{n} \cos \frac{2 \pi n z}{L}\right) \sin \frac{\pi n x}{L},
$$

so using orthogonality of the Fourier basis one gets

$$
I_{g}(u)=\int_{0}^{u} \mathrm{~d} x(u-x) \cos \frac{2 \pi x}{L} \sum_{n=1}^{\infty} \frac{L^{3}}{2 \pi^{2}} \frac{a_{n}^{2}+b_{n}^{2}}{n^{2}} \sin \frac{\pi n x}{L}
$$

Proof, continued

Summation and integration can be interchanged giving
where

$$
I_{g}(u)=\frac{L^{5}}{2 \pi^{4}} \sum_{n=1}^{\infty} \frac{a_{n}^{2}+b_{n}^{2}}{n^{2}} F_{n}\left(\frac{\pi u}{L}\right)
$$

$$
F_{n}(v):=\int_{0}^{v}(v-y) \cos 2 y \sin n y \mathrm{~d} y
$$

Proof, continued

Summation and integration can be interchanged giving
where

$$
I_{g}(u)=\frac{L^{5}}{2 \pi^{4}} \sum_{n=1}^{\infty} \frac{a_{n}^{2}+b_{n}^{2}}{n^{2}} F_{n}\left(\frac{\pi u}{L}\right),
$$

$$
F_{n}(v):=\int_{0}^{v}(v-y) \cos 2 y \sin n y \mathrm{~d} y .
$$

These integrals are equal to

$$
\begin{aligned}
& F_{1}(v)=\frac{1}{18}(9 \sin v-\sin 3 v-6 v) \\
& F_{2}(v)=\frac{1}{32}(4 v-\sin 4 v) \\
& F_{n}(v)=\frac{n v}{n^{2}-4}-\frac{\sin (n-2) v}{2(n-2)^{2}}-\frac{\sin (n+2) v}{2(n+2)^{2}}, \quad n \geq 3
\end{aligned}
$$

It is easy to see that $F_{n}(v)>0$ for $v>0$ and $n \geq 2$ and $F_{1}(v)>0$ in the interval $\left(0, \frac{\pi}{2}\right)$. Thus we have found that $I_{g}(u)>0$ unless all the coefficients a_{n}, b_{n} are zero.

Remark

One may wonder what happened with the closedness requirement, $\int_{0}^{L} \cos \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}=\int_{0}^{L} \sin \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}=0$. We proved the claim using the weaker property $\beta(0)=\beta(L)$. This is possible for small deformations only!

Remark

One may wonder what happened with the closedness requirement, $\int_{0}^{L} \cos \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}=\int_{0}^{L} \sin \beta\left(s^{\prime}\right) \mathrm{d} s^{\prime}=0$. We proved the claim using the weaker property $\beta(0)=\beta(L)$. This is possible for small deformations only!

As an illustration, consider Γ in the form of an "overgrown paperclip" which satisfies the condition $\beta(0)=\beta(L)$ but not the closedness requirement. Making the U-turns small one can get $c_{\Gamma}^{2}\left(\frac{1}{2} L\right)$ arbitrarily close to $\frac{1}{3} L^{3}$ which is, of course, larger than L^{3} / π^{2}

Global validity of $C_{L}^{2}(u)$: an example

Let Γ be a curve consisting of two circular segments of radius $R>\frac{L}{4 \pi}$, i.e. it is given by the equations

$$
\left(x \pm R \cos \frac{L}{2 R}\right)^{2}+y^{2}=R^{2} \quad \text { for } \quad \pm x \geq 0
$$

being "lens-shaped" for $R>\frac{L}{2 \pi}$, "apple-shaped" for $\frac{L}{4 \pi}<R<\frac{L}{2 \pi}$ "apple-shaped" and a circle for $R=\frac{L}{2 \pi}$

$$
\underbrace{}_{R>\frac{L}{2 \pi}}
$$

$$
\bigodot_{\frac{L}{4 \pi}<R<\frac{L}{2 \pi}}
$$

Example, continued

It is straightforward exercise to compute
$c_{\Gamma}^{2}(u)=8 R^{3}\left\{\frac{L}{2 R} \sin ^{2} \frac{u}{2 R}+4\left(\frac{u}{2 R} \cos \frac{u}{2 R}-\sin \frac{u}{2 R}\right) \cos \frac{L}{4 R} \cos \frac{L-2 u}{4 R}\right\}$
Let us plot $c_{\Gamma}^{2}(u)\left(\frac{L^{3}}{\pi^{2}} \sin ^{2} \frac{\pi u}{L}\right)^{-1}$ for $L=1$ w.r.t. R and u

Example, continued

It is straightforward exercise to compute

$c_{\Gamma}^{2}(u)=8 R^{3}\left\{\frac{L}{2 R} \sin ^{2} \frac{u}{2 R}+4\left(\frac{u}{2 R} \cos \frac{u}{2 R}-\sin \frac{u}{2 R}\right) \cos \frac{L}{4 R} \cos \frac{L-2 u}{4 R}\right\}$
Let us plot $c_{\Gamma}^{2}(u)\left(\frac{L^{3}}{\pi^{2}} \sin ^{2} \frac{\pi u}{L}\right)^{-1}$ for $L=1$ w.r.t. R and u

Some open questions

- Prove $D_{N, \ell}^{2}(m)$, locally and globally

Some open questions

- Prove $D_{N, \ell}^{2}(m)$, locally and globally
- Prove global validity of $C_{L}^{p}(u)$

Some open questions

- Prove $D_{N, \ell}^{2}(m)$, locally and globally
- Prove global validity of $C_{L}^{p}(u)$
- Prove higher-dimensional analogues of these inequalities for loops in \mathbb{R}^{d} (notice that the local proof of $D_{N, \ell}^{1}(m)$ works for polygons in any \mathbb{R}^{d})

Some open questions

- Prove $D_{N, \ell}^{2}(m)$, locally and globally
- Prove global validity of $C_{L}^{p}(u)$
- Prove higher-dimensional analogues of these inequalities for loops in \mathbb{R}^{d} (notice that the local proof of $D_{N, \ell}^{1}(m)$ works for polygons in any \mathbb{R}^{d})
- Prove higher-dimensional analogues of these inequalities for codimension-one surfaces in \mathbb{R}^{d}

Some open questions

- Prove $D_{N, \ell}^{2}(m)$, locally and globally
- Prove global validity of $C_{L}^{p}(u)$
- Prove higher-dimensional analogues of these inequalities for loops in \mathbb{R}^{d} (notice that the local proof of $D_{N, \ell}^{1}(m)$ works for polygons in any \mathbb{R}^{d})
- Prove higher-dimensional analogues of these inequalities for codimension-one surfaces in \mathbb{R}^{d}
- Find maximizers in classes not containing \mathcal{C} or \mathcal{P}_{N}

Some open questions

- Prove $D_{N, \ell}^{2}(m)$, locally and globally
- Prove global validity of $C_{L}^{p}(u)$
- Prove higher-dimensional analogues of these inequalities for loops in \mathbb{R}^{d} (notice that the local proof of $D_{N, \ell}^{1}(m)$ works for polygons in any \mathbb{R}^{d})
- Prove higher-dimensional analogues of these inequalities for codimension-one surfaces in \mathbb{R}^{d}
- Find maximizers in classes not containing \mathcal{C} or \mathcal{P}_{N}
- Find maximizers if the interaction strength changes along the curve (or surface), so the problem ceases to be purely geometric

The talk was based on

[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38 (2005), to appear; math-ph/0406017
[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities,
J. Math. Phys. 46 (2005), to appear; math-ph/0501066

The talk was based on

[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38 (2005), to appear; math-ph / 0406017
[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities,
J. Math. Phys. 46 (2005), to appear; math-ph/0501066
for more information see http://www.ujf.cas.cz/ eexner

