

Dirac operators with electrostatic δ -shell interactions: spectral and scattering properties

Pavel Exner

Doppler Institute for Mathematical Physics and Applied Mathematics Prague

in collaboration with Jussi Behrndt, Markus Holzmann, and Vladimir Lotoreichik

A minisymposium talk at the International Congress on Industrial and Applied Mathematics

Valencia, July 15, 2019

J. Dittrich, P.E., P. Šeba: Dirac operators with a spherically symmetric δ -shell interaction, *J. Math. Phys.* **30** (1989), 2875–2882.

in which we discussed singular Dirac operators formally written as

$$H = H_0 + \eta \delta(|\mathbf{x}| - R) + \tau \beta \delta(|\mathbf{x}| - R), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

J. Dittrich, P.E., P. Šeba: Dirac operators with a spherically symmetric δ -shell interaction, *J. Math. Phys.* **30** (1989), 2875–2882.

in which we discussed singular Dirac operators formally written as

$$H = H_0 + \eta \delta(|\mathbf{x}| - R) + \tau \beta \delta(|\mathbf{x}| - R), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

We were then interested in solvable models and looking at

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, *J. Phys. A: Math. Gen.* **20** (1987), 3687–3712.

we asked ourselves what would such a perturbation do with Dirac operator.

The problem has a history: deep in the last century we wrote a paper

J. Dittrich, P.E., P. Šeba: Dirac operators with a spherically symmetric δ -shell interaction, *J. Math. Phys.* **30** (1989), 2875–2882.

in which we discussed singular Dirac operators formally written as

$$H = H_0 + \eta \delta(|\mathbf{x}| - R) + \tau \beta \delta(|\mathbf{x}| - R), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

We were then interested in solvable models and looking at

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A: Math. Gen. 20 (1987), 3687–3712.

we asked ourselves what would such a perturbation do with Dirac operator.

We specified the *boundary conditions* at |x|=R defining these operators, described roughly the spectrum and showed that under the condition

$$\eta^2 - \tau^2 = -4c^2$$

the spherical shell becomes impenetrable barrier between the two regions.

The problem has a history: deep in the last century we wrote a paper

J. Dittrich, P.E., P. Šeba: Dirac operators with a spherically symmetric δ -shell interaction, *J. Math. Phys.* **30** (1989), 2875–2882

in which we discussed singular Dirac operators formally written as

$$H = H_0 + \eta \delta(|\mathbf{x}| - R) + \tau \beta \delta(|\mathbf{x}| - R), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

We were then interested in solvable models and looking at

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A: Math. Gen. 20 (1987), 3687–3712.

we asked ourselves what would such a perturbation do with Dirac operator.

We specified the *boundary conditions* at |x|=R defining these operators, described roughly the spectrum and showed that under the condition

$$\eta^2 - \tau^2 = -4c^2$$

the spherical shell becomes *impenetrable* barrier between the two regions.

Then there was a long silence

The problem has a history: deep in the last century we wrote a paper

J. Dittrich, P.E., P. Šeba: Dirac operators with a spherically symmetric δ -shell interaction, *J. Math. Phys.* **30** (1989), 2875–2882.

in which we discussed singular Dirac operators formally written as

$$H = H_0 + \eta \delta(|\mathbf{x}| - R) + \tau \beta \delta(|\mathbf{x}| - R), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

We were then interested in solvable models and looking at

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, *J. Phys. A: Math. Gen.* **20** (1987), 3687–3712.

we asked ourselves what would such a perturbation do with Dirac operator.

We specified the *boundary conditions* at |x|=R defining these operators, described roughly the spectrum and showed that under the condition

$$\eta^2 - \tau^2 = -4c^2$$

the spherical shell becomes *impenetrable* barrier between the two regions.

Then there was a *long silence* followed by a recent *burst of activity* in Bilbao, Graz, Prague, and elsewhere, bringing in *a lot more generality*.

First of all, a little later – and independently – a paper appeared,

F. Dominguez-Adame: Exact solutions of the Dirac equation with surface delta interactions, *J. Phys. A: Math. Gen.* 23 (1990), 1993–1999.

in which analogous boundary condition were presented

First of all, a little later – and independently – a paper appeared,

F. Dominguez-Adame: Exact solutions of the Dirac equation with surface delta interactions, *J. Phys. A: Math. Gen.* 23 (1990), 1993–1999.

in which analogous boundary condition were presented, an moreover, the author noted the *absence of weakly bound states* for these operators.

First of all, a little later – and independently – a paper appeared,

F. Dominguez-Adame: Exact solutions of the Dirac equation with surface delta interactions, *J. Phys. A: Math. Gen.* 23 (1990), 1993–1999.

in which analogous boundary condition were presented, an moreover, the author noted the *absence of weakly bound states* for these operators.

A decade later, a series of papers appeared which were dead wrong

First of all, a little later – and independently – a paper appeared,

F. Dominguez-Adame: Exact solutions of the Dirac equation with surface delta interactions, *J. Phys. A: Math. Gen.* 23 (1990), 1993–1999.

in which analogous boundary condition were presented, an moreover, the author noted the *absence of weakly bound states* for these operators.

A decade later, a series of papers appeared which were *dead wrong* trying to deal with the problem using *nonrelativistic* δ -interaction conditions; this failure – not just of the authors but also the referees! – was pointed out in

J. Shabani, A. Vyabandi: A note on a series of papers on relativistic δ-sphere interactions in quantum mechanics published by M. N. Hounkonnou and G. Y. H. Avossevou in the Journal of Mathematical Physics, J. Math. Phys. 43 (2002), 6380–6384.

First of all, a little later – and independently – a paper appeared,

F. Dominguez-Adame: Exact solutions of the Dirac equation with surface delta interactions, *J. Phys. A: Math. Gen.* 23 (1990), 1993–1999.

in which analogous boundary condition were presented, an moreover, the author noted the *absence of weakly bound states* for these operators.

A decade later, a series of papers appeared which were *dead wrong* trying to deal with the problem using *nonrelativistic* δ -interaction conditions; this failure – not just of the authors but also the referees! – was pointed out in

J. Shabani, A. Vyabandi: A note on a series of papers on relativistic δ -sphere interactions in quantum mechanics published by M. N. Hounkonnou and G. Y. H. Avossevou in the Journal of Mathematical Physics, *J. Math. Phys.* 43 (2002), 6380–6384.

The same authors also proceeded with the analysis of the sphere adding

the scattering theory

First of all, a little later - and independently - a paper appeared,

F. Dominguez-Adame: Exact solutions of the Dirac equation with surface delta interactions, *J. Phys. A: Math. Gen.* 23 (1990), 1993–1999.

in which analogous boundary condition were presented, an moreover, the author noted the *absence of weakly bound states* for these operators.

A decade later, a series of papers appeared which were *dead wrong* trying to deal with the problem using *nonrelativistic* δ -interaction conditions; this failure – not just of the authors but also the referees! – was pointed out in

J. Shabani, A. Vyabandi: A note on a series of papers on relativistic δ -sphere interactions in quantum mechanics published by M. N. Hounkonnou and G. Y. H. Avossevou in the Journal of Mathematical Physics, *J. Math. Phys.* **43** (2002), 6380–6384.

The same authors also proceeded with the analysis of the sphere adding

- the scattering theory
- the nonrelativistic limit

J. Shabani, A. Vyabandi: Exactly solvable models of relativistic δ -sphere interactions in quantum mechanics, *J. Math. Phys.* **43** (2002), 6064–6084.

After a long slumber, the model came to life again in a few recent years and *overthrew the symmetry shackles*.

After a long slumber, the model came to life again in a few recent years and *overthrew the symmetry shackles*.

I suspect the main motivation of this revival was that it is an *interesting* mathematics

After a long slumber, the model came to life again in a few recent years and *overthrew the symmetry shackles*.

I suspect the main motivation of this revival was that it is an *interesting* mathematics, but here – at the ICIAM – it is appropriate to mention also some *physical connotations*:

After a long slumber, the model came to life again in a few recent years and *overthrew the symmetry shackles*.

I suspect the main motivation of this revival was that it is an *interesting* mathematics, but here – at the ICIAM – it is appropriate to mention also some *physical connotations:*

The separating case is related to the *MIT bag model* the original idea of which belongs to Bogolioubov, Struminski and Tavkhelidze, cf.

P.N. Bogolioubov: Sur un modèle à quarks quasi-indépendants, Ann. Inst. H. Poincaré A8 (1968) 163-168.

using the pictures of hadrons as *quark gas bubbles* is a perfect liquid to explain the observed *hadron mass spectrum*

After a long slumber, the model came to life again in a few recent years and *overthrew the symmetry shackles*.

I suspect the main motivation of this revival was that it is an *interesting* mathematics, but here – at the ICIAM – it is appropriate to mention also some *physical connotations:*

The separating case is related to the *MIT bag model* the original idea of which belongs to Bogolioubov, Struminski and Tavkhelidze, cf.

P.N. Bogolioubov: Sur un modèle à quarks quasi-indépendants, Ann. Inst. H. Poincaré A8 (1968) 163–168.

using the pictures of hadrons as *quark gas bubbles* is a perfect liquid to explain the observed *hadron mass spectrum*

T. DeGrand, R.L. Jaffe, K. Johnson, J. Kiskis: Masses and other parameters of the light hadrons, *Phys. Rev.* **D12** (1975), 2060–2076.

 This motivation is not very strong from various reasons: the true quark dynamics is a complicated QCD matter still not completely understood

After a long slumber, the model came to life again in a few recent years and *overthrew the symmetry shackles*.

I suspect the main motivation of this revival was that it is an *interesting* mathematics, but here – at the ICIAM – it is appropriate to mention also some *physical connotations*:

The separating case is related to the *MIT bag model* the original idea of which belongs to Bogolioubov, Struminski and Tavkhelidze, cf.

P.N. Bogolioubov: Sur un modèle à quarks quasi-indépendants, Ann. Inst. H. Poincaré A8 (1968) 163-168.

using the pictures of hadrons as *quark gas bubbles* is a perfect liquid to explain the observed *hadron mass spectrum*

- This motivation is not very strong from various reasons: the true quark dynamics is a complicated QCD matter still not completely understood
- some hadron masses like those of heavy quarkonia are better explained in the nonrelativistic setting with a linear confining potential

After a long slumber, the model came to life again in a few recent years and *overthrew the symmetry shackles*.

I suspect the main motivation of this revival was that it is an *interesting* mathematics, but here – at the ICIAM – it is appropriate to mention also some *physical connotations*:

The separating case is related to the *MIT bag model* the original idea of which belongs to Bogolioubov, Struminski and Tavkhelidze, cf.

P.N. Bogolioubov: Sur un modèle à quarks quasi-indépendants, Ann. Inst. H. Poincaré A8 (1968) 163-168.

using the pictures of hadrons as *quark gas bubbles* is a perfect liquid to explain the observed *hadron mass spectrum*

- This motivation is not very strong from various reasons: the true quark dynamics is a complicated QCD matter still not completely understood
- some hadron masses like those of heavy quarkonia are better explained in the nonrelativistic setting with a linear confining potential
- almost exclusively, physicists consider only *spherical bags*

After a long slumber, the model came to life again in a few recent years and *overthrew the symmetry shackles*.

I suspect the main motivation of this revival was that it is an *interesting* mathematics, but here – at the ICIAM – it is appropriate to mention also some *physical connotations*:

The separating case is related to the *MIT bag model* the original idea of which belongs to Bogolioubov, Struminski and Tavkhelidze, cf.

P.N. Bogolioubov: Sur un modèle à quarks quasi-indépendants, Ann. Inst. H. Poincaré A8 (1968) 163-168.

using the pictures of hadrons as *quark gas bubbles* is a perfect liquid to explain the observed *hadron mass spectrum*

- This motivation is not very strong from various reasons: the true quark dynamics is a complicated QCD matter still not completely understood
- some hadron masses like those of heavy quarkonia are better explained in the nonrelativistic setting with a linear confining potential
- almost exclusively, physicists consider only *spherical bags*, etc.

Another 'real life' reason to study singular Dirac operators – again not straightforward but physically compelling – came from a surprising direction

Another 'real life' reason to study singular Dirac operators – again not straightforward but physically compelling – came from a surprising direction, namely *nonrelativistic dynamics*

The hexagonal lattice of carbon atoms forming a *graphene sheet* has closed gaps in the vicinity of which the dispersion function are linear in the form of *Dirac cones*

Another 'real life' reason to study singular Dirac operators – again not straightforward but physically compelling – came from a surprising direction, namely *nonrelativistic dynamics*

The hexagonal lattice of carbon atoms forming a *graphene sheet* has closed gaps in the vicinity of which the dispersion function are linear in the form of *Dirac cones*

Luckily the Nature set the Fermi level at the right place allowing us to describe such systems using the *two-dimensional massless Dirac equation*

Another 'real life' reason to study singular Dirac operators – again not straightforward but physically compelling – came from a surprising direction, namely *nonrelativistic dynamics*

The hexagonal lattice of carbon atoms forming a *graphene sheet* has closed gaps in the vicinity of which the dispersion function are linear in the form of *Dirac cones*

Luckily the Nature set the Fermi level at the right place allowing us to describe such systems using the *two-dimensional massless Dirac equation*

This not the three-dimensional massive one we speak about here

Another 'real life' reason to study singular Dirac operators – again not straightforward but physically compelling – came from a surprising direction, namely *nonrelativistic dynamics*

The hexagonal lattice of carbon atoms forming a *graphene sheet* has closed gaps in the vicinity of which the dispersion function are linear in the form of *Dirac cones*

Luckily the Nature set the Fermi level at the right place allowing us to describe such systems using the *two-dimensional massless Dirac equation*

This not the three-dimensional massive one we speak about here, but on the other hand, it makes perfect sense to investigate such particles confined to regions of an *arbitrary shape*, see for instance

R.D. Benguria, S. Fournais, E. Stockmeyer, H. Van Den Bosch: Self-adjointness of two-dimensional Diracoperators on domains, *Ann. Henri Poincaré* 18 (2017), 1371–1383.

R.D. Benguria, S. Fournais, E. Stockmeyer, H. Van Den Bosch: Spectral gaps of Dirac operators describing graphene quantum dots, *Math. Phys. Anal. Geom.* **20** (2017), 11 (12pp).

To treat singular Dirac operators without separating variables one needs *new tools* which would allow to express the resolvent and identify its singularities

To treat singular Dirac operators without separating variables one needs *new tools* which would allow to express the resolvent and identify its singularities. Our basic instrument is introduced as follows:

To treat singular Dirac operators without separating variables one needs *new tools* which would allow to express the resolvent and identify its singularities. Our basic instrument is introduced as follows:

Let T be a linear operator in $\mathfrak H$ such that $\overline{T}=S^*$, then $\{\mathcal G,\Gamma_0,\Gamma_1\}$ is called a *quasi boundary triple* for S^* if $(\mathcal G,(\cdot,\cdot)_{\mathcal G})$ is a Hilbert space and $\Gamma_0,\Gamma_1:\operatorname{dom} T\to \mathcal G$ are linear maps satisfying the following conditions: small

(i) The abstract Green's identity

$$(Tf,g)_{\mathfrak{H}}-(f,Tg)_{\mathfrak{H}}=(\Gamma_{1}f,\Gamma_{0}g)_{\mathcal{G}}-(\Gamma_{0}f,\Gamma_{1}g)_{\mathcal{G}}$$

is valid for all $f, g \in \text{dom } T$.

- (ii) The range of the mapping $\Gamma = (\Gamma_0, \Gamma_1)^\top : \operatorname{dom} T \to \mathcal{G} \times \mathcal{G}$ is dense.
- (iii) The operator $H_0 := T \upharpoonright \ker \Gamma_0$ is self-adjoint in \mathfrak{H} .

To treat singular Dirac operators without separating variables one needs *new tools* which would allow to express the resolvent and identify its singularities. Our basic instrument is introduced as follows:

Let T be a linear operator in $\mathfrak H$ such that $\overline{T}=S^*$, then $\{\mathcal G,\Gamma_0,\Gamma_1\}$ is called a *quasi boundary triple* for S^* if $(\mathcal G,(\cdot,\cdot)_{\mathcal G})$ is a Hilbert space and $\Gamma_0,\Gamma_1:\operatorname{dom} T\to \mathcal G$ are linear maps satisfying the following conditions: small

(i) The abstract Green's identity

$$(Tf,g)_{\mathfrak{H}}-(f,Tg)_{\mathfrak{H}}=(\Gamma_{1}f,\Gamma_{0}g)_{\mathcal{G}}-(\Gamma_{0}f,\Gamma_{1}g)_{\mathcal{G}}$$

is valid for all $f, g \in \text{dom } T$.

- (ii) The range of the mapping $\Gamma = (\Gamma_0, \Gamma_1)^\top : \operatorname{dom} T \to \mathcal{G} \times \mathcal{G}$ is dense.
- (iii) The operator $H_0 := T \upharpoonright \ker \Gamma_0$ is self-adjoint in \mathfrak{H} .

Such a triple is said to be a generalized boundary triple if $\operatorname{ran} \Gamma_0 = \mathcal{G}$ and an ordinary boundary triple if $\operatorname{ran} \Gamma = \mathcal{G} \times \mathcal{G}$.

J. Behrndt, M. Langer: Boundary value problems for elliptic partial differential operators on bounded domains, J. Func. Anal. 243 (2007), 536–565.

Given a quasi boundary triple $\{\mathcal{G}, \Gamma_0, \Gamma_1\}$ we define them as

$$\rho(A_0) \ni \lambda \mapsto \gamma(\lambda) = (\Gamma_0 \upharpoonright \ker(T - \lambda))^{-1},$$

$$\rho(A_0) \ni \lambda \mapsto M(\lambda) = \Gamma_1 (\Gamma_0 \upharpoonright \ker(T - \lambda))^{-1},$$

respectively; the adjoint of $\gamma(\lambda)$ is $\gamma(\lambda)^* = \Gamma_1(A_0 - \overline{\lambda})^{-1} \in \mathfrak{B}(\mathfrak{H}, \mathcal{G})$ for $\lambda \in \rho(A_0)$

Given a quasi boundary triple $\{\mathcal{G}, \Gamma_0, \Gamma_1\}$ we define them as

$$\begin{split} & \rho(A_0) \ni \lambda \mapsto \gamma(\lambda) = \big(\Gamma_0 \upharpoonright \ker(T - \lambda) \big)^{-1}, \\ & \rho(A_0) \ni \lambda \mapsto M(\lambda) = \Gamma_1 \big(\Gamma_0 \upharpoonright \ker(T - \lambda) \big)^{-1}, \end{split}$$

respectively; the adjoint of $\gamma(\lambda)$ is $\gamma(\lambda)^* = \Gamma_1(A_0 - \overline{\lambda})^{-1} \in \mathfrak{B}(\mathfrak{H}, \mathcal{G})$ for $\lambda \in \rho(A_0)$. If the triple is not ordinary, $\gamma(\lambda)$ may not be closed.

Given a quasi boundary triple $\{\mathcal{G}, \Gamma_0, \Gamma_1\}$ we define them as

$$\rho(A_0) \ni \lambda \mapsto \gamma(\lambda) = (\Gamma_0 \upharpoonright \ker(T - \lambda))^{-1},$$

$$\rho(A_0) \ni \lambda \mapsto M(\lambda) = \Gamma_1 (\Gamma_0 \upharpoonright \ker(T - \lambda))^{-1},$$

respectively; the adjoint of $\gamma(\lambda)$ is $\gamma(\lambda)^* = \Gamma_1(A_0 - \overline{\lambda})^{-1} \in \mathfrak{B}(\mathfrak{H}, \mathcal{G})$ for $\lambda \in \rho(A_0)$. If the triple is not ordinary, $\gamma(\lambda)$ may not be closed.

They allow us to construct extensions: for $B \in \mathfrak{B}(\mathcal{G})$ we consider

$$A_{[B]} = T \upharpoonright \ker(\Gamma_0 + B\Gamma_1),$$

i.e. with the domain specified by the boundary conditions $\Gamma_0 f = -B\Gamma_1 f$.

Given a quasi boundary triple $\{\mathcal{G},\Gamma_0,\Gamma_1\}$ we define them as

$$\rho(A_0) \ni \lambda \mapsto \gamma(\lambda) = (\Gamma_0 \upharpoonright \ker(T - \lambda))^{-1},$$

$$\rho(A_0) \ni \lambda \mapsto M(\lambda) = \Gamma_1 (\Gamma_0 \upharpoonright \ker(T - \lambda))^{-1},$$

respectively; the adjoint of $\gamma(\lambda)$ is $\gamma(\lambda)^* = \Gamma_1(A_0 - \overline{\lambda})^{-1} \in \mathfrak{B}(\mathfrak{H}, \mathcal{G})$ for $\lambda \in \rho(A_0)$. If the triple is not ordinary, $\gamma(\lambda)$ may not be closed.

They allow us to construct extensions: for $B \in \mathfrak{B}(\mathcal{G})$ we consider

$$A_{[B]} = T \upharpoonright \ker(\Gamma_0 + B\Gamma_1),$$

i.e. with the domain specified by the boundary conditions $\Gamma_0 f = -B\Gamma_1 f$.

For ordinary boundary triples one usually writes $\ker(\Gamma_1 - \Theta\Gamma_0)$ and the operator $\Theta = -B^{-1}$ determines a unique extension

Given a quasi boundary triple $\{\mathcal{G}, \Gamma_0, \Gamma_1\}$ we define them as

$$\rho(A_0) \ni \lambda \mapsto \gamma(\lambda) = (\Gamma_0 \upharpoonright \ker(T - \lambda))^{-1},$$

$$\rho(A_0) \ni \lambda \mapsto M(\lambda) = \Gamma_1 (\Gamma_0 \upharpoonright \ker(T - \lambda))^{-1},$$

respectively; the adjoint of $\gamma(\lambda)$ is $\gamma(\lambda)^* = \Gamma_1(A_0 - \overline{\lambda})^{-1} \in \mathfrak{B}(\mathfrak{H}, \mathcal{G})$ for $\lambda \in \rho(A_0)$. If the triple is not ordinary, $\gamma(\lambda)$ may not be closed.

They allow us to construct extensions: for $B \in \mathfrak{B}(\mathcal{G})$ we consider

$$A_{[B]} = T \upharpoonright \ker(\Gamma_0 + B\Gamma_1),$$

i.e. with the domain specified by the boundary conditions $\Gamma_0 f = -B\Gamma_1 f$.

For ordinary boundary triples one usually writes $\ker(\Gamma_1 - \Theta\Gamma_0)$ and the operator $\Theta = -B^{-1}$ determines a unique extension. When dealing with quasi boundary triples, more caution is needed.

A Krein-type formula

Theorem

Let S and $\overline{T}=S^*$ be as above with a quasi boundary triple $\{\mathcal{G},\Gamma_0,\Gamma_1\}$ and $A_0=T\upharpoonright\ker\Gamma_0$. Let further $A_{[B]}$ be the extension of S corresponding to an operator B. Then for all $\lambda\in\rho(A_0)$ one has

$$\ker(A_{[B]} - \lambda) = \{\gamma(\lambda)\varphi : \varphi \in \ker(I + BM(\lambda))\}$$

A Krein-type formula

Theorem

Let S and $\overline{T}=S^*$ be as above with a quasi boundary triple $\{\mathcal{G},\Gamma_0,\Gamma_1\}$ and $A_0=T\upharpoonright\ker\Gamma_0$. Let further $A_{[B]}$ be the extension of S corresponding to an operator B. Then for all $\lambda\in\rho(A_0)$ one has

$$\ker(A_{[B]} - \lambda) = \{\gamma(\lambda)\varphi : \varphi \in \ker(I + BM(\lambda))\},$$

in particular, $\lambda \in \sigma_p(A_{[B]})$ holds if and only if if $-1 \in \sigma_p(BM(\lambda))$

A Krein-type formula

Theorem

Let S and $\overline{T}=S^*$ be as above with a quasi boundary triple $\{\mathcal{G},\Gamma_0,\Gamma_1\}$ and $A_0=T\upharpoonright\ker\Gamma_0$. Let further $A_{[B]}$ be the extension of S corresponding to an operator B. Then for all $\lambda\in\rho(A_0)$ one has

$$\ker(A_{[B]} - \lambda) = \{\gamma(\lambda)\varphi : \varphi \in \ker(I + BM(\lambda))\},\$$

in particular, $\lambda \in \sigma_p(A_{[B]})$ holds if and only if if $-1 \in \sigma_p(BM(\lambda))$. Furthermore, if $\lambda \in \rho(A_0)$ is not an eigenvalue of $A_{[B]}$ then we have

- (i) $g \in \operatorname{ran}(A_{[B]} \lambda)$ if and only if $B\gamma(\overline{\lambda})^*g \in \operatorname{dom}(I + BM(\lambda))^{-1}$;
- (ii) For all $g \in \operatorname{ran}(A_{[B]} \lambda)$ we have

$$(A_{[B]} - \lambda)^{-1} g = (A_0 - \lambda)^{-1} g - \gamma(\lambda) (I + BM(\lambda))^{-1} B \gamma(\overline{\lambda})^* g.$$

If $B \in \mathfrak{B}(\mathcal{G})$ is self-adjoint and $(I + BM(\lambda_{\pm}))^{-1} \in \mathfrak{B}(\mathcal{G})$ for some $\lambda_{\pm} \in \mathbb{C}^{\pm}$, then $A_{[B]}$ is a self-adjoint operator in \mathfrak{H} and the formula holds for all $\lambda \in \rho(A_0) \cap \rho(A_{[B]})$ and all $g \in \mathfrak{H}$.

J. Behrndt, M. Langer, V. Lotoreichik: Trace formulae and singular values of resolvent power differences of self-adjoint elliptic operators, *J. London Math. Soc.* 88 (2013), 319–337.

Application to singular Dirac operators

We start from the free Dirac operator

$$H_0f := -ic\sum_{j=1}^3 \alpha_j \partial_j f + mc^2 \beta f, \quad \text{dom } H_0 = H^1(\mathbb{R}^3; \mathbb{C}^4),$$

Application to singular Dirac operators

We start from the free Dirac operator

$$H_0f := -ic\sum_{j=1}^3 \alpha_j \partial_j f + mc^2 \beta f, \quad \text{dom } H_0 = H^1(\mathbb{R}^3; \mathbb{C}^4),$$

which is self-adjoint in $L^2(\mathbb{R}^3; \mathbb{C}^4)$ and its spectrum is

$$\sigma(H_0)=(-\infty,-mc^2]\cup[mc^2,\infty).$$

Application to singular Dirac operators

We start from the free Dirac operator

$$H_0f := -ic\sum_{j=1}^3 \alpha_j \partial_j f + mc^2 \beta f, \quad \text{dom } H_0 = H^1(\mathbb{R}^3; \mathbb{C}^4),$$

which is self-adjoint in $L^2(\mathbb{R}^3;\mathbb{C}^4)$ and its spectrum is

$$\sigma(H_0) = (-\infty, -mc^2] \cup [mc^2, \infty).$$

Its resolvent is know to act as $(H_0 - \lambda)^{-1} f(x) = \int_{\mathbb{R}^3} G_{\lambda}(x - y) f(y) dy$, where the $\mathbb{C}^{4 \times 4}$ -valued integral kernel G_{λ} is given by

$$G_{\lambda}(x) = \left(\frac{\lambda}{c^2}I_4 + m\beta + \left(1 - i\sqrt{\frac{\lambda^2}{c^2} - (mc)^2}|x|\right)\frac{i}{c|x|^2}\alpha \cdot x\right)\frac{e^{i\sqrt{\lambda^2/c^2 - (mc)^2}|x|}}{4\pi|x|}.$$

B. Thaller: The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin 1992.

$$\gamma \varphi(x) := \int_{\Sigma} G_0(x - y) \varphi(y) d\sigma(y), \quad x \in \mathbb{R}^3, \ \varphi \in L^2(\Sigma; \mathbb{C}^4),$$

which is bounded and everywhere defined

Given a bounded C^{∞} -domain in \mathbb{R}^3 with the boundary Σ , we introduce

$$\gamma \varphi(x) := \int_{\Sigma} G_0(x - y) \varphi(y) d\sigma(y), \quad x \in \mathbb{R}^3, \ \varphi \in L^2(\Sigma; \mathbb{C}^4),$$

which is bounded and everywhere defined, and furthermore, we define the strongly singular integral operator $M: L^2(\Sigma; \mathbb{C}^4) \to L^2(\Sigma; \mathbb{C}^4)$ by

$$M\varphi(x):=\lim_{\varepsilon\searrow 0}\int_{|x-y|>\varepsilon}G_0(x-y)\varphi(y)\mathrm{d}\sigma(y),\quad x\in\Sigma,\ \varphi\in L^2(\Sigma;\mathbb{C}^4).$$

is a bounded self-adjoint operator.

N. Arrizabalaga, A. Mas, L. Vega: Shell interactions for Dirac operators, *J. Math. Pures at Appliquées* 102 (2014), 617–639.

Given a bounded C^{∞} -domain in \mathbb{R}^3 with the boundary Σ , we introduce

$$\gamma \varphi(x) := \int_{\Sigma} G_0(x - y) \varphi(y) d\sigma(y), \quad x \in \mathbb{R}^3, \ \varphi \in L^2(\Sigma; \mathbb{C}^4),$$

which is bounded and everywhere defined, and furthermore, we define the strongly singular integral operator $M: L^2(\Sigma; \mathbb{C}^4) \to L^2(\Sigma; \mathbb{C}^4)$ by

$$M\varphi(x) := \lim_{\varepsilon \searrow 0} \int_{|x-y| > \varepsilon} G_0(x-y)\varphi(y) d\sigma(y), \quad x \in \Sigma, \ \varphi \in L^2(\Sigma; \mathbb{C}^4).$$

is a bounded self-adjoint operator.

N. Arrizabalaga, A. Mas, L. Vega: Shell interactions for Dirac operators, *J. Math. Pures at Appliquées* **102** (2014), 617–639.

If we now put $S:=H_0 \upharpoonright H_0^1(\mathbb{R}^3 \setminus \Sigma; \mathbb{C}^4)$ and $T: T(f+\gamma\varphi)=H_0f$ for $f \in H^1(\mathbb{R}^3; \mathbb{C}^4)$ and $\varphi \in L^2(\Sigma; \mathbb{C}^4)$

Given a bounded C^{∞} -domain in \mathbb{R}^3 with the boundary Σ , we introduce

$$\gamma \varphi(x) := \int_{\Sigma} G_0(x - y) \varphi(y) d\sigma(y), \quad x \in \mathbb{R}^3, \ \varphi \in L^2(\Sigma; \mathbb{C}^4),$$

which is bounded and everywhere defined, and furthermore, we define the strongly singular integral operator $M: L^2(\Sigma; \mathbb{C}^4) \to L^2(\Sigma; \mathbb{C}^4)$ by

$$M\varphi(x):=\lim_{\varepsilon\searrow 0}\int_{|x-y|>\varepsilon}G_0(x-y)\varphi(y)\mathrm{d}\sigma(y),\quad x\in\Sigma,\ \varphi\in L^2(\Sigma;\mathbb{C}^4).$$

is a bounded self-adjoint operator.

N. Arrizabalaga, A. Mas, L. Vega: Shell interactions for Dirac operators, *J. Math. Pures at Appliquées* **102** (2014), 617–639.

If we now put $S := H_0 \upharpoonright H_0^1(\mathbb{R}^3 \setminus \Sigma; \mathbb{C}^4)$ and $T : T(f + \gamma \varphi) = H_0 f$ for $f \in H^1(\mathbb{R}^3; \mathbb{C}^4)$ and $\varphi \in L^2(\Sigma; \mathbb{C}^4)$, then

 $\Gamma_0(f+\gamma\varphi)=\varphi$ and $\Gamma_1(f+\gamma\varphi)=f|_{\Sigma}+M\varphi$, $f+\gamma\varphi\in\mathrm{dom}\,T$, is a quasi boundary triple for $\overline{T}=S^*$ and $T\upharpoonright\ker\Gamma_0$ coincides with H_0 .

The γ field and the Weyl function M

These quantities, $\gamma(\lambda)$ and $M(\lambda)$, associated with the quasi boundary triple $\{L^2(\Sigma; \mathbb{C}^4), \Gamma_0, \Gamma_1\}$ are obtained by replacing $G_0(x)$ by $G_{\lambda}(x)$ in the above formulæ

The γ field and the Weyl function M

These quantities, $\gamma(\lambda)$ and $M(\lambda)$, associated with the quasi boundary triple $\{L^2(\Sigma; \mathbb{C}^4), \Gamma_0, \Gamma_1\}$ are obtained by replacing $G_0(x)$ by $G_\lambda(x)$ in the above formulæ; they are everywhere defined and bounded operators, holomorphic in $\rho(H_0) = \mathbb{C} \setminus ((-\infty, -mc^2] \cup [mc^2, \infty))$ w.r.t. λ .

J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: On the spectral properties of Dirac operators with electrostatic δ -shell interactions, *J. Math. Pures at Appliquées* 111 (2018), 47–78.

In the above mentioned papers and in

N. Arrizabalaga, A. Mas, L. Vega: Shell interactions for Dirac operators: on the point spectrum and the confinement, SIAM J. Math. Anal. 47 (2015), 1044–1069.

properties of these operator-valued functions are derived, in particular

(i) The limits $M(\pm mc^2) := \lim_{\lambda \to \pm mc^2} M(\lambda)$ exist in the operator norm on $\mathfrak{B}(L^2(\Sigma; \mathbb{C}^4))$ and can be expressed by means of the 'localized convolution' with $G_{\pm mc^2}(x)$.

The γ field and the Weyl function M

These quantities, $\gamma(\lambda)$ and $M(\lambda)$, associated with the quasi boundary triple $\{L^2(\Sigma; \mathbb{C}^4), \Gamma_0, \Gamma_1\}$ are obtained by replacing $G_0(x)$ by $G_{\lambda}(x)$ in the above formulæ; they are everywhere defined and bounded operators, holomorphic in $\rho(H_0) = \mathbb{C} \setminus ((-\infty, -mc^2] \cup [mc^2, \infty))$ w.r.t. λ .

J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: On the spectral properties of Dirac operators with electrostatic δ -shell interactions, *J. Math. Pures at Appliquées* 111 (2018), 47–78.

In the above mentioned papers and in

N. Arrizabalaga, A. Mas, L. Vega: Shell interactions for Dirac operators: on the point spectrum and the confinement, SIAM J. Math. Anal. 47 (2015), 1044–1069.

properties of these operator-valued functions are derived, in particular

- (i) The limits $M(\pm mc^2) := \lim_{\lambda \to \pm mc^2} M(\lambda)$ exist in the operator norm on $\mathfrak{B}(L^2(\Sigma; \mathbb{C}^4))$ and can be expressed by means of the 'localized convolution' with $G_{+mc^2}(x)$.
- (ii) $\lambda \mapsto M(\lambda)$ is uniformly bounded on the spectral gap, i.e.

$$M_0 := \sup_{\lambda \in [-mc^2, mc^2]} \|M(\lambda)\| < \infty.$$

Further properties of $\gamma(\lambda)$ and $M(\lambda)$

Furthermore, we have

(i) For any $\lambda \in \rho(H_0)$ there exists a *compact* $K(\lambda)$ in $L^2(\Sigma; \mathbb{C}^4)$ such that

$$M(\lambda)^2 = \frac{1}{4c^2}I_4 + K(\lambda).$$

Further properties of $\gamma(\lambda)$ and $M(\lambda)$

Furthermore, we have

(i) For any $\lambda \in \rho(H_0)$ there exists a *compact* $K(\lambda)$ in $L^2(\Sigma; \mathbb{C}^4)$ such that

$$M(\lambda)^2 = \frac{1}{4c^2}I_4 + K(\lambda).$$

(ii) With the M_0 defined above, there exists an at most countable family of functions $\mu_n:[-mc^2,mc^2]\to \left[\frac{1}{4c^2M_0},M_0\right]$, continuous and non-decreasing, such that such that

$$\sigma(M(\lambda)) = \left\{\pm \frac{1}{2c}\right\} \cup \left\{\mu_n(\lambda) : n \in \mathbb{N}\right\} \cup \left\{-\frac{1}{4c^2\mu_n(\lambda)} : n \in \mathbb{N}\right\}.$$

Moreover, for any fixed $\lambda \in [-mc^2, mc^2]$ the number $\frac{1}{2c}$ is the only possible accumulation point of the sequence $(\mu_n(\lambda))$.

Consider now self-adjoint extension for which B is a *scalar operator*, in other words, for a given Σ and $\eta \in \mathbb{R} \setminus \{\pm 2c\}$ we put

$$H_{\eta} := T \upharpoonright \ker(\Gamma_0 + \eta \Gamma_1),$$

which can be equivalently expressed as $H_{\eta}(f + \gamma \varphi) = H_0 f$ on the domain consisting of functions $f + \gamma \varphi$ satisfying the condition $\eta(f|_{\Sigma} + M\varphi) = -\varphi$.

$$H_{\eta} := T \upharpoonright \ker(\Gamma_0 + \eta \Gamma_1),$$

which can be equivalently expressed as $H_{\eta}(f + \gamma \varphi) = H_0 f$ on the domain consisting of functions $f + \gamma \varphi$ satisfying the condition $\eta(f|_{\Sigma} + M\varphi) = -\varphi$.

Another equivalent way to characterize H_{η} uses the *jump* of the function $h:=f+\gamma\varphi\in\mathrm{dom}\,H_{\eta}$ at the interaction support

Consider now self-adjoint extension for which B is a *scalar operator*, in other words, for a given Σ and $\eta \in \mathbb{R} \setminus \{\pm 2c\}$ we put

$$H_{\eta} := T \upharpoonright \ker(\Gamma_0 + \eta \Gamma_1),$$

which can be equivalently expressed as $H_{\eta}(f + \gamma \varphi) = H_0 f$ on the domain consisting of functions $f + \gamma \varphi$ satisfying the condition $\eta(f|_{\Sigma} + M\varphi) = -\varphi$.

Another equivalent way to characterize H_{η} uses the *jump* of the function $h:=f+\gamma\varphi\in\mathrm{dom}\,H_{\eta}$ at the interaction support. Consider the nontangential limits $h_{+}(x):=\lim_{\Omega\ni y\to x}$ and $h_{-}(x)$ taken from outside Ω and denote by ν the outer unit normal vector field of Ω , then

$$\frac{\eta}{2}(h_{+}+h_{-})=-\frac{i\alpha\cdot\nu}{c}(h_{+}-h_{-}).$$

Consider now self-adjoint extension for which B is a *scalar operator*, in other words, for a given Σ and $\eta \in \mathbb{R} \setminus \{\pm 2c\}$ we put

$$H_{\eta} := T \upharpoonright \ker(\Gamma_0 + \eta \Gamma_1),$$

which can be equivalently expressed as $H_{\eta}(f + \gamma \varphi) = H_0 f$ on the domain consisting of functions $f + \gamma \varphi$ satisfying the condition $\eta(f|_{\Sigma} + M\varphi) = -\varphi$.

Another equivalent way to characterize H_η uses the *jump* of the function $h:=f+\gamma\varphi\in\mathrm{dom}\,H_\eta$ at the interaction support. Consider the nontangential limits $h_+(x):=\lim_{\Omega\ni y\to x}$ and $h_-(x)$ taken from outside Ω and denote by ν the outer unit normal vector field of Ω , then

$$\frac{\eta}{2}(h_++h_-)=-\frac{i\alpha\cdot\nu}{c}(h_+-h_-).$$

The above results about the properties the γ -field and Weyl function $M(\cdot)$ allow us to determine spectral properties of H_{η} .

Theorem

Let $\{L^2(\Sigma; \mathbb{C}^4), \Gamma_0, \Gamma_1\}$ be the quasi boundary triple described above with the corresponding γ -field $\gamma(\cdot)$ and Weyl function $M(\cdot)$. Then the Dirac operator H_η is self-adjoint in $L^2(\mathbb{R}^3; \mathbb{C}^4)$ for any $\eta \in \mathbb{R} \setminus \{\pm 2c\}$ and

$$(H_{\eta} - \lambda)^{-1} = (H_0 - \lambda)^{-1} - \gamma(\lambda) (I_4 + \eta M(\lambda))^{-1} \eta \gamma(\overline{\lambda})^*$$

holds for all $\lambda \in \rho(H_0) \cap \rho(H_\eta)$

Theorem

Let $\{L^2(\Sigma; \mathbb{C}^4), \Gamma_0, \Gamma_1\}$ be the quasi boundary triple described above with the corresponding γ -field $\gamma(\cdot)$ and Weyl function $M(\cdot)$. Then the Dirac operator H_η is self-adjoint in $L^2(\mathbb{R}^3; \mathbb{C}^4)$ for any $\eta \in \mathbb{R} \setminus \{\pm 2c\}$ and

$$(H_{\eta} - \lambda)^{-1} = (H_0 - \lambda)^{-1} - \gamma(\lambda) (I_4 + \eta M(\lambda))^{-1} \eta \gamma(\overline{\lambda})^*$$

(i)
$$\sigma_{\text{ess}}(H_{\eta}) = (-\infty, -mc^2] \cup [mc^2, \infty).$$

Theorem

Let $\{L^2(\Sigma; \mathbb{C}^4), \Gamma_0, \Gamma_1\}$ be the quasi boundary triple described above with the corresponding γ -field $\gamma(\cdot)$ and Weyl function $M(\cdot)$. Then the Dirac operator H_η is self-adjoint in $L^2(\mathbb{R}^3; \mathbb{C}^4)$ for any $\eta \in \mathbb{R} \setminus \{\pm 2c\}$ and

$$(H_{\eta} - \lambda)^{-1} = (H_0 - \lambda)^{-1} - \gamma(\lambda) (I_4 + \eta M(\lambda))^{-1} \eta \gamma(\overline{\lambda})^*$$

(i)
$$\sigma_{\text{ess}}(H_{\eta}) = (-\infty, -mc^2] \cup [mc^2, \infty).$$

(ii)
$$\dim \ker(H_{\eta} - \lambda) = \dim \ker(I_4 + \eta M(\lambda))$$
 for all $\lambda \in (-mc^2, mc^2)$.

Theorem

Let $\{L^2(\Sigma; \mathbb{C}^4), \Gamma_0, \Gamma_1\}$ be the quasi boundary triple described above with the corresponding γ -field $\gamma(\cdot)$ and Weyl function $M(\cdot)$. Then the Dirac operator H_η is self-adjoint in $L^2(\mathbb{R}^3; \mathbb{C}^4)$ for any $\eta \in \mathbb{R} \setminus \{\pm 2c\}$ and

$$(H_{\eta} - \lambda)^{-1} = (H_0 - \lambda)^{-1} - \gamma(\lambda) (I_4 + \eta M(\lambda))^{-1} \eta \gamma(\overline{\lambda})^*$$

- (i) $\sigma_{\text{ess}}(H_{\eta}) = (-\infty, -mc^2] \cup [mc^2, \infty).$
- (ii) $\dim \ker(H_{\eta} \lambda) = \dim \ker(I_4 + \eta M(\lambda))$ for all $\lambda \in (-mc^2, mc^2)$.
- (iii) $\sigma(H_{\eta}) \cap (-mc^2, mc^2)$ is finite for all $\eta \in \mathbb{R} \setminus \{\pm 2c\}$.

Theorem

Let $\{L^2(\Sigma; \mathbb{C}^4), \Gamma_0, \Gamma_1\}$ be the quasi boundary triple described above with the corresponding γ -field $\gamma(\cdot)$ and Weyl function $M(\cdot)$. Then the Dirac operator H_η is self-adjoint in $L^2(\mathbb{R}^3; \mathbb{C}^4)$ for any $\eta \in \mathbb{R} \setminus \{\pm 2c\}$ and

$$(H_{\eta} - \lambda)^{-1} = (H_0 - \lambda)^{-1} - \gamma(\lambda) (I_4 + \eta M(\lambda))^{-1} \eta \gamma(\overline{\lambda})^*$$

- (i) $\sigma_{\text{ess}}(H_{\eta}) = (-\infty, -mc^2] \cup [mc^2, \infty).$
- (ii) $\dim \ker(H_{\eta} \lambda) = \dim \ker(I_4 + \eta M(\lambda))$ for all $\lambda \in (-mc^2, mc^2)$.
- (iii) $\sigma(H_{\eta}) \cap (-mc^2, mc^2)$ is finite for all $\eta \in \mathbb{R} \setminus \{\pm 2c\}$.
- (iv) $\sigma(H_{\eta}) \cap (-mc^2, mc^2) = \emptyset$ holds for $|\eta| < \frac{1}{M_0}$ and $|\eta| > 4c^2M_0$.

While I have electrostatic interaction in the title, let me briefly mention what happens if the interaction combined with a *Lorentz* δ *shell*, i.e.

$$H_{\eta,\tau} = H_0 + (\eta + \tau \beta)\delta_{\Sigma}(x), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

While I have electrostatic interaction in the title, let me briefly mention what happens if the interaction combined with a Lorentz δ shell, i.e.

$$H_{\eta,\tau} = H_0 + (\eta + \tau \beta) \delta_{\Sigma}(x), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

The boundary conditions defining the interaction are then changed to

$$\frac{1}{2}(\eta I_4 + \tau \beta)(h_+ + h_-) = -\frac{i\alpha \cdot \nu}{c}(h_+ - h_-).$$

and, as indicated, the separation condition is $\eta^2 - \tau^2 = 4c^2$

While I have electrostatic interaction in the title, let me briefly mention what happens if the interaction combined with a Lorentz δ shell, i.e.

$$H_{\eta,\tau} = H_0 + (\eta + \tau \beta) \delta_{\Sigma}(x), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

The boundary conditions defining the interaction are then changed to

$$\frac{1}{2}(\eta I_4 + \tau \beta)(h_+ + h_-) = -\frac{i\alpha \cdot \nu}{c}(h_+ - h_-).$$

and, as indicated, the separation condition is $\eta^2 - \tau^2 = 4c^2$. Under its validity, the claims (i) and (iii) are preserved, and (ii) and (iv) are appropriately modified

While I have electrostatic interaction in the title, let me briefly mention what happens if the interaction combined with a *Lorentz* δ *shell*, i.e.

$$H_{\eta,\tau} = H_0 + (\eta + \tau \beta)\delta_{\Sigma}(x), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

The boundary conditions defining the interaction are then changed to

$$\frac{1}{2}(\eta I_4 + \tau \beta)(h_+ + h_-) = -\frac{i\alpha \cdot \nu}{c}(h_+ - h_-).$$

and, as indicated, the separation condition is $\eta^2 - \tau^2 = 4c^2$. Under its validity, the claims (i) and (iii) are preserved, and (ii) and (iv) are appropriately modified, in particular, there exists a constant K>0 such that $\sigma_{\rm disc}(H_{\eta,\tau})=\emptyset$ if $|\eta+\tau|< K$ and $|\eta-\tau|< K$.

While I have electrostatic interaction in the title, let me briefly mention what happens if the interaction combined with a *Lorentz* δ *shell*, i.e.

$$H_{\eta,\tau} = H_0 + (\eta + \tau \beta)\delta_{\Sigma}(x), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

The boundary conditions defining the interaction are then changed to

$$\frac{1}{2}(\eta I_4 + \tau \beta)(h_+ + h_-) = -\frac{i\alpha \cdot \nu}{c}(h_+ - h_-).$$

and, as indicated, the separation condition is $\eta^2 - \tau^2 = 4c^2$. Under its validity, the claims (i) and (iii) are preserved, and (ii) and (iv) are appropriately modified, in particular, there exists a constant K>0 such that $\sigma_{\rm disc}(H_{\eta,\tau})=\emptyset$ if $|\eta+\tau|< K$ and $|\eta-\tau|< K$.

Remark: Other shell interaction have been considered, e.g., the one give by $H_{\eta,\theta}=H_0+(\eta+\theta(\alpha\cdot\nu))\delta_{\Sigma}(x)$

While I have electrostatic interaction in the title, let me briefly mention what happens if the interaction combined with a Lorentz δ shell, i.e.

$$H_{\eta,\tau} = H_0 + (\eta + \tau \beta) \delta_{\Sigma}(x), \quad H_0 = -i\vec{\alpha}.\vec{\nabla} + \beta mc^2$$

The boundary conditions defining the interaction are then changed to

$$\frac{1}{2}(\eta I_4 + \tau \beta)(h_+ + h_-) = -\frac{i\alpha \cdot \nu}{c}(h_+ - h_-).$$

and, as indicated, the separation condition is $\eta^2 - \tau^2 = 4c^2$. Under its validity, the claims (i) and (iii) are preserved, and (ii) and (iv) are appropriately modified, in particular, there exists a constant K>0 such that $\sigma_{\rm disc}(H_{\eta,\tau})=\emptyset$ if $|\eta+\tau|< K$ and $|\eta-\tau|< K$.

Remark: Other shell interaction have been considered, e.g., the one give by $H_{\eta,\theta}=H_0+(\eta+\theta(\alpha\cdot\nu))\delta_{\Sigma}(x)$; for particular values of η,θ they are unitarily equivalent to a separating $H_{\eta'}$ by a gauge transformation

A. Mas: Dirac operators, shell interactions, and discontinuous gauge functions across the boundary, *J. Math. Phys.* **58** (2017), 022301.

The meaning of such interactions

In the nonrelativistic case the δ -shell interaction can be regarded as an *idealization of a high and narrow potential barrier* (or a deep well) which is expressed by the *norm-resolvent convergence*

$$-\Delta + \frac{1}{\varepsilon}V\left(\frac{u_x}{\varepsilon}\right) \longrightarrow -\Delta + \alpha\delta_{\Sigma}(x)$$
 as $\varepsilon \to 0$,

where $u_x := \operatorname{dist}(x, \Sigma)$ and $\alpha := \int V(u) du$.

J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: Approximation of Schrödinger operators with δ -interactions supported on hypersurfaces, *Math. Nachr.* **290** (2017), 1215–1248.

The meaning of such interactions

In the nonrelativistic case the δ -shell interaction can be regarded as an *idealization of a high and narrow potential barrier* (or a deep well) which is expressed by the *norm-resolvent convergence*

$$-\Delta + rac{1}{arepsilon} V \Big(rac{u_{\mathsf{x}}}{arepsilon} \Big) \longrightarrow -\Delta + lpha \delta_{\Sigma}(\mathsf{x}) \quad ext{as } \ arepsilon o 0 \, ,$$

where $u_x := \operatorname{dist}(x, \Sigma)$ and $\alpha := \int V(u) du$.

J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: Approximation of Schrödinger operators with δ -interactions supported on hypersurfaces, *Math. Nachr.* **290** (2017), 1215–1248.

For Dirac operators we have a similar approximation results, however, with an important difference

The meaning of such interactions

In the nonrelativistic case the δ -shell interaction can be regarded as an *idealization of a high and narrow potential barrier* (or a deep well) which is expressed by the *norm-resolvent convergence*

$$-\Delta + rac{1}{arepsilon} V \Big(rac{u_{\mathsf{x}}}{arepsilon} \Big) \longrightarrow -\Delta + lpha \delta_{\Sigma}(\mathsf{x}) \quad \mathsf{as} \ \ arepsilon o 0 \, ,$$

where $u_x := \operatorname{dist}(x, \Sigma)$ and $\alpha := \int V(u) du$.

J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: Approximation of Schrödinger operators with δ -interactions supported on hypersurfaces, *Math. Nachr.* **290** (2017), 1215–1248.

For Dirac operators we have a similar approximation results, however, with an important difference: the approximation family of potentials *scales in a nonlinear way* which is an effect related to *Klein's paradox*

P. Šeba: Kleins paradox and the relativistic point interaction, Lett. Math. Phys. 18 (1989), 77-86.

A. Mas, F. Pizzichillo: Klein's paradox and the relativistic δ -shell interaction in \mathbb{R}^3 , Annal. & PDE 11 (2018), 705–744.

An isoperimetric inequality

Returning to the purely electrostatic case, we note that the critical value depends on the geometry of Σ .

An isoperimetric inequality

Returning to the purely electrostatic case, we note that the critical value depends on the geometry of Σ .

Theorem

Let
$$\Sigma = \partial \Omega$$
 and $C_{\pm}(\Sigma) = 4 \left(\pm mc^2 \frac{\operatorname{Area}(\Sigma)}{\operatorname{Cap}(\Omega)} + \sqrt{m^2c^4 \left(\frac{\operatorname{Area}(\Sigma)}{\operatorname{Cap}(\Omega)} \right)^2 + \frac{1}{4}} \right)$

An isoperimetric inequality

Returning to the purely electrostatic case, we note that the critical value depends on the geometry of Σ .

Theorem

Let
$$\Sigma = \partial \Omega$$
 and $C_{\pm}(\Sigma) = 4 \left(\pm mc^2 \frac{\operatorname{Area}(\Sigma)}{\operatorname{Cap}(\Omega)} + \sqrt{m^2c^4 \left(\frac{\operatorname{Area}(\Sigma)}{\operatorname{Cap}(\Omega)} \right)^2 + \frac{1}{4}} \right)$.

$$\sup\big\{|\eta|:\,\sigma_{\mathrm{disc}}(H_\eta)\neq\emptyset\big\}\geq C_+(\Sigma)\quad\text{and}\quad\inf\big\{|\eta|:\,\sigma_{\mathrm{disc}}(H_\eta)\neq\emptyset\big\}\leq C_-(\Sigma)$$

In both cases, the equality holds if and only if Ω is a ball.

N. Arrizabalaga, A. Mas, L. Vega: An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators, Commun. Math. Phys. 344 (2016), 483–505.

A related result

The above result has an interesting nonrelativistic counterpart

A related result

The above result has an interesting *nonrelativistic counterpart*: consider a Schrödinger operator with an attractive δ -shell interaction

$$H_{\eta,\Sigma}^{\rm nr} = -\Delta + \eta \delta(x - \Sigma)$$

A related result

The above result has an interesting *nonrelativistic counterpart*: consider a Schrödinger operator with an attractive δ -shell interaction

$$H_{\eta,\Sigma}^{\rm nr} = -\Delta + \eta \delta(x - \Sigma)$$

If $\Sigma = S_R$ is a *sphere*, $\sigma_{\text{disc}}(H_{n,\Sigma}^{\text{nr}}) \neq \emptyset$ holds if $-\eta R > 1$.

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, *J. Phys. A: Math. Gen.* **20** (1987), 3687–3712.

Suppose that the coupling is *critical*, i.e. $\eta R = -1$, and ask whether deformations of Σ produce a discrete spectrum

A related result

The above result has an interesting *nonrelativistic counterpart*: consider a Schrödinger operator with an attractive δ -shell interaction

$$H_{\eta,\Sigma}^{\rm nr} = -\Delta + \eta \delta(x - \Sigma)$$

If $\Sigma = S_R$ is a *sphere*, $\sigma_{\text{disc}}(H_{n,\Sigma}^{\text{nr}}) \neq \emptyset$ holds if $-\eta R > 1$.

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, *J. Phys. A: Math. Gen.* **20** (1987), 3687–3712.

Suppose that the coupling is *critical*, i.e. $\eta R = -1$, and ask whether *deformations of* Σ *produce a discrete spectrum*:

 if the deformation is area-preserving, the claim holds locally, but not globally

A related result

The above result has an interesting *nonrelativistic counterpart*: consider a Schrödinger operator with an attractive δ -shell interaction

$$H_{\eta,\Sigma}^{\mathrm{nr}} = -\Delta + \eta \delta(x - \Sigma)$$

If $\Sigma = S_R$ is a *sphere*, $\sigma_{\text{disc}}(H_{n,\Sigma}^{\text{nr}}) \neq \emptyset$ holds if $-\eta R > 1$.

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, *J. Phys. A: Math. Gen.* **20** (1987), 3687–3712.

Suppose that the coupling is *critical*, i.e. $\eta R = -1$, and ask whether deformations of Σ produce a discrete spectrum:

- if the deformation is area-preserving, the claim holds locally, but not globally
- if the deformation is capacity-preserving, the claim holds generally

P.E., M. Fraas: On geometric perturbations of critical Schrödinger operators with a surface interaction, *J. Math. Phys.* **50** (2009), 112101 (12pp).

The critical case

ferent:

In case of the critical coupling, $\eta=\pm2$, spectral properties are different:

Theorem

The operators $H_{\pm 2}$ are self-adjoint in $L^2(\mathbb{R}^3; \mathbb{C}^4)$ and their domains are not contained in $H^1(\mathbb{R}^3; \mathbb{C}^4)$. As before,

$$\sigma_{\mathrm{ess}}(H_{\pm 2})\supset (-\infty,mc^2]\cup [mc^2,\infty),$$

however, the inclusion is in general sharp. In particular, if Σ contains a flat part, we have $0 \in \sigma_{\rm ess}(H_{\pm 2})$.

J. Behrndt, M. Holzmann: On Dirac operators with electrostatic δ -shell interactions of critical strength, J. Spect. Theory, to appear; arXiv:1612.02290

Another proof of the self-adjointnes together with the observation that zero belongs to the spectrum when σ is a plane can be found in

N. Arrizabalaga, A. Mas, L. Vega: Shell interactions for Dirac operators, *J. Math. Pures at Appliquées* 102 (2014), 617–639.

Let us return to the non-separated case and look at it now from the scattering point of view:

Let us return to the non-separated case and look at it now from the scattering point of view:

Theorem

Let $\eta \in \mathbb{R} \setminus \{\pm 2c\}$, then for all $\lambda \in \rho(H_0) \cap \rho(H_\eta)$ the operator

$$(H_{\eta}-\lambda)^{-3}-(H_0-\lambda)^{-3}$$

belongs to the trace class ideal

Let us return to the non-separated case and look at it now from the scattering point of view:

Theorem

Let $\eta \in \mathbb{R} \setminus \{\pm 2c\}$, then for all $\lambda \in \rho(H_0) \cap \rho(H_\eta)$ the operator

$$(H_{\eta}-\lambda)^{-3}-(H_0-\lambda)^{-3}$$

belongs to the trace class ideal with the explicit expression

$$\operatorname{tr}\left[(H_{\eta}-\lambda)^{-3}-(H_{0}-\lambda)^{-3}\right]=-\frac{1}{2}\operatorname{tr}\left[\frac{\mathrm{d}^{2}}{\mathrm{d}\lambda^{2}}\left((I_{4}+\eta M(\lambda))^{-1}\eta\frac{\mathrm{d}}{\mathrm{d}\lambda}M(\lambda)\right)\right]$$

holds

Let us return to the non-separated case and look at it now from the scattering point of view:

Theorem

Let $\eta \in \mathbb{R} \setminus \{\pm 2c\}$, then for all $\lambda \in \rho(H_0) \cap \rho(H_\eta)$ the operator

$$(H_{\eta} - \lambda)^{-3} - (H_0 - \lambda)^{-3}$$

belongs to the trace class ideal with the explicit expression

$$\operatorname{tr}\left[(H_{\eta}-\lambda)^{-3}-(H_{0}-\lambda)^{-3}\right]=-\frac{1}{2}\operatorname{tr}\left[\frac{\mathrm{d}^{2}}{\mathrm{d}\lambda^{2}}\left((I_{4}+\eta M(\lambda))^{-1}\eta\frac{\mathrm{d}}{\mathrm{d}\lambda}M(\lambda)\right)\right]$$

holds. In particular, the wave operators for the pair $\{H_{\eta}, H_{0}\}$ exist and are complete, and consequently, the absolutely continuous parts of H_{η} and H_{0} are unitarily equivalent.

J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: On the spectral properties of Dirac operators with electrostatic δ -shell interactions, *J. Math. Pures at Appliquées* **111** (2018), 47–78.

Recall the the singular Schrödinger operator mentioned above,

$$H_{\eta}^{\rm nr} = -\Delta + \eta \delta(x - \Sigma)$$

with a fixed Σ which we thus drop from the notation

Recall the the singular Schrödinger operator mentioned above,

$$H_{\eta}^{\mathrm{nr}} = -\Delta + \eta \delta(x - \Sigma)$$

with a fixed Σ which we thus drop from the notation. It can be defined through the associated quadratic form

$$\mathfrak{b}_{\alpha,\Gamma}[f] := \frac{1}{2m} \|\nabla f\|_{L^2(\mathbb{R}^3;\mathbb{C}^3)}^2 + \eta \|f|_{\Sigma}\|_{L^2(\Sigma;\mathbb{C})}^2, \quad \operatorname{dom} \mathfrak{b}_{\alpha,\Gamma} = H^1(\mathbb{R}^3;\mathbb{C})$$

Recall the the singular Schrödinger operator mentioned above,

$$H_{\eta}^{\rm nr} = -\Delta + \eta \delta(x - \Sigma)$$

with a fixed Σ which we thus drop from the notation. It can be defined through the associated quadratic form

$$\mathfrak{b}_{\alpha,\Gamma}[f] := \frac{1}{2m} \|\nabla f\|_{L^2(\mathbb{R}^3;\mathbb{C}^3)}^2 + \eta \|f|_{\Sigma}\|_{L^2(\Sigma;\mathbb{C})}^2, \quad \operatorname{dom} \mathfrak{b}_{\alpha,\Gamma} = H^1(\mathbb{R}^3;\mathbb{C})$$

What is important, we can expressed its resolvent using the free one,

$$\left(-\frac{1}{2m}\Delta-\lambda\right)^{-1}f(x)=\int_{\mathbb{R}^3}K_\lambda(x-y)f(y)\mathrm{d}y,\quad x\in\mathbb{R}^3,\ f\in L^2(\mathbb{R}^3;\mathbb{C}),$$

where

$$\mathcal{K}_{\lambda}(x) := 2m \frac{e^{i\sqrt{2m\lambda}|x|}}{4\pi|x|}, \quad x \in \mathbb{R}^3 \setminus \{0\}.$$

The resolvent of $H_{\alpha}^{\rm nr}$

To this aim, we define the operators $\widetilde{\gamma}(\lambda): L^2(\Sigma; \mathbb{C}) \to L^2(\mathbb{R}^3; \mathbb{C})$,

$$\widetilde{\gamma}(\lambda)\varphi(x) := \int_{\Sigma} \mathcal{K}_{\lambda}(x-y)\varphi(y)\mathrm{d}\sigma(y), \quad x \in \mathbb{R}^3, \ \varphi \in L^2(\Sigma; \mathbb{C}),$$

and $\widetilde{M}(\lambda): L^2(\Sigma; \mathbb{C}) \to L^2(\Sigma; \mathbb{C})$,

$$\widetilde{M}(\lambda)\varphi(x) := \int_{\Sigma} K_{\lambda}(x-y)\varphi(y)d\sigma(y), \quad x \in \Sigma, \ \varphi \in L^{2}(\Sigma;\mathbb{C}),$$

which are bounded and everywhere defined

The resolvent of $H_{\alpha}^{\rm nr}$

To this aim, we define the operators $\widetilde{\gamma}(\lambda): L^2(\Sigma; \mathbb{C}) \to L^2(\mathbb{R}^3; \mathbb{C})$,

$$\widetilde{\gamma}(\lambda)\varphi(x) := \int_{\Sigma} K_{\lambda}(x-y)\varphi(y)\mathrm{d}\sigma(y), \quad x \in \mathbb{R}^3, \ \varphi \in L^2(\Sigma; \mathbb{C}),$$

and $\widetilde{M}(\lambda): L^2(\Sigma; \mathbb{C}) \to L^2(\Sigma; \mathbb{C})$,

$$\widetilde{M}(\lambda)\varphi(x):=\int_{\Sigma} K_{\lambda}(x-y)\varphi(y)\mathrm{d}\sigma(y), \quad x\in\Sigma, \ \varphi\in L^{2}(\Sigma;\mathbb{C}),$$

which are bounded and everywhere defined, the adjoint of the former acting as $\widetilde{\gamma}(\lambda)^* f(x) := \int_{\mathbb{R}^3} K_{\overline{\lambda}}(x-y) f(y) \mathrm{d}y$

The resolvent of $H_{\alpha}^{\rm nr}$

To this aim, we define the operators $\widetilde{\gamma}(\lambda): L^2(\Sigma; \mathbb{C}) \to L^2(\mathbb{R}^3; \mathbb{C})$,

$$\widetilde{\gamma}(\lambda)\varphi(x) := \int_{\Sigma} K_{\lambda}(x-y)\varphi(y)d\sigma(y), \quad x \in \mathbb{R}^3, \ \varphi \in L^2(\Sigma; \mathbb{C}),$$

and $\widetilde{M}(\lambda): L^2(\Sigma; \mathbb{C}) \to L^2(\Sigma; \mathbb{C})$,

$$\widetilde{M}(\lambda)\varphi(x):=\int_{\Sigma} \mathsf{K}_{\lambda}(x-y)\varphi(y)\mathrm{d}\sigma(y),\quad x\in\Sigma,\ \varphi\in L^{2}(\Sigma;\mathbb{C}),$$

which are bounded and everywhere defined, the adjoint of the former acting as $\widetilde{\gamma}(\lambda)^* f(x) := \int_{\mathbb{R}^3} K_{\overline{\lambda}}(x-y) f(y) \mathrm{d}y$. Then we have

Theorem

Let $\alpha \in \mathbb{R}$ and $\lambda \in \mathbb{C} \setminus \mathbb{R}$, then the operator $I + \eta M(\lambda)$ has a bounded and everywhere defined inverse and

$$(H_{\alpha}^{\rm nr} - \lambda)^{-1} = \left(-\frac{1}{2m}\Delta + \lambda\right)^{-1} - \widetilde{\gamma}(\lambda)\left(I + \eta\widetilde{M}(\lambda)\right)^{-1}\eta\widetilde{\gamma}(\overline{\lambda})^*.$$

J.F. Brasche, P.E., Yu.A. Kuperin, P. Šeba: Schrödinger operators with singular interactions, *J. Math. Anal. Appl.* **184** (1994), 112–139.

To compare the two Hamiltonians, we have restrict the relativistic one to the positive energy subspace associated with the projection

$$P_+ := \begin{pmatrix} I_2 & 0 \\ 0 & 0 \end{pmatrix}.$$

To compare the two Hamiltonians, we have restrict the relativistic one to the positive energy subspace associated with the projection

$$P_+ := \begin{pmatrix} I_2 & 0 \\ 0 & 0 \end{pmatrix}.$$

Theorem

Let $\pm 2c \neq \eta \in \mathbb{R}$ and let H_{η} be the Dirac operator with an electrostatic δ -interaction. Furthermore, let H_{η}^{nr} be the Schrödinger operator defined above. Then for any $\lambda \in \mathbb{C} \setminus \mathbb{R}$ there is a $\kappa = \kappa(m, \lambda)$ such that

$$\left\|\left(H_{\eta}-\left(\lambda+\mathit{mc}^{2}\right)\right)^{-1}-\left(H_{\eta}^{\mathrm{nr}}-\lambda\right)^{-1}P_{+}\right\|\leq\frac{\kappa}{c}.$$

J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: On the spectral properties of Dirac operators with electrostatic δ -shell interactions, *J. Math. Pures at Appliquées* 111 (2018), 47–78.

• The convergence rate for the free Dirac operator, $\eta=0$, is known, which allows to say that that the *result is optimal*.

B. Thaller: The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin 1992.

• The convergence rate for the free Dirac operator, $\eta = 0$, is known, which allows to say that that the *result is optimal*.

B. Thaller: The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin 1992.

• The norm resolvent convergence implies convergence of the spectrum

• The convergence rate for the free Dirac operator, $\eta=0$, is known, which allows to say that that the *result is optimal*.

B. Thaller: The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin 1992.

• The norm resolvent convergence implies convergence of the spectrum. The theorem also covers *positive* η for which $\sigma_{\rm disc}(H_{\eta}^{\rm nr})=\emptyset$, then we can use the result to establish the *convergence of resonances*

• The convergence rate for the free Dirac operator, $\eta=0$, is known, which allows to say that that the *result is optimal*.

B. Thaller: The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin 1992.

- The norm resolvent convergence implies convergence of the spectrum. The theorem also covers positive η for which $\sigma_{\rm disc}(H_{\eta}^{\rm nr})=\emptyset$, then we can use the result to establish the convergence of resonances
- ullet on the other hand, for $\eta<0$ the number of bound states of $H^{
 m nr}_\eta$ grows with the coupling strength

• The convergence rate for the free Dirac operator, $\eta=0$, is known, which allows to say that that the *result is optimal*.

B. Thaller: The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin 1992.

- The norm resolvent convergence implies convergence of the spectrum. The theorem also covers positive η for which $\sigma_{\rm disc}(H_{\eta}^{\rm nr})=\emptyset$, then we can use the result to establish the convergence of resonances
- on the other hand, for $\eta < 0$ the number of bound states of $H_{\eta}^{\rm nr}$ grows with the coupling strength. This yields

Proposition

For any fixed $j \in \mathbb{N}$ there is an $\eta < 0$ such that $\sharp \sigma_{\mathrm{disc}}(H_{\eta}) > j$ holds for all sufficiently large c.

It remains to say

Thank you for your attention!