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Motivation
Isoperimetric problems are traditional in mathematical
physics. Recall, e.g., the Faber-Krahn inequality for the
Dirichlet Laplacian −∆M

D in a compact M ⊂ R
2: among all

regions with a fixed area the ground state is uniquely
minimized by the circle,

inf σ(−∆M
D ) ≥ π j20,1 |M |−1;

similarly a ball is a minimizer for a compact M ⊂ R
d, d ≥ 3

Another classical example is the PPW conjecture proved
by Ashbaugh and Benguria: in the 2D situation we have

λ2(M)

λ1(M)
≤

(

j1,1

j0,1

)2
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Notice that topology is important

If M is not simply connected, rotational symmetry may
again lead to an extremum but its nature can be different.
Recall a a strip of fixed length and width [E.-Harrell-Loss’99]
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ground state of ground state of<

whenever the strip is not a circular annulus

Another example is a circular obstacle in circular cavity
[Harrell-Kröger-Kurata’01]
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ground state of ground state of<

whenever the obstacle is off center

The workshop Dynamics of Complex Quantum Spectra; Weizmann Institute, December 20, 2005 – p.4/38



Notice that topology is important

If M is not simply connected, rotational symmetry may
again lead to an extremum but its nature can be different.
Recall a a strip of fixed length and width [E.-Harrell-Loss’99]

�� 	
� �

����
� �

! ��
��

&%
'$

ground state of ground state of<

whenever the strip is not a circular annulus
Another example is a circular obstacle in circular cavity
[Harrell-Kröger-Kurata’01]

m
&%
'$ m

&%
'$

ground state of ground state of<

whenever the obstacle is off center

The workshop Dynamics of Complex Quantum Spectra; Weizmann Institute, December 20, 2005 – p.4/38



Singular Schrödinger operators
Topology loses meaning when the confinement is due to a
potential. For simplicity, we suppose is a singular one,

Hα,Γ = −∆ − αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is a loop in the plane; we suppose that it
has no zero-angle self-intersections

Hα,Γ can be naturally associated with the quadratic form,

ψ 7→ ‖∇ψ‖2
L2(R2) − α

∫

Γ
|ψ(x)|2dx ,

which is closed and below bounded in W 1,2(R2); the second
term makes sense in view of Sobolev embedding. This
definition also works for various “wilder” sets Γ
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Definition by boundary conditions
Since Γ is piecewise smooth with no cusps we can use an
alternative definition by boundary conditions: Hα,Γ acts as
−∆ on functions from W 2,1

loc (R2 \ Γ), which are continuous
and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣

∣

∣

∣

+

−
∂ψ

∂n
(x)

∣

∣

∣

∣

−

= −αψ(x)

Remarks:

this definition has an illustrative meaning which
corresponds to a δ potential in the cross cut of Γ

using the form associated with Hα,Γ one can check
directly that σdisc(Hα,Γ) is not void for any α > 0; one
has, of course, σess(Hα,Γ) = [0,∞). We will ask about Γ

of a fixed length which maximizes the ground state
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Charged loops

Let us mention another problem which comes from classical
electrostatics and at a glance it has a little in common with
the quantum mechanical question posed above
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Charged loops

Let us mention another problem which comes from classical
electrostatics and at a glance it has a little in common with
the quantum mechanical question posed above

Let Γ : [0, L] → R
3 be a smooth loop and suppose that it is

homogeneously charged and non-conducting. We ask
about the shape which it will take in absence of external
forces, i.e. about minimum of the potential energy of the
Coulombic repulsion.
Remark: The latter has to be renormalized. The question
makes sense because the divergent factor comes from the
short-distance behavior being shape-independent
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about the shape which it will take in absence of external
forces, i.e. about minimum of the potential energy of the
Coulombic repulsion.
Remark: The latter has to be renormalized. The question
makes sense because the divergent factor comes from the
short-distance behavior being shape-independent

We are going to show that both the mentioned problems
reduce essentially to the same geometric question
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Inequalities for Lp norms of chords
It is convenient to work in an arbitrary dimension d ≥ 2.
Let Γ be a piecewise differentiable function Γ : [0, L] → R

d

such that Γ(0) = Γ(L) and |Γ̇(s)| = 1 for any s ∈ [0, L].
Consider chords corresponding to a fixed arc length
u ∈ (0, 1

2L]; we are interested in the inequalities

Cp
L(u) :

∫ L
0 |Γ(s+u) − Γ(s)|p ds ≤ L1+p

πp sinp πu
L , p > 0 ,

C−p
L (u) :

∫ L
0 |Γ(s+u) − Γ(s)|−p ds ≥ πpL1−p

sinp πu

L

, p > 0 .

The right sides correspond to the maximally symmetric
case, the planar circle. It is clear that the inequalities are
invariant under scaling, so without loss of generality we may
fix the length, say, to L = 2π. Notice also that for p = 0 the
inequalities Cp

L(u) and C−p
L (u) turn into trivial identities.
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Simple properties

Using convexity of x 7→ xα in (0,∞) for α > 1 we get

Proposition: Cp
L(u) ⇒ Cp′

L (u) if p > p′ > 0
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Simple properties

Using convexity of x 7→ xα in (0,∞) for α > 1 we get

Proposition: Cp
L(u) ⇒ Cp′

L (u) if p > p′ > 0

Furthermore, Schwarz inequality implies

Proposition: Cp
L(u) ⇒ C−p

L (u) for any p > 0.

The norm can be expressed through curvature of Γ. Using
then a Fourier analysis, one can prove

Proposition [E’05b]: If Γ is C2, the inequality C2
L(u), and

thus also Cp
L(u) for |p| ≤ 2, holds locally.
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The global result
Theorem [E-Harrell-Loss’05]: Let Γ be piecewise C1 with
no cusps. Then C2

L(u) is valid for any u ∈ (0, 1
2L], and the

inequality is strict unless Γ is a planar circle.

Proof: Without loss of generality we put L = 2π and write

Γ(s) =
∑

06=n∈Z

cn eins

with cn ∈ C
d. Since Γ(s) ∈ R

d the coefficients have to satisfy
c−n = c̄n; the absence of c0 can be always achieved by a
choice of the origin of the coordinate system.
In view of the Weierstrass theorem and continuity of the
functional in question, we may suppose that Γ is C2, apart
of the last part of the theorem.
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Proof, continued
If Γ is C2 its derivative is a sum of the uniformly convergent
Fourier series

Γ̇(s) = i
∑

06=n∈Z

ncn eins

By assumption, |Γ̇(s)| = 1, and hence from the relation

2π =

∫ 2π

0
|Γ̇(s)|2 ds =

∫ 2π

0

∑

06=m∈Z

∑

0 6=n∈Z

nmc∗m · cn ei(n−m)s ds ,

where c∗m denotes the row vector (c̄m,1, . . . , c̄m,d) and dot
marks the inner product in C

d, we infer that
∑

0 6=n∈Z

n2|cn|
2 = 1
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Proof, continued
In a similar way we can rewrite the right-hand side
expression of C2

2π(u) using the Parseval relation as

∫

2π

0

∣

∣

∣

∣

∣

∑

06=n∈Z

cn (einu − 1) eins

∣

∣

∣

∣

∣

2

ds = 8π
∑

0 6=n∈Z

|cn|
2

(

sin
nu

2

)2

Thus the sought inequality is equivalent to

∑

06=n∈Z

n2|cn|
2

(

sin nu
2

n sin u
2

)2

≤ 1

and it is sufficient to prove that |sinnx| ≤ n sinx holds for all
positive integers n and all x ∈ (0, 1

2π].

The workshop Dynamics of Complex Quantum Spectra; Weizmann Institute, December 20, 2005 – p.12/38



Proof, continued
In a similar way we can rewrite the right-hand side
expression of C2

2π(u) using the Parseval relation as

∫

2π

0

∣

∣

∣

∣

∣

∑

06=n∈Z

cn (einu − 1) eins

∣

∣

∣

∣

∣

2

ds = 8π
∑

0 6=n∈Z

|cn|
2

(

sin
nu

2

)2

Thus the sought inequality is equivalent to

∑

06=n∈Z

n2|cn|
2

(

sin nu
2

n sin u
2

)2

≤ 1

and it is sufficient to prove that |sinnx| ≤ n sinx holds for all
positive integers n and all x ∈ (0, 1

2π].

The workshop Dynamics of Complex Quantum Spectra; Weizmann Institute, December 20, 2005 – p.12/38



Proof, continued
We use induction. The claim is valid for n = 1 and

(n+1) sinx∓sin(n+1)x = n sinx∓sinnx cos x+sinx(1∓cosnx) ,

so if it holds for n, the sum of the first two terms at the rhs is
non-negative, and the same is clearly true for the last one

We also see that if |sinnx| < n sinx the inequality is strict for
n+ 1 as well. Since this is true for for n = 2, equality can
occur only for n = 1. Hence C2

2π(u) is strict unless cn = 0 for
|n| ≥ 2, being saturated only if the jth projection of Γ equals

Γj(s) = 2|c1,j | cos(s+ arg c1,j) .

Furthermore, |Γ̇(s)| = 1 can be true only if there is a basis in
R

d where c1,1 = ic1,2 = 1
2 and c1,j = 0 for j = 3, . . . , d, in other

words, if Γ is a planar circle
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Proof, conclusion

It remains to check that the inequality cannot be saturated
for a curve Γ that is not C2, so that the sum

∑

06=n∈Z
n2|cn|

2

diverges

This would require

∑

1≤n≤N n2|cn|
2
(

sin nu

2

n sin u

2

)2

∑

1≤n≤N n2|cn|2
→ 1

as N → ∞. This is impossible, however, because the sum
in the numerator is bounded by sec2 u

2

∑

1≤n≤N |cn|
2 so it has

a finite limit; this concludes the proof. �
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Application to charged loops
Let Γ be a closed C2 curve in R

3, to be compared with a
planar circle. The energy cost of such a deformation is
q2δ(Γ), where

δ(Γ) := 2

∫ L/2

0
du

∫ L

0
ds
[

|Γ(s+u) − Γ(s)|−1 −
π

L
csc

πu

L

]

and q is the charge density along the loop

Corollary: δ(Γ) is finite and non-negative; it is zero if and
only if Γ = CL, up to Euclidean equivalence.

Proof: The integrand is ≥ 0 by C−1
L (u), strictly so if Γ 6= CL.

Moreover, we have |Γ(s+u) − Γ(s)|−1 = u−1 + O(1) with the
error dependent on curvature and torsion of Γ but uniform
in s, hence the integral converges. �
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Application to leaky loops

Let us turn to the singular Schrödinger operators
Hα,Γ = −∆ − αδ(x− Γ). We have mentioned that the
discrete spectrum is nonempty and finite, in particular,

ε1 ≡ ε1(α,Γ) := inf σ
(

Hα,Γ

)

< 0

Theorem [E’05b]: Let Γ : [0, L] → R
2 have the indicated

properties; then for any fixed α > 0 and L > 0 the ground
state ε1(α,Γ) is globally uniquely maximized by the circle
of radius L/2π.

Proof is based on the generalized Birman-Schwinger
principle, plus symmetry and convexity arguments
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Birman-Schwinger reformulation
We employ the generalized Birman-Schwinger principle
[BEKŠ’94]. One starts from the free resolvent Rk

0 which is
an integral operator in L2(R2) with the kernel

Gk(x−y) =
i

4
H

(1)
0 (k|x−y|)

Then we introduce embedding operators associated with
Rk

0 for measures µ, ν which are the Dirac measure m
supported by Γ and the Lebesgue measure dx on R

2; by
Rk

ν,µ we denote the integral operator from L2(µ) to L2(ν)

with the kernel Gk, i.e. we suppose that

Rk
ν,µφ = Gk ∗ φµ

holds ν-a.e. for all φ ∈ D(Rk
ν,µ) ⊂ L2(µ)
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with the kernel Gk, i.e. we suppose that

Rk
ν,µφ = Gk ∗ φµ

holds ν-a.e. for all φ ∈ D(Rk
ν,µ) ⊂ L2(µ)
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BS reformulation, continued
Proposition [BEKŠ’94, Posilicano’04]: (i) There is κ0 > 0

s.t. I−αRiκ
m,m on L2(m) has a bounded inverse for κ ≥ κ0

(ii) Let Im k > 0 and I − αRk
m,m be invertible with

Rk := Rk
0 + αRk

dx,m[I − αRk
m,m]−1Rk

m,dx

from L2(R2) to L2(R2) everywhere defined. Then k2 belongs
to ρ(Hα,Γ) and (Hα,Γ − k2)−1 = Rk

(iii) dim ker(Hα,Γ − k2) = dim ker(I − αRk
m,m) for Im k > 0

(iv) an ef of Hα,Γ associated with k2 can be written as

ψ(x) =

∫ L

0
Rk

dx,m(x, s)φ(s) ds ,

where φ is the corresponding ef of αRk
m,m with the ev one
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BS reformulation, continued
Putting k = iκ with κ > 0 we look thus for solutions to the
integral-operator equation

Rκ
α,Γφ = φ , Rκ

α,Γ(s, s′) :=
α

2π
K0(κ|Γ(s)−Γ(s′)|) ,

on L2([0, L]). The function κ 7→ Rκ
α,Γ is strictly decreasing in

(0,∞) and ‖Rκ
α,Γ‖ → 0 as κ→ ∞, hence we seek the point

where the largest ev of Rκ
α,Γ crosses one

We observe that this ev is simple, since Rκ
α,Γ is positivity

improving and ergodic. The ground state of Hα,Γ is, of
course, also simple. Using its rotational symmetry and the
claim (iv) of the Proposition we find that the respective
eigenfunction of Rκ̃1

α,C corresponding to the unit eigenvalue

is constant; we can choose it as φ̃1(s) = L−1/2.
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BS reformulation, continued
Then we have

maxσ(Rκ̃1

α,C) = (φ̃1,R
κ̃1

α,Cφ̃1) =
1

L

∫ L

0

∫ L

0
Rκ̃1

α,C(s, s
′) dsds′ ,

and on the other hand, for the same quantity referring to a
general Γ a simple variational estimate gives

maxσ(Rκ̃1

α,Γ) ≥ (φ̃1,R
κ̃1

α,Γφ̃1) =
1

L

∫ L

0

∫ L

0
Rκ̃1

α,Γ(s, s′) dsds′ .

Hence it is sufficient to show that
∫ L

0

∫ L

0
K0(κ|Γ(s)−Γ(s′)|) dsds′ ≥

∫ L

0

∫ L

0
K0(κ|C(s)−C(s′)|) dsds′

holds for all κ > 0 and Γ in the vicinity of C
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Convexity argument
By a simple change of variables the claim is equivalent to
positivity of the functional

Fκ(Γ) :=

∫ L/2

0

du

∫ L

0

ds

[

K0

(

κ|Γ(s+u)− Γ(s)|
)

−K0

(

κ|C(s+u)−C(s)|
)

]

;

the s-independent second term is equal to K0(
κL
π sin πu

L )

The (strict) convexity of K0 yields by means of Jensen
inequality the estimate

1

L
Fκ(Γ) ≥

∫ L/2

0

[

K0

(

κ

L

∫ L

0

|Γ(s+u) − Γ(s)|ds

)

− K0

(

κL

π
sin

πu

L

)

]

du ,

where the inequality is sharp unless
∫ L
0 |Γ(s+u) − Γ(s)|ds is

independent of s
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Monotonicity argument

Finally, we observe that K0 is decreasing in (0,∞), hence it
is sufficient to check the inequality

∫ L

0
|Γ(s+u) − Γ(s)| ds ≤

L2

π
sin

πu

L

for all u ∈ (0, 1
2L] and furthermore, to show that it is strict

unless Γ is a circle

In this way our problem is reduced to the C1
L(u) inequality

which follows from C2
L(u) proved above. �
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A discrete analogue: polymer loops

Consider a problem related to the above one; following
[AGHH’88, 05] we can call it a polymer loop

It is an extension of the “discrete” problem to a more
general class of curves: we take a closed loop Γ and
consider a class of singular Schrödinger operators in
L2(Rd), d = 2, 3, given formally by the expression

HN
α,Γ = −∆ + α̃

N−1
∑

j=0

δ

(

x− Γ

(

jL

N

))

We are interested in the shape of Γ which maximizes
the ground state energy provided, of course, that the
discrete spectrum of HN

α,Γ is non-empty.
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A reminder: 2D point interactions
Fixing the site yj and “coupling constant” α we define them
by b.c. which change locally the domain of −∆: we require

ψ(x) = −
1

2π
log |x− yj |L0(ψ, yj) + L1(ψ, yj) + O(|x− yj |) ,

where the generalized b.v. L0(ψ, yj) and L1(ψ, yj) satisfy

L1(ψ, yj) − αL0(ψ, yj) = 0 , α ∈ R

For YΓ := {yj := Γ
(

jL
N

)

: j = 0, . . . , N − 1} we define in this

way −∆α,YΓ
in L2(R2). It holds σdisc

(

−∆α,YΓ

)

6= ∅, i.e.

ε1 ≡ ε1(α, YΓ) := inf σ
(

−∆α,YΓ

)

< 0 ,

which is always true in two dimensions – cf. [AGHH’88, 05]
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A reminder: 3D point interactions
Similarly, for yj and “coupling” α we define them by b.c.
which change locally the domain of −∆: we require

ψ(x) =
1

4π|x− yj |
L0(ψ, yj) + L1(ψ, yj) + O(|x− yj |) ,

where the b.v. L0(ψ, yj) and L1(ψ, yj) satisfy again

L1(ψ, yj) − αL0(ψ, yj) = 0 , α ∈ R,

giving −∆α,YΓ
in L2(R3). However, σdisc

(

−∆α,YΓ

)

6= ∅, i.e.

ε1 ≡ ε1(α, YΓ) := inf σ
(

−∆α,YΓ

)

< 0 ,

is now a nontrivial requirement; it holds only for α below
some critical value α0 – cf. [AGHH’88, 05]
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A geometric reformulation
By Krein’s formula, the spectral condition is reduced to an
algebraic problem. Using k = iκ with κ > 0, we find the ev’s
−κ2 of our operator from

det Γk = 0 with (Γk)ij := (α− ξk)δij − (1 − δij)g
k
ij ,

where the off-diagonal elements are gk
ij := Gk(yi − yj), or

equivalently

gk
ij =

1

2π
K0(κ|yi − yj |)

and the regularized Green’s function at the interaction site is

ξk = −
1

2π

(

ln
κ

2
+ γE

)
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Geometric reformulation, continued
The ground state refers to the point where the lowest ev
of Γiκ vanishes. Using smoothness and monotonicity
of the κ-dependence we have to check that

minσ(Γiκ̃1
) < minσ(Γ̃iκ̃1

)

holds locally for Γ 6= P̃N , where −κ̃2
1 := ε1(α, P̃N )

There is a one-to-one relation between an ef c = (c1, . . . , cN )
of Γiκ at that point and the corresponding ef of −∆α,Γ given
by c↔

∑N
j=1 cjGiκ(· − yj), up to normalization. In particular,

the lowest ev of Γ̃iκ̃1
corresponds to the eigenvector

φ̃1 = N−1/2(1, . . . , 1); hence the spectral threshold is

minσ(Γ̃iκ̃1
) = (φ̃1, Γ̃iκ̃1

φ̃1) = α− ξiκ̃1 −
2

N

∑

i<j

g̃iκ̃1

ij
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Geometric reformulation, continued
On the other hand, we have minσ(Γiκ̃1

) ≤ (φ̃1,Γiκ̃1
φ̃1), and

therefore it is sufficient to check that
∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj)

holds for all κ > 0 and Γ 6= P̃N .

Call `ij := |yi − yj | and
˜̀
ij := |ỹi − ỹj | and define F : (R+)N(N−3)/2 → R by

F ({`ij}) :=

[N/2]
∑

m=2

∑

|i−j|=m

[

Giκ(`ij) − Giκ(˜̀ij)
]

;

Using the convexity of Giκ(·) for a fixed κ > 0 we get

F ({`ij}) ≥

[N/2]
∑

m=2

νm



Giκ





1

νm

∑

|i−j|=m

`ij



− Giκ(˜̀1,1+m)



 ,

where νn is the number of the appropriate chords
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Geometric reformulation, continued
It is easy to see that

νm :=

{

N . . . m = 1, . . . ,
[

1
2(N − 1)

]

1
2N . . . m = 1

2N for N even

since for an even N one has to prevent double counting

Since Giκ(·) is also monotonously decreasing in (0,∞),
we thus need only to demonstrate that

˜̀
1,m+1 ≥

1

νn

∑

|i−j|=m

`ij

with the sharp inequality for at least one m if PN 6= P̃N .
In this way the problem becomes again purely geometric
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"Discrete" chord inequalities
Recall that for Γ : [0, L] → R

2 we have used the notation

yj := Γ

(

jL

N

)

, j = 0, 1, . . . , N − 1 ;

For fixed L > 0, N and m = 1, . . . , [12N ] we consider the
following inequalities for `p norms related to the chord
lengths, that is, the quantities Γ

(

· + jL
N

)

− Γ(·)

Dp
L,N (m) :

∑N
n=1 |yn+m − yn|

p ≤
N1−pLp sinp πm

N

sinp π

N

, p > 0 ,

D−p
L,N (m) :

∑N
n=1 |yn+m − yn|

−p ≥
N1+p sinp π

N

Lp sinp πm

N

, p > 0 .

The RHS’s correspond to regular planar polygon P̃N
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More on the "discrete" inequalities
In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only
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L,4(2) is equivalent to
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Proposition: Dp
L,N (m) ⇒ Dp′

L,N (m) if p > p′ > 0 and

Dp
L,N (m) ⇒ D−p

L,N (m) for any p > 0
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Theorem [E’05c]: The inequality D2
L,N (m) is valid
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Proposition: Dp
L,N (m) ⇒ Dp′

L,N (m) if p > p′ > 0 and

Dp
L,N (m) ⇒ D−p

L,N (m) for any p > 0

Theorem [E’05c]: The inequality D2
L,N (m) is valid

Remark: By D−1
L,N (m) this implies that the unique

minimizers of the “discrete” electrostatic problem is the
regular planar polygon P̃N
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Global validity of D2
L,N(m)

Let us to adapt the above proof the “discrete” case. We put
L = 2π and express Γ through its Fourier series,

Γ(s) =
∑

06=n∈Z

cn eins

with cn ∈ C
d; since Γ(s) ∈ R

d one has to require c−n = c̄n.
Again, we can choose c0 = 0 and the normalization
condition

∑

06=n∈Z
n2|cn|

2 = 1 follows from |Γ̇(s)| = 1

On the other hand, the left-hand side of D2
2π,N (m) equals

N
∑

n=1

∑

0 6=j,k∈Z

c∗j · ck

(

e−2πimj/N − 1
)(

e2πimk/N − 1
)

e2πin(k−j)/N
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Global validity of D2
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cn eins

with cn ∈ C
d; since Γ(s) ∈ R
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Global validity, continued

Next we change the order of summation and observe that
∑N

n=1 e2πin(k−j)/N = N if j = k (modN) and zero otherwise;
this allows us to write the last expression as

4N
∑

l∈Z

∑

0 6= j, k ∈ Z

j − k = lN

|j|c∗j · |k|ck

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

.

Hence the sought inequality D2
2π,N (m) is equivalent to

(

d, (A(N,m) ⊗ I)d
)

≤

(

π sin πm
N

N sin π
N

)2
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Global validity, continued
Here the vector d ∈ `2(Z) ⊗ C

d has the components
dj := |j|cj and the operator A(N,m) on `2(Z) is defined as

A
(N,m)
jk :=











∣

∣j−1 sin πmj
N

∣

∣

∣

∣k−1 sin πmk
N

∣

∣ if 0 6= j, k ∈ Z, j − k = lN

0 otherwise

A(N,m) is obviously bounded because its Hilbert-Schmidt
norm is finite; we have to estimate its norm

Remark: The “continuous” case corresponds formally to
N = ∞. Then A(N,m) is a multiple of I and it is only
necessary to employ |sin jx| ≤ j sinx for any j ∈ N and
x ∈ (0, 1

2π]. Here due to infinitely many side diagonals such
a simple estimate yields an unbounded Toeplitz-type
operator, and one has use the matrix-element decay
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Global validity, continued
For a given j 6= 0 and d ∈ `2(Z) we have

(

A(N,m)d
)

j
=

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∑

0 6= k ∈ Z

k = j(mod N)

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

dk

The norm ‖A(N,m)d‖ is then easily estimated by means of
Schwarz inequality,

‖A(N,m)d‖2 =
∑

06=j∈Z

j−2 sin2 πmj

N

∣

∣

∣

∣

∣

∑

0 6= k ∈ Z

k = j(mod N)

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

dk

∣

∣

∣

∣

∣

2

≤
N−1
∑

n=0

sin4 πmn

N
S2

n

∑

n + lN 6= 0
l ∈ Z

|dn+lN |2
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∣
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Global validity, concluded
Here we have introduced

Sn :=
∑

n + lN 6= 0
l ∈ Z

1

(n + lN)2
=

∞
∑

l=1

{

1

(lN − n)2
+

1

(lN − N + n)2

}

which is easily evaluated to be Sn =
(

π
N sin πn

N

)2

The sought claim, the validity of D2
L,N (m), then follows from

sin
πm

N
sin

πr

N
>
∣

∣

∣
sin

π

N
sin

πmr

N

∣

∣

∣
, 2 ≤ r < m ≤

[

1

2
N

]

This can be also equivalently written as the inequalities
Um−1

(

cos π
N

)

>
∣

∣Um−1

(

cos πr
N

)∣

∣ for Chebyshev polynomials
of the second kind; they are verified directly �

The workshop Dynamics of Complex Quantum Spectra; Weizmann Institute, December 20, 2005 – p.36/38



Global validity, concluded
Here we have introduced

Sn :=
∑

n + lN 6= 0
l ∈ Z

1

(n + lN)2
=

∞
∑

l=1

{

1

(lN − n)2
+

1

(lN − N + n)2

}

which is easily evaluated to be Sn =
(

π
N sin πn

N

)2

The sought claim, the validity of D2
L,N (m), then follows from

sin
πm

N
sin

πr

N
>
∣

∣

∣
sin

π

N
sin

πmr

N

∣

∣

∣
, 2 ≤ r < m ≤

[

1

2
N

]

This can be also equivalently written as the inequalities
Um−1

(

cos π
N

)

>
∣

∣Um−1

(

cos πr
N

)∣

∣ for Chebyshev polynomials
of the second kind; they are verified directly �

The workshop Dynamics of Complex Quantum Spectra; Weizmann Institute, December 20, 2005 – p.36/38



Summary and outlook

There is a host of open questions, for instance

to find out whether Cp
L(u) is invalid for p > 2.

A “stadium-perimeter” example shows it is the case for
p & 3.15295

to find extrema in situations without a built-in symmetry ,
i.e. with different couplings or source spacing. This
problem is no longer purely geometric

to analyze regular-potential analogues of our problem,
i.e. systems with a loop-shaped potential ditch

to find higher-dimensional analogues of the inequalities
discussed here, etc.
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[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities,
J. Math. Phys. 46 (2005), 062105

[E05c] P.E.: Necklaces with interacting beads: isoperimetric problems, Proceedings of the
“International Conference on Differential Equations and Mathematical Physics”
(Birmingham 2005), AMS “Contemporary Mathematics" Series; to appear

[EHL05] P.E., E. Harrell, M. Loss: Global mean-chord inequalities with application to
isoperimetric problems, submitted
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