Spectra of Laplacians in twisted tubes

Pavel Exner
in collaboration with Hynek Kovařík

exner@ujf.cas.cz

Doppler Institute
for Mathematical Physics and Applied Mathematics
Prague

Talk overview

- Geometrically induced spectrum in Dirichlet tubes: binding by bending, bubbles, etc.

Talk overview

- Geometrically induced spectrum in Dirichlet tubes: binding by bending, bubbles, etc.
- In $\mathbb{R}^{d}, d \geq 3$, twisting has an opposite effect: a Hardy-type inequality for a localized torsion

Talk overview

- Geometrically induced spectrum in Dirichlet tubes: binding by bending, bubbles, etc.
- In $\mathbb{R}^{d}, d \geq 3$, twisting has an opposite effect: a Hardy-type inequality for a localized torsion
- Extended twisting moves the essential spectrum: an example of a screw-shaped tube in \mathbb{R}^{3}

Talk overview

- Geometrically induced spectrum in Dirichlet tubes: binding by bending, bubbles, etc.
- In $\mathbb{R}^{d}, d \geq 3$, twisting has an opposite effect: a Hardy-type inequality for a localized torsion
- Extended twisting moves the essential spectrum: an example of a screw-shaped tube in \mathbb{R}^{3}
- Main result: slowing down the twist gives rise to a non-empty discrete spectrum

Talk overview

- Geometrically induced spectrum in Dirichlet tubes: binding by bending, bubbles, etc.
- In $\mathbb{R}^{d}, d \geq 3$, twisting has an opposite effect: a Hardy-type inequality for a localized torsion
- Extended twisting moves the essential spectrum: an example of a screw-shaped tube in \mathbb{R}^{3}
- Main result: slowing down the twist gives rise to a non-empty discrete spectrum
- Summary and outlook

Geometry \& spectrum in Dirichlet tubes

Recall first some well-known facts:
Given an open, bounded and connected $\omega \subset \mathbb{R}^{d-1}$ consider Dirichlet Laplacian $-\Delta_{D}^{\omega \times \mathbb{R}}$ in the straight tube $\omega \times \mathbb{R}$. Trivially, the spectrum is a.c. and equal to $\left[E_{1}, \infty\right)$ with the threshold $E_{1}:=\inf \sigma\left(-\Delta_{D}^{\omega}\right)$

Geometry \& spectrum in Dirichlet tubes

Recall first some well-known facts:
Given an open, bounded and connected $\omega \subset \mathbb{R}^{d-1}$ consider Dirichlet Laplacian $-\Delta_{D}^{\omega \times \mathbb{R}}$ in the straight tube $\omega \times \mathbb{R}$. Trivially, the spectrum is a.c. and equal to $\left[E_{1}, \infty\right)$ with the threshold $E_{1}:=\inf \sigma\left(-\Delta_{D}^{\omega}\right)$

On the other hand, local geometric perturbations such as

- a sharp break or several breaks
- a smooth bend with asymptotically vanishing curvature
- a local tube protrusion
give rise to a non-empty discrete spectrum, i.e. isolated eigenvalues below E_{1}

nown about geometrically induced spectr

- various existence criteria. In particular, a smoothly bent (and asymptotically straight) tube in \mathbb{R}^{2} always binds

nown about geometrically induced specti

- various existence criteria. In particular, a smoothly bent (and asymptotically straight) tube in \mathbb{R}^{2} always binds
- in contrast, in \mathbb{R}^{3} we need Tang condition: ω rotates along the tube axis w.r.t. Frenet frame with angular velocity $\dot{\theta}$ equal to torsion (which is always true for a circular tube). Similarly for $d>3$ [Chenaud et al. '05]

nown about geometrically induced spectı

- various existence criteria. In particular, a smoothly bent (and asymptotically straight) tube in \mathbb{R}^{2} always binds
- in contrast, in \mathbb{R}^{3} we need Tang condition: ω rotates along the tube axis w.r.t. Frenet frame with angular velocity $\dot{\theta}$ equal to torsion (which is always true for a circular tube). Similarly for $d>3$ [Chenaud et al. '05]
- a lot more is known: weak-coupling asymptotics

nown about geometrically induced specti

- various existence criteria. In particular, a smoothly bent (and asymptotically straight) tube in \mathbb{R}^{2} always binds
- in contrast, in \mathbb{R}^{3} we need Tang condition: ω rotates along the tube axis w.r.t. Frenet frame with angular velocity $\dot{\theta}$ equal to torsion (which is always true for a circular tube). Similarly for $d>3$ [Chenaud et al. '05]
- a lot more is known: weak-coupling asymptotics
- thin-tube asymptotics

nown about geometrically induced spectı

- various existence criteria. In particular, a smoothly bent (and asymptotically straight) tube in \mathbb{R}^{2} always binds
- in contrast, in \mathbb{R}^{3} we need Tang condition: ω rotates along the tube axis w.r.t. Frenet frame with angular velocity $\dot{\theta}$ equal to torsion (which is always true for a circular tube). Similarly for $d>3$ [Chenaud et al. '05]
- a lot more is known: weak-coupling asymptotics
- thin-tube asymptotics
- Lieb-Thirring-type inequalities

nown about geometrically induced specti

- various existence criteria. In particular, a smoothly bent (and asymptotically straight) tube in \mathbb{R}^{2} always binds
- in contrast, in \mathbb{R}^{3} we need Tang condition: ω rotates along the tube axis w.r.t. Frenet frame with angular velocity $\dot{\theta}$ equal to torsion (which is always true for a circular tube). Similarly for $d>3$ [Chenaud et al. '05]
- a lot more is known: weak-coupling asymptotics
- thin-tube asymptotics
- Lieb-Thirring-type inequalities
- many-body effects

nown about geometrically induced specti

- various existence criteria. In particular, a smoothly bent (and asymptotically straight) tube in \mathbb{R}^{2} always binds
- in contrast, in \mathbb{R}^{3} we need Tang condition: ω rotates along the tube axis w.r.t. Frenet frame with angular velocity $\dot{\theta}$ equal to torsion (which is always true for a circular tube). Similarly for $d>3$ [Chenaud et al. '05]
- a lot more is known: weak-coupling asymptotics
- thin-tube asymptotics
- Lieb-Thirring-type inequalities
- many-body effects
- in addition, there are results about scattering, resonances, periodically curved tubes, etc.

Twisted straight tubes

The Tang condition does not appear here by a chance. To see that, look at a straight twisted tube. We start with some preliminaries:

Twisted straight tubes

The Tang condition does not appear here by a chance. To see that, look at a straight twisted tube. We start with some preliminaries:
Given ω described above and a differentiable $\theta: \mathbb{R} \rightarrow \mathbb{R}$, we use $s \in \mathbb{R}, t:=\left(t_{2}, t_{3}\right) \in \omega$ to define map $\mathcal{L}: \mathbb{R} \times \omega \rightarrow \mathbb{R}^{3}$ by

$$
\mathcal{L}(s, t)=\left(s, t_{2} \cos \theta(s)+t_{3} \sin \theta(s), t_{3} \cos \theta(s)-t_{2} \sin \theta(s)\right)
$$

The image $\Omega:=\mathcal{L}(\mathbb{R} \times \omega)$ is a tube in \mathbb{R}^{3} which is twisted unless the function θ is constant.
We are interested in Dirichlet Laplacian on $L^{2}(\Omega)$, i.e. the s -a operator associated with the closed quadratic form

$$
Q[\psi]:=\int_{\Omega}|\nabla \psi|^{2} \mathrm{~d} s \mathrm{~d} t, \quad \forall \psi \in D(Q)=\mathcal{H}_{0}^{1}(\Omega)
$$

An alternative expression

To any radial vector $t \equiv\left(t_{2}, t_{3}\right) \in \mathbb{R}^{2}$ we associate the normal one, $\tau(t):=\left(t_{3},-t_{2}\right)$ and use it to introduce the angular-derivative operator

$$
\partial_{\tau}:=t_{3} \partial_{2}-t_{2} \partial_{3}
$$

Given a bounded $\sigma: \mathbb{R} \rightarrow \mathbb{R}$, we consider the self-adjoint operator L_{σ} associated with the quadratic form

$$
l_{\sigma}[\psi]:=\left\|\partial_{1} \psi-\sigma \partial_{\tau} \psi\right\|^{2}+\left\|\partial_{2} \psi\right\|^{2}+\left\|\partial_{3} \psi\right\|^{2}
$$

with $\psi \in D\left(l_{\sigma}\right):=\mathcal{H}_{0}^{1}(\mathbb{R} \times \omega)$

An alternative expression

To any radial vector $t \equiv\left(t_{2}, t_{3}\right) \in \mathbb{R}^{2}$ we associate the normal one, $\tau(t):=\left(t_{3},-t_{2}\right)$ and use it to introduce the angular-derivative operator

$$
\partial_{\tau}:=t_{3} \partial_{2}-t_{2} \partial_{3}
$$

Given a bounded $\sigma: \mathbb{R} \rightarrow \mathbb{R}$, we consider the self-adjoint operator L_{σ} associated with the quadratic form

$$
l_{\sigma}[\psi]:=\left\|\partial_{1} \psi-\sigma \partial_{\tau} \psi\right\|^{2}+\left\|\partial_{2} \psi\right\|^{2}+\left\|\partial_{3} \psi\right\|^{2}
$$

with $\psi \in D\left(l_{\sigma}\right):=\mathcal{H}_{0}^{1}(\mathbb{R} \times \omega)$
Choosing now, in particular, $\sigma=\dot{\theta}$ one can check by a straightforward calculation, using natural coordinate transformation, that this operator is unitarily equivalent to the Dirichlet Laplacian introduced above

A Hardy-type inequality

If $\sigma=0$, of course, L_{0} is Dirichlet Laplacian in the straight tube. Also the case of a tube with circular ω centered at the origin is trivial. In all the other situations we have the following result:

A Hardy-type inequality

If $\sigma=0$, of course, L_{0} is Dirichlet Laplacian in the straight tube. Also the case of a tube with circular ω centered at the origin is trivial. In all the other situations we have the following result:

Theorem [Ekholm-Kovařík-Krejčiřík'05]: Let ω be a bounded open connected subset of \mathbb{R}^{2} which is not rotationally invariant. Let σ be a nonzero compactly supported continuous function with bounded derivatives. Then for all $\psi \in \mathcal{H}_{0}^{1}(\mathbb{R} \times \omega)$ and s_{0} such that $\sigma\left(s_{0}\right) \neq 0$ we have

$$
l_{\sigma}[\psi]-E_{1}\|\psi\|^{2} \geq c \int_{\mathbb{R} \times \omega} \frac{|\psi(s, t)|^{2}}{1+\left(s-s_{0}\right)^{2}} \mathrm{~d} s \mathrm{~d} t
$$

with $c>0$ is independent of ψ but depending on s_{0}, σ and ω.

A Hardy-type inequality, continued

The inequality is proved in two steps: first one derives a "local" inequality for the operator L_{σ} over a finite piece of the tube where σ is nonzero; then the local result is "smeared out" by means of a classical one-dimensional Hardy inequality.

A Hardy-type inequality, continued

The inequality is proved in two steps: first one derives a "local" inequality for the operator L_{σ} over a finite piece of the tube where σ is nonzero; then the local result is "smeared out" by means of a classical one-dimensional Hardy inequality.

Corollary [EHK'05]: Let Ω be a tube of non-circular cross section which is locally twisted. Then the spectrum $\left[E_{1}, \infty\right)$ of $-\Delta_{D}^{\Omega}$ is stable under sufficiently small bends.
Remark: In a similar way one can check spectral stability under other weak enough (attractive) perturbations (potentials, protrusions)

Nonlocally twisted tubes

We assumed above that $\dot{\theta}$ has a compact support so that $\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=E_{1}=\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)$

Nonlocally twisted tubes

We assumed above that $\dot{\theta}$ has a compact support so that $\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=E_{1}=\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)$
This may not be true if the twist is infinitely extended; an example is a screw-shaped tube corresponding to a linear θ : we fix a positive constant β_{0} and define Ω_{0} by

$$
\Omega_{0}:=\mathcal{L}_{0}(\mathbb{R} \times \omega),
$$

where
$\mathcal{L}_{0}(s, t):=\left(s, t_{2} \cos \left(\beta_{0} s\right)+t_{3} \sin \left(\beta_{0} s\right), t_{3} \cos \left(\beta_{0} s\right)-t_{2} \sin \left(\beta_{0} s\right)\right)$.

Nonlocally twisted tubes

We assumed above that $\dot{\theta}$ has a compact support so that $\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=E_{1}=\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)$

This may not be true if the twist is infinitely extended; an example is a screw-shaped tube corresponding to a linear θ : we fix a positive constant β_{0} and define Ω_{0} by

$$
\Omega_{0}:=\mathcal{L}_{0}(\mathbb{R} \times \omega),
$$

where
$\mathcal{L}_{0}(s, t):=\left(s, t_{2} \cos \left(\beta_{0} s\right)+t_{3} \sin \left(\beta_{0} s\right), t_{3} \cos \left(\beta_{0} s\right)-t_{2} \sin \left(\beta_{0} s\right)\right)$.
We will take Ω_{0} as an unperturbed system and conjecture that a local slowndown of the twisting acts as effective attractive interaction which can give rise to bound states

The spectrum of H_{0}

We use again the unitary equivalence above, this time with uniformly rotating coordinate frame, in which $H_{0}:=-\Delta_{D}^{\Omega_{0}}$ acts on its domain in $L^{2}\left(\Omega_{0}\right)$ as

$$
H_{0}=-\partial_{t_{2}}^{2}-\partial_{t_{3}}^{2}+\left(-i \partial_{s}-i \beta_{0}\left(t_{2} \partial_{t_{3}}-t_{3} \partial_{t_{2}}\right)\right)^{2}
$$

The spectrum of H_{0}

We use again the unitary equivalence above, this time with uniformly rotating coordinate frame, in which $H_{0}:=-\Delta_{D}^{\Omega_{0}}$ acts on its domain in $L^{2}\left(\Omega_{0}\right)$ as

$$
H_{0}=-\partial_{t_{2}}^{2}-\partial_{t_{3}}^{2}+\left(-i \partial_{s}-i \beta_{0}\left(t_{2} \partial_{t_{3}}-t_{3} \partial_{t_{2}}\right)\right)^{2}
$$

Since β_{0} is independent of s we are able to employ a partial Fourier transformation \mathcal{F}_{s} given by

$$
\left(\mathcal{F}_{s} \psi\right)(p, t)=\hat{\psi}(p, t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i p s} \psi(s, t) \mathrm{d} s
$$

so for a suitably regular ψ we can rewrite the form as

$$
Q_{0}[\hat{\psi}]=\int_{\mathbb{R} \times \omega}\left|\nabla_{t} \hat{\psi}\right|^{2}+\left|i p \hat{\psi}+\beta_{0} \hat{\psi}_{\tau}^{\prime}\right|^{2} \mathrm{~d} p \mathrm{~d} t
$$

The spectrum of H_{0}, continued

Since \mathcal{F}_{s} extends to a unitary operator on $L^{2}(\mathbb{R} \times \omega)$, the operator H_{0} is equivalent to $\int_{\mathbb{R}}^{\oplus} h(p) \mathrm{d} p$ with the fibre

$$
h(p)=-\partial_{t_{2}}^{2}-\partial_{t_{3}}^{2}+\left(p-i \beta_{0}\left(t_{2} \partial_{t_{3}}-t_{3} \partial_{t_{2}}\right)\right)^{2}
$$

on $L^{2}(\omega)$ subject to Dirichlet boundary conditions at $\partial \omega$.

The spectrum of H_{0}, continued

Since \mathcal{F}_{s} extends to a unitary operator on $L^{2}(\mathbb{R} \times \omega)$, the operator H_{0} is equivalent to $\int_{\mathbb{R}}^{\oplus} h(p) \mathrm{d} p$ with the fibre

$$
h(p)=-\partial_{t_{2}}^{2}-\partial_{t_{3}}^{2}+\left(p-i \beta_{0}\left(t_{2} \partial_{t_{3}}-t_{3} \partial_{t_{2}}\right)\right)^{2}
$$

on $L^{2}(\omega)$ subject to Dirichlet boundary conditions at $\partial \omega$. Using polar coordinates (r, α) on ω we rewrite $h(p)$ as

$$
h(p)=-\Delta_{D}^{\omega}+\left(p-i \beta_{0} \partial_{\alpha}\right)^{2} .
$$

Since $h(p)$ is a sum of $-\Delta_{D}^{\omega}$ and a positive perturbation, by minimax principle its spectrum is purely discrete. Let us denote the eigenvalues of $h(p)$ by $\epsilon_{n}(p)$ and the respective eigenfunctions by $\psi_{n}(p)$, i.e.

$$
h(p) \psi_{n}(p)=\epsilon_{n}(p) \psi_{n}(p)
$$

The spectrum of H_{0}, continued

Lemma: $\epsilon_{n}(\cdot), n \in \mathbb{N}$, is a real-analytic function of p and

$$
\lim _{p \rightarrow \pm \infty} \epsilon_{n}(p) \rightarrow \infty
$$

The spectrum of H_{0}, continued

Lemma: $\epsilon_{n}(\cdot), n \in \mathbb{N}$, is a real-analytic function of p and

$$
\lim _{p \rightarrow \pm \infty} \epsilon_{n}(p) \rightarrow \infty
$$

Sketch of proof: The form associated with $h(0)$ defined on $\mathcal{H}_{0}^{1}\left(\Omega_{0}\right)$ is non-negative and closed, so $h(0)$ is self-adjoint on its natural domain denoted as $D(0)$. We formally expand the

$$
h(p)=h(0)+p^{2}-2 i p \beta_{0} \partial_{\alpha}
$$

It is easy to check that $i \partial_{\alpha}$ is $h(0)$-bounded with the relative bound zero, so the domain of $h(p)$ coincides with $D(0)$ and $h(\cdot) \phi$ is analytic for every $\phi \in D(0)$. Then by [Kato'66] we have a type A operator family, and consequently, all the $\epsilon_{n}(\cdot)$ are real-analytic functions of p

The spectrum of H_{0}, continued

Put next $a:=\sup _{t \in \omega}|t|$. For any $\varphi \in C_{0}^{\infty}(\omega)$ we have

$$
\left|2 p \beta_{0} \bar{\varphi} \partial_{\alpha} \varphi\right| \leq p^{2} \frac{\beta_{0}^{2}}{\beta_{0}^{2}+a^{-2}}|\varphi|^{2}+\left(\beta_{0}^{2}+a^{-2}\right)\left|\partial_{\alpha} \varphi\right|^{2},
$$

which implies for $|p| \rightarrow \infty$

$$
(\varphi, h(p) \varphi) \geq \frac{1}{1+a^{2} \beta_{0}^{2}} p^{2} \int_{\omega}|\varphi|^{2} r \mathrm{~d} r \mathrm{~d} \alpha \rightarrow 0 .
$$

The spectrum of H_{0}, continued

Put next $a:=\sup _{t \in \omega}|t|$. For any $\varphi \in C_{0}^{\infty}(\omega)$ we have

$$
\left|2 p \beta_{0} \bar{\varphi} \partial_{\alpha} \varphi\right| \leq p^{2} \frac{\beta_{0}^{2}}{\beta_{0}^{2}+a^{-2}}|\varphi|^{2}+\left(\beta_{0}^{2}+a^{-2}\right)\left|\partial_{\alpha} \varphi\right|^{2},
$$

which implies for $|p| \rightarrow \infty$

$$
(\varphi, h(p) \varphi) \geq \frac{1}{1+a^{2} \beta_{0}^{2}} p^{2} \int_{\omega}|\varphi|^{2} r \mathrm{~d} r \mathrm{~d} \alpha \rightarrow 0 .
$$

Clearly, spectral threshold of $h(0)$ cannot be lower than that of $-\Delta_{D}^{\omega}$. By [EKK'05] or lemma below the bound is sharp,

$$
E:=\inf \sigma(h(0))>\inf \sigma\left(-\Delta_{D}^{\omega}\right),
$$

whenever ω is not rotationally symmetric

The spectrum of H_{0}, continued

We will show that $E=\inf \sigma\left(H_{0}\right)$. Denote by f the realvalued eigenfunction of $h(0)$ associated with $E=\epsilon_{1}(0)$,

$$
h(0) f=-\Delta_{D}^{\omega} f-\beta_{0}^{2} \partial_{\alpha}^{2} f=E f
$$

The spectrum of H_{0}, continued

We will show that $E=\inf \sigma\left(H_{0}\right)$. Denote by f the realvalued eigenfunction of $h(0)$ associated with $E=\epsilon_{1}(0)$,

$$
h(0) f=-\Delta_{D}^{\omega} f-\beta_{0}^{2} \partial_{\alpha}^{2} f=E f
$$

Lemma: (a) f is strictly positive in ω
(b) $\int_{\omega}\left|f_{\tau}^{\prime}\right|^{2} \mathrm{~d} t=\int_{\omega}\left|\partial_{\alpha} f\right|^{2} \mathrm{~d} t>0$ if ω is not rotat. symmetric

The spectrum of H_{0}, continued

We will show that $E=\inf \sigma\left(H_{0}\right)$. Denote by f the realvalued eigenfunction of $h(0)$ associated with $E=\epsilon_{1}(0)$,

$$
h(0) f=-\Delta_{D}^{\omega} f-\beta_{0}^{2} \partial_{\alpha}^{2} f=E f
$$

Lemma: (a) f is strictly positive in ω
(b) $\int_{\omega}\left|f_{\tau}^{\prime}\right|^{2} \mathrm{~d} t=\int_{\omega}\left|\partial_{\alpha} f\right|^{2} \mathrm{~d} t>0$ if ω is not rotat. symmetric Proof: To prove $f>0$ we have to show that $\left\{e^{-t h(0)}: t \geq 0\right\}$ is positivity improving, i.e. $e^{-t h(0)} g>0$ for any $g \geq 0$ and $t \geq 0$. Since $-\Delta_{D}^{\omega}$ commutes with ∂_{α}^{2}, we get

$$
e^{-t h(0)}=e^{t \Delta_{D}^{\omega}} e^{t \beta_{0}^{2} \partial_{\alpha}^{2}}
$$

Now $e^{t \beta_{0}^{2} \partial_{\alpha}^{2}}$ is positivity preserving for all $t>0$ and $e^{t \Delta_{D}^{\omega}}$ is positivity improving; together this proves the first claim

The spectrum of H_{0}, continued

(b) Let B be the biggest circle centred at the origin s.t. $B \subset \bar{\omega}$ and $B^{c} \neq \emptyset$ its complement in $\bar{\omega}$. Since f satisfies Dirichlet b.c. on $\partial \omega$ and $f>0$ inside, $\left|\partial_{\alpha} f\right|>0$ is in a.e. point of $B^{c} \cap \partial \omega$, where $\partial \omega$ is not a part of a circle centred at the origin; by smoothness we find a positive-measure neighbourhood of $B^{c} \cap \partial \omega$ on which $\left|\partial_{\alpha} f\right|>0$. \square

The spectrum of H_{0}, continued

(b) Let B be the biggest circle centred at the origin s.t. $B \subset \bar{\omega}$ and $B^{c} \neq \emptyset$ its complement in $\bar{\omega}$. Since f satisfies Dirichlet b.c. on $\partial \omega$ and $f>0$ inside, $\left|\partial_{\alpha} f\right|>0$ is in a.e. point of $B^{c} \cap \partial \omega$, where $\partial \omega$ is not a part of a circle centred at the origin; by smoothness we find a positive-measure neighbourhood of $B^{c} \cap \partial \omega$ on which $\left|\partial_{\alpha} f\right|>0 . \quad \square$

Theorem [E.-Kovařík'05]: The spectrum of H_{0} is purely absolutely continuous and covers the half-line $[E, \infty)$, where E is the lowest eigenvalue of $h(0)$
Proof: In view of the first lemma $\sigma\left(H_{0}\right)$ is a.c. and contains the interval $[E, \infty)$; it remains to show that

$$
(-\infty, E) \cap \sigma\left(H_{0}\right)=\emptyset
$$

The spectrum of H_{0}, continued

Since $f>0$ in ω, we can decompose any $\psi \in C_{0}^{\infty}(\omega)$ as $\psi(s, t)=f(t) \varphi(s, t)$. Integrating by parts we get

$$
\begin{aligned}
& Q_{0}[\psi]-E\|\psi\|^{2}=\int_{\mathbb{R} \times \omega}\left(f^{2}\left|\nabla_{t} \varphi\right|^{2}-\left(\Delta_{D}^{\omega} f\right) f|\varphi|^{2}+f^{2}\left|\partial_{s} \varphi\right|^{2}\right. \\
& \quad+\beta_{0} f \partial_{\alpha} f\left(\partial_{s} \bar{\varphi} \varphi+\bar{\varphi} \partial_{s} \varphi\right)+\beta_{0} f^{2}\left(\partial_{s} \bar{\varphi} \partial_{\alpha} \varphi+\partial_{\alpha} \bar{\varphi} \partial_{s} \varphi\right) \\
& \left.\quad+\beta_{0}^{2} f^{2}\left|\partial_{\alpha} \varphi\right|^{2}-\beta_{0}^{2}\left(\partial_{\alpha}^{2} f\right) f|\varphi|^{2}-E f^{2}|\varphi|^{2}\right) \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

The spectrum of H_{0}, continued

Since $f>0$ in ω, we can decompose any $\psi \in C_{0}^{\infty}(\omega)$ as $\psi(s, t)=f(t) \varphi(s, t)$. Integrating by parts we get

$$
\begin{aligned}
& Q_{0}[\psi]-E\|\psi\|^{2}=\int_{\mathbb{R} \times \omega}\left(f^{2}\left|\nabla_{t} \varphi\right|^{2}-\left(\Delta_{D}^{\omega} f\right) f|\varphi|^{2}+f^{2}\left|\partial_{s} \varphi\right|^{2}\right. \\
& \quad+\beta_{0} f \partial_{\alpha} f\left(\partial_{s} \bar{\varphi} \varphi+\bar{\varphi} \partial_{s} \varphi\right)+\beta_{0} f^{2}\left(\partial_{s} \bar{\varphi} \partial_{\alpha} \varphi+\partial_{\alpha} \bar{\varphi} \partial_{s} \varphi\right) \\
& \left.\quad+\beta_{0}^{2} f^{2}\left|\partial_{\alpha} \varphi\right|^{2}-\beta_{0}^{2}\left(\partial_{\alpha}^{2} f\right) f|\varphi|^{2}-E f^{2}|\varphi|^{2}\right) \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

Furthermore, we find easily $\int_{\mathbb{R}}\left(\partial_{s} \bar{\varphi} \varphi+\bar{\varphi} \partial_{s} \varphi\right) \mathrm{d} s=0$ and $-\Delta_{D}^{\omega} f-\beta_{0}^{2} \partial_{\alpha}^{2} f-E f=0$; it allows us to conclude the proof,

$$
Q_{0}[\psi]-E\|\psi\|^{2}=\int_{\mathbb{R} \times \omega} f^{2}\left(\left|\nabla_{t} \varphi\right|^{2}+\left|\partial_{s} \varphi+\beta_{0} \varphi_{\tau}^{\prime}\right|^{2}\right) \mathrm{d} s \mathrm{~d} t \geq 0
$$

Local twist perturbations

Look now what happens if the translation invariance of the tube is broken, velocity of the twisting being given by

$$
\dot{\theta}(s)=\beta_{0}-\beta(s),
$$

where $\beta(\cdot)$ is bounded, $\operatorname{supp} \beta \subset\left[-s_{0}, s_{0}\right]$ for some $s_{0}>0$

Local twist perturbations

Look now what happens if the translation invariance of the tube is broken, velocity of the twisting being given by

$$
\dot{\theta}(s)=\beta_{0}-\beta(s),
$$

where $\beta(\cdot)$ is bounded, $\operatorname{supp} \beta \subset\left[-s_{0}, s_{0}\right]$ for some $s_{0}>0$
Put $\Omega_{\beta}:=\mathcal{L}(\mathbb{R} \times \omega)$, and let H_{β} on $L^{2}\left(\Omega_{\beta}\right)$ be associated with

$$
Q_{\beta}[\psi]:=\int_{\Omega_{\beta}}|\nabla \psi|^{2} \mathrm{~d} s \mathrm{~d} t
$$

defined on $D\left(Q_{\beta}\right)=\mathcal{H}_{0}^{1}\left(\Omega_{\beta}\right)$. Since supp β is compact by assumption, it is straightforward to check that

$$
\sigma_{e s s}\left(H_{\beta}\right)=\sigma_{\text {ess }}\left(H_{0}\right)=[E, \infty)
$$

Eigenvalues by a slowed-down twist

Theorem [E.-Kovařík'05]: Assume that ω is not rotationally symmetric and that

$$
\int_{-s_{0}}^{s_{0}}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right) \mathrm{d} s<0,
$$

then H_{β} has at least one eigenvalue of finite multiplicity below the threshold of the essential spectrum

Eigenvalues by a slowed-down twist

Theorem [E.-Kovařík'05]: Assume that ω is not rotationally symmetric and that

$$
\int_{-s_{0}}^{s_{0}}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right) \mathrm{d} s<0,
$$

then H_{β} has at least one eigenvalue of finite multiplicity below the threshold of the essential spectrum
Proof: We will construct a trial function from the threshold resonance corresponding to the bottom of the essential spectrum. Given $\delta>0$ we put $\Psi_{\delta}(s, t)=f(t) \varphi(s)$, where

$$
\varphi(s)=\left\{\begin{array}{lll}
e^{\delta\left(s_{0}+s\right)} & \text { if } \quad s \leq-s_{0}, \\
1 & \text { if } & -s_{0} \leq s \leq s_{0}, \\
e^{-\delta\left(s-s_{0}\right)} & \text { if } \quad s \geq s_{0} .
\end{array}\right.
$$

Proof, continued

Obviously $\Psi_{\delta} \in D\left(Q_{\beta}\right)$. By a direct calculation we find
$Q_{\beta}\left[\Psi_{\delta}\right]-E\left\|\Psi_{\delta}\right\|^{2}=\delta\|f\|_{L^{2}(\omega)}^{2}+\left\|f_{\tau}^{\prime}\right\|_{L^{2}(\omega)}^{2} \int_{-s_{0}}^{s_{0}}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right) \mathrm{d} s$
and furthermore, $\left\|\Psi_{\delta}\right\|^{2}=\left(\delta^{-1}+2 s_{0}\right)\|f\|_{L^{2}(\omega)}^{2}$

Proof, continued

Obviously $\Psi_{\delta} \in D\left(Q_{\beta}\right)$. By a direct calculation we find
$Q_{\beta}\left[\Psi_{\delta}\right]-E\left\|\Psi_{\delta}\right\|^{2}=\delta\|f\|_{L^{2}(\omega)}^{2}+\left\|f_{\tau}^{\prime}\right\|_{L^{2}(\omega)}^{2} \int_{-s_{0}}^{s_{0}}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right) \mathrm{d} s$
and furthermore, $\left\|\Psi_{\delta}\right\|^{2}=\left(\delta^{-1}+2 s_{0}\right)\|f\|_{L^{2}(\omega)}^{2}$
Consequently, in the limit $\delta \rightarrow 0$ we get

$$
\frac{Q_{\beta}\left[\Psi_{\delta}\right]-E\left\|\Psi_{\delta}\right\|^{2}}{\left\|\Psi_{\delta}\right\|^{2}}=\delta \frac{\left\|f_{\tau}^{\prime}\right\|_{L^{2}(\omega)}^{2}}{\|f\|_{L^{2}(\omega)}^{2}} \int_{-s_{0}}^{s_{0}}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right) \mathrm{d} s+\mathcal{O}\left(\delta^{2}\right)
$$

By the lemma $\left\|f_{\tau}^{\prime}\right\|_{L^{2}(\omega)}^{2}>0$ so the I.h.s. of the last relation is negative for δ small enough.

The critical case

The result can be extended to the critical case under somewhat stronger assumption on the regularity of $\dot{\theta}$. We also have to suppose that the twisting is "not fully reverted" by the perturbation.

The critical case

The result can be extended to the critical case under somewhat stronger assumption on the regularity of $\dot{\theta}$. We also have to suppose that the twisting is "not fully reverted" by the perturbation.

Theorem [E.-Kovařík'05]: Assume that ω is not rotationally symmetric. In addition, let $\dot{\theta}(s)+\beta_{0}>0$ hold for $|s| \leq s_{0}$, and moreover, let $\ddot{\theta}$ exist being of the class $L^{2}\left(\left[-s_{0}, s_{0}\right]\right)$. If

$$
\int_{-s_{0}}^{s_{0}}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right) \mathrm{d} s=0
$$

the operator H_{β} has at least one eigenvalue of finite multiplicity below the threshold of the essential spectrum.

The critical case, proof

Proof: We use the Goldstone-Jaffe trick, improving the trial function by a deformation in the central region,

$$
\Psi_{\delta, \gamma}(s, t):=f(t) \varphi_{\gamma}(s),
$$

where for a fixed $\gamma>0$ we put

$$
\varphi_{\gamma}(s)= \begin{cases}e^{\delta\left(s_{0}+s\right)} & \text { if } \quad s \leq-s_{0} \\ 1+\gamma\left(\beta_{0}-\dot{\theta}(s)\right) & \text { if } \quad-s_{0} \leq s \leq s_{0} \\ e^{-\delta\left(s-s_{0}\right)} & \text { if } \quad s \geq s_{0}\end{cases}
$$

The critical case, proof

Proof: We use the Goldstone-Jaffe trick, improving the trial function by a deformation in the central region,

$$
\Psi_{\delta, \gamma}(s, t):=f(t) \varphi_{\gamma}(s),
$$

where for a fixed $\gamma>0$ we put

$$
\varphi_{\gamma}(s)=\left\{\begin{array}{lll}
e^{\delta\left(s_{0}+s\right)} & \text { if } \quad s \leq-s_{0} \\
1+\gamma\left(\beta_{0}-\dot{\theta}(s)\right) & \text { if } \quad-s_{0} \leq s \leq s_{0}, \\
e^{-\delta\left(s-s_{0}\right)} & \text { if } \quad s \geq s_{0}
\end{array}\right.
$$

Similarly as in the previous proof we check that

$$
Q_{\beta}\left[\Psi_{\delta, \gamma}\right]-E\left\|\Psi_{\delta, \gamma}\right\|^{2}=\int_{\mathbb{R} \times \omega}\left(\varphi_{\gamma}^{2}\left(f_{\tau}^{\prime}\right)^{2}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right)+f^{2}\left(\varphi_{\gamma}^{\prime}\right)^{2}\right) \mathrm{d} s \mathrm{~d} t
$$

Proof, continued

Under given assumptions we get as $\gamma, \delta \rightarrow 0$
$\int_{-s_{0}}^{s_{0}} \varphi_{\gamma}^{2}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right) \mathrm{d} s=-2 \gamma \int_{-s_{0}}^{s_{0}}\left(\dot{\theta}(s)-\beta_{0}\right)^{2}\left(\dot{\theta}(s)+\beta_{0}\right) \mathrm{d} s+\mathcal{O}\left(\gamma^{2}\right)$
and

$$
\int_{\mathbb{R}}\left(\varphi_{\gamma}^{\prime}\right)^{2} \mathrm{~d} s=\delta+\gamma^{2} \int_{-s_{0}}^{s_{0}}(\ddot{\theta}(s))^{2} \mathrm{~d} s=\mathcal{O}\left(\gamma^{2}\right)+\mathcal{O}(\delta)
$$

Proof, continued

Under given assumptions we get as $\gamma, \delta \rightarrow 0$
$\int_{-s_{0}}^{s_{0}} \varphi_{\gamma}^{2}\left(\dot{\theta}^{2}(s)-\beta_{0}^{2}\right) \mathrm{d} s=-2 \gamma \int_{-s_{0}}^{s_{0}}\left(\dot{\theta}(s)-\beta_{0}\right)^{2}\left(\dot{\theta}(s)+\beta_{0}\right) \mathrm{d} s+\mathcal{O}\left(\gamma^{2}\right)$
and

$$
\int_{\mathbb{R}}\left(\varphi_{\gamma}^{\prime}\right)^{2} \mathrm{~d} s=\delta+\gamma^{2} \int_{-s_{0}}^{s_{0}}(\ddot{\theta}(s))^{2} \mathrm{~d} s=\mathcal{O}\left(\gamma^{2}\right)+\mathcal{O}(\delta)
$$

Combining the last two equations we then get

$$
\begin{aligned}
\frac{Q_{\beta}\left[\Psi_{\delta, \gamma}\right]-E\left\|\Psi_{\delta, \gamma}\right\|^{2}}{\left\|\Psi_{\delta, \gamma}\right\|^{2}}= & -2 \gamma \delta \frac{\left\|f_{\tau}^{\prime}\right\|_{L^{2}(\omega)}^{2}}{\|f\|_{L^{2}(\omega)}^{2}} \int_{-s_{0}}^{s_{0}}\left(\dot{\theta}(s)-\beta_{0}\right)^{2}\left(\dot{\theta}(s)+\beta_{0}\right) \mathrm{d} s \\
& +\delta \mathcal{O}\left(\gamma^{2}\right)+\mathcal{O}\left(\delta^{2}\right) .
\end{aligned}
$$

Setting $\gamma=\sqrt{\delta}$ we have then to take δ small enough

Summary and outlook

- Hence, a geometric perturbation of a screw-shaped non-circular tube consisting of a local slowdown of the twisting gives rise to non-empty discrete spectrum of the corresponding Dirichlet Laplacian

Summary and outlook

- Hence, a geometric perturbation of a screw-shaped non-circular tube consisting of a local slowdown of the twisting gives rise to non-empty discrete spectrum of the corresponding Dirichlet Laplacian
- Many questions remain open, e.g., one can ask about weak coupling behaviour of such bound states.

Summary and outlook

- Hence, a geometric perturbation of a screw-shaped non-circular tube consisting of a local slowdown of the twisting gives rise to non-empty discrete spectrum of the corresponding Dirichlet Laplacian
- Many questions remain open, e.g., one can ask about weak coupling behaviour of such bound states.
- Another question: how close one can get to the reversed twist to destroy the discrete spectrum?

Summary and outlook

- Hence, a geometric perturbation of a screw-shaped non-circular tube consisting of a local slowdown of the twisting gives rise to non-empty discrete spectrum of the corresponding Dirichlet Laplacian
- Many questions remain open, e.g., one can ask about weak coupling behaviour of such bound states.
- Another question: how close one can get to the reversed twist to destroy the discrete spectrum?
- Also, what can be said about scattering due to local perturbations of the twist?

Summary and outlook

- Hence, a geometric perturbation of a screw-shaped non-circular tube consisting of a local slowdown of the twisting gives rise to non-empty discrete spectrum of the corresponding Dirichlet Laplacian
- Many questions remain open, e.g., one can ask about weak coupling behaviour of such bound states.
- Another question: how close one can get to the reversed twist to destroy the discrete spectrum?
- Also, what can be said about scattering due to local perturbations of the twist?
- Even the spectrum of $-\Delta_{D}^{\Omega_{0}}$ raises questions, for instance, is is absolutely continuous?

Summary and outlook

- Hence, a geometric perturbation of a screw-shaped non-circular tube consisting of a local slowdown of the twisting gives rise to non-empty discrete spectrum of the corresponding Dirichlet Laplacian
- Many questions remain open, e.g., one can ask about weak coupling behaviour of such bound states.
- Another question: how close one can get to the reversed twist to destroy the discrete spectrum?
- Also, what can be said about scattering due to local perturbations of the twist?
- Even the spectrum of $-\Delta_{D}^{\Omega_{0}}$ raises questions, for instance, is is absolutely continuous?
- Also, under which conditions it has gaps? ...etc.

The talk was based on

[EKK05] T. Ekholm, H. Kovařík, D. Krejčirík: A Hardy inequality in twisted waveguides, math-ph/0512050
[EK05] P.E., H. Kovařík: Spectrum of the Schrödinger operator in a perturbed periodically twisted tube, Lett. Math. Phys. 73 (2005), 183-192.
for more information see http://www.ujf.cas.cz/ exner

The talk was based on

[EKK05] T. Ekholm, H. Kovařík, D. Krejčirík: A Hardy inequality in twisted waveguides, math-ph/0512050
[EK05] P.E., H. Kovařík: Spectrum of the Schrödinger operator in a perturbed periodically twisted tube, Lett. Math. Phys. 73 (2005), 183-192.
for more information see http://www.ujf.cas.cz/ exner

It remains to say:

Happy birthday, Michael!

