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Geometrically induced spectrum in Dirichlet tubes:
binding by bending, bubbles, etc.

In R
d, d ≥ 3, twisting has an opposite effect:

a Hardy-type inequality for a localized torsion

Extended twisting moves the essential spectrum:
an example of a screw-shaped tube in R

3

Main result: slowing down the twist gives rise
to a non-empty discrete spectrum

Summary and outlook
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Geometry & spectrum in Dirichlet tubes

Recall first some well-known facts:
Given an open, bounded and connected ω ⊂ R

d−1 consider
Dirichlet Laplacian −∆ω×R

D in the straight tube ω × R.
Trivially, the spectrum is a.c. and equal to [E1,∞) with
the threshold E1 := inf σ(−∆ω

D)
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Geometry & spectrum in Dirichlet tubes

Recall first some well-known facts:
Given an open, bounded and connected ω ⊂ R

d−1 consider
Dirichlet Laplacian −∆ω×R

D in the straight tube ω × R.
Trivially, the spectrum is a.c. and equal to [E1,∞) with
the threshold E1 := inf σ(−∆ω

D)

On the other hand, local geometric perturbations such as

a sharp break or several breaks

a smooth bend with asymptotically vanishing curvature

a local tube protrusion

give rise to a non-empty discrete spectrum, i.e. isolated
eigenvalues below E1
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Known about geometrically induced spectra

various existence criteria. In particular, a smoothly bent
(and asymptotically straight) tube in R

2 always binds
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in contrast, in R
3 we need Tang condition: ω rotates

along the tube axis w.r.t. Frenet frame with angular
velocity θ̇ equal to torsion (which is always true for a
circular tube). Similarly for d > 3 [Chenaud et al. ’05]
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Known about geometrically induced spectra

various existence criteria. In particular, a smoothly bent
(and asymptotically straight) tube in R

2 always binds

in contrast, in R
3 we need Tang condition: ω rotates

along the tube axis w.r.t. Frenet frame with angular
velocity θ̇ equal to torsion (which is always true for a
circular tube). Similarly for d > 3 [Chenaud et al. ’05]

a lot more is known: weak-coupling asymptotics

thin-tube asymptotics

Lieb-Thirring-type inequalities

many-body effects

in addition, there are results about scattering,
resonances, periodically curved tubes, etc.
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Twisted straight tubes

The Tang condition does not appear here by a chance.
To see that, look at a straight twisted tube. We start
with some preliminaries:
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Twisted straight tubes

The Tang condition does not appear here by a chance.
To see that, look at a straight twisted tube. We start
with some preliminaries:
Given ω described above and a differentiable θ : R → R, we
use s ∈ R, t := (t2, t3) ∈ ω to define map L : R × ω → R

3 by

L(s, t) = (s, t2 cos θ(s) + t3 sin θ(s), t3 cos θ(s) − t2 sin θ(s))

The image Ω := L(R × ω) is a tube in R
3 which is twisted

unless the function θ is constant.
We are interested in Dirichlet Laplacian on L2(Ω), i.e. the
s-a operator associated with the closed quadratic form

Q[ψ] :=

∫

Ω
|∇ψ|2 ds dt , ∀ψ ∈ D(Q) = H1

0(Ω)
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An alternative expression
To any radial vector t ≡ (t2, t3) ∈ R

2 we associate the
normal one, τ(t) := (t3,−t2) and use it to introduce the
angular-derivative operator

∂τ := t3 ∂2 − t2 ∂3

Given a bounded σ : R → R, we consider the self-adjoint
operator Lσ associated with the quadratic form

lσ[ψ] := ‖∂1ψ − σ ∂τψ‖2 + ‖∂2ψ‖2 + ‖∂3ψ‖2

with ψ ∈ D(lσ) := H1
0(R × ω)

A conference in honor of Michael Solomyak; Rehovot, May 31, 2006 – p. 6/24



An alternative expression
To any radial vector t ≡ (t2, t3) ∈ R

2 we associate the
normal one, τ(t) := (t3,−t2) and use it to introduce the
angular-derivative operator

∂τ := t3 ∂2 − t2 ∂3

Given a bounded σ : R → R, we consider the self-adjoint
operator Lσ associated with the quadratic form

lσ[ψ] := ‖∂1ψ − σ ∂τψ‖2 + ‖∂2ψ‖2 + ‖∂3ψ‖2

with ψ ∈ D(lσ) := H1
0(R × ω)

Choosing now, in particular, σ = θ̇ one can check by a
straightforward calculation, using natural coordinate
transformation, that this operator is unitarily equivalent
to the Dirichlet Laplacian introduced above
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A Hardy-type inequality

If σ = 0, of course, L0 is Dirichlet Laplacian in the straight
tube. Also the case of a tube with circular ω centered at
the origin is trivial. In all the other situations we have the
following result:
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A Hardy-type inequality

If σ = 0, of course, L0 is Dirichlet Laplacian in the straight
tube. Also the case of a tube with circular ω centered at
the origin is trivial. In all the other situations we have the
following result:

Theorem [Ekholm-Kovařík-Krejčiřík’05]: Let ω be a
bounded open connected subset of R

2 which is not
rotationally invariant. Let σ be a nonzero compactly
supported continuous function with bounded derivatives.
Then for all ψ ∈ H1

0(R × ω) and s0 such that σ(s0) 6= 0 we
have

lσ[ψ] − E1 ‖ψ‖2 ≥ c

∫

R×ω

|ψ(s, t)|2
1 + (s− s0)2

ds dt

with c > 0 is independent of ψ but depending on s0, σ and ω.
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A Hardy-type inequality, continued

The inequality is proved in two steps: first one derives a
“local” inequality for the operator Lσ over a finite piece of
the tube where σ is nonzero; then the local result is
“smeared out” by means of a classical one-dimensional
Hardy inequality.
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A Hardy-type inequality, continued

The inequality is proved in two steps: first one derives a
“local” inequality for the operator Lσ over a finite piece of
the tube where σ is nonzero; then the local result is
“smeared out” by means of a classical one-dimensional
Hardy inequality.

Corollary [EHK’05]: Let Ω be a tube of non-circular cross
section which is locally twisted. Then the spectrum [E1,∞)

of −∆Ω
D is stable under sufficiently small bends.

Remark: In a similar way one can check spectral stability
under other weak enough (attractive) perturbations
(potentials, protrusions)
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Nonlocally twisted tubes

We assumed above that θ̇ has a compact support so that
σess(−∆Ω

D) = E1 = inf σess(−∆R×ω
D )
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Nonlocally twisted tubes

We assumed above that θ̇ has a compact support so that
σess(−∆Ω

D) = E1 = inf σess(−∆R×ω
D )

This may not be true if the twist is infinitely extended; an
example is a screw-shaped tube corresponding to a linear
θ : we fix a positive constant β0 and define Ω0 by

Ω0 := L0(R × ω) ,

where

L0(s, t) := (s, t2 cos(β0s)+ t3 sin(β0s), t3 cos(β0s)− t2 sin(β0s)) .
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Nonlocally twisted tubes

We assumed above that θ̇ has a compact support so that
σess(−∆Ω

D) = E1 = inf σess(−∆R×ω
D )

This may not be true if the twist is infinitely extended; an
example is a screw-shaped tube corresponding to a linear
θ : we fix a positive constant β0 and define Ω0 by

Ω0 := L0(R × ω) ,

where

L0(s, t) := (s, t2 cos(β0s)+ t3 sin(β0s), t3 cos(β0s)− t2 sin(β0s)) .

We will take Ω0 as an unperturbed system and conjecture
that a local slowndown of the twisting acts as effective
attractive interaction which can give rise to bound states
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The spectrum of H0

We use again the unitary equivalence above, this time with
uniformly rotating coordinate frame, in which H0 := −∆Ω0

D

acts on its domain in L2(Ω0) as

H0 = −∂2
t2 − ∂2

t3 + (−i∂s − i β0 (t2∂t3 − t3∂t2))
2
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The spectrum of H0

We use again the unitary equivalence above, this time with
uniformly rotating coordinate frame, in which H0 := −∆Ω0

D

acts on its domain in L2(Ω0) as

H0 = −∂2
t2 − ∂2

t3 + (−i∂s − i β0 (t2∂t3 − t3∂t2))
2

Since β0 is independent of s we are able to employ a partial
Fourier transformation Fs given by

(Fs ψ)(p, t) = ψ̂(p, t) =
1√
2π

∫

R

e−i ps ψ(s, t)ds ,

so for a suitably regular ψ we can rewrite the form as

Q0[ψ̂] =

∫

R×ω

|∇tψ̂|2 + |i p ψ̂ + β0ψ̂
′
τ |2 dp dt
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The spectrum of H0, continued
Since Fs extends to a unitary operator on L2(R × ω), the
operator H0 is equivalent to

∫ ⊕

R
h(p) dp with the fibre

h(p) = −∂2
t2 − ∂2

t3 + (p− i β0(t2∂t3 − t3∂t2))
2

on L2(ω) subject to Dirichlet boundary conditions at ∂ω.
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The spectrum of H0, continued
Since Fs extends to a unitary operator on L2(R × ω), the
operator H0 is equivalent to

∫ ⊕

R
h(p) dp with the fibre

h(p) = −∂2
t2 − ∂2

t3 + (p− i β0(t2∂t3 − t3∂t2))
2

on L2(ω) subject to Dirichlet boundary conditions at ∂ω.
Using polar coordinates (r, α) on ω we rewrite h(p) as

h(p) = −∆ω
D + (p− i β0∂α)2.

Since h(p) is a sum of −∆ω
D and a positive perturbation, by

minimax principle its spectrum is purely discrete. Let us
denote the eigenvalues of h(p) by ǫn(p) and the respective
eigenfunctions by ψn(p), i.e.

h(p)ψn(p) = ǫn(p)ψn(p)
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The spectrum of H0, continued

Lemma: ǫn(·), n ∈ N, is a real-analytic function of p and

lim
p→±∞

ǫn(p) → ∞
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The spectrum of H0, continued

Lemma: ǫn(·), n ∈ N, is a real-analytic function of p and

lim
p→±∞

ǫn(p) → ∞

Sketch of proof: The form associated with h(0) defined on
H1

0(Ω0) is non-negative and closed, so h(0) is self-adjoint on
its natural domain denoted as D(0). We formally expand the

h(p) = h(0) + p2 − 2i p β0 ∂α

It is easy to check that i ∂α is h(0)-bounded with the relative
bound zero, so the domain of h(p) coincides with D(0) and
h(·)φ is analytic for every φ ∈ D(0). Then by [Kato’66] we
have a type A operator family, and consequently, all the ǫn(·)
are real-analytic functions of p
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The spectrum of H0, continued

Put next a := supt∈ω |t|. For any ϕ ∈ C∞
0 (ω) we have

|2p β0 ϕ̄ ∂αϕ| ≤ p2 β2
0

β2
0 + a−2

|ϕ|2 + (β2
0 + a−2) |∂αϕ|2 ,

which implies for |p| → ∞

(ϕ, h(p)ϕ) ≥ 1

1 + a2 β2
0

p2

∫

ω

|ϕ|2 r dr dα→ 0 . �
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The spectrum of H0, continued

Put next a := supt∈ω |t|. For any ϕ ∈ C∞
0 (ω) we have

|2p β0 ϕ̄ ∂αϕ| ≤ p2 β2
0

β2
0 + a−2

|ϕ|2 + (β2
0 + a−2) |∂αϕ|2 ,

which implies for |p| → ∞

(ϕ, h(p)ϕ) ≥ 1

1 + a2 β2
0

p2

∫

ω

|ϕ|2 r dr dα→ 0 . �

Clearly, spectral threshold of h(0) cannot be lower than that
of −∆ω

D. By [EKK’05] or lemma below the bound is sharp,

E := inf σ(h(0)) > inf σ (−∆ω
D) ,

whenever ω is not rotationally symmetric
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The spectrum of H0, continued
We will show that E = inf σ(H0). Denote by f the real-
valued eigenfunction of h(0) associated with E = ǫ1(0),

h(0)f = −∆ω
D f − β2

0 ∂
2
αf = Ef
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The spectrum of H0, continued
We will show that E = inf σ(H0). Denote by f the real-
valued eigenfunction of h(0) associated with E = ǫ1(0),

h(0)f = −∆ω
D f − β2

0 ∂
2
αf = Ef

Lemma: (a) f is strictly positive in ω

(b)
∫

ω |f ′τ |2 dt =
∫

ω |∂αf |2 dt > 0 if ω is not rotat. symmetric
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The spectrum of H0, continued
We will show that E = inf σ(H0). Denote by f the real-
valued eigenfunction of h(0) associated with E = ǫ1(0),

h(0)f = −∆ω
D f − β2

0 ∂
2
αf = Ef

Lemma: (a) f is strictly positive in ω

(b)
∫

ω |f ′τ |2 dt =
∫

ω |∂αf |2 dt > 0 if ω is not rotat. symmetric

Proof: To prove f > 0 we have to show that {e−t h(0) : t ≥ 0}
is positivity improving, i.e. e−t h(0)g > 0 for any g ≥ 0 and
t ≥ 0. Since −∆ω

D commutes with ∂2
α, we get

e−t h(0) = et ∆ω
D et β2

0 ∂2

α

Now et β2

0 ∂2

α is positivity preserving for all t > 0 and et ∆ω
D is

positivity improving; together this proves the first claim
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The spectrum of H0, continued

(b) Let B be the biggest circle centred at the origin s.t.
B ⊂ ω and Bc 6= ∅ its complement in ω. Since f satisfies
Dirichlet b.c. on ∂ω and f > 0 inside, |∂αf | > 0 is in a.e.
point of Bc ∩ ∂ω, where ∂ω is not a part of a circle centred at
the origin; by smoothness we find a positive-measure
neighbourhood of Bc ∩ ∂ω on which |∂αf | > 0. �
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The spectrum of H0, continued

(b) Let B be the biggest circle centred at the origin s.t.
B ⊂ ω and Bc 6= ∅ its complement in ω. Since f satisfies
Dirichlet b.c. on ∂ω and f > 0 inside, |∂αf | > 0 is in a.e.
point of Bc ∩ ∂ω, where ∂ω is not a part of a circle centred at
the origin; by smoothness we find a positive-measure
neighbourhood of Bc ∩ ∂ω on which |∂αf | > 0. �

Theorem [E.-Kovařík’05]: The spectrum of H0 is purely
absolutely continuous and covers the half-line [E,∞),
where E is the lowest eigenvalue of h(0)

Proof: In view of the first lemma σ(H0) is a.c. and contains
the interval [E,∞); it remains to show that

(−∞, E) ∩ σ(H0) = ∅
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The spectrum of H0, continued

Since f > 0 in ω, we can decompose any ψ ∈ C∞
0 (ω) as

ψ(s, t) = f(t)ϕ(s, t). Integrating by parts we get

Q0[ψ] − E ‖ψ‖2 =

∫

R×ω

(

f2 |∇tϕ|2 − (∆ω
Df)f |ϕ|2 + f2 |∂sϕ|2

+β0 f∂αf(∂sϕ̄ ϕ+ ϕ̄ ∂sϕ) + β0 f
2(∂sϕ̄ ∂αϕ+ ∂αϕ̄ ∂sϕ)

+β2
0 f

2 |∂αϕ|2 − β2
0 (∂2

αf)f |ϕ|2 − E f2 |ϕ|2
)

ds dt
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The spectrum of H0, continued

Since f > 0 in ω, we can decompose any ψ ∈ C∞
0 (ω) as

ψ(s, t) = f(t)ϕ(s, t). Integrating by parts we get

Q0[ψ] − E ‖ψ‖2 =

∫

R×ω

(

f2 |∇tϕ|2 − (∆ω
Df)f |ϕ|2 + f2 |∂sϕ|2

+β0 f∂αf(∂sϕ̄ ϕ+ ϕ̄ ∂sϕ) + β0 f
2(∂sϕ̄ ∂αϕ+ ∂αϕ̄ ∂sϕ)

+β2
0 f

2 |∂αϕ|2 − β2
0 (∂2

αf)f |ϕ|2 − E f2 |ϕ|2
)

ds dt

Furthermore, we find easily
∫

R
(∂sϕ̄ ϕ+ ϕ̄ ∂sϕ) ds = 0 and

−∆ω
Df − β2

0 ∂
2
αf −E f = 0; it allows us to conclude the proof,

Q0[ψ] − E ‖ψ‖2 =

∫

R×ω

f2
(

|∇tϕ|2 + |∂sϕ+ β0 ϕ
′
τ |2

)

ds dt ≥ 0
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Local twist perturbations
Look now what happens if the translation invariance of the
tube is broken, velocity of the twisting being given by

θ̇(s) = β0 − β(s) ,

where β(·) is bounded, supp β ⊂ [−s0, s0] for some s0 > 0
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Local twist perturbations
Look now what happens if the translation invariance of the
tube is broken, velocity of the twisting being given by

θ̇(s) = β0 − β(s) ,

where β(·) is bounded, supp β ⊂ [−s0, s0] for some s0 > 0

Put Ωβ := L(R×ω), and let Hβ on L2(Ωβ) be associated with

Qβ[ψ] :=

∫

Ωβ

|∇ψ|2 ds dt

defined on D(Qβ) = H1
0(Ωβ). Since supp β is compact by

assumption, it is straightforward to check that

σess(Hβ) = σess(H0) = [E, ∞)
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Eigenvalues by a slowed-down twist
Theorem [E.-Kovařík’05]: Assume that ω is not rotationally
symmetric and that

∫ s0

−s0

(θ̇2(s) − β2
0) ds < 0 ,

then Hβ has at least one eigenvalue of finite multiplicity
below the threshold of the essential spectrum

A conference in honor of Michael Solomyak; Rehovot, May 31, 2006 – p. 18/24



Eigenvalues by a slowed-down twist
Theorem [E.-Kovařík’05]: Assume that ω is not rotationally
symmetric and that

∫ s0

−s0

(θ̇2(s) − β2
0) ds < 0 ,

then Hβ has at least one eigenvalue of finite multiplicity
below the threshold of the essential spectrum

Proof: We will construct a trial function from the threshold
resonance corresponding to the bottom of the essential
spectrum. Given δ > 0 we put Ψδ(s, t) = f(t)ϕ(s), where

ϕ(s) =











eδ (s0+s) if s ≤ −s0 ,
1 if −s0 ≤ s ≤ s0 ,

e−δ (s−s0) if s ≥ s0 .
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Proof, continued

Obviously Ψδ ∈ D(Qβ). By a direct calculation we find

Qβ[Ψδ] − E ‖Ψδ‖2 = δ ‖f‖2
L2(ω) + ‖f ′τ‖2

L2(ω)

∫ s0

−s0

(θ̇2(s) − β2
0) ds

and furthermore, ‖Ψδ‖2 = (δ−1 + 2s0) ‖f‖2
L2(ω)
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Proof, continued

Obviously Ψδ ∈ D(Qβ). By a direct calculation we find

Qβ[Ψδ] − E ‖Ψδ‖2 = δ ‖f‖2
L2(ω) + ‖f ′τ‖2

L2(ω)

∫ s0

−s0

(θ̇2(s) − β2
0) ds

and furthermore, ‖Ψδ‖2 = (δ−1 + 2s0) ‖f‖2
L2(ω)

Consequently, in the limit δ → 0 we get

Qβ[Ψδ] − E ‖Ψδ‖2

‖Ψδ‖2
= δ

‖f ′τ‖2
L2(ω)

‖f‖2
L2(ω)

∫ s0

−s0

(θ̇2(s) − β2
0) ds+ O(δ2)

By the lemma ‖f ′τ‖2
L2(ω) > 0 so the l.h.s. of the last relation

is negative for δ small enough. �

A conference in honor of Michael Solomyak; Rehovot, May 31, 2006 – p. 19/24



The critical case

The result can be extended to the critical case under
somewhat stronger assumption on the regularity of θ̇.
We also have to suppose that the twisting is “not fully
reverted” by the perturbation.
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The critical case

The result can be extended to the critical case under
somewhat stronger assumption on the regularity of θ̇.
We also have to suppose that the twisting is “not fully
reverted” by the perturbation.

Theorem [E.-Kovařík’05]: Assume that ω is not rotationally
symmetric. In addition, let θ̇(s) + β0 > 0 hold for |s| ≤ s0,
and moreover, let θ̈ exist being of the class L2([−s0, s0]). If

∫ s0

−s0

(θ̇2(s) − β2
0) ds = 0,

the operator Hβ has at least one eigenvalue of finite
multiplicity below the threshold of the essential spectrum.
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The critical case, proof

Proof: We use the Goldstone-Jaffe trick , improving the trial
function by a deformation in the central region,

Ψδ,γ(s, t) := f(t)ϕγ(s) ,

where for a fixed γ > 0 we put

ϕγ(s) =











eδ (s0+s) if s ≤ −s0 ,
1 + γ (β0 − θ̇(s)) if −s0 ≤ s ≤ s0 ,

e−δ (s−s0) if s ≥ s0 .
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The critical case, proof

Proof: We use the Goldstone-Jaffe trick , improving the trial
function by a deformation in the central region,

Ψδ,γ(s, t) := f(t)ϕγ(s) ,

where for a fixed γ > 0 we put

ϕγ(s) =











eδ (s0+s) if s ≤ −s0 ,
1 + γ (β0 − θ̇(s)) if −s0 ≤ s ≤ s0 ,

e−δ (s−s0) if s ≥ s0 .

Similarly as in the previous proof we check that

Qβ [Ψδ,γ ] − E ‖Ψδ,γ‖2 =

∫

R×ω

(

ϕ2
γ (f ′

τ )2
(

θ̇2(s) − β2
0

)

+ f2 (ϕ′

γ)2
)

ds dt
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Proof, continued
Under given assumptions we get as γ, δ → 0

∫ s0

−s0

ϕ2
γ

(

θ̇2(s) − β2
0

)

ds = −2γ

∫ s0

−s0

(

θ̇(s) − β0

)2 (

θ̇(s) + β0

)

ds + O(γ2)

and
∫

R

(ϕ′

γ)2 ds = δ + γ2

∫ s0

−s0

(

θ̈(s)
)2

ds = O(γ2) + O(δ)
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Proof, continued
Under given assumptions we get as γ, δ → 0

∫ s0

−s0

ϕ2
γ

(

θ̇2(s) − β2
0

)

ds = −2γ

∫ s0

−s0

(

θ̇(s) − β0

)2 (

θ̇(s) + β0

)

ds + O(γ2)

and
∫

R

(ϕ′

γ)2 ds = δ + γ2

∫ s0

−s0

(

θ̈(s)
)2

ds = O(γ2) + O(δ)

Combining the last two equations we then get

Qβ [Ψδ,γ ] − E ‖Ψδ,γ‖2

‖Ψδ,γ‖2
= −2 γ δ

‖f ′

τ‖2
L2(ω)

‖f‖2
L2(ω)

∫ s0

−s0

(

θ̇(s) − β0

)2 (

θ̇(s) + β0

)

ds

+δO(γ2) + O(δ2) .

Setting γ =
√
δ we have then to take δ small enough �
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Summary and outlook

Hence, a geometric perturbation of a screw-shaped
non-circular tube consisting of a local slowdown of the
twisting gives rise to non-empty discrete spectrum of
the corresponding Dirichlet Laplacian
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Many questions remain open, e.g., one can ask about
weak coupling behaviour of such bound states.
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reversed twist to destroy the discrete spectrum?
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Another question: how close one can get to the
reversed twist to destroy the discrete spectrum?

Also, what can be said about scattering due to local
perturbations of the twist?
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Also, what can be said about scattering due to local
perturbations of the twist?

Even the spectrum of −∆Ω0

D raises questions, for
instance, is is absolutely continuous?
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Summary and outlook

Hence, a geometric perturbation of a screw-shaped
non-circular tube consisting of a local slowdown of the
twisting gives rise to non-empty discrete spectrum of
the corresponding Dirichlet Laplacian

Many questions remain open, e.g., one can ask about
weak coupling behaviour of such bound states.

Another question: how close one can get to the
reversed twist to destroy the discrete spectrum?

Also, what can be said about scattering due to local
perturbations of the twist?

Even the spectrum of −∆Ω0

D raises questions, for
instance, is is absolutely continuous?

Also, under which conditions it has gaps? . . .etc.
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The talk was based on

[EKK05] T. Ekholm, H. Kovařík, D. Krejčiřík: A Hardy inequality in twisted waveguides,
math-ph/0512050

[EK05] P.E., H. Kovařík: Spectrum of the Schrödinger operator in a perturbed periodically
twisted tube, Lett. Math. Phys. 73 (2005), 183–192.

for more information see http://www.ujf.cas.cz/ ẽxner
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The talk was based on

[EKK05] T. Ekholm, H. Kovařík, D. Krejčiřík: A Hardy inequality in twisted waveguides,
math-ph/0512050

[EK05] P.E., H. Kovařík: Spectrum of the Schrödinger operator in a perturbed periodically
twisted tube, Lett. Math. Phys. 73 (2005), 183–192.

for more information see http://www.ujf.cas.cz/ ẽxner

It remains to say:

Happy birthday, Michael!
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