Geometrically induced bound states in Dirichlet layers

Pavel Exner
in collaboration with David Krejčirík, Pierre Duclos and Gilles Carron
exner@ujf.cas.cz
Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Talk overview

- Physical and mathematical motivation

Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer

Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian

Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
- Sufficient conditions for existence of bound states

Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
- Sufficient conditions for existence of bound states
- Topologically nontrivial quantum layers

Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
- Sufficient conditions for existence of bound states
- Topologically nontrivial quantum layers
- Weak coupling: mildly curved layers

Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
- Sufficient conditions for existence of bound states
- Topologically nontrivial quantum layers
- Weak coupling: mildly curved layers
- Some open questions

Motivation

Problem: properties of a quantum particle confined to a curved layer of fixed width built over a surface

- Considered already long time ago in connection with quantization on manifolds in formal limit $a \rightarrow 0$

Motivation

Problem: properties of a quantum particle confined to a curved layer of fixed width built over a surface

- Considered already long time ago in connection with quantization on manifolds in formal limit $a \rightarrow 0$
- See [Jensen-Koppe '71], [Tolar '78], [da Costa '81], ...

Motivation

Problem: properties of a quantum particle confined to a curved layer of fixed width built over a surface

- Considered already long time ago in connection with quantization on manifolds in formal limit $a \rightarrow 0$
- See [Jensen-Koppe '71], [Tolar '78], [da Costa '81], ...
- Recently made rigorous in [Froese-Herbst '01] with a harmonic confinement

Motivation

Problem: properties of a quantum particle confined to a curved layer of fixed width built over a surface

- Considered already long time ago in connection with quantization on manifolds in formal limit $a \rightarrow 0$
- See [Jensen-Koppe '71], [Tolar '78], [da Costa '81], ...
- Recently made rigorous in [Froese-Herbst '01] with a harmonic confinement
- We are interested primarily in relations between geometry and spectral properties, i.e. a trademark topic of mathematical physics

Motivation: semiconductor films

A natural model for dilute electron gas in semiconductor films built on a curved substrate. Recall that a typical mesoscopic system has

- small size: submicron, down to nanometers
- high purity: mean free path \gg system size
- crystalline fabric: admits effective mass description

Motivation: semiconductor films

A natural model for dilute electron gas in semiconductor films built on a curved substrate. Recall that a typical mesoscopic system has

- small size: submicron, down to nanometers
- high purity: mean free path \gg system size
- crystalline fabric: admits effective mass description

Consequently, neglecting electron-electron coupling one can a quantum waveguide model in which a single electron is described by Schrödinger equation with constraints corresponding to the system volume

Motivation: semiconductor films

A natural model for dilute electron gas in semiconductor films built on a curved substrate. Recall that a typical mesoscopic system has

- small size: submicron, down to nanometers
- high purity: mean free path \gg system size
- crystalline fabric: admits effective mass description

Consequently, neglecting electron-electron coupling one can a quantum waveguide model in which a single electron is described by Schrödinger equation with constraints corresponding to the system volume
One typically one assumes hard wall (Dirichlet) boundary conditions. It is an idealization, in reality rather a finite potential jump

Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- Bending means binding, i.e. nonzero curvature gives rise to effective attractive interaction

Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- Bending means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states

Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- Bending means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- Weak coupling: energy $\sim(\text { bending angle })^{4}$

Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- Bending means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- Weak coupling: energy $\sim(\text { bending angle })^{4}$
- \exists bounds on spectral threshold, \# of bound states

Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- Bending means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- Weak coupling: energy $\sim(\text { bending angle })^{4}$
- \exists bounds on spectral threshold, \# of bound states
- Perturbation theory w.r.t. waveguide halfwidth a

Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- Bending means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- Weak coupling: energy $\sim(\text { bending angle })^{4}$
- \exists bounds on spectral threshold, \# of bound states
- Perturbation theory w.r.t. waveguide halfwidth a
- Thin enough bent waveguides have resonances

Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- Bending means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- Weak coupling: energy $\sim(\text { bending angle })^{4}$
- \exists bounds on spectral threshold, \# of bound states
- Perturbation theory w.r.t. waveguide halfwidth a
- Thin enough bent waveguides have resonances
- Thin enough periodically curved waveguides have open gaps, etc.

Preliminaries

The surface Σ in \mathbb{R}^{3} supposed to be C^{2}-smooth and to have at least one pole (i.e., exponential mapping $\exp _{o}: T_{o} \Sigma \rightarrow \Sigma$ is a diffeomorphism). Hence σ is diffeomorphic to \mathbb{R}^{2}, i.e. simply connected and non-compact. Using geodesic polar coordinates we parametrize

$$
p: \Sigma_{0} \rightarrow \mathbb{R}^{3}:\{q:=(s, \vartheta) \mapsto p(q) \in \Sigma\}, \quad \Sigma_{0}:=(0, \infty) \times S^{1}
$$

Preliminaries

The surface Σ in \mathbb{R}^{3} supposed to be C^{2}-smooth and to have at least one pole (i.e., exponential mapping $\exp _{o}: T_{o} \Sigma \rightarrow \Sigma$ is a diffeomorphism). Hence σ is diffeomorphic to \mathbb{R}^{2}, i.e. simply connected and non-compact. Using geodesic polar coordinates we parametrize

$$
p: \Sigma_{0} \rightarrow \mathbb{R}^{3}:\{q:=(s, \vartheta) \mapsto p(q) \in \Sigma\}, \quad \Sigma_{0}:=(0, \infty) \times S^{1}
$$

The tangent vectors $p_{, \mu}:=\partial p / \partial q^{\mu}$ are linearly independent and their cross-product defines a unit normal field n on Σ.

Preliminaries

The surface Σ in \mathbb{R}^{3} supposed to be C^{2}-smooth and to have at least one pole (i.e., exponential mapping $\exp _{o}: T_{o} \Sigma \rightarrow \Sigma$ is a diffeomorphism). Hence σ is diffeomorphic to \mathbb{R}^{2}, i.e. simply connected and non-compact. Using geodesic polar coordinates we parametrize

$$
p: \Sigma_{0} \rightarrow \mathbb{R}^{3}:\{q:=(s, \vartheta) \mapsto p(q) \in \Sigma\}, \quad \Sigma_{0}:=(0, \infty) \times S^{1}
$$

The tangent vectors $p_{, \mu}:=\partial p / \partial q^{\mu}$ are linearly independent and their cross-product defines a unit normal field n on Σ.
The layer $\Omega:=\mathcal{L}\left(\Omega_{0}\right)$ of width $d=2 a$ over Σ, where $\Omega_{0}:=\Sigma_{0} \times(-a, a)$, is defined by the map

$$
\mathcal{L}: \Omega_{0} \rightarrow \mathbb{R}^{3}:\{(q, u) \mapsto \mathcal{L}(q, u):=p(q)+u n(q) \in \Omega\}
$$

Motivation: surfaces with poles

A more illustrative characterization of a pole of Σ : different geodetics emanating from it never cross.
The assumption is useful: we can easily measure distance, in particular, specify what we mean by "large distances"

Motivation: surfaces with poles

A more illustrative characterization of a pole of Σ : different geodetics emanating from it never cross.
The assumption is useful: we can easily measure distance, in particular, specify what we mean by "large distances"
The assumption is nontrivial. Example [Gromol-Meyer '69]:

However, the assumption is not necessary for the spectral result we are going to derive. Later we get rid of it.

Preliminaries: surface geometry

The surface metric in the geodesic polar coordinates is diagonal, $\left(g_{\mu \nu}\right)=\operatorname{diag}\left(1, r^{2}\right)$, where $r^{2} \equiv g:=\operatorname{det}\left(g_{\mu \nu}\right)$ is the squared Jacobian of the exponential mapping which satisfies Jacobi equation

$$
\ddot{r}(s, \vartheta)+K(s, \vartheta) r(s, \vartheta)=0, r(0, \vartheta)=0, \dot{r}(0, \vartheta)=1
$$

Integrating it we get $\int_{0}^{\infty} r(s, \theta) \mathrm{d} \theta \leq C s$ for some $C>0$ provided the total curvature \mathcal{K} defined below is finite

Preliminaries: surface geometry

The surface metric in the geodesic polar coordinates is diagonal, $\left(g_{\mu \nu}\right)=\operatorname{diag}\left(1, r^{2}\right)$, where $r^{2} \equiv g:=\operatorname{det}\left(g_{\mu \nu}\right)$ is the squared Jacobian of the exponential mapping which satisfies Jacobi equation

$$
\ddot{r}(s, \vartheta)+K(s, \vartheta) r(s, \vartheta)=0, r(0, \vartheta)=0, \dot{r}(0, \vartheta)=1
$$

Integrating it we get $\int_{0}^{\infty} r(s, \theta) \mathrm{d} \theta \leq C s$ for some $C>0$ provided the total curvature \mathcal{K} defined below is finite In addition to $g_{\mu \nu}:=p_{, \mu} \cdot p_{, \nu}$ we introduce second fundamental form $h_{\mu \nu}:=-n_{, \mu} \cdot p_{, \nu}$ with $h:=\operatorname{det}\left(h_{\mu \nu}\right)$ and Weingärten map $h_{\nu}^{\mu}:=g^{\mu \rho} h_{\rho \nu}$ which determine

- Gauss curvature $K:=\operatorname{det}\left(h_{\nu}^{\mu}\right)=h / g$
- mean curvature $M:=\frac{1}{2} \operatorname{Tr}\left(h_{\nu}^{\mu}\right)=\frac{1}{2} g^{\mu \nu} h_{\mu \nu}$

Preliminaries: total curvatures

Using invariant surface element, $\mathrm{d} \Sigma:=g^{1 / 2} \mathrm{~d}^{2} q \equiv g^{1 / 2} \mathrm{~d} q^{1} \mathrm{~d} q^{2}$, we introduce global quantities, in particular, total curvatures

$$
\mathcal{K}:=\int_{\Sigma} K \mathrm{~d} \Sigma \quad \text { and } \quad \mathcal{M}^{2}:=\int_{\Sigma} M^{2} \mathrm{~d} \Sigma ;
$$

we will suppose that the first one is finite, $K \in L^{1}\left(\Sigma_{0}, \mathrm{~d} \Sigma\right)$

Preliminaries: total curvatures

Using invariant surface element, $\mathrm{d} \Sigma:=g^{1 / 2} \mathrm{~d}^{2} q \equiv g^{1 / 2} \mathrm{~d} q^{1} \mathrm{~d} q^{2}$, we introduce global quantities, in particular, total curvatures

$$
\mathcal{K}:=\int_{\Sigma} K \mathrm{~d} \Sigma \quad \text { and } \quad \mathcal{M}^{2}:=\int_{\Sigma} M^{2} \mathrm{~d} \Sigma ;
$$

we will suppose that the first one is finite, $K \in L^{1}\left(\Sigma_{0}, \mathrm{~d} \Sigma\right)$
For a compact manifold \mathcal{G} with a smooth boundary we have $\mathcal{K}_{\mathcal{G}}+\oint_{\partial \mathcal{G}} k_{g} \mathrm{~d} s=2 \pi$ by Gauss-Bonnet theorem

Preliminaries: total curvatures

Using invariant surface element, $\mathrm{d} \Sigma:=g^{1 / 2} \mathrm{~d}^{2} q \equiv g^{1 / 2} \mathrm{~d} q^{1} \mathrm{~d} q^{2}$, we introduce global quantities, in particular, total curvatures

$$
\mathcal{K}:=\int_{\Sigma} K \mathrm{~d} \Sigma \quad \text { and } \quad \mathcal{M}^{2}:=\int_{\Sigma} M^{2} \mathrm{~d} \Sigma ;
$$

we will suppose that the first one is finite, $K \in L^{1}\left(\Sigma_{0}, \mathrm{~d} \Sigma\right)$
For a compact manifold \mathcal{G} with a smooth boundary we have $\mathcal{K}_{\mathcal{G}}+\oint_{\partial \mathcal{G}} k_{g} \mathrm{~d} s=2 \pi$ by Gauss-Bonnet theorem

In particular, if Σ is a locally deformed plane we choose $\partial \mathcal{G}$ outside the deformation, so

$\mathcal{K}_{\mathcal{G}}=\mathcal{K}_{\Sigma}=0$

Preliminaries: layer geometry

Metric tensor, $G_{i j}:=\mathcal{L}_{, i} \cdot \mathcal{L}_{, j}$, of the layer (regarded as a manifold with boundary in \mathbb{R}^{3}) has the block form

$$
\left(G_{i j}\right)=\left(\begin{array}{cc}
\left(G_{\mu \nu}\right) & 0 \\
0 & 1
\end{array}\right) \text { with } G_{\nu \mu}=\left(\delta_{\nu}^{\sigma}-u h_{\nu}^{\sigma}\right)\left(\delta_{\sigma}^{\rho}-u h_{\sigma}^{\rho}\right) g_{\rho \mu}
$$

Preliminaries: layer geometry

Metric tensor, $G_{i j}:=\mathcal{L}_{, i} \cdot \mathcal{L}_{, j}$, of the layer (regarded as a manifold with boundary in \mathbb{R}^{3}) has the block form

$$
\left(G_{i j}\right)=\left(\begin{array}{cc}
\left(G_{\mu \nu}\right) & 0 \\
0 & 1
\end{array}\right) \text { with } G_{\nu \mu}=\left(\delta_{\nu}^{\sigma}-u h_{\nu}^{\sigma}\right)\left(\delta_{\sigma}^{\rho}-u h_{\sigma}^{\rho}\right) g_{\rho \mu}
$$

Recall that the ev's of Weingärten map matrix are principal curvatures k_{1}, k_{2}, and that $K=k_{1} k_{2}, M=\frac{1}{2}\left(k_{1}+k_{2}\right)$

Preliminaries: layer geometry

Metric tensor, $G_{i j}:=\mathcal{L}_{, i} \cdot \mathcal{L}_{, j}$, of the layer (regarded as a manifold with boundary in \mathbb{R}^{3}) has the block form

$$
\left(G_{i j}\right)=\left(\begin{array}{cc}
\left(G_{\mu \nu}\right) & 0 \\
0 & 1
\end{array}\right) \text { with } G_{\nu \mu}=\left(\delta_{\nu}^{\sigma}-u h_{\nu}^{\sigma}\right)\left(\delta_{\sigma}^{\rho}-u h_{\sigma}^{\rho}\right) g_{\rho \mu}
$$

Recall that the ev's of Weingärten map matrix are principal curvatures k_{1}, k_{2}, and that $K=k_{1} k_{2}, M=\frac{1}{2}\left(k_{1}+k_{2}\right)$
Then we can express the determinant, $G:=\operatorname{det}\left(G_{i j}\right)$ as

$$
G=g\left[\left(1-u k_{1}\right)\left(1-u k_{2}\right)\right]^{2}=g\left(1-2 M u+K u^{2}\right)^{2}
$$

In particular, the volume element is $\mathrm{d} \Omega:=G^{1 / 2} \mathrm{~d}^{2} q \mathrm{~d} u$

Preliminaries: assumptions

For the moment we adopt the following hypotheses:
$\langle\Sigma 0\rangle \quad K \in L^{1}\left(\Sigma_{0}, \mathrm{~d} \Sigma\right)$
$\langle\Omega 0\rangle \quad \Omega$ is not self-intersecting, i.e. \mathcal{L} is injective
$\langle\Omega 1\rangle \quad a<\rho_{m}:=\left(\max \left\{\left\|k_{1}\right\|_{\infty},\left\|k_{2}\right\|_{\infty}\right\}\right)^{-1}$

Preliminaries: assumptions

For the moment we adopt the following hypotheses:
$\langle\Sigma 0\rangle \quad K \in L^{1}\left(\Sigma_{0}, \mathrm{~d} \Sigma\right)$
$\langle\Omega 0\rangle \quad \Omega$ is not self-intersecting, i.e. \mathcal{L} is injective
$\langle\Omega 1\rangle \quad a<\rho_{m}:=\left(\max \left\{\left\|k_{1}\right\|_{\infty},\left\|k_{2}\right\|_{\infty}\right\}\right)^{-1}$
The last one ensures that \mathcal{L} is a diffeomorphism, in particular, that Ω has a smooth boundary. Furthermore, $\langle\Omega 1\rangle$ also implies a useful estimate,

$$
C_{-} g_{\mu \nu} \leq G_{\mu \nu} \leq C_{+} g_{\mu \nu} \quad \text { with } \quad 0<C_{-}<1<C_{+}<4
$$

and the constants expressed in terms of the minimal normal curvature radius ρ_{m} as $C_{ \pm}:=\left(1 \pm a \rho_{m}^{-1}\right)^{2}$

Hamiltonian: curvilinear coordinates

Neglecting physical constants the Hamiltonian is identified with the Dirichlet Laplacian $-\Delta_{D}^{\Omega}$ on $L^{2}(\Omega)$ with the usual properties, e.g., the form domain is $W_{0}^{1,2}(\Omega)$.

Hamiltonian: curvilinear coordinates

Neglecting physical constants the Hamiltonian is identified with the Dirichlet Laplacian $-\Delta_{D}^{\Omega}$ on $L^{2}(\Omega)$ with the usual properties, e.g., the form domain is $W_{0}^{1,2}(\Omega)$.
In the coordinates (q, u) it acquires Laplace-Beltrami form

$$
H:=-G^{-1 / 2} \partial_{i} G^{1 / 2} G^{i j} \partial_{j} \text { on } L^{2}\left(\Omega_{0}, G^{1 / 2} \mathrm{~d}^{2} q \mathrm{~d} u\right),
$$

or $H=U\left(-\Delta_{D}^{\Omega}\right) U^{-1}$ with unitary $U: L^{2}(\Omega) \rightarrow L^{2}\left(\Omega_{0}, \mathrm{~d} \Omega\right)$

Hamiltonian: curvilinear coordinates

Neglecting physical constants the Hamiltonian is identified with the Dirichlet Laplacian $-\Delta_{D}^{\Omega}$ on $L^{2}(\Omega)$ with the usual properties, e.g., the form domain is $W_{0}^{1,2}(\Omega)$.
In the coordinates (q, u) it acquires Laplace-Beltrami form

$$
H:=-G^{-1 / 2} \partial_{i} G^{1 / 2} G^{i j} \partial_{j} \text { on } L^{2}\left(\Omega_{0}, G^{1 / 2} \mathrm{~d}^{2} q \mathrm{~d} u\right),
$$

or $H=U\left(-\Delta_{D}^{\Omega}\right) U^{-1}$ with unitary $U: L^{2}(\Omega) \rightarrow L^{2}\left(\Omega_{0}, \mathrm{~d} \Omega\right)$.
If Σ is not C^{3}-smooth, H is understood in the form sense

$$
Q(\psi):=\left\|H^{1 / 2} \psi\right\|_{G}^{2}=\left(\psi_{, i}, G^{i j} \psi_{, j}\right)_{G}, \quad D(Q)=W_{0}^{1,2}\left(\Omega_{0}, \mathrm{~d} \Omega\right),
$$

where " G " indicates the norm and the inner product in the above Hilbert space

Hamiltonian: decomposition

The block form of $G_{i j}$ yields $H=H_{1}+H_{2}$ with

$$
\begin{aligned}
& H_{1}:=-G^{-1 / 2} \partial_{\mu} G^{1 / 2} G^{\mu \nu} \partial_{\nu}=-\partial_{\mu} G^{\mu \nu} \partial_{\nu}-2 F_{, \mu} G^{\mu \nu} \partial_{\nu}, \\
& H_{2}:=-G^{-1 / 2} \partial_{3} G^{1 / 2} \partial_{3}=-\partial_{3}^{2}-2 \frac{K u-M}{1-2 M u+K u^{2}} \partial_{3},
\end{aligned}
$$

where $F:=\ln G^{1 / 4}$ and $F_{, 3}$ is given explicitly in H_{2}

Hamiltonian: decomposition

The block form of $G_{i j}$ yields $H=H_{1}+H_{2}$ with

$$
\begin{aligned}
& H_{1}:=-G^{-1 / 2} \partial_{\mu} G^{1 / 2} G^{\mu \nu} \partial_{\nu}=-\partial_{\mu} G^{\mu \nu} \partial_{\nu}-2 F_{, \mu} G^{\mu \nu} \partial_{\nu}, \\
& H_{2}:=-G^{-1 / 2} \partial_{3} G^{1 / 2} \partial_{3}=-\partial_{3}^{2}-2 \frac{K u-M}{1-2 M u+K u^{2}} \partial_{3},
\end{aligned}
$$

where $F:=\ln G^{1 / 4}$ and $F_{, 3}$ is given explicitly in H_{2}
An alternative form, with the factor $1-2 M u+K u^{2}$ removed from the weight $G^{1 / 2}$, is obtained by another unitary transformation $\hat{U}: L^{2}\left(\Omega_{0}, \mathrm{~d} \Omega\right) \rightarrow L^{2}\left(\Omega_{0}, \mathrm{~d} \Sigma \mathrm{~d} u\right)$,

$$
\psi \mapsto \hat{U} \psi:=\left(1-2 M u+K u^{2}\right)^{1 / 2} \psi,
$$

giving $\hat{H}:=\hat{U} H \hat{U}^{-1}$. The norm in the corresponding Hilbert space is indicated by the subscript " g "

Hamiltonian: decomposition

The operator \hat{H} contains an effective potential; introducing $J:=\frac{1}{2} \ln \left(1-2 M u+K u^{2}\right)$ we rewrite it as follows,

$$
\hat{H}=-g^{-1 / 2} \partial_{i} g^{1 / 2} G^{i j} \partial_{j}+V, \quad V=g^{-1 / 2}\left(g^{1 / 2} G^{i j} J_{, j}\right)_{, i}+J_{, i} G^{i j} J_{, j}
$$

Hamiltonian: decomposition

The operator \hat{H} contains an effective potential; introducing $J:=\frac{1}{2} \ln \left(1-2 M u+K u^{2}\right)$ we rewrite it as follows,
$\hat{H}=-g^{-1 / 2} \partial_{i} g^{1 / 2} G^{i j} \partial_{j}+V, \quad V=g^{-1 / 2}\left(g^{1 / 2} G^{i j} J_{, j}\right)_{, i}+J_{, i} G^{i j} J_{, j}$
This yields $\hat{H}=\hat{H}_{1}+\hat{H}_{2}$, where \hat{H}_{1} has the above form with summation over Greek indices and

$$
\hat{H}_{2}=-\partial_{3}^{2}+V_{2}, \quad V_{2}=\frac{K-M^{2}}{\left(1-2 M u+K u^{2}\right)^{2}}
$$

Hamiltonian: decomposition

The operator \hat{H} contains an effective potential; introducing $J:=\frac{1}{2} \ln \left(1-2 M u+K u^{2}\right)$ we rewrite it as follows, $\hat{H}=-g^{-1 / 2} \partial_{i} g^{1 / 2} G^{i j} \partial_{j}+V, \quad V=g^{-1 / 2}\left(g^{1 / 2} G^{i j} J_{, j}\right)_{, i}+J_{, i} G^{i j} J_{, j}$

This yields $\hat{H}=\hat{H}_{1}+\hat{H}_{2}$, where \hat{H}_{1} has the above form with summation over Greek indices and

$$
\hat{H}_{2}=-\partial_{3}^{2}+V_{2}, \quad V_{2}=\frac{K-M^{2}}{\left(1-2 M u+K u^{2}\right)^{2}}
$$

In analogy with the curved tube case it is illustrative to write $\hat{H}=\hat{H}_{q}-\partial_{3}^{2}$, where $\hat{H}_{q}:=\hat{H}_{1}+V_{2}$

Heuristic considerations

In thin layers, $a \ll \rho_{m}$, the longitudinal and transverse variables are asymptotically decoupled, because

$$
H_{q}:=-g^{-1 / 2} \partial_{\mu} g^{1 / 2} g^{\mu \nu} \partial_{\nu}+K-M^{2}+\mathcal{O}\left(a \rho_{m}^{-1}\right) ;
$$

notice that in distinction from the tube case the surface cannot be fully "ironed", the surface geometry persists

Heuristic considerations

In thin layers, $a \ll \rho_{m}$, the longitudinal and transverse variables are asymptotically decoupled, because

$$
H_{q}:=-g^{-1 / 2} \partial_{\mu} g^{1 / 2} g^{\mu \nu} \partial_{\nu}+K-M^{2}+\mathcal{O}\left(a \rho_{m}^{-1}\right) ;
$$

notice that in distinction from the tube case the surface cannot be fully "ironed", the surface geometry persists
The additional potential $K-M^{2}$ rewrites in terms of principal curvatures as $-\frac{1}{4}\left(k_{1}-k_{2}\right)^{2}$. It is attractive unless

- Σ is planar, $k_{1}=k_{2}=0$
- Σ is spherical, $k_{1}=k_{2}$, however, a noncompact Σ clearly cannot be spherical globally

Examples of the effective interaction

Effective Potential $\quad V_{\text {eff }}=-\frac{1}{4}\left(k_{+}-k_{-}\right)^{2}$

Paraboloid of Revolution $z=x^{2}+y^{2}$

Hyperbolic Paraboloid $z=x^{2}-y^{2}$
Monkey Saddle $z=x^{3}-3 x y^{2}$

The minima of $V_{\text {eff }}$ are marked by the dark red colour.

Essential spectrum threshold

Notation: we use eigenfunctions $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ of the transverse operator $\left(-\partial_{3}^{2}\right)_{D}$ given by $\sqrt{\frac{2}{d}\binom{c o s}{\sin } \kappa_{n} u \text { for } n\binom{\text { odd }}{\text { even }} \text {, where }}$ $\kappa_{n}^{2}:=\left(\kappa_{1} n\right)^{2}$ with $\kappa_{1}:=\pi / d$ are the corresponding ev's

Essential spectrum threshold

Notation: we use eigenfunctions $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ of the transverse operator $\left(-\partial_{3}^{2}\right)_{D}$ given by $\sqrt{\frac{2}{d}\binom{c o s}{\sin } \kappa_{n} u \text { for } n\binom{\text { odd }}{\text { even }} \text {, where }}$ $\kappa_{n}^{2}:=\left(\kappa_{1} n\right)^{2}$ with $\kappa_{1}:=\pi / d$ are the corresponding ev's

One more assumption: Σ is asymptotically planar, i.e.
$\langle\Sigma 0\rangle \quad K, M \rightarrow 0$ holds as $s \rightarrow \infty$

Essential spectrum threshold

Notation: we use eigenfunctions $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ of the transverse operator $\left(-\partial_{3}^{2}\right)_{D}$ given by $\sqrt{\frac{2}{d}}\binom{\cos }{\sin } \kappa_{n} u$ for $n\binom{$ odd }{ even } , where $\kappa_{n}^{2}:=\left(\kappa_{1} n\right)^{2}$ with $\kappa_{1}:=\pi / d$ are the corresponding ev's

One more assumption: Σ is asymptotically planar, i.e.
$\langle\Sigma 0\rangle \quad K, M \rightarrow 0$ holds as $s \rightarrow \infty$
Theorem [Duclos-E.-Krejčirík, 2001]: Assume $\langle\Omega 0\rangle,\langle\Omega 1\rangle$ and $\langle\Sigma 0\rangle$, then we have

$$
\inf \sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\Omega}\right) \geq \kappa_{1}^{2}
$$

$\inf \sigma_{\mathrm{ess}}:$ sketch of the proof

Divide Ω into an exterior and interior by extra Neumann b.c. at $s=s_{0}$, then $H \geq H_{\mathrm{int}}^{N} \oplus H_{\mathrm{ext}}^{N}$. The interior does not contribute to $\sigma_{\text {ess }}$, so by minimax principle we infer

$$
\inf \sigma_{\text {ess }}(H) \geq \inf \sigma_{\text {ess }}\left(H_{\text {ext }}^{N}\right) \geq \inf \sigma\left(H_{\text {ext }}^{N}\right)
$$

In the exterior we have for all $\psi \in D\left(Q_{\mathrm{ext}}^{N}\right)$ the estimate

$$
\begin{aligned}
Q_{\mathrm{ext}}^{N}(\psi) & \geq\left\|\psi_{, 3}\right\|_{G, \mathrm{ext}}^{2} \geq \inf _{\Omega_{\mathrm{ext}}}^{2}\left\{1-2 M u+K u^{2}\right\}\|\psi, 3\|_{g, \mathrm{ext}}^{2} \\
& \geq\left(1-\sup _{\Sigma_{\text {ext }}}\left\{2 a|M|+a^{2}|K|\right\}\right) \kappa_{1}^{2}\|\psi\|_{g, \mathrm{ext}}^{2} \\
& \geq \frac{1-\sup _{\Sigma_{\text {ext }}}\left\{2 a|M|+a^{2}|K|\right\}}{1-\inf _{\Sigma_{\text {ext }}}\left\{2 a|M|+a^{2}|K|\right\}} \kappa_{1}^{2}\|\psi\|_{G, \text { ext }}^{2} \\
& =\left(1+o\left(s_{0}\right)\right) \kappa_{1}^{2}\|\psi\|_{G, \mathrm{ext}}^{2} \square
\end{aligned}
$$

Curvature-induced binding, $\mathcal{K} \leq 0$

Theorem [Duclos-E.-Krejčirík, 2001]: Assume $\langle\Omega 0\rangle,\langle\Omega 1\rangle$ and $\langle\Sigma 1\rangle$, and suppose that Σ is not planar. If $\mathcal{K} \leq 0$, then

$$
\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<\kappa_{1}^{2}
$$

In particular, $\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right) \neq \emptyset$ if $\langle\Sigma 0\rangle$ holds.

Curvature-induced binding, $\mathcal{K} \leq 0$

Theorem [Duclos-E.-Krejčirí́k, 2001]: Assume $\langle\Omega 0\rangle,\langle\Omega 1\rangle$ and $\langle\Sigma 1\rangle$, and suppose that Σ is not planar. If $\mathcal{K} \leq 0$, then

$$
\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<\kappa_{1}^{2}
$$

In particular, $\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right) \neq \emptyset$ if $\langle\Sigma 0\rangle$ holds.
Sketch of the proof: By a variational argument, seeking a trial function Ψ from $\mathcal{Q}(H)$ such that

$$
\tilde{Q}(\Psi):=Q(\Psi)-\kappa_{1}^{2}\|\Psi\|_{G}^{2}<0
$$

It is convenient to split the Hamiltonian form, $Q=Q_{1}+Q_{2}$ with parts associated to H_{1} and H_{2} introduced above. We employ Goldstone-Jaffe trick, choosing radially symmetric $\psi(s, \vartheta, u):=\varphi(s) \chi_{1}(u)$ with φ to be specified

$\mathcal{K} \leq 0$, sketch of the proof

Using the factorized form of ψ we get directly

$$
Q_{2}(\psi)-\kappa_{1}^{2}\|\psi\|_{G}^{2}=(\psi, K \psi)_{g}
$$

On the other hand, the "longitudinal kinetic part" $Q_{1}(\psi)$ can be estimated by the radial gradient norm of ψ as

$$
Q_{1}(\psi) \leq C_{1} \int_{0}^{\infty}|\dot{\varphi}(s)|^{2} s \mathrm{~d} s
$$

with some $C_{1}>0$. To make it small we need a suitable family of radial functions such that $\psi \in \mathcal{Q}(H)$; we choose them as scaled Macdonald functions outside a circle, i.e.

$$
\varphi_{\sigma}(s):=\min \left\{1, \frac{K_{0}(\sigma s)}{K_{0}\left(\sigma s_{0}\right)}\right\}
$$

$\mathcal{K} \leq 0$, sketch of the proof

It is straightforward to compute the integral; we get

$$
\exists C_{2}>0: \quad \int_{0}^{\infty}\left|\dot{\varphi}_{\sigma}(s)\right|^{2} s d s<\frac{C_{2}}{\left|\ln \sigma s_{0}\right|},
$$

and therefore $Q_{1}\left(\psi_{\sigma}\right) \rightarrow 0+$ as $\sigma \rightarrow 0+$. We assume $\langle\Sigma 1\rangle$, so by dominated the first part of the shifted energy form tends to \mathcal{K} as $\sigma \rightarrow 0+$; this proves the theorem if $\mathcal{K}<0$.

$\mathcal{K} \leq 0$, sketch of the proof

It is straightforward to compute the integral; we get

$$
\exists C_{2}>0: \quad \int_{0}^{\infty}\left|\dot{\varphi}_{\sigma}(s)\right|^{2} s d s<\frac{C_{2}}{\left|\ln \sigma s_{0}\right|},
$$

and therefore $Q_{1}\left(\psi_{\sigma}\right) \rightarrow 0+$ as $\sigma \rightarrow 0+$. We assume $\langle\Sigma 1\rangle$, so by dominated the first part of the shifted energy form tends to \mathcal{K} as $\sigma \rightarrow 0+$; this proves the theorem if $\mathcal{K}<0$. If $\mathcal{K}=0$ we follow GJ idea choosing $\Psi_{\sigma, \varepsilon}:=\psi_{\sigma}+\varepsilon \Theta$, where $\Theta(q, u):=j(q)^{2} u \chi_{1}(u)$ with $j \in C_{0}^{\infty}\left(\left(0, s_{0}\right) \times S^{1}\right)$; it gives

$$
\tilde{Q}\left(\Psi_{\sigma, \varepsilon}\right)=\tilde{Q}\left(\psi_{\sigma}\right)+2 \varepsilon \tilde{Q}\left(\Theta, \psi_{\sigma}\right)+\varepsilon^{2} \tilde{Q}(\Theta)
$$

Since $\tilde{Q}\left(\Theta, \psi_{\sigma}\right)=-\frac{1}{d}(j, M)_{g} \neq 0$ in general, the sum of the last two terms can be made negative; then $\tilde{Q}\left(\Psi_{\sigma, \varepsilon}\right)<0$ will hold for σ small enough. $\quad \square$

$\mathcal{K} \leq 0$, examples

The theorem applies to layers built over Cartan-Hadamard surfaces, i.e. geodesically complete simply connected non-compact ones with $\mathcal{K} \leq 0$ (then each point is a pole)

- Locally curved plane has $\mathcal{K}=0$ by Gauss-Bonnet, the same is true for surfaces with curvatures which are not compactly supported but decay fast enough

$\mathcal{K} \leq 0$, examples

The theorem applies to layers built over Cartan-Hadamard surfaces, i.e. geodesically complete simply connected non-compact ones with $\mathcal{K} \leq 0$ (then each point is a pole)

- Locally curved plane has $\mathcal{K}=0$ by Gauss-Bonnet, the same is true for surfaces with curvatures which are not compactly supported but decay fast enough
- Hyperbolic paraboloid: the simple quadric given in \mathbb{R}^{3} by the equation $z=x^{2}-y^{2}$ is an asymptotically planar surface with $\mathcal{K}=-2 \pi$

$\mathcal{K} \leq 0$, examples

The theorem applies to layers built over Cartan-Hadamard surfaces, i.e. geodesically complete simply connected non-compact ones with $\mathcal{K} \leq 0$ (then each point is a pole)

- Locally curved plane has $\mathcal{K}=0$ by Gauss-Bonnet, the same is true for surfaces with curvatures which are not compactly supported but decay fast enough
- Hyperbolic paraboloid: the simple quadric given in \mathbb{R}^{3} by the equation $z=x^{2}-y^{2}$ is an asymptotically planar surface with $\mathcal{K}=-2 \pi$
- Monkey saddle: another example of a saddle surface is $z=x^{3}-3 x y^{2}$; it satisfies again $\langle\Sigma 1\rangle$ and $\mathcal{K}=-4 \pi$

Other sufficient conditions

The GJ trick - constructing a trial function starting from a factorized function $\psi(s, \vartheta, u):=\varphi(s) \chi_{1}(u)$ - does not work for $\mathcal{K}>0$. However, other sufficient conditions can still be obtained variationally:

Other sufficient conditions

The GJ trick - constructing a trial function starting from a factorized function $\psi(s, \vartheta, u):=\varphi(s) \chi_{1}(u)$ - does not work for $\mathcal{K}>0$. However, other sufficient conditions can still be obtained variationally:
Theorem [Duclos-E.-Krejčirík, 2001]: Assume $\langle\Omega 0\rangle$ and $\langle\Omega 1\rangle$ and suppose that Σ is C^{3}-smooth and non-planar. In addition, let one of the following conditions be valid:

- the layer Ω is thin enough
- we have $\langle\Sigma 1\rangle, \mathcal{M}=\infty$, and
$\langle\Sigma 2\rangle$ the covariant derivative $\nabla_{g} M \in L^{2}\left(\Sigma_{0}, \mathrm{~d} \Sigma\right)$
Then $\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<\kappa_{1}^{2}$, in particular, curvature-induced bound states exist under the assumption $\langle\Sigma 0\rangle$

Sketch of the proof

Trial function $\Psi_{\sigma}(s, \vartheta, u):=(1+M(s, \vartheta) u) \psi_{\sigma}(s, u)$ gives

$$
\begin{gathered}
Q_{1}\left(\Psi_{\sigma}\right) \leq 2\left(C_{+} / C_{-}\right)^{2}\left(\left(1+a\|M\|_{\infty}\right)^{2}\left\|\dot{\psi}_{\sigma}\right\|_{g}^{2}+a^{2}\left\|\psi_{\sigma} \nabla_{g} M\right\|_{g}^{2}\right) \\
\text { small as } \sigma \rightarrow 0
\end{gathered}
$$

$$
\begin{gathered}
Q_{2}\left(\Psi_{\sigma}\right)-\kappa_{1}^{2}\|\psi\|_{G}^{2}=\left(\psi_{\sigma},\left(K-M^{2}\right) \psi_{\sigma}\right)_{g}+\frac{\pi^{2}-6}{12 \kappa_{1}^{2}}\left(\psi_{\sigma}, K M^{2} \psi_{\sigma}\right)_{g} \\
<0
\end{gathered} \mathcal{O}\left(a^{2}\right)
$$

Sketch of the proof

Trial function $\Psi_{\sigma}(s, \vartheta, u):=(1+M(s, \vartheta) u) \psi_{\sigma}(s, u)$ gives

$$
\begin{gathered}
Q_{1}\left(\Psi_{\sigma}\right) \leq 2\left(C_{+} / C_{-}\right)^{2}\left(\left(1+a\|M\|_{\infty}\right)^{2}\left\|\dot{\psi}_{\sigma}\right\|_{g}^{2}+a^{2}\left\|\psi_{\sigma} \nabla_{g} M\right\|_{g}^{2}\right) \\
\text { small as } \sigma \rightarrow 0
\end{gathered} \mathcal{O}\left(a^{2}\right)
$$

$$
\begin{gathered}
Q_{2}\left(\Psi_{\sigma}\right)-\kappa_{1}^{2}\|\psi\|_{G}^{2}=\left(\psi_{\sigma},\left(K-M^{2}\right) \psi_{\sigma}\right)_{g}+\frac{\pi^{2}-6}{12 \kappa_{1}^{2}}\left(\psi_{\sigma}, K M^{2} \psi_{\sigma}\right)_{g} \\
<0
\end{gathered} \mathcal{O}\left(a^{2}\right)
$$

If a is small enough, choosing small σ we can achieve that the sum dominated by $\left(\psi_{\sigma},\left(K-M^{2}\right) \psi_{\sigma}\right)_{g}<0$

Sketch of the proof

Trial function $\Psi_{\sigma}(s, \vartheta, u):=(1+M(s, \vartheta) u) \psi_{\sigma}(s, u)$ gives

$$
\begin{gathered}
Q_{1}\left(\Psi_{\sigma}\right) \leq 2\left(C_{+} / C_{-}\right)^{2}\left(\left(1+a\|M\|_{\infty}\right)^{2}\left\|\dot{\psi}_{\sigma}\right\|_{g}^{2}+a^{2}\left\|\psi_{\sigma} \nabla_{g} M\right\|_{g}^{2}\right) \\
\text { small as } \sigma \rightarrow 0
\end{gathered} \mathcal{O}\left(a^{2}\right)
$$

$$
Q_{2}\left(\Psi_{\sigma}\right)-\kappa_{1}^{2}\|\psi\|_{G}^{2}=\left(\psi_{\sigma},\left(K-M^{2}\right) \psi_{\sigma}\right)_{g}+\frac{\pi^{2}-6}{12 \kappa_{1}^{2}}\left(\psi_{\sigma}, K M^{2} \psi_{\sigma}\right)_{g}
$$

$$
<0 \quad \mathcal{O}\left(a^{2}\right)
$$

If a is small enough, choosing small σ we can achieve that the sum dominated by $\left(\psi_{\sigma},\left(K-M^{2}\right) \psi_{\sigma}\right)_{g}<0$ Under the second assumption, $\left(\psi_{\sigma},-M^{2} \psi_{\sigma}\right)_{g} \rightarrow-\infty$ as $\sigma \rightarrow 0+$, while the other terms remain finite.

Cylindrically symmetric layers

Another sufficient condition can be derived for layers invariant w.r.t. rotations around a fixed axis in \mathbb{R}^{3} with Σ parameterized by means of $r, z \in C^{2}((0, \infty))$ as

$$
p: \Sigma_{0} \rightarrow \mathbb{R}^{3}:\{(s, \vartheta) \mapsto(r(s) \cos \vartheta, r(s) \sin \vartheta, z(s))\}
$$

It is a geodesic polar coordinate chart if we require

$$
\dot{r}^{2}+\dot{z}^{2}=1 ; \quad \text { then also } \quad \dot{r} \ddot{r}+\dot{z} \ddot{z}=0
$$

The Weingärten tensor is $\left(h_{\mu}^{\nu}\right)=\operatorname{diag}\left(k_{s}, k_{\vartheta}\right)$ with the principal curvatures $k_{s}=\dot{r} \ddot{z}-\ddot{r} \dot{z}$ and $k_{\vartheta}=\frac{\dot{z}}{r}$. We have

$$
\mathcal{K}+2 \pi \dot{r}(\infty)=2 \pi, \quad \text { where } \quad \dot{r}(\infty):=\lim _{s \rightarrow \infty} \dot{r}(s)
$$

by Gauss-Bonnet theorem, and since $0 \leq \dot{r}(\infty) \leq 1$, such a cylindrically invariant surface Σ always has $0 \leq \mathcal{K} \leq 2 \pi$

Cylindrically symmetric layers

We exclude the case already resolved and assume $\mathcal{K}>0$, i.e. $0 \leq \dot{r}(\infty)<1$. Using the above parametrization we get Lemma: Let $\mathcal{K}>0$, then there are $\delta>0$ and $s_{0}>0$ s.t.

$$
\forall s \geq s_{0}: \quad \frac{\delta}{r(s)} \leq\left|k_{\vartheta}(s)\right| \leq \frac{1}{r(s)}
$$

and $k_{\vartheta}(s)$ does not change sign. It follows that k_{ϑ} is not integrable in $L^{1}\left(\mathbb{R}_{+}\right)$. If $\langle\Sigma 1\rangle$ is satisfied, we have $\mathcal{M}=\infty$

Cylindrically symmetric layers

We exclude the case already resolved and assume $\mathcal{K}>0$, i.e. $0 \leq \dot{r}(\infty)<1$. Using the above parametrization we get Lemma: Let $\mathcal{K}>0$, then there are $\delta>0$ and $s_{0}>0$ s.t.

$$
\forall s \geq s_{0}: \quad \frac{\delta}{r(s)} \leq\left|k_{\vartheta}(s)\right| \leq \frac{1}{r(s)}
$$

and $k_{\vartheta}(s)$ does not change sign. It follows that k_{ϑ} is not integrable in $L^{1}\left(\mathbb{R}_{+}\right)$. If $\langle\Sigma 1\rangle$ is satisfied, we have $\mathcal{M}=\infty$

Theorem [Duclos-E.-Krejčirík, 2001]: Assume $\langle\Omega 0\rangle,\langle\Omega 1\rangle$ and $\langle\Sigma 1\rangle$, and suppose that Σ is a surface of revolution with $\mathcal{K}>0$. Then $\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<\kappa_{1}^{2}$, in particular, $\sigma_{\text {disc }}\left(d-\Delta_{D}^{\Omega}\right) \neq \emptyset$ holds under the assumption $\langle\Sigma 0\rangle$

Sketch of the proof

By assumption M dominates over K in effective potential at large distances, hence we choose trial functions supported there. Consider sequences $\left\{n^{i}\right\}_{n=1}^{\infty}, i=1,2,3$, and put

$$
\varphi_{n}(s):=\frac{\ln \left(s n^{-i}\right)}{\ln \left(n^{j-i}\right)}, \quad \phi_{n}(s):=\frac{\varphi_{n}(s)}{s}, \quad(i, j) \in\{(1,2),(3,2)\}
$$

if $\min \left\{n^{i}, n^{j}\right\}<s \leq \max \left\{n^{i}, n^{j}\right\}$ and zero otherwise. We employ functions $\Psi_{n, \varepsilon}(s, u):=\left(\varphi_{n}(s)+\varepsilon \phi_{n}(s) u\right) \chi_{1}(u)$ which belong to form domain of H and are uniformly bounded

Sketch of the proof

By assumption M dominates over K in effective potential at large distances, hence we choose trial functions supported there. Consider sequences $\left\{n^{i}\right\}_{n=1}^{\infty}, i=1,2,3$, and put

$$
\varphi_{n}(s):=\frac{\ln \left(s n^{-i}\right)}{\ln \left(n^{j-i}\right)}, \quad \phi_{n}(s):=\frac{\varphi_{n}(s)}{s}, \quad(i, j) \in\{(1,2),(3,2)\}
$$

if $\min \left\{n^{i}, n^{j}\right\}<s \leq \max \left\{n^{i}, n^{j}\right\}$ and zero otherwise. We employ functions $\Psi_{n, \varepsilon}(s, u):=\left(\varphi_{n}(s)+\varepsilon \phi_{n}(s) u\right) \chi_{1}(u)$ which belong to form domain of H and are uniformly bounded By a direct computation and simple estimates we get

$$
\lim _{n \rightarrow \infty} \tilde{Q}\left[\Psi_{n, \varepsilon}\right]=\lim _{n \rightarrow \infty}\left[\varepsilon^{2}\left\|\phi_{n}\right\|_{\Sigma}^{2}-2 \varepsilon\left(\varphi_{n}, M \phi_{n}\right)_{\Sigma}\right]
$$

if the r.h.s. limit exists, where the norms refer to $L^{2}\left(\Sigma, \mathrm{~d} \Sigma_{0}\right)$

Sketch of the proof

We choose $\varepsilon \equiv \varepsilon_{n}:=\left(\varphi_{n}, M \phi_{n}\right)_{\Sigma}^{-1}$ which makes sense as the integral diverges; thus one has to compare -2 with

$$
\lim _{n \rightarrow \infty} \frac{\left(\phi_{n}, \phi_{n}\right)_{\Sigma}}{\left(\varphi_{n}, M \phi_{n}\right)_{\Sigma}^{2}}
$$

Sketch of the proof

We choose $\varepsilon \equiv \varepsilon_{n}:=\left(\varphi_{n}, M \phi_{n}\right)_{\Sigma}^{-1}$ which makes sense as the integral diverges; thus one has to compare -2 with

$$
\lim _{n \rightarrow \infty} \frac{\left(\phi_{n}, \phi_{n}\right)_{\Sigma}}{\left(\varphi_{n}, M \phi_{n}\right)_{\Sigma}^{2}}
$$

Now finally we use rotational symmetry. Since $k_{s} \in L^{1}\left(\mathbb{R}_{+}\right)$ and ϕ_{n} is chosen to eliminate the weight r, the meridian curvature does not contribute in the denominator, while in view of the lemma $k_{\vartheta} r$ behaves as one at infinity. Consequently, the limit in question is

$$
\frac{\int_{0}^{\infty} \phi_{n}(s)^{2} s d s}{\left(\int_{0}^{\infty} \varphi_{n}(s) \phi_{n}(s) d s\right)^{2}}=\frac{1}{\int_{0}^{\infty} \phi_{n}(s)^{2} s d s}=\frac{3}{\ln \left(n^{2}\right)} \rightarrow 0
$$

and thus $\lim _{n \rightarrow \infty} \tilde{Q}\left(\Psi_{n, \varepsilon}\right) \rightarrow-2$ as we sought to prove

Remarks

- Partial wave decomposition: one can decompose $-\Delta_{D}^{\Omega}$ to angular momentum subspaces and employ 2D methods. It is not much simpler, but one gets an insight: the trial function could be supported in the far off region where the centrifugal term is weak

Remarks

- Partial wave decomposition: one can decompose $-\Delta_{D}^{\Omega}$ to angular momentum subspaces and employ 2D methods. It is not much simpler, but one gets an insight: the trial function could be supported in the far off region where the centrifugal term is weak
- Layers without bound states: if you "close" Σ too much the discrete spectrum may be lost. Example: let Σ be a cylinder with a hemispherical "cap", then by Neumann bracketing we check that $\sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right)=\emptyset$. While it does not satisfy our smoothness assumptions, a counterexample is obtained using domain continuity. The reason is, of course, that such a Σ ceases to be asymptotically planar pushing inf $\sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)$ down

Generalizations

Let Ω be built over Σ which is complete non-compact connected C^{2}-smooth surface, and suppose that $\langle\Omega 0\rangle$, $\langle\Omega 1\rangle$ and $\langle\Sigma 1\rangle$ are satisfied.

- Under $\langle\Sigma 0\rangle$ we have $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=\kappa_{1}^{2}$

Generalizations

Let Ω be built over Σ which is complete non-compact connected C^{2}-smooth surface, and suppose that $\langle\Omega 0\rangle$, $\langle\Omega 1\rangle$ and $\langle\Sigma 1\rangle$ are satisfied.

- Under $\langle\Sigma 0\rangle$ we have $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=\kappa_{1}^{2}$
- Pole existence is not required. Also the smoothness requirements can be relaxed: C^{3} is nowhere needeed

Generalizations

Let Ω be built over Σ which is complete non-compact connected C^{2}-smooth surface, and suppose that $\langle\Omega 0\rangle$,
$\langle\Omega 1\rangle$ and $\langle\Sigma 1\rangle$ are satisfied.

- Under $\langle\Sigma 0\rangle$ we have $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=\kappa_{1}^{2}$
- Pole existence is not required. Also the smoothness requirements can be relaxed: C^{3} is nowhere needeed
- More important, we have new sufficient conditions: $\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<\kappa_{1}^{2}$ holds if Σ contains a cylindrically symmetric end with a positive total Gauss curvature, and

Generalizations

Let Ω be built over Σ which is complete non-compact connected C^{2}-smooth surface, and suppose that $\langle\Omega 0\rangle$, $\langle\Omega 1\rangle$ and $\langle\Sigma 1\rangle$ are satisfied.

- Under $\langle\Sigma 0\rangle$ we have $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=\kappa_{1}^{2}$
- Pole existence is not required. Also the smoothness requirements can be relaxed: C^{3} is nowhere needeed
- More important, we have new sufficient conditions: $\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<\kappa_{1}^{2}$ holds if Σ contains a cylindrically symmetric end with a positive total Gauss curvature, and
- the same is true if the generating surface Σ is not conformally equivalent to the plane

$\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)$ revisited

The lower bound by κ_{1}^{2} can be proved under the more general assumptions; the argument based on Neumann bracketing generalizes easily

$$
\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right) \text { revisited }
$$

The lower bound by κ_{1}^{2} can be proved under the more general assumptions; the argument based on Neumann bracketing generalizes easily
The upper bound: If $K \rightarrow 0$ at infinity, to any $\varepsilon>0$ there is an infinite-dimensional $\mathcal{D}_{g} \subset C_{0}^{\infty}(\Sigma)$ s.t. $\left\|\nabla_{g} \varphi\right\|_{g} \leq \varepsilon\|\varphi\|_{g}$ holds for $\varphi \in \mathcal{D}_{g}$. Then we employ the identity

$$
\left\|\nabla \varphi \chi_{1}\right\|^{2}=\left\||\nabla \varphi| \chi_{1}\right\|^{2}-\left(\varphi \chi_{1}, \varphi \Delta \chi_{1}\right)
$$

The first term is estimated by $\left(C_{+} / C_{-}^{2}\right) \varepsilon^{2}\left\|\varphi \chi_{1}\right\|^{2}$, while the one can be rewritten as

$$
-\left(\varphi \Delta \chi_{1}, \varphi \chi_{1}\right)=\kappa_{1}^{2}\left\|\varphi \chi_{1}\right\|^{2}+\left(\varphi \chi_{1}^{\prime}, 2 M_{u} \varphi \chi_{1}\right),
$$

where $M_{u}:=\frac{M-K u}{1-2 M u+K u^{2}}$ refers to "parallel" surface
$\mathcal{L}(\Sigma \times\{u\})$

$\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)$ revisited

Integrating the last term by parts in u we conclude that for any $\varepsilon>0$ there is $\mathcal{D}:=\mathcal{D}_{g} \otimes\left\{\chi_{1}\right\} \subset C_{0}^{\infty}(\Omega)$ such that

$$
\forall \psi \in \mathcal{D}:\|\nabla \psi\|^{2}-\left(\psi, K_{u} \psi\right) \leq\left(\kappa_{1}^{2}+\left(C_{+} / C_{-}^{2}\right) \varepsilon^{2}\right)\|\psi\|^{2},
$$

where $K_{u}:=\frac{K}{1-2 M u+K u^{2}}$ is the Gauss curvature of the above indicated parallel surface

$\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)$ revisited

Integrating the last term by parts in u we conclude that for any $\varepsilon>0$ there is $\mathcal{D}:=\mathcal{D}_{g} \otimes\left\{\chi_{1}\right\} \subset C_{0}^{\infty}(\Omega)$ such that

$$
\forall \psi \in \mathcal{D}: \quad\|\nabla \psi\|^{2}-\left(\psi, K_{u} \psi\right) \leq\left(\kappa_{1}^{2}+\left(C_{+} / C_{-}^{2}\right) \varepsilon^{2}\right)\|\psi\|^{2},
$$

where $K_{u}:=\frac{K}{1-2 M u+K u^{2}}$ is the Gauss curvature of the above indicated parallel surface
This proves $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}-K_{u}\right) \leq \kappa_{1}^{2}$. Since K_{u} vanishes at infinity by assumption, the operator $K_{u}\left(-\Delta_{D}^{\Omega}+1\right)^{-1}$ is compact in $L^{2}(\Omega)$ and the same spectral result holds thus for the operator $-\Delta_{D}^{\Omega}$ we are interested in \square

$\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)$ revisited

Integrating the last term by parts in u we conclude that for any $\varepsilon>0$ there is $\mathcal{D}:=\mathcal{D}_{g} \otimes\left\{\chi_{1}\right\} \subset C_{0}^{\infty}(\Omega)$ such that

$$
\forall \psi \in \mathcal{D}: \quad\|\nabla \psi\|^{2}-\left(\psi, K_{u} \psi\right) \leq\left(\kappa_{1}^{2}+\left(C_{+} / C_{-}^{2}\right) \varepsilon^{2}\right)\|\psi\|^{2},
$$

where $K_{u}:=\frac{K}{1-2 M u+K u^{2}}$ is the Gauss curvature of the above indicated parallel surface
This proves $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}-K_{u}\right) \leq \kappa_{1}^{2}$. Since K_{u} vanishes at infinity by assumption, the operator $K_{u}\left(-\Delta_{D}^{\Omega}+1\right)^{-1}$ is compact in $L^{2}(\Omega)$ and the same spectral result holds thus for the operator $-\Delta_{D}^{\Omega}$ we are interested in $\quad \square$
Remark: Notice that only $K \rightarrow 0$ at infinity is needed in order to establish the upper bound

Surfaces without poles

We needed geodetical polar coordinates to construct mollifiers in our trial functions. This can be circumvented: Lemma [Carron-E.-Krejčirík, 2004]: Assume $\langle\Sigma 1\rangle$, then there is a sequence $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ of smooth functions with compact supports in Σ such that

- $\forall n \in \mathbb{N}: 0 \leq \varphi_{n} \leq 1$
- $\left\|\nabla_{g} \varphi_{n}\right\|_{g} \rightarrow 0$ as $n \rightarrow \infty$
- $\varphi_{n} \rightarrow 1$ as $n \rightarrow \infty$ uniformly on compacts of Σ

Surfaces without poles

We needed geodetical polar coordinates to construct mollifiers in our trial functions. This can be circumvented:
Lemma [Carron-E.-Krejčirír, 2004]: Assume $\langle\Sigma 1\rangle$, then there is a sequence $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ of smooth functions with compact supports in Σ such that

- $\forall n \in \mathbb{N}: 0 \leq \varphi_{n} \leq 1$
- $\left\|\nabla_{g} \varphi_{n}\right\|_{g} \rightarrow 0$ as $n \rightarrow \infty$
- $\varphi_{n} \rightarrow 1$ as $n \rightarrow \infty$ uniformly on compacts of Σ

Proof: Under $\langle\Sigma 1\rangle$ a classical result of [Huber '57] states that (Σ, g) is conformally equivalent to a closed surface with a finite number of points removed. However, the integral $\left\|\nabla_{g} \varphi_{n}\right\|_{g}$ is a conformal invariant and it is easy to find a sequence having the required properties on the "pierced"

Handles: a non-simply connected Σ

Theorem [Carron-E.-Krejčirík, 2004]: Under the stated assumptions, one has $\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<\kappa_{1}^{2}$ whenever Σ is not conformally equivalent to the plane

Handles: a non-simply connected Σ

Theorem [Carron-E.-Krejčirík, 2004]: Under the stated assumptions, one has $\inf \sigma\left(-\Delta_{D}^{\Omega}\right)<\kappa_{1}^{2}$ whenever Σ is not conformally equivalent to the plane
Proof: Indeed, the Cohn-Vossen inequality yields

$$
\mathcal{K} \leq 2 \pi(2-2 h-e),
$$

where h is the genus of Σ and e is the number of ends. Hence $\mathcal{K}<0$ whenever $h \geq 1$.

Layers over Σ with cylindrical ends

Theorem [Carron-E.-Krejčirík, 2004]: Assume $\langle\Omega 0\rangle,\langle\Omega 1\rangle$, $\langle\Sigma 0\rangle$ and $\langle\Sigma 1\rangle$. Let the reference surface Σ have $N \geq 1$ cylindrically symmetric ends, each with a positive total Gauss curvature. Let $\Omega^{\prime} \subset \mathbb{R}^{3}$ be an unbounded, without boundary, obtained by a compact deformation of Ω. Then

- $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega^{\prime}}\right)=\kappa_{1}^{2}$
- there is at least N ev's in $\left(0, \kappa_{1}^{2}\right)$, counting multiplicity

Layers over Σ with cylindrical ends

Theorem [Carron-E.-Krejčirík, 2004]: Assume $\langle\Omega 0\rangle,\langle\Omega 1\rangle$, $\langle\Sigma 0\rangle$ and $\langle\Sigma 1\rangle$. Let the reference surface Σ have $N \geq 1$ cylindrically symmetric ends, each with a positive total Gauss curvature. Let $\Omega^{\prime} \subset \mathbb{R}^{3}$ be an unbounded, without boundary, obtained by a compact deformation of Ω. Then

- $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega^{\prime}}\right)=\kappa_{1}^{2}$
- there is at least N ev's in $\left(0, \kappa_{1}^{2}\right)$, counting multiplicity

Sketch of the proof: Deriving the sufficient condition for cylindrical surfaces with $\mathcal{K}>0$; we constructed sequences of trial functions "localised at infinity" we may use them for our Ω. Moreover, trial functions localized at different ends are orthogonal in $L^{2}(\Omega)$. Finally, these estimates as well as $\sigma_{\text {ess }}$ are stable under compact deformations of Ω.

Layers with ends: examples

- Layer over Σ with multiple ends:

Layers with ends: examples

- Layer over Σ with multiple ends:

- Conical layer:

Weak coupling: preliminaries

Consider mildly curved quantum layers generated by a family of surfaces $\Sigma_{\varepsilon}:=p\left(\mathbb{R}^{2}\right)$ given by a Monge patch

$$
p: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad p\left(x^{1}, x^{2} ; \varepsilon\right):=\left(x^{1}, x^{2}, \varepsilon f\left(x^{1}, x^{2}\right)\right)
$$

with $f \in C^{4}$ and ask what happens in the asymptotics $\varepsilon \rightarrow 0$

Weak coupling: preliminaries

Consider mildly curved quantum layers generated by a family of surfaces $\Sigma_{\varepsilon}:=p\left(\mathbb{R}^{2}\right)$ given by a Monge patch

$$
p: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad p\left(x^{1}, x^{2} ; \varepsilon\right):=\left(x^{1}, x^{2}, \varepsilon f\left(x^{1}, x^{2}\right)\right)
$$

with $f \in C^{4}$ and ask what happens in the asymptotics $\varepsilon \rightarrow 0$ Regularity and decay assumptions:
$\langle d 1,4\rangle f_{, \mu}, f_{, \mu \nu \rho \sigma} \in L^{\infty}\left(\mathbb{R}^{2}\right)$
$\langle d 2,3\rangle f_{, \mu \nu}, f_{, \mu \nu \rho} \rightarrow 0$ as $|x| \rightarrow \infty$
They ensure, in particular, that $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega_{\varepsilon}}\right)=\kappa_{1}^{2}$

Weak coupling: preliminaries

Consider mildly curved quantum layers generated by a family of surfaces $\Sigma_{\varepsilon}:=p\left(\mathbb{R}^{2}\right)$ given by a Monge patch

$$
p: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad p\left(x^{1}, x^{2} ; \varepsilon\right):=\left(x^{1}, x^{2}, \varepsilon f\left(x^{1}, x^{2}\right)\right)
$$

with $f \in C^{4}$ and ask what happens in the asymptotics $\varepsilon \rightarrow 0$ Regularity and decay assumptions:

$$
\begin{aligned}
& \langle d 1,4\rangle f_{, \mu}, f_{, \mu \nu \rho \sigma} \in L^{\infty}\left(\mathbb{R}^{2}\right) \\
& \langle d 2,3\rangle f_{, \mu \nu}, f_{, \mu \nu \rho} \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{aligned}
$$

They ensure, in particular, that $\inf \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega_{\varepsilon}}\right)=\kappa_{1}^{2}$ Integral decay assumptions:

$$
\begin{aligned}
& \langle r 1,2\rangle f_{, \mu \nu}, f_{, \mu \nu \rho} \in L^{2}\left(\mathbb{R}^{2},\left(1+|x|^{\delta}\right) \mathrm{d} x\right) \\
& \langle r 3\rangle f_{, \mu \nu \rho \sigma} \in L^{1}\left(\mathbb{R}^{2},\left(1+|x|^{\delta}\right) \mathrm{d} x\right) \text { for some } \delta>0
\end{aligned}
$$

Weak coupling: asymptotic expansion

Theorem [E.-Krejčirírk, 2001]: Let Ω_{ε} be layers generated by Σ_{ε} with $f \in C^{4}\left(\mathbb{R}^{2}\right)$ satisfying $\langle d 1-4\rangle$ and $\langle r 1-3\rangle$. If Σ_{1} is not planar, then for all ε small enough $-\Delta_{D}^{\Omega_{\varepsilon}}$ has exactly one isolated eigenvalue $E(\varepsilon)$ below the essential spectrum, and

$$
E(\varepsilon)=\kappa_{1}^{2}-\mathrm{e}^{2 w(\varepsilon)^{-1}},
$$

where $w(\varepsilon)$ has the following asymptotic expansion
$w(\varepsilon)=-\varepsilon^{2} \sum_{j=2}^{\infty}\left(\chi_{1}, u \chi_{j}\right)\left(\kappa_{j}^{2}-\kappa_{1}^{2}\right)^{2} \int_{\mathbb{R}^{2}} \frac{\left|\widehat{m_{0}}(\omega)\right|^{2}}{|\omega|^{2}+\kappa_{j}^{2}-\kappa_{1}^{2}} \mathrm{~d} \omega+\mathcal{O}\left(\varepsilon^{2+\gamma}\right)$
with $\gamma:=\min \{1, \delta / 2\}$. Here m_{0} is the lowest-order term in the expansion of the mean curvature of Σ_{ε} w.r.t. ε

Remarks

- The sum in the asymptotic expansion runs in fact over even n only because one integrates over ($-a, a$) on which $u \mapsto \chi_{1}(u) u \chi_{j}(u)$ is odd for odd j

Remarks

- The sum in the asymptotic expansion runs in fact over even n only because one integrates over ($-a, a$) on which $u \mapsto \chi_{1}(u) u \chi_{j}(u)$ is odd for odd j
- The leading-term coefficient w_{1} in the expansion $w(\varepsilon)=: \varepsilon^{2} w_{1}+\mathcal{O}\left(\varepsilon^{2+\gamma}\right)$ does not have a very transparent structure. For thin layers it can be rewritten as

$$
w_{1}=-\frac{1}{2 \pi}\left\|m_{0}\right\|^{2}+\frac{\pi^{2}-6}{24 \pi^{3}}\left\|\nabla m_{0}\right\|^{2} d^{2}+\mathcal{O}\left(d^{4}\right),
$$

which is instructive because the first term comes from the surface attractive potential $K-M^{2}$ which dominates the picture in this case

Birman-Schwinger analysis

Let $M \subset \mathbb{R}^{m}, m \geq 1$, be open connected precompact; put

$$
H_{\lambda}=-\Delta_{D}+\lambda V \text { with } \lambda>0 \text { on } \mathcal{H}:=L^{2}\left(\mathbb{R}^{2}\right) \otimes L^{2}(M)
$$

where $-\Delta_{D}$ is the closure of $-\Delta \otimes I_{m}+I_{2} \otimes-\Delta_{D}^{M}$

Birman-Schwinger analysis

Let $M \subset \mathbb{R}^{m}, m \geq 1$, be open connected precompact; put

$$
H_{\lambda}=-\Delta_{D}+\lambda V \text { with } \lambda>0 \text { on } \mathcal{H}:=L^{2}\left(\mathbb{R}^{2}\right) \otimes L^{2}(M)
$$

where $-\Delta_{D}$ is the closure of $-\Delta \otimes I_{m}+I_{2} \otimes-\Delta_{D}^{M}$
Assumptions:
$\langle a 0\rangle \inf \sigma_{\text {ess }}\left(H_{\lambda}\right) \geq \kappa_{1}^{2}$
$\langle a 1\rangle \exists a, b \geq 0 \quad \forall \psi \in W_{0}^{1,2}\left(\Omega_{0}\right):\|V \psi\| \leq a\|\psi\|+b\left\|H_{0}^{1 / 2} \psi\right\|$
$\langle a 2\rangle|V|_{11} \in L^{1+\delta}\left(\mathbb{R}^{2}\right)$
$\langle a 3\rangle|V|_{11} \in L^{1}\left(\mathbb{R}^{2},\left(1+|x|^{\delta}\right) \mathrm{d} x\right)$
where $V_{j j^{\prime}}:=\int_{M} \bar{\chi}_{j}(y) V(\cdot, y) \chi_{j^{\prime}}(y)$ d y w.r.t. transverse basis of ef's $\chi_{j}, j=1,2, \ldots$ with ev's $\kappa_{1}^{2}<\kappa_{2}^{2} \leq \ldots \leq \kappa_{j}^{2}<\ldots$

Birman-Schwinger analysis

The free resolvent operator can be rewritten as

$$
R_{0}(\alpha)=\sum_{j=1}^{\infty} \chi_{j}\left(-\Delta+k_{j}(\alpha)^{2}\right)^{-1} \bar{\chi}_{j}, \quad k_{j}(\alpha):=\sqrt{\kappa_{j}^{2}-\alpha^{2}}
$$

We are interested in ev's below κ_{1}^{2}, i.e. $\alpha \in\left[0, \kappa_{1}\right)$, when

$$
R_{0}\left(x, y, x^{\prime}, y^{\prime} ; \alpha\right)=\frac{1}{2 \pi} \sum_{j=1}^{\infty} \chi_{j}(y) K_{0}\left(k_{j}(\alpha)\left|x-x^{\prime}\right|\right) \bar{\chi}_{j}\left(y^{\prime}\right)
$$

Birman-Schwinger analysis

The free resolvent operator can be rewritten as

$$
R_{0}(\alpha)=\sum_{j=1}^{\infty} \chi_{j}\left(-\Delta+k_{j}(\alpha)^{2}\right)^{-1} \bar{\chi}_{j}, \quad k_{j}(\alpha):=\sqrt{\kappa_{j}^{2}-\alpha^{2}}
$$

We are interested in ev's below κ_{1}^{2}, i.e. $\alpha \in\left[0, \kappa_{1}\right)$, when

$$
R_{0}\left(x, y, x^{\prime}, y^{\prime} ; \alpha\right)=\frac{1}{2 \pi} \sum_{j=1}^{\infty} \chi_{j}(y) K_{0}\left(k_{j}(\alpha)\left|x-x^{\prime}\right|\right) \bar{\chi}_{j}\left(y^{\prime}\right)
$$

Define $K(\alpha):=|V|^{1 / 2} R_{0}(\alpha) V^{1 / 2}$, where $V^{1 / 2}:=|V|^{1 / 2} \operatorname{sgn} V$. By Birman-Schwinger principle $\alpha(\lambda)^{2} \equiv E(\lambda)$ is an ev of H_{λ} iff $\lambda K(\alpha)$ has eigenvalue -1 , in other words

$$
\alpha^{2} \in \sigma_{\text {disc }}\left(H_{\lambda}\right) \Longleftrightarrow-1 \in \sigma_{\text {disc }}(\lambda K(\alpha))
$$

BS analysis: decomposition

One has to split the logarithmic singularity responsible for the weakly coupled ev. Put $K(\alpha)=L_{\alpha}+M_{\alpha}$, where
$L_{\alpha}\left(x, y, x^{\prime}, y^{\prime}\right):=-\frac{1}{2 \pi}|V(x, y)|^{1 / 2} \chi_{1}(y) \ln k_{1}(\alpha) \chi_{1}\left(y^{\prime}\right) V\left(x^{\prime}, y^{\prime}\right)^{1 / 2}$
contains the singularity and M_{α} splits into two parts again, $M_{\alpha}=A_{\alpha}+B_{\alpha}$ with B_{α} being the projection of resolvent onto higher transverse modes, $j \geq 2$

BS analysis: decomposition

One has to split the logarithmic singularity responsible for the weakly coupled ev. Put $K(\alpha)=L_{\alpha}+M_{\alpha}$, where
$L_{\alpha}\left(x, y, x^{\prime}, y^{\prime}\right):=-\frac{1}{2 \pi}|V(x, y)|^{1 / 2} \chi_{1}(y) \ln k_{1}(\alpha) \chi_{1}\left(y^{\prime}\right) V\left(x^{\prime}, y^{\prime}\right)^{1 / 2}$
contains the singularity and M_{α} splits into two parts again, $M_{\alpha}=A_{\alpha}+B_{\alpha}$ with B_{α} being the projection of resolvent onto higher transverse modes, $j \geq 2$
On the other hand, the operator A_{α} has the kernel

$$
\frac{1}{2 \pi}|V(x, y)|^{1 / 2} \chi_{1}(y)\left(K_{0}\left(k_{1}(\alpha)\left|x-x^{\prime}\right|\right)+\ln k_{1}(\alpha)\right) \chi_{1}\left(y^{\prime}\right) V\left(x^{\prime}, y^{\prime}\right)^{1 / 2}
$$

Note that M_{α} is well defined for $\alpha=\kappa_{1}$

BS analysis: eliminating regular part

Using asymptotic behaviour of K_{0} we deduce
Lemma [E.-Krejčiríík, 2001]: Assume 〈a1-3〉, then there are positive C_{2}, C_{3} and C_{4} such that

- $\forall \alpha \in\left[0, \kappa_{1}\right]: \quad\left\|M_{\alpha}\right\|<C_{2}$
- $\left\|M_{\alpha}-M_{\kappa_{1}}\right\| \leq C_{3} \lambda^{\gamma}$ with $\gamma:=\min \{1, \delta / 2\}$,
- $\left\|\frac{d M_{\alpha(w)}}{d w}\right\|<C_{4}|w|^{-1}$ for λ small enough, $w:=\left(\ln k_{1}(\alpha)\right)^{-1}$

BS analysis: eliminating regular part

Using asymptotic behaviour of K_{0} we deduce
Lemma [E.-Krejčicíŕk, 2001]: Assume 〈a1-3〉, then there are positive C_{2}, C_{3} and C_{4} such that

- $\forall \alpha \in\left[0, \kappa_{1}\right]: \quad\left\|M_{\alpha}\right\|<C_{2}$
- $\left\|M_{\alpha}-M_{\kappa_{1}}\right\| \leq C_{3} \lambda^{\gamma}$ with $\gamma:=\min \{1, \delta / 2\}$,
- $\left\|\frac{d M_{\alpha(w)}}{d w}\right\|<C_{4}|w|^{-1}$ for λ small enough, $w:=\left(\ln k_{1}(\alpha)\right)^{-1}$

Next we employ the factorization

$$
(I+\lambda K(\alpha))^{-1}=\left[I+\lambda\left(I+\lambda M_{\alpha}\right)^{-1} L_{\alpha}\right]^{-1}\left(I+\lambda M_{\alpha}\right)^{-1}
$$

By the lemma we have $\left\|\lambda M_{\alpha}\right\|<1$ for small λ, the second factor is invertible and the singularities are determined by the first one

BS analysis: eliminating regular part

Observe that $\lambda\left(I+\lambda M_{\alpha}\right)^{-1} L_{\alpha}$ is rank-one operator of the form $(\psi, \cdot) \varphi$, where

$$
\begin{aligned}
\psi(x, y) & :=-\frac{\lambda}{2 \pi} \ln k_{1}(\alpha) V(x, y)^{1 / 2} \chi_{1}(y), \\
\varphi(x, y) & :=\left[\left(I+\lambda M_{\alpha}\right)^{-1}|V|^{1 / 2} \chi_{1}\right](x, y),
\end{aligned}
$$

so it has just one eigenvalue (ψ, φ)

BS analysis: eliminating regular part

Observe that $\lambda\left(I+\lambda M_{\alpha}\right)^{-1} L_{\alpha}$ is rank-one operator of the form $(\psi, \cdot) \varphi$, where

$$
\begin{aligned}
\psi(x, y) & :=-\frac{\lambda}{2 \pi} \ln k_{1}(\alpha) V(x, y)^{1 / 2} \chi_{1}(y), \\
\varphi(x, y) & :=\left[\left(I+\lambda M_{\alpha}\right)^{-1}|V|^{1 / 2} \chi_{1}\right](x, y),
\end{aligned}
$$

so it has just one eigenvalue (ψ, φ)
If the latter should equal -1 we get the implicit equation
$w=F(\lambda, w), \quad F(\lambda, w):=\frac{\lambda}{2 \pi}\left(V^{1 / 2} \chi_{1},\left(I+\lambda M_{\alpha(w)}\right)^{-1}|V|^{1 / 2} \chi_{1}\right)$
with variable w related to the energy via $\alpha^{2}=\kappa_{1}^{2}-\mathrm{e}^{2 w^{-1}}$

BS analysis: main result

Theorem [E.-Krejčirík, 2001]: Assume $\langle a 0-3\rangle$ and $V \neq 0$, then H_{λ} has for small enough $\lambda>0$ exactly one ev $E(\lambda)$ iff

$$
\int_{\mathbb{R}^{2}} V_{11}(x) \mathrm{d} x \leq 0
$$

and in this case we can have $E(\lambda)=\kappa_{1}^{2}-\mathrm{e}^{2 w(\lambda)^{-1}}$, where

$$
\begin{aligned}
w(\lambda) & =\frac{\lambda}{2 \pi} \int_{\mathbb{R}^{2}} V_{11}(x) \mathrm{d} x \\
& +\left(\frac{\lambda}{2 \pi}\right)^{2}\left\{\int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} V_{11}(x)\left(\gamma_{\mathbb{E}}+\ln \frac{\left|x-x^{\prime}\right|}{2}\right) V_{11}\left(x^{\prime}\right) \mathrm{d} x \mathrm{~d} x^{\prime}\right. \\
& \left.-\sum_{j=2}^{\infty} \int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} V_{1 j}(x) K_{0}\left(k_{j}\left(\kappa_{1}\right)\left|x-x^{\prime}\right|\right) V_{j 1}\left(x^{\prime}\right) \mathrm{d} x \mathrm{~d} x^{\prime}\right\}+\mathcal{O}\left(\lambda^{2+\gamma}\right)
\end{aligned}
$$

with $\gamma:=\min \{1, \delta / 2\}$

Application to mildly curved layers

For the family of surfaces under consideration we have

$$
\begin{aligned}
g_{\mu \nu}(\varepsilon) & =\delta_{\mu \nu}+\varepsilon^{2} \eta_{\mu \nu}, \quad\left(\eta_{\mu \nu}\right):=\left(\begin{array}{cc}
f_{, 1}^{2} & f_{, 1} f_{, 2} \\
f_{, 1} f_{, 2} & f_{, 2}^{2}
\end{array}\right) \\
g(\varepsilon) & :=\operatorname{det}\left(g_{\mu \nu}\right)=1+\varepsilon^{2} \operatorname{tr}\left(\eta_{\mu \nu}\right)=1+\varepsilon^{2}\left(f_{, 1}{ }^{2}+f_{, 2}{ }^{2}\right) \\
h_{\mu \nu}(\varepsilon) & =\varepsilon g(\varepsilon)^{-\frac{1}{2}} \theta_{\mu \nu}, \quad\left(\theta_{\mu \nu}\right):=\left(\begin{array}{ll}
f_{, 11} & f_{, 12} \\
f_{, 21} & f_{, 22}
\end{array}\right)
\end{aligned}
$$

Application to mildly curved layers

For the family of surfaces under consideration we have

$$
\begin{aligned}
g_{\mu \nu}(\varepsilon) & =\delta_{\mu \nu}+\varepsilon^{2} \eta_{\mu \nu}, \quad\left(\eta_{\mu \nu}\right):=\left(\begin{array}{cc}
f_{1}{ }^{2} & f_{1} f_{, 2} \\
f_{1} f_{, 2} & f_{, 2}^{2}
\end{array}\right) \\
g(\varepsilon) & :=\operatorname{det}\left(g_{\mu \nu}\right)=1+\varepsilon^{2} \operatorname{tr}\left(\eta_{\mu \nu}\right)=1+\varepsilon^{2}\left(f_{1}^{2}+f_{, 2}{ }^{2}\right) \\
h_{\mu \nu}(\varepsilon) & =\varepsilon g(\varepsilon)^{-\frac{1}{2}} \theta_{\mu \nu}, \quad\left(\theta_{\mu \nu}\right):=\left(\begin{array}{cc}
f, 11 & f_{, 12} \\
f, 21 & f, 22
\end{array}\right)
\end{aligned}
$$

This gives, in particular, the curvatures

$$
\begin{aligned}
K(\varepsilon)= & \delta_{\mu \nu} \varepsilon^{2} g(\varepsilon)^{-2} k_{0}, \quad k_{0}:=\operatorname{det}\left(\theta_{\mu \nu}\right)=f_{, 11} f_{, 22}-f_{, 12}{ }^{2} \\
M(\varepsilon)= & \varepsilon g(\varepsilon)^{-\frac{3}{2}}\left(m_{0}+\varepsilon^{2} m_{1}\right), \quad m_{0}:=\frac{1}{2} \operatorname{tr}\left(\theta_{\mu \nu}\right)=\frac{1}{2}\left(f_{, 11}+f_{, 22}\right) \\
& m_{1}:=\frac{1}{2} \operatorname{tr}\left(\theta_{\mu \rho} \tilde{\eta}^{\rho \nu}\right)=\frac{1}{2}\left(f_{, 1}{ }^{2} f_{, 22}+f_{, 2}{ }^{2} f_{, 11}-2 f_{, 1} f_{, 2} f_{, 12}\right)
\end{aligned}
$$

Application to mildly curved layers

Now we apply the BS result, estimating the Hamiltonian by

$$
H_{-} \leq H \leq H_{+} \text {with } H_{ \pm}:=-\Delta-\partial_{3}^{2}+\varepsilon V_{ \pm},
$$

where

$$
V_{ \pm}(x, u):=\frac{1}{\varepsilon}\left(\frac{C_{ \pm}}{C_{\mp}^{2}} v_{1}+V_{2}\right)\left(x / \sigma_{ \pm}, u\right)
$$

with $\sigma_{ \pm}^{2}:=c_{\mp}^{3} C_{\mp}^{2} /\left(c_{ \pm}^{2} C_{ \pm}\right)$, where $c_{ \pm}:=1 \pm \varepsilon^{2}\left\|\eta_{\mu \nu}\right\|$.

Application to mildly curved layers

Now we apply the BS result, estimating the Hamiltonian by

$$
H_{-} \leq H \leq H_{+} \text {with } H_{ \pm}:=-\Delta-\partial_{3}^{2}+\varepsilon V_{ \pm},
$$

where

$$
V_{ \pm}(x, u):=\frac{1}{\varepsilon}\left(\frac{C_{ \pm}}{C_{\mp}^{2}} v_{1}+V_{2}\right)\left(x / \sigma_{ \pm}, u\right)
$$

with $\sigma_{ \pm}^{2}:=c_{\mp}^{3} C_{\mp}^{2} /\left(c_{ \pm}^{2} C_{ \pm}\right)$, where $c_{ \pm}:=1 \pm \varepsilon^{2}\left\|\eta_{\mu \nu}\right\|$.
Furthermore, $V_{2}=\frac{K-M^{2}}{\left(1-2 M u+K u^{2}\right)^{2}}$ is as before and

$$
v_{1}:=-\frac{\left|u^{2} \nabla_{g} K-2 u \nabla_{g} M\right|_{g}^{2}}{4\left(1-2 M u+K u^{2}\right)^{2}}+\frac{u^{2} \Delta_{g} K-2 u \Delta_{g} M}{2\left(1-2 M u+K u^{2}\right)}
$$

Since v_{1} and V_{2} are ε-dependent, $V_{ \pm}$are well defined even for $\varepsilon=0$. Expansion in ε yields the announced result.

Weak coupling: main result again

Theorem [E.-Krejčirírk, 2001]: Let Ω_{ε} be layers generated by Σ_{ε} with $f \in C^{4}\left(\mathbb{R}^{2}\right)$ satisfying $\langle d 1-4\rangle$ and $\langle r 1-3\rangle$. If Σ_{1} is not planar, then for all ε small enough $-\Delta_{D}^{\Omega_{\varepsilon}}$ has exactly one isolated eigenvalue $E(\varepsilon)$ below the essential spectrum, and

$$
E(\varepsilon)=\kappa_{1}^{2}-\mathrm{e}^{2 w(\varepsilon)^{-1}},
$$

where $w(\varepsilon)$ has the following asymptotic expansion
$w(\varepsilon)=-\varepsilon^{2} \sum_{j=2}^{\infty}\left(\chi_{1}, u \chi_{j}\right)\left(\kappa_{j}^{2}-\kappa_{1}^{2}\right)^{2} \int_{\mathbb{R}^{2}} \frac{\left|\widehat{m_{0}}(\omega)\right|^{2}}{|\omega|^{2}+\kappa_{j}^{2}-\kappa_{1}^{2}} \mathrm{~d} \omega+\mathcal{O}\left(\varepsilon^{2+\gamma}\right)$
with $\gamma:=\min \{1, \delta / 2\}$. Here m_{0} is the lowest-order term in the expansion of the mean curvature of Σ_{ε} w.r.t. ε

Open questions

- Existence for $\mathcal{K}>0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. More generally: when does $\mathcal{K}>0$ imply $\mathcal{M}=\infty$?

Open questions

- Existence for $\mathcal{K}>0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. More generally: when does $\mathcal{K}>0$ imply $\mathcal{M}=\infty$?
- Layers with non-smooth boundary: existence proofs, mode matching, examples

Open questions

- Existence for $\mathcal{K}>0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. More generally: when does $\mathcal{K}>0$ imply $\mathcal{M}=\infty$?
- Layers with non-smooth boundary: existence proofs, mode matching, examples
- Perturbation theory with respect to various parameters, in particular, the layer thickness

Open questions

- Existence for $\mathcal{K}>0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. More generally: when does $\mathcal{K}>0$ imply $\mathcal{M}=\infty$?
- Layers with non-smooth boundary: existence proofs, mode matching, examples
- Perturbation theory with respect to various parameters, in particular, the layer thickness
- Discrete spectra properties: find bounds on the \# of bound states, location of the ev's, etc.

Open questions

- Existence for $\mathcal{K}>0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. More generally: when does $\mathcal{K}>0$ imply $\mathcal{M}=\infty$?
- Layers with non-smooth boundary: existence proofs, mode matching, examples
- Perturbation theory with respect to various parameters, in particular, the layer thickness
- Discrete spectra properties: find bounds on the \# of bound states, location of the ev's, etc.
- Scattering in curved layers: existence and completeness, resonances at thresholds, etc.

Open questions

- Existence for $\mathcal{K}>0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. More generally: when does $\mathcal{K}>0$ imply $\mathcal{M}=\infty$?
- Layers with non-smooth boundary: existence proofs, mode matching, examples
- Perturbation theory with respect to various parameters, in particular, the layer thickness
- Discrete spectra properties: find bounds on the \# of bound states, location of the ev's, etc.
- Scattering in curved layers: existence and completeness, resonances at thresholds, etc.
- Periodically curved layers: absolute continuity of the spectrum, existence of gaps

Open questions

- Existence for $\mathcal{K}>0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. More generally: when does $\mathcal{K}>0$ imply $\mathcal{M}=\infty$?
- Layers with non-smooth boundary: existence proofs, mode matching, examples
- Perturbation theory with respect to various parameters, in particular, the layer thickness
- Discrete spectra properties: find bounds on the \# of bound states, location of the ev's, etc.
- Scattering in curved layers: existence and completeness, resonances at thresholds, etc.
- Periodically curved layers: absolute continuity of the spectrum, existence of gaps
- More questions: layers with magnetic fields, regular and singular potential perturbations, etc.

The talk was based on

[DEK00] P. Duclos, P.E., D. Krejčirík: Locally curved quantum layers, Ukrainian J. Phys. 45 (2000), 595-601.
[DEK01] P. Duclos, P.E., D. Krejčirík: Bound states in curved quantum layers, Commun. Math. Phys. 223 (2001), 13-28.
[EK01] P.E., D. Krejčirík: Bound states in mildly curved layers, J. Phys. A34 (2001), 5969-5985.
[CEK04] G. Carron, P.E., D. Krejčírík: Topologically non-trivial quantum layers, J. Math. Phys. 45 (2004), 774-784.

The talk was based on

[DEK00] P. Duclos, P.E., D. Krejčirík: Locally curved quantum layers, Ukrainian J. Phys. 45 (2000), 595-601.
[DEK01] P. Duclos, P.E., D. Krejčirík: Bound states in curved quantum layers, Commun. Math. Phys. 223 (2001), 13-28.
[EK01] P.E., D. Krejčirík: Bound states in mildly curved layers, J. Phys. A34 (2001), 5969-5985.
[CEK04] G. Carron, P.E., D. Krejčirí́k: Topologically non-trivial quantum layers, J. Math. Phys. 45 (2004), 774-784.
for more information see http://www.ujf.cas.cz/ ${ }^{\text {e exner }}$

