
Geometrically induced bound states
in Dirichlet layers

Pavel Exner
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Motivation

reference surface Σ

Ω

2a

Problem: properties of a
quantum particle confined
to a curved layer of fixed
width built over a surface

Considered already long time ago in connection with
quantization on manifolds in formal limit a→ 0

See [Jensen-Koppe ’71], [Tolar ’78], [da Costa ’81], ...

Recently made rigorous in [Froese-Herbst ’01] with a
harmonic confinement

We are interested primarily in relations between
geometry and spectral properties, i.e. a trademark
topic of mathematical physics
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Motivation: semiconductor films
A natural model for dilute electron gas in semiconductor
films built on a curved substrate. Recall that a typical
mesoscopic system has

small size: submicron, down to nanometers

high purity: mean free path � system size

crystalline fabric: admits effective mass description
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films built on a curved substrate. Recall that a typical
mesoscopic system has

small size: submicron, down to nanometers

high purity: mean free path � system size

crystalline fabric: admits effective mass description

Consequently, neglecting electron-electron coupling one
can a quantum waveguide model in which a single electron
is described by Schrödinger equation with constraints
corresponding to the system volume
One typically one assumes hard wall (Dirichlet) boundary
conditions. It is an idealization, in reality rather a finite
potential jump
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Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling
quantum wires. Recall some results:

Bending means binding, i.e. nonzero curvature
gives rise to effective attractive interaction

The effect is robust , weak regularity requirements,
even a slight bend can create bound states

Weak coupling: energy ∼ (bending angle)4

∃ bounds on spectral threshold, # of bound states

Perturbation theory w.r.t. waveguide halfwidth a

Thin enough bent waveguides have resonances

Thin enough periodically curved waveguides have
open gaps, etc.
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Preliminaries
The surface Σ in R

3 supposed to be C2-smooth and to have
at least one pole (i.e., exponential mapping expo : ToΣ → Σ

is a diffeomorphism). Hence σ is diffeomorphic to R
2, i.e.

simply connected and non-compact. Using geodesic polar
coordinates we parametrize

p : Σ0 → R
3 : {q := (s, ϑ) 7→ p(q) ∈ Σ} , Σ0 := (0,∞) × S1
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simply connected and non-compact. Using geodesic polar
coordinates we parametrize

p : Σ0 → R
3 : {q := (s, ϑ) 7→ p(q) ∈ Σ} , Σ0 := (0,∞) × S1

The tangent vectors p,µ := ∂p/∂qµ are linearly independent
and their cross-product defines a unit normal field n on Σ.
The layer Ω := L(Ω0) of width d = 2a over Σ, where
Ω0 := Σ0 × (−a, a), is defined by the map

L : Ω0 → R
3 : {(q, u) 7→ L(q, u) := p(q) + un(q) ∈ Ω}
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Motivation: surfaces with poles
A more illustrative characterization of a pole of Σ: different
geodetics emanating from it never cross.
The assumption is useful: we can easily measure distance,
in particular, specify what we mean by “large distances”

The assumption is nontrivial. Example [Gromol-Meyer ’69]:

spherical elliptical

if the leg is thin,
geodetics always cross

However, the assumption is not necessary for the spectral
result we are going to derive. Later we get rid of it.
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Preliminaries: surface geometry
The surface metric in the geodesic polar coordinates is
diagonal, (gµν) = diag (1, r2), where r2 ≡ g := det(gµν) is
the squared Jacobian of the exponential mapping which
satisfies Jacobi equation

r̈(s, ϑ) +K(s, ϑ) r(s, ϑ) = 0 , r(0, ϑ) = 0, ṙ(0, ϑ) = 1

Integrating it we get
∫∞
0 r(s, θ) dθ ≤ Cs for some C > 0

provided the total curvature K defined below is finite

In addition to gµν := p,µ · p,ν we introduce second
fundamental form hµν := −n,µ · p,ν with h := det(hµν)

and Weingärten map hµ
ν := gµρhρν which determine

Gauss curvature K := det(hµ
ν) = h/g

mean curvature M := 1
2Tr(hµ

ν) = 1
2g

µνhµν
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Preliminaries: total curvatures

Using invariant surface element , dΣ := g1/2d2q ≡ g1/2dq1dq2,
we introduce global quantities, in particular, total curvatures

K :=

∫

Σ
KdΣ and M2 :=

∫

Σ
M2dΣ ;

we will suppose that the first one is finite, K ∈ L1(Σ0, dΣ)
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we introduce global quantities, in particular, total curvatures

K :=

∫

Σ
KdΣ and M2 :=

∫

Σ
M2dΣ ;

we will suppose that the first one is finite, K ∈ L1(Σ0, dΣ)

For a compact manifold G with a smooth boundary we have
KG +

∮
∂G kgds = 2π by Gauss-Bonnet theorem

In particular, if Σ is a locally
deformed plane we choose ∂G
outside the deformation, so
KG = KΣ = 0
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Preliminaries: layer geometry

Metric tensor , Gij := L,i · L,j, of the layer (regarded as
a manifold with boundary in R

3) has the block form

(Gij) =

(
(Gµν) 0

0 1

)
with Gνµ = (δσ

ν −uh
σ

ν )(δρ
σ−uh

ρ
σ )gρµ
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Recall that the ev’s of Weingärten map matrix are principal
curvatures k1, k2, and that K = k1k2, M = 1

2(k1 + k2)
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(Gij) =

(
(Gµν) 0

0 1

)
with Gνµ = (δσ

ν −uh
σ

ν )(δρ
σ−uh

ρ
σ )gρµ

Recall that the ev’s of Weingärten map matrix are principal
curvatures k1, k2, and that K = k1k2, M = 1

2(k1 + k2)

Then we can express the determinant, G := det(Gij) as

G = g [(1 − uk1)(1 − uk2)]
2 = g(1 − 2Mu+Ku2)2

In particular, the volume element is dΩ := G1/2d2q du
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Preliminaries: assumptions

For the moment we adopt the following hypotheses:

〈Σ0〉 K ∈ L1(Σ0, dΣ)

〈Ω0〉 Ω is not self-intersecting, i.e. L is injective

〈Ω1〉 a < ρm := (max {‖k1‖∞, ‖k2‖∞})−1

The last one ensures that L is a diffeomorphism, in
particular, that Ω has a smooth boundary. Furthermore,
〈Ω1〉 also implies a useful estimate,

C−gµν ≤ Gµν ≤ C+gµν with 0 < C− < 1 < C+ < 4

and the constants expressed in terms of the minimal
normal curvature radius ρm as C± :=

(
1 ± aρ−1

m

)2
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Hamiltonian: curvilinear coordinates

Neglecting physical constants the Hamiltonian is identified
with the Dirichlet Laplacian −∆Ω

D on L2(Ω) with the usual
properties, e.g., the form domain is W 1,2

0 (Ω).
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D on L2(Ω) with the usual
properties, e.g., the form domain is W 1,2

0 (Ω).
In the coordinates (q, u) it acquires Laplace-Beltrami form

H := −G−1/2∂iG
1/2Gij∂j on L2(Ω0, G

1/2d2q du) ,

or H = U(−∆Ω
D)U−1 with unitary U : L2(Ω) → L2(Ω0, dΩ)
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0 (Ω).
In the coordinates (q, u) it acquires Laplace-Beltrami form

H := −G−1/2∂iG
1/2Gij∂j on L2(Ω0, G

1/2d2q du) ,

or H = U(−∆Ω
D)U−1 with unitary U : L2(Ω) → L2(Ω0, dΩ).

If Σ is not C3-smooth, H is understood in the form sense

Q(ψ) := ‖H1/2ψ‖2
G = (ψ,i, G

ijψ,j)G , D(Q) = W 1,2
0 (Ω0, dΩ) ,

where “G” indicates the norm and the inner product in the
above Hilbert space
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Hamiltonian: decomposition
The block form of Gij yields H = H1 +H2 with

H1 := −G−1/2∂µG
1/2Gµν∂ν = −∂µG

µν∂ν − 2F,µG
µν∂ν ,

H2 := −G−1/2∂3G
1/2∂3 = −∂2

3 − 2
Ku−M

1 − 2Mu+Ku2
∂3 ,

where F := lnG1/4 and F,3 is given explicitly in H2

An alternative form, with the factor 1 − 2Mu+Ku2

removed from the weight G1/2, is obtained by another
unitary transformation Û : L2(Ω0, dΩ) → L2(Ω0, dΣ du),

ψ 7→ Ûψ := (1 − 2Mu+Ku2)1/2ψ ,

giving Ĥ := ÛHÛ−1. The norm in the corresponding
Hilbert space is indicated by the subscript “g”
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ψ 7→ Ûψ := (1 − 2Mu+Ku2)1/2ψ ,
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Hamiltonian: decomposition

The operator Ĥ contains an effective potential ; introducing
J := 1

2 ln(1 − 2Mu+Ku2) we rewrite it as follows,

Ĥ = −g−1/2∂ig
1/2Gij∂j+V , V = g−1/2(g1/2GijJ,j),i+J,iG

ijJ,j
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1/2Gij∂j+V , V = g−1/2(g1/2GijJ,j),i+J,iG

ijJ,j

This yields Ĥ = Ĥ1 + Ĥ2, where Ĥ1 has the above form with
summation over Greek indices and

Ĥ2 = −∂2
3 + V2 , V2 =

K −M2

(1 − 2Mu+Ku2)2
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The operator Ĥ contains an effective potential ; introducing
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2 ln(1 − 2Mu+Ku2) we rewrite it as follows,

Ĥ = −g−1/2∂ig
1/2Gij∂j+V , V = g−1/2(g1/2GijJ,j),i+J,iG

ijJ,j

This yields Ĥ = Ĥ1 + Ĥ2, where Ĥ1 has the above form with
summation over Greek indices and

Ĥ2 = −∂2
3 + V2 , V2 =

K −M2

(1 − 2Mu+Ku2)2

In analogy with the curved tube case it is illustrative to write
Ĥ = Ĥq − ∂2

3 , where Ĥq := Ĥ1 + V2
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Heuristic considerations

In thin layers, a� ρm, the longitudinal and transverse
variables are asymptotically decoupled, because

Hq := −g−1/2∂µg
1/2gµν∂ν +K −M2 + O(aρ−1

m ) ;

notice that in distinction from the tube case the surface
cannot be fully “ironed”, the surface geometry persists

The additional potential K −M2 rewrites in terms of
principal curvatures as −1

4(k1 − k2)
2. It is attractive unless

Σ is planar, k1 = k2 = 0

Σ is spherical, k1 = k2, however, a noncompact Σ
clearly cannot be spherical globally
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Examples of the effective interaction
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Essential spectrum threshold

Notation: we use eigenfunctions {χn}
∞
n=1 of the transverse

operator (−∂2
3)D given by

√
2
d

(cos
sin

)
κnu for n

( odd
even

)
, where

κ2
n := (κ1n)2 with κ1 := π/d are the corresponding ev’s
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One more assumption: Σ is asymptotically planar , i.e.

〈Σ0〉 K, M → 0 holds as s→ ∞

Theorem [Duclos-E.-Krejčiřík, 2001]: Assume 〈Ω0〉, 〈Ω1〉
and 〈Σ0〉, then we have

inf σess(−∆Ω
D) ≥ κ2

1
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inf σess : sketch of the proof
Divide Ω into an exterior and interior by extra Neumann b.c.
at s = s0, then H ≥ HN

int ⊕HN
ext. The interior does not

contribute to σess, so by minimax principle we infer

inf σess(H) ≥ inf σess(H
N
ext) ≥ inf σ(HN

ext)

In the exterior we have for all ψ ∈ D(QN
ext) the estimate

QN
ext(ψ) ≥ ‖ψ,3‖

2
G,ext ≥ inf

Ωext

{1 − 2Mu+Ku2} ‖ψ,3‖
2
g,ext

≥
(
1 − sup

Σext

{2a|M | + a2|K|}
)
κ2

1 ‖ψ‖
2
g,ext

≥
1 − supΣext

{2a|M | + a2|K|}

1 − infΣext
{2a|M | + a2|K|}

κ2
1 ‖ψ‖

2
G,ext

= (1 + o(s0)) κ
2
1 ‖ψ‖

2
G,ext �
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Curvature-induced binding, K ≤ 0

Theorem [Duclos-E.-Krejčiřík, 2001]: Assume 〈Ω0〉, 〈Ω1〉
and 〈Σ1〉, and suppose that Σ is not planar. If K ≤ 0, then

inf σ(−∆Ω
D) < κ2

1

In particular, σdisc(−∆Ω
D) 6= ∅ if 〈Σ0〉 holds.

Sketch of the proof: By a variational argument, seeking a
trial function Ψ from Q(H) such that

Q̃(Ψ) := Q(Ψ) − κ2
1 ‖Ψ‖2

G < 0

It is convenient to split the Hamiltonian form, Q = Q1 +Q2

with parts associated to H1 and H2 introduced above.
We employ Goldstone-Jaffe trick , choosing radially
symmetric ψ(s, ϑ, u) := ϕ(s)χ1(u) with ϕ to be specified
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K ≤ 0 , sketch of the proof
Using the factorized form of ψ we get directly

Q2(ψ) − κ2
1‖ψ‖

2
G = (ψ,Kψ)g

On the other hand, the “longitudinal kinetic part” Q1(ψ) can
be estimated by the radial gradient norm of ψ as

Q1(ψ) ≤ C1

∫ ∞

0
|ϕ̇(s)|2s ds

with some C1 > 0. To make it small we need a suitable
family of radial functions such that ψ ∈ Q(H); we choose
them as scaled Macdonald functions outside a circle, i.e.

ϕσ(s) := min

{
1,
K0(σs)

K0(σs0)

}
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K ≤ 0 , sketch of the proof
It is straightforward to compute the integral; we get

∃C2 > 0 :

∫ ∞

0
|ϕ̇σ(s)|2s ds <

C2

| ln σs0|
,

and therefore Q1(ψσ) → 0+ as σ → 0+. We assume 〈Σ1〉,
so by dominated the first part of the shifted energy form
tends to K as σ → 0+; this proves the theorem if K < 0.

If K = 0 we follow GJ idea choosing Ψσ,ε := ψσ + εΘ, where
Θ(q, u) := j(q)2uχ1(u) with j ∈ C∞

0 ((0, s0) × S1); it gives

Q̃(Ψσ,ε) = Q̃(ψσ) + 2εQ̃(Θ, ψσ) + ε2Q̃(Θ)

Since Q̃(Θ, ψσ) = −1
d(j,M)g 6= 0 in general, the sum of the

last two terms can be made negative; then Q̃(Ψσ,ε) < 0 will
hold for σ small enough. �
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K ≤ 0 , examples

The theorem applies to layers built over Cartan-Hadamard
surfaces, i.e. geodesically complete simply connected
non-compact ones with K ≤ 0 (then each point is a pole)

Locally curved plane has K = 0 by Gauss-Bonnet, the
same is true for surfaces with curvatures which are not
compactly supported but decay fast enough

Hyperbolic paraboloid: the simple quadric given in R
3

by the equation z = x2 − y2 is an asymptotically planar
surface with K = −2π

Monkey saddle: another example of a saddle surface is
z = x3 − 3xy2; it satisfies again 〈Σ1〉 and K = −4π
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Other sufficient conditions

The GJ trick – constructing a trial function starting from a
factorized function ψ(s, ϑ, u) := ϕ(s)χ1(u) – does not work
for K > 0. However, other sufficient conditions can still be
obtained variationally:

Theorem [Duclos-E.-Krejčiřík, 2001]: Assume 〈Ω0〉 and
〈Ω1〉 and suppose that Σ is C3-smooth and non-planar. In
addition, let one of the following conditions be valid:

the layer Ω is thin enough

we have 〈Σ1〉, M = ∞, and

〈Σ2〉 the covariant derivative ∇gM ∈ L2(Σ0, dΣ)

Then inf σ(−∆Ω
D) < κ2

1, in particular, curvature-induced
bound states exist under the assumption 〈Σ0〉
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Sketch of the proof

Trial function Ψσ(s, ϑ, u) := (1 +M(s, ϑ)u)ψσ(s, u) gives

Q1(Ψσ) ≤ 2(C+/C−)2
(
(1 + a‖M‖∞)

2 ‖ψ̇σ‖
2
g + a2‖ψσ∇gM‖2

g

)

small as σ → 0 O(a2)

Q2(Ψσ) − κ2
1‖ψ‖

2
G =

(
ψσ, (K −M2)ψσ

)
g

+
π2 − 6

12κ2
1

(
ψσ,KM

2ψσ

)
g

< 0 O(a2)
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(
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)
g

< 0 O(a2)

If a is small enough, choosing small σ we can achieve
that the sum dominated by

(
ψσ, (K −M2)ψσ

)
g
< 0

Under the second assumption,
(
ψσ,−M

2ψσ

)
g
→ −∞ as

σ → 0+, while the other terms remain finite. �
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Cylindrically symmetric layers
Another sufficient condition can be derived for layers
invariant w.r.t. rotations around a fixed axis in R

3 with Σ
parameterized by means of r, z ∈ C2 ((0,∞)) as

p : Σ0 → R
3 : {(s, ϑ) 7→ (r(s) cosϑ, r(s) sinϑ, z(s))}

It is a geodesic polar coordinate chart if we require

ṙ2 + ż2 = 1 ; then also ṙr̈ + żz̈ = 0

The Weingärten tensor is (h ν
µ ) = diag (ks, kϑ) with the

principal curvatures ks = ṙz̈ − r̈ż and kϑ = ż
r . We have

K + 2πṙ(∞) = 2π , where ṙ(∞) := lim
s→∞

ṙ(s)

by Gauss-Bonnet theorem, and since 0 ≤ ṙ(∞) ≤ 1, such a
cylindrically invariant surface Σ always has 0 ≤ K ≤ 2π
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Cylindrically symmetric layers

We exclude the case already resolved and assume K > 0,
i.e. 0 ≤ ṙ(∞) < 1. Using the above parametrization we get

Lemma: Let K > 0, then there are δ > 0 and s0 > 0 s.t.

∀s ≥ s0 :
δ

r(s)
≤ |kϑ(s)| ≤

1

r(s)

and kϑ(s) does not change sign. It follows that kϑ is not
integrable in L1(R+). If 〈Σ1〉 is satisfied, we have M = ∞

Theorem [Duclos-E.-Krejčiřík, 2001]: Assume 〈Ω0〉, 〈Ω1〉
and 〈Σ1〉, and suppose that Σ is a surface of revolution with
K > 0. Then inf σ(−∆Ω

D) < κ2
1, in particular, σdisc(d−∆Ω

D) 6= ∅
holds under the assumption 〈Σ0〉
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Sketch of the proof
By assumption M dominates over K in effective potential at
large distances, hence we choose trial functions supported
there. Consider sequences {ni}∞n=1, i = 1, 2, 3, and put

ϕn(s) :=
ln(sn−i)

ln(nj−i)
, φn(s) :=

ϕn(s)

s
, (i, j) ∈ {(1, 2), (3, 2)}

if min{ni, nj} < s ≤ max{ni, nj} and zero otherwise. We
employ functions Ψn,ε(s, u) := (ϕn(s) + εφn(s)u)χ1(u) which
belong to form domain of H and are uniformly bounded

By a direct computation and simple estimates we get

lim
n→∞

Q̃[Ψn,ε] = lim
n→∞

[
ε2‖φn‖

2
Σ − 2ε(ϕn,Mφn)Σ

]

if the r.h.s. limit exists, where the norms refer to L2(Σ, dΣ0)
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Sketch of the proof
We choose ε ≡ εn := (ϕn,Mφn)−1

Σ which makes sense as
the integral diverges; thus one has to compare −2 with

lim
n→∞

(φn, φn)Σ
(ϕn,Mφn)2Σ

Now finally we use rotational symmetry . Since ks ∈ L1(R+)
and φn is chosen to eliminate the weight r, the meridian
curvature does not contribute in the denominator, while in
view of the lemma kϑr behaves as one at infinity.
Consequently, the limit in question is

∫∞

0 φn(s)2s ds
(∫∞

0 ϕn(s)φn(s)ds
)2 =

1∫∞

0 φn(s)2s ds
=

3

ln(n2)
→ 0 ,

and thus limn→∞ Q̃(Ψn,ε) → −2 as we sought to prove �
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Remarks

Partial wave decomposition: one can decompose −∆Ω
D

to angular momentum subspaces and employ 2D
methods. It is not much simpler, but one gets an insight:
the trial function could be supported in the far off region
where the centrifugal term is weak

Layers without bound states: if you “close” Σ too much
the discrete spectrum may be lost. Example: let Σ be a
cylinder with a hemispherical “cap”, then by Neumann
bracketing we check that σdisc(−∆Ω

D) = ∅. While it does
not satisfy our smoothness assumptions, a
counterexample is obtained using domain continuity.
The reason is, of course, that such a Σ ceases to be
asymptotically planar pushing inf σess(−∆Ω

D) down
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Generalizations

Let Ω be built over Σ which is complete non-compact
connected C2-smooth surface, and suppose that 〈Ω0〉,
〈Ω1〉 and 〈Σ1〉 are satisfied.

Under 〈Σ0〉 we have inf σess

(
−∆Ω

D

)
= κ2

1

Pole existence is not required . Also the smoothness
requirements can be relaxed: C3 is nowhere needeed

More important, we have new sufficient conditions:
inf σ

(
−∆Ω

D

)
< κ2

1 holds if Σ contains a cylindrically
symmetric end with a positive total Gauss curvature,
and

the same is true if the generating surface Σ is not
conformally equivalent to the plane
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inf σess

(
−∆

Ω
D

)
revisited

The lower bound by κ2
1 can be proved under the more

general assumptions; the argument based on Neumann
bracketing generalizes easily

The upper bound: If K → 0 at infinity, to any ε > 0 there is
an infinite-dimensional Dg ⊂ C∞

0 (Σ) s.t. ‖∇gϕ‖g ≤ ε‖ϕ‖g

holds for ϕ ∈ Dg. Then we employ the identity

‖∇ϕχ1‖
2 = ‖|∇ϕ|χ1‖

2 − (ϕχ1, ϕ∆χ1)

The first term is estimated by (C+/C−
2) ε2 ‖ϕχ1‖

2, while the
one can be rewritten as

− (ϕ∆χ1, ϕχ1) = κ2
1 ‖ϕχ1‖

2 + (ϕχ′1, 2Muϕχ1) ,

where Mu := M−Ku
1−2Mu+Ku2 refers to “parallel” surface

L(Σ × {u})
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inf σess

(
−∆

Ω
D

)
revisited

Integrating the last term by parts in u we conclude that for
any ε > 0 there is D := Dg ⊗ {χ1} ⊂ C∞

0 (Ω) such that

∀ψ ∈ D : ‖∇ψ‖2 − (ψ,Kuψ) ≤
(
κ2

1 + (C+/C−
2) ε2

)
‖ψ‖2,

where Ku := K
1−2Mu+Ku2 is the Gauss curvature of the

above indicated parallel surface
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2) ε2

)
‖ψ‖2,

where Ku := K
1−2Mu+Ku2 is the Gauss curvature of the

above indicated parallel surface

This proves inf σess(−∆Ω
D −Ku) ≤ κ2

1. Since Ku vanishes at
infinity by assumption, the operator Ku(−∆Ω

D + 1)−1 is
compact in L2(Ω) and the same spectral result holds thus
for the operator −∆Ω

D we are interested in �
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This proves inf σess(−∆Ω
D −Ku) ≤ κ2

1. Since Ku vanishes at
infinity by assumption, the operator Ku(−∆Ω

D + 1)−1 is
compact in L2(Ω) and the same spectral result holds thus
for the operator −∆Ω

D we are interested in �

Remark: Notice that only K → 0 at infinity is needed in
order to establish the upper bound
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Surfaces without poles
We needed geodetical polar coordinates to construct
mollifiers in our trial functions. This can be circumvented:
Lemma [Carron-E.-Krejčiřík, 2004]: Assume 〈Σ1〉, then
there is a sequence {ϕn}n∈N of smooth functions with
compact supports in Σ such that

∀n ∈ N : 0 ≤ ϕn ≤ 1

‖∇gϕn‖g → 0 as n→ ∞

ϕn → 1 as n→ ∞ uniformly on compacts of Σ

Proof: Under 〈Σ1〉 a classical result of [Huber ’57] states
that (Σ, g) is conformally equivalent to a closed surface with
a finite number of points removed. However, the integral
‖∇gϕn‖g is a conformal invariant and it is easy to find a
sequence having the required properties on the “pierced”
closed surface. �
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Handles: a non-simply connected Σ

Theorem [Carron-E.-Krejčiřík, 2004]: Under the stated
assumptions, one has inf σ(−∆Ω

D) < κ2
1 whenever Σ is not

conformally equivalent to the plane

Proof: Indeed, the Cohn-Vossen inequality yields

K ≤ 2π (2 − 2h− e),

where h is the genus of Σ and e is the number of ends.
Hence K < 0 whenever h ≥ 1. �

S'

S

H

1
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Layers over Σ with cylindrical ends
Theorem [Carron-E.-Krejčiřík, 2004]: Assume 〈Ω0〉, 〈Ω1〉,
〈Σ0〉 and 〈Σ1〉. Let the reference surface Σ have N ≥ 1
cylindrically symmetric ends, each with a positive total
Gauss curvature. Let Ω′ ⊂ R

3 be an unbounded, without
boundary, obtained by a compact deformation of Ω. Then

inf σess( − ∆Ω′

D ) = κ2
1

there is at least N ev’s in
(
0, κ2

1

)
, counting multiplicity

Sketch of the proof: Deriving the sufficient condition for
cylindrical surfaces with K > 0; we constructed sequences
of trial functions “localised at infinity” we may use them for
our Ω. Moreover, trial functions localized at different ends
are orthogonal in L2(Ω). Finally, these estimates as well as
σess are stable under compact deformations of Ω. �
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Layers with ends: examples
Layer over Σ with multiple ends:

E
2

E
4

E
3

E
1

1

Conical layer:

q

x

y

2a

2   cota q

y=x tanq

1
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Weak coupling: preliminaries
Consider mildly curved quantum layers generated by a
family of surfaces Σε := p (R2) given by a Monge patch

p : R
2 → R

3, p (x1, x2; ε) :=
(
x1, x2, εf(x1, x2)

)

with f ∈ C4 and ask what happens in the asymptotics ε→ 0
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(
x1, x2, εf(x1, x2)
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with f ∈ C4 and ask what happens in the asymptotics ε→ 0

Regularity and decay assumptions:

〈d1, 4〉 f,µ, f,µνρσ ∈ L∞(R2)

〈d2, 3〉 f,µν , f,µνρ → 0 as |x| → ∞

They ensure, in particular, that inf σess(−∆Ωε

D ) = κ2
1
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〈d1, 4〉 f,µ, f,µνρσ ∈ L∞(R2)

〈d2, 3〉 f,µν , f,µνρ → 0 as |x| → ∞

They ensure, in particular, that inf σess(−∆Ωε

D ) = κ2
1

Integral decay assumptions:

〈r1, 2〉 f,µν , f,µνρ ∈ L2
(
R

2, (1 + |x|δ) dx
)

〈r3〉 f,µνρσ ∈ L1
(
R

2, (1 + |x|δ) dx
)

for some δ > 0
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Weak coupling: asymptotic expansion
Theorem [E.-Krejčiřík, 2001]: Let Ωε be layers generated by
Σε with f ∈ C4(R2) satisfying 〈d1-4〉 and 〈r1-3〉. If Σ1 is not
planar, then for all ε small enough −∆Ωε

D has exactly one
isolated eigenvalue E(ε) below the essential spectrum, and

E(ε) = κ2
1 − e2w(ε)−1

,

where w(ε) has the following asymptotic expansion

w(ε) = −ε2

∞∑

j=2

(χ1, uχj)
(
κ2

j − κ2
1

)2
∫

R2

|m̂0(ω)|2

|ω|2 + κ2
j − κ2

1

dω+O(ε2+γ)

with γ := min{1, δ/2}. Here m0 is the lowest-order term in
the expansion of the mean curvature of Σε w.r.t. ε
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Remarks

The sum in the asymptotic expansion runs in fact over
even n only because one integrates over (−a, a) on
which u 7→ χ1(u)uχj(u) is odd for odd j

The leading-term coefficient w1 in the expansion
w(ε) =: ε2w1 +O(ε2+γ) does not have a very transparent
structure. For thin layers it can be rewritten as

w1 = −
1

2π
‖m0‖

2 +
π2 − 6

24π3
‖∇m0‖

2d2 + O(d4),

which is instructive because the first term comes from
the surface attractive potential K −M 2 which dominates
the picture in this case
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Birman-Schwinger analysis

Let M ⊂ R
m, m ≥ 1, be open connected precompact; put

Hλ = −∆D + λV with λ > 0 on H := L2(R2) ⊗ L2(M)

where −∆D is the closure of −∆ ⊗ Im + I2 ⊗−∆M
D

Assumptions:

〈a0〉 inf σess(Hλ) ≥ κ2
1

〈a1〉 ∃ a, b ≥ 0 ∀ψ ∈ W 1,2
0 (Ω0) : ‖V ψ‖ ≤ a‖ψ‖ + b ‖H

1/2
0 ψ‖

〈a2〉 |V |11 ∈ L1+δ
(
R

2
)

〈a3〉 |V |11 ∈ L1
(
R

2, (1 + |x|δ) dx
)

where Vjj′ :=
∫
M χ̄j(y)V (·, y)χj′(y) dy w.r.t. transverse basis

of ef’s χj , j = 1, 2, . . . with ev’s κ2
1 < κ2

2 ≤ . . . ≤ κ2
j < . . .
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Birman-Schwinger analysis
The free resolvent operator can be rewritten as

R0(α) =
∞∑

j=1

χj

(
−∆ + kj(α)2

)−1
χ̄j , kj(α) :=

√
κ2

j − α2

We are interested in ev’s below κ2
1, i.e. α ∈ [0, κ1), when

R0(x, y, x
′, y′;α) =

1

2π

∞∑

j=1

χj(y)K0

(
kj(α)|x− x′|

)
χ̄j(y

′)

Define K(α) := |V |1/2R0(α)V 1/2, where V 1/2 := |V |1/2sgnV .
By Birman-Schwinger principle α(λ)2 ≡ E(λ) is an ev of Hλ

iff λK(α) has eigenvalue −1, in other words

α2 ∈ σdisc(Hλ) ⇐⇒ −1 ∈ σdisc(λK(α))
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BS analysis: decomposition

One has to split the logarithmic singularity responsible for
the weakly coupled ev. Put K(α) = Lα +Mα, where

Lα(x, y, x′, y′) := −
1

2π
|V (x, y)|1/2 χ1(y) ln k1(α)χ1(y

′)V (x′, y′)1/2

contains the singularity and Mα splits into two parts again,
Mα = Aα +Bα with Bα being the projection of resolvent
onto higher transverse modes, j ≥ 2

On the other hand, the operator Aα has the kernel

1

2π
|V (x, y)|1/2 χ1(y)

(
K0(k1(α)|x− x′|) + ln k1(α)

)
χ1(y

′)V (x′, y′)1/2

Note that Mα is well defined for α = κ1
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BS analysis: eliminating regular part
Using asymptotic behaviour of K0 we deduce
Lemma [E.-Krejčiřík, 2001]: Assume 〈a1-3〉, then there are
positive C2, C3 and C4 such that

∀α ∈ [0, κ1] : ‖Mα‖ < C2

‖Mα −Mκ1‖ ≤ C3λ
γ with γ := min{1, δ/2},

∥∥∥dMα(w)

dw

∥∥∥ < C4|w|
−1 for λ small enough, w := (ln k1(α))−1

Next we employ the factorization

(I + λK(α))−1 =
[
I + λ(I + λMα)−1Lα

]−1
(I + λMα)−1

By the lemma we have ‖λMα‖ < 1 for small λ, the second
factor is invertible and the singularities are determined by
the first one
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BS analysis: eliminating regular part
Observe that λ(I + λMα)−1Lα is rank-one operator of the
form (ψ, ·)ϕ, where

ψ(x, y) := −
λ

2π
ln k1(α)V (x, y)1/2 χ1(y),

ϕ(x, y) := [(I + λMα)−1|V |1/2χ1](x, y),

so it has just one eigenvalue (ψ, ϕ)

If the latter should equal −1 we get the implicit equation

w = F (λ,w), F (λ,w) :=
λ

2π

(
V 1/2χ1,

(
I + λMα(w)

)
−1

|V |1/2χ1

)

with variable w related to the energy via α2 = κ2
1 − e2w−1
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BS analysis: main result
Theorem [E.-Krejčiřík, 2001]: Assume 〈a0-3〉 and V 6= 0,
then Hλ has for small enough λ > 0 exactly one ev E(λ) iff

∫

R2

V11(x) dx ≤ 0

and in this case we can have E(λ) = κ2
1 − e2w(λ)−1

, where

w(λ) =
λ

2π

∫

R2

V11(x) dx

+

(
λ

2π

)2
{∫

R2×R2

V11(x)

(
γE + ln

|x− x′|

2

)
V11(x

′) dx dx′

−
∞∑

j=2

∫

R2×R2

V1j(x)K0(kj(κ1)|x− x′|)Vj1(x
′) dx dx′

}
+ O(λ2+γ)

with γ := min{1, δ/2}
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Application to mildly curved layers
For the family of surfaces under consideration we have

gµν(ε) = δµν + ε2ηµν , (ηµν) :=


 f,1

2 f,1f,2

f,1f,2 f,2
2




g(ε) := det(gµν) = 1 + ε2tr (ηµν) = 1 + ε2(f,1
2 + f,2

2)

hµν(ε) = εg(ε)−
1

2 θµν , (θµν) :=


 f,11 f,12

f,21 f,22




This gives, in particular, the curvatures

K(ε) = δµνε
2g(ε)−2k0 , k0 := det(θµν) = f,11f,22 − f,12

2

M(ε) = εg(ε)−
3
2

(
m0 + ε2m1

)
, m0 :=

1

2
tr (θµν) =

1

2
(f,11 + f,22)

m1 :=
1

2
tr (θµρη̃

ρν) =
1

2

(
f,1

2f,22 + f,2
2f,11 − 2f,1f,2f,12

)
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2

M(ε) = εg(ε)−
3
2

(
m0 + ε2m1

)
, m0 :=

1

2
tr (θµν) =

1

2
(f,11 + f,22)

m1 :=
1

2
tr (θµρη̃

ρν) =
1

2

(
f,1

2f,22 + f,2
2f,11 − 2f,1f,2f,12

)
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Application to mildly curved layers
Now we apply the BS result, estimating the Hamiltonian by

H− ≤ H ≤ H+ with H± := −∆ − ∂2
3 + εV±,

where
V±(x, u) :=

1

ε

(
C±

C2
∓

v1 + V2

)
(x/σ±, u)

with σ2
± := c3∓C

2
∓/(c

2
±C±), where c± := 1 ± ε2‖ηµν‖.

Furthermore, V2 = K−M2

(1−2Mu+Ku2)2 is as before and

v1 := −
|u2∇gK − 2u∇gM |2g
4(1 − 2Mu+Ku2)2

+
u2∆gK − 2u∆gM

2(1 − 2Mu+Ku2)

Since v1 and V2 are ε-dependent, V± are well defined even
for ε = 0. Expansion in ε yields the announced result.
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Weak coupling: main result again
Theorem [E.-Krejčiřík, 2001]: Let Ωε be layers generated by
Σε with f ∈ C4(R2) satisfying 〈d1-4〉 and 〈r1-3〉. If Σ1 is not
planar, then for all ε small enough −∆Ωε

D has exactly one
isolated eigenvalue E(ε) below the essential spectrum, and

E(ε) = κ2
1 − e2w(ε)−1

,

where w(ε) has the following asymptotic expansion

w(ε) = −ε2

∞∑

j=2

(χ1, uχj)
(
κ2

j − κ2
1

)2
∫

R2

|m̂0(ω)|2

|ω|2 + κ2
j − κ2

1

dω+O(ε2+γ)

with γ := min{1, δ/2}. Here m0 is the lowest-order term in
the expansion of the mean curvature of Σε w.r.t. ε
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Open questions
Existence for K > 0: recently Lu-Lin announced proof
for ends which are graphs of a convex function. More
generally: when does K > 0 imply M = ∞?

Layers with non-smooth boundary: existence proofs,
mode matching, examples
Perturbation theory with respect to various parameters,
in particular, the layer thickness
Discrete spectra properties: find bounds on the # of
bound states, location of the ev’s, etc.
Scattering in curved layers: existence and
completeness, resonances at thresholds, etc.
Periodically curved layers: absolute continuity of the
spectrum, existence of gaps
More questions: layers with magnetic fields, regular and
singular potential perturbations, etc.
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[DEK01] P. Duclos, P.E., D. Krejčiřík: Bound states in curved quantum
layers, Commun. Math. Phys. 223 (2001), 13-28.
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