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of the Winter model
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Quantum kinematics of decays

Three objects are needed:

the state space H of an isolated system

projection P to subspace PH ⊂ H of unstable system

time evolution e−iHt on H, not reduced by P for t > 0
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Quantum kinematics of decays

Three objects are needed:

the state space H of an isolated system

projection P to subspace PH ⊂ H of unstable system

time evolution e−iHt on H, not reduced by P for t > 0

Suppose that evolution starts at t = 0 from a state ψ ∈ PH
and we perform a non-decay measurement at some t > 0

The non-decay probabilities define in this situation the
decay law , i.e. the function P : R+ → [0, 1] defined by

P (t) := ‖P e−iHtψ‖2 ;

we may also denote it as Pψ(t) to indicate the initial state
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Repeated measurements
Suppose we perform non-decay measurements at times
t/n, 2t/n . . . , t, all with the positive outcome, then the
resulting non-decay probability is

Mn(t) = Pψ(t/n)Pψ1
(t/n) · · ·Pψn−1

(t/n) ,

where ψj+1 is the normalized projection of e−iHt/nψj on PH
and ψ0 := ψ, in particular, for dimP = 1 we have

Mn(t) = (Pψ(t/n))n
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Repeated measurements
Suppose we perform non-decay measurements at times
t/n, 2t/n . . . , t, all with the positive outcome, then the
resulting non-decay probability is

Mn(t) = Pψ(t/n)Pψ1
(t/n) · · ·Pψn−1

(t/n) ,

where ψj+1 is the normalized projection of e−iHt/nψj on PH
and ψ0 := ψ, in particular, for dimP = 1 we have

Mn(t) = (Pψ(t/n))n

Consider the limit of permanent measurement , n→ ∞. If
dimP = 1 and the one-sided derivative Ṗ (0+) vanishes, we
find M(t) := limn→∞Mn(t) = 1 for all t > 0, or Zeno effect .
The same is true if dimP > 1 provided the derivative Ṗψ(0+)

has such a property for any ψ ∈ PH.
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When does Zeno effect occur?

Recall first a simple (and very old) result:

Theorem [E.-Havlíček, 1973]: Ṗψ(0+) = 0 holds
whenever ψ ∈ Q(H)
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When does Zeno effect occur?

Recall first a simple (and very old) result:

Theorem [E.-Havlíček, 1973]: Ṗψ(0+) = 0 holds
whenever ψ ∈ Q(H)

Remarks:

Naturally, M(t) = P (t) if the undisturbed decay law
is exponential, i.e. P (t) = e−Γt

However, P (t) = e−Γt correspond to a state not
belonging to Q(H). And what is worse, decay law
exponentiality requires σ(H) = R!
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Zeno effect: a bit of history

The effect first recognized in [Beskow-Nilsson’67], at
least in the non-decay measurement context
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Zeno effect: a bit of history

The effect first recognized in [Beskow-Nilsson’67], at
least in the non-decay measurement context

Mathematically first established by Friedmann and
Chernoff in the beginning of the 70’s

Its popularity followed the paper [Misra-Sudarshan’77]
where the name quantum Zeno effect was coined

New interest in recent years, in particular, because the
effect becomes experimentally accessible in its
non-ideal form: lifetime enhancement by measurement.
Moreover, even practical applications are previsioned

New mathematical questions, in particular, about Zeno
dynamics: what is the time evolution in PH generated
by permanent observation?
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Zeno dynamics

Assume that H is bounded from below and consider the
non-trivial situation, dimH > 1. We ask: does the limit

(P e−iHt/nP )n −→ e−iHP t

hold as n→ ∞, in which sense, and what is then Zeno
dynamics generator, i.e. the operator HP?
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Zeno dynamics

Assume that H is bounded from below and consider the
non-trivial situation, dimH > 1. We ask: does the limit

(P e−iHt/nP )n −→ e−iHP t

hold as n→ ∞, in which sense, and what is then Zeno
dynamics generator, i.e. the operator HP?

Consider quadratic form u 7→ ‖H1/2Pu‖2 with the form
domain D(H1/2P ) which is closed. By [Chernoff’74] the
associated s-a operator, (H1/2P )∗(H1/2P ), is a natural
candidate for HP (while, in general, PHP is not!)

Counterexamples in [E.’85] and [Matolcsi-Shvidkoy’03]
show, however, that it is necessary to assume that H is
densely defined
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Zeno dynamics, continued
Proposition: Let H be a self-adjoint operator in a
separable H, bounded from below, and let P be a
finite-dimensional orthogonal projection on H. If
PH ⊂ Q(H), then for any ψ ∈ H and t ≥ 0 we have

lim
n→∞

(P e−iHt/nP )nψ = e−iHP tψ ,

uniformly on any compact interval of the variable t
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Zeno dynamics, continued
Proposition: Let H be a self-adjoint operator in a
separable H, bounded from below, and let P be a
finite-dimensional orthogonal projection on H. If
PH ⊂ Q(H), then for any ψ ∈ H and t ≥ 0 we have

lim
n→∞

(P e−iHt/nP )nψ = e−iHP tψ ,

uniformly on any compact interval of the variable t

Proof (following Graf & Guekos): (i) We need to check

lim
t→0

t−1
∥

∥

∥
P e−itHP − P e−itHPP

∥

∥

∥
= 0 ,

since it implies
∥

∥

∥
(P e−itH/nP )n − e−itHP

∥

∥

∥
= n o(t/n) as

n→ ∞ by means of a natural telescopic estimate
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Zeno dynamics, continued
One may assume H ≥ cI, c > 0. First we first prove that

t−1
[

(f, P e−itHPg) − (f, g) − it(
√
HPf,

√
HPg)

]

−→ 0

as t→ 0 for all f, g from D(
√
HP ) = PH. The LHS equals

(√
HPf,

[

e−itH−I
tH − i

]√
HPg

)

and the square bracket tends

to zero strongly.
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Zeno dynamics, continued
One may assume H ≥ cI, c > 0. First we first prove that

t−1
[

(f, P e−itHPg) − (f, g) − it(
√
HPf,

√
HPg)

]

−→ 0

as t→ 0 for all f, g from D(
√
HP ) = PH. The LHS equals

(√
HPf,

[

e−itH−I
tH − i

]√
HPg

)

and the square bracket tends

to zero strongly. In the same way we find that

t−1
[

(f, Pe−itHPPg) − (f, g) − it(
√

HP f,
√

HP g)
]

−→ 0

holds as t→ 0 for any f, g ∈ PH. Next we note that
(
√
HP f,

√
HP g) = (

√
HPf,

√
HPg), and consequently,

t−1(P e−itHP − P e−itHPP ) → 0 weakly as t→ 0, however,
the two topologies are equivalent if dimP <∞. �
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Zeno dynamics, continued
Without the restriction, situation is more complicated:

Theorem [E.-Ichinose ’04]: Under same assumptions,
except that P can be arbitrary , we have for any T > 0

lim
n→∞

∫ T

0
‖(P e−iHt/nP )nψ − e−iHP tψ‖2 dt = 0
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Zeno dynamics, continued
Without the restriction, situation is more complicated:

Theorem [E.-Ichinose ’04]: Under same assumptions,
except that P can be arbitrary , we have for any T > 0

lim
n→∞

∫ T

0
‖(P e−iHt/nP )nψ − e−iHP tψ‖2 dt = 0

Theorem [E.-Neidhardt-Ichinose-Zagrebnov ’06]: Under
same assumptions, except that H need not be separable

lim
n→∞

(PEH([0, πn/t)) e−iHt/nP )nψ = e−iHP tψ ,

uniformly on any compact interval of the variable t, and
same for (Pφ(tH/n)P )n with |φ(x)| ≤ 1, φ(0) = 1, φ′(0) = −i

21st Max Born Symposium Mathematical Problems in Nonrelativistic Quantum Dynamics; Wrocław, June 28, 2006 – p. 10/43



Zeno dynamics, continued
Without the restriction, situation is more complicated:

Theorem [E.-Ichinose ’04]: Under same assumptions,
except that P can be arbitrary , we have for any T > 0

lim
n→∞

∫ T

0
‖(P e−iHt/nP )nψ − e−iHP tψ‖2 dt = 0

Theorem [E.-Neidhardt-Ichinose-Zagrebnov ’06]: Under
same assumptions, except that H need not be separable

lim
n→∞

(PEH([0, πn/t)) e−iHt/nP )nψ = e−iHP tψ ,

uniformly on any compact interval of the variable t, and
same for (Pφ(tH/n)P )n with |φ(x)| ≤ 1, φ(0) = 1, φ′(0) = −i
Corollary: Strong convergence holds provided ‖H‖ <∞
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Measurements again: what is anti-Zeno?
Let us now return to “Zeno-type” non-decay probability,
Mn(t) = Pψ(t/n)Pψ1

(t/n) · · ·Pψn−1
(t/n), where ψj+1 are as

before, in particular, to the formula

Mn(t) = (Pψ(t/n))n

for dimP = 1.
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Measurements again: what is anti-Zeno?
Let us now return to “Zeno-type” non-decay probability,
Mn(t) = Pψ(t/n)Pψ1

(t/n) · · ·Pψn−1
(t/n), where ψj+1 are as

before, in particular, to the formula

Mn(t) = (Pψ(t/n))n

for dimP = 1.Since limn→∞(f(t/n)n = exp{−ḟ(0+)t} if
f(0) = 1 and the one-sided derivative ḟ(0+) exists we see
that M(t) := limn→∞Mn(t) = 0 for ∀t > 0 if Ṗ (0+) = −∞,
and the same is true if dimP > 1 provided the derivative
Ṗψ(0+) has such a property for any ψ ∈ PH.
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Measurements again: what is anti-Zeno?
Let us now return to “Zeno-type” non-decay probability,
Mn(t) = Pψ(t/n)Pψ1

(t/n) · · ·Pψn−1
(t/n), where ψj+1 are as

before, in particular, to the formula

Mn(t) = (Pψ(t/n))n

for dimP = 1. Since limn→∞(f(t/n)n = exp{−ḟ(0+)t} if
f(0) = 1 and the one-sided derivative ḟ(0+) exists we see
that M(t) := limn→∞Mn(t) = 0 for ∀t > 0 if Ṗ (0+) = −∞,
and the same is true if dimP > 1 provided the derivative
Ṗψ(0+) has such a property for any ψ ∈ PH.

It is idealization, of course, but validity of such idealizations
is the heart and soul of theoretical physics and has the
same fundamental significance as the reproducibility of
experimental data [Bratelli-Robinson’79]
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Decay probability estimate
We need to estimate the quantity 1 − P (t), in other words
(ψ, Pψ) − (ψ, eiHtP e−iHtψ). We rewrite it as

1−P (t) = 2 Re (ψ, P (I−e−iHt)ψ) − ‖P (I−e−iHt)ψ‖2
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Decay probability estimate
We need to estimate the quantity 1 − P (t), in other words
(ψ, Pψ) − (ψ, eiHtP e−iHtψ). We rewrite it as

1−P (t) = 2 Re (ψ, P (I−e−iHt)ψ) − ‖P (I−e−iHt)ψ‖2

In terms of the spectral measure EH of H the r.h.s. equals

4

∫ ∞

−∞
sin2 λt

2
d‖EHλ ψ‖2 − 4

∥

∥

∥

∥

∫ ∞

−∞
e−iλt/2 sin

λt

2
dPEHλ ψ

∥

∥

∥

∥

2

By Schwarz it is non-negative; our aim is to find tighter
upper and lower bounds. In particular, for dimP = 1 we
denote dω(λ) := d(ψ,EHλ ψ) obtaining

4

∫ ∞

−∞
sin2 λt

2
dω(λ) − 4

∣

∣

∣

∣

∫ ∞

−∞
e−iλt/2 sin

λt

2
dω(λ)

∣

∣

∣

∣

2
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The one-dimensional case

Let first dimP = 1. One can employ the spectral-measure
normalization,

∫∞
−∞ dω(λ) = 1, to rewrite the decay

probability in the following way

2

∫ ∞

−∞

∫ ∞

−∞

(

sin2 λt

2
+ sin2 µt

2

)

dω(λ)dω(µ)

−4

∫ ∞

−∞

∫ ∞

−∞
cos

(λ− µ)t

2
sin

λt

2
sin

µt

2
dω(λ)dω(µ) ,

or equivalently

1−P (t) = 2

∫ ∞

−∞

∫ ∞

−∞
sin2 (λ− µ)t

2
dω(λ)dω(µ)

We can thus try to estimate the integrated function
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An estimate from above
Take α ∈ (0, 2]. Using |x|α ≥ | sin x|α ≥ sin2 x together with
|λ− µ|α ≤ 2α(|λ|α + |µ|α) we infer from the above formula

1 − P (t)

tα
≤ 21−α

∫ ∞

−∞

∫ ∞

−∞
|λ− µ|αdω(λ)dω(µ)

≤ 2

∫ ∞

−∞

∫ ∞

−∞
(|λ|α + |µ|α)dω(λ)dω(µ) ≤ 4〈|H|α〉ψ
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An estimate from above
Take α ∈ (0, 2]. Using |x|α ≥ | sin x|α ≥ sin2 x together with
|λ− µ|α ≤ 2α(|λ|α + |µ|α) we infer from the above formula

1 − P (t)

tα
≤ 21−α

∫ ∞

−∞

∫ ∞

−∞
|λ− µ|αdω(λ)dω(µ)

≤ 2

∫ ∞

−∞

∫ ∞

−∞
(|λ|α + |µ|α)dω(λ)dω(µ) ≤ 4〈|H|α〉ψ

Hence 1 − P (t) = O(tα) if ψ ∈ D(|H|α/2). If this is true for
some α > 1 we have Zeno effect – which is a slightly
weaker sufficient condition than the earlier stated one
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Take α ∈ (0, 2]. Using |x|α ≥ | sin x|α ≥ sin2 x together with
|λ− µ|α ≤ 2α(|λ|α + |µ|α) we infer from the above formula

1 − P (t)

tα
≤ 21−α

∫ ∞

−∞

∫ ∞

−∞
|λ− µ|αdω(λ)dω(µ)

≤ 2

∫ ∞

−∞

∫ ∞

−∞
(|λ|α + |µ|α)dω(λ)dω(µ) ≤ 4〈|H|α〉ψ

Hence 1 − P (t) = O(tα) if ψ ∈ D(|H|α/2). If this is true for
some α > 1 we have Zeno effect – which is a slightly
weaker sufficient condition than the earlier stated one.
By negation, ψ 6∈ D(|H|1/2) is a necessary condition for the
anti-Zeno effect. Notice that in case ψ ∈ Hac(H) the same
follows from Lipschitz regularity, since P (t) = |ω̂(t)|2 and ω̂
is bd and uniformly α-Lipschitz iff

∫

R
ω(λ)(1 + |λ|α) dλ <∞
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An estimate from below
To find a sufficient condition note that for λ, µ ∈ [−1/t, 1/t]
there is a positive C independent of t such that

∣

∣

∣

∣

sin
(λ− µ)t

2

∣

∣

∣

∣

≥ C|λ− µ|t ;

one can make the constant explicit but it is not necessary.
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An estimate from below
To find a sufficient condition note that for λ, µ ∈ [−1/t, 1/t]
there is a positive C independent of t such that

∣

∣

∣

∣

sin
(λ− µ)t

2

∣

∣

∣

∣

≥ C|λ− µ|t ;

one can make the constant explicit but it is not necessary.
Consequently, we have the estimate

1 − P (t) ≥ 2C2t2
∫ 1/t

−1/t

dω(λ)

∫ 1/t

−1/t

dω(µ)(λ− µ)2

which in turn implies

1 − P (t)

t
≥ 4C2t







∫ 1/t

−1/t

λ2 dω(λ)

∫ 1/t

−1/t

dω(λ) −
(

∫ 1/t

−1/t

λ dω(λ)

)2
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Sufficient conditions

The AZ effect occurs if the r.h.s. diverges as t→ 0, e.g., if

∫ N

−N
λ2 dω(λ)

∫ N

−N
dω(λ) −

(

∫ N

−N
λ dω(λ)

)2

≥ cNα

holds for any N and some c > 0, α > 1
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Sufficient conditions

The AZ effect occurs if the r.h.s. diverges as t→ 0, e.g., if

∫ N

−N
λ2 dω(λ)

∫ N

−N
dω(λ) −

(

∫ N

−N
λ dω(λ)

)2

≥ cNα

holds for any N and some c > 0, α > 1

We can also write it in a more compact form: introduce
Hβ
N := HβEH(∆N ) with the spectral cut-off to the interval

∆N := (−N,N), in particular, denote IN := EH(−N,N).
The sufficient condition then reads

(

〈H2
N 〉ψ〈IN 〉ψ − 〈HN 〉2ψ

)−1
= o(N) as N → ∞

21st Max Born Symposium Mathematical Problems in Nonrelativistic Quantum Dynamics; Wrocław, June 28, 2006 – p. 16/43



More on the one-dimensional case
Remark: Notice that the condition does not require the
Hamiltonian H to be unbounded, in contrast to exponential
exponential decay; it is enough that the spectral distribution
has a slow decay in one direction only
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More on the one-dimensional case
Remark: Notice that the condition does not require the
Hamiltonian H to be unbounded, in contrast to exponential
exponential decay; it is enough that the spectral distribution
has a slow decay in one direction only
Example: Consider H bd from below and ψ from Hac(H) s.t.
ω(λ) ≈ cλ−β as λ→ +∞ for some c > 0 and β ∈ (1, 2). While
∫ N
−N ω(λ) dλ→ 1, the other two integrals diverge giving

cN2−β − c2N4−2β

as the asymptotic behavior of the l.h.s., where the first term
is dominating; it gives Ṗ (0+) = −∞ so AZ effect occurs.
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More on the one-dimensional case
Remark: Notice that the condition does not require the
Hamiltonian H to be unbounded, in contrast to exponential
exponential decay; it is enough that the spectral distribution
has a slow decay in one direction only
Example: Consider H bd from below and ψ from Hac(H) s.t.
ω(λ) ≈ cλ−β as λ→ +∞ for some c > 0 and β ∈ (1, 2). While
∫ N
−N ω(λ) dλ→ 1, the other two integrals diverge giving

cN2−β − c2N4−2β

as the asymptotic behavior of the l.h.s., where the first term
is dominating; it gives Ṗ (0+) = −∞ so AZ effect occurs

Remarks: For β > 2 we have Zeno effect, so the Z-AZ gap
is rather narrow! Also, β = 2 with a cut-off may give rapid
oscillations around t = 0 obscuring existence of Zeno limit
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Multiple degrees of freedom
Let dimP > 1 and denote by {χj} an orthonormal basis in
PH. The second term in the decay-probability formula is

−4
∑

m

∣

∣

∣

∣

∫ ∞

−∞

e−iλt/2 sin
λt

2
d(χm, E

H
λ ψ)

∣

∣

∣

∣

2
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Multiple degrees of freedom
Let dimP > 1 and denote by {χj} an orthonormal basis in
PH. The second term in the decay-probability formula is

−4
∑

m

∣

∣

∣

∣

∫ ∞

−∞

e−iλt/2 sin
λt

2
d(χm, E

H
λ ψ)

∣

∣

∣

∣

2

We also expand ψ =
∑

j cjχj with
∑

j |cj |2 = 1 and denote

dωjk(λ) := d(χj , E
H
λ χk), which is real-valued and symmetric

w.r.t. index interchange. Using d‖EHλ ψ‖2 =
∑

jk c̄jckdωjk(λ)

we can cast the decay-probability into the form

1 − P (t) = 4
∑

jk

c̄jck

{
∫ ∞

−∞

sin2 λt

2
dωjk(λ)

−
∑

m

∫ ∞

−∞

e−iλt/2 sin
λt

2
dωjm(λ)

∫ ∞

−∞

eiµt/2 sin
µt

2
dωkm(µ)

}

(2)
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Multiple degrees of freedom, contd

If dimP = ∞ one has to check convergence of the series
and correctness of interchanging of the summation and
integration; it is done by means of Parseval relation
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Multiple degrees of freedom, contd

If dimP = ∞ one has to check convergence of the series
and correctness of interchanging of the summation and
integration; it is done by means of Parseval relation

Next we employ normalization,
∫∞
−∞ dωjk(λ) = δjk, to derive

1 − P (t) = 2
∑

jkm

c̄jck

∫ ∞

−∞

∫ ∞

−∞
sin2 (λ− µ)t

2
dωjm(λ)dωkm(µ)

which can be also written concisely as

1 − P (t) = 2

∫ ∞

−∞

∫ ∞

−∞
sin2 (λ− µ)t

2
(ψ, dEHλ PdE

H
µ ψ)
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General sufficient condition
Since

∣

∣

∣
sin (λ−µ)t

2

∣

∣

∣
≥ C|λ− µ|t holds for |µt|, |λt| < 1 we get

1 − P (t) ≥ 2C2t2
∫ 1/t

−1/t

∫ 1/t

−1/t

(λ− µ)2 (ψ, dEH
λ PdE

H
µ ψ)

= 4C2t2
∫ 1/t

−1/t

∫ 1/t

−1/t

(λ2 − λµ) (ψ, dEH
λ PdE

H
µ ψ)

= 4C2t2
{

(ψ,H2
1/tPI1/tψ) − ‖PH1/tψ‖2

}
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General sufficient condition
Since

∣

∣

∣
sin (λ−µ)t

2

∣

∣

∣
≥ C|λ− µ|t holds for |µt|, |λt| < 1 we get

1 − P (t) ≥ 2C2t2
∫ 1/t

−1/t

∫ 1/t

−1/t

(λ− µ)2 (ψ, dEH
λ PdE

H
µ ψ)

= 4C2t2
∫ 1/t

−1/t

∫ 1/t

−1/t

(λ2 − λµ) (ψ, dEH
λ PdE

H
µ ψ)

= 4C2t2
{

(ψ,H2
1/tPI1/tψ) − ‖PH1/tψ‖2

}

Let us summarize the results:
Theorem [E.’05]: In the above notation, suppose that

(

〈H2
NPIN 〉ψ − ‖PHNψ‖2

)−1
= o(N)

holds as N → ∞ uniformly w.r.t. ψ ∈ PH, then the
permanent observation causes anti-Zeno effect
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An interlude: a caricature model
An idealized description of a quantum wire and a family of
quantum dots. Formally Hamiltonian acts in L2(R2) as

Hα,β = −∆ − αδ(x− Σ) +
n
∑

i=1

β̃iδ(x− y(i)) , α > 0 ,

where Σ := {(x1, 0); x1 ∈ R
2} and Π := {y(i)}ni=1 ⊂ R

2 \ Σ
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An interlude: a caricature model
An idealized description of a quantum wire and a family of
quantum dots. Formally Hamiltonian acts in L2(R2) as

Hα,β = −∆ − αδ(x− Σ) +
n
∑

i=1

β̃iδ(x− y(i)) , α > 0 ,

where Σ := {(x1, 0); x1 ∈ R
2} and Π := {y(i)}ni=1 ⊂ R

2 \ Σ

Singular interactions defined conventionally through b.c.:
we have ∂x2

ψ(x1, 0+) − ∂x2
ψ(x1, 0−) = −αψ(x1, 0) for the

line; around y(i) the wave functions have to behave as
ψ(x) = − 1

2π log |x− y(i)|L0(ψ, y
(i)) + L1(ψ, y

(i)) + O(|x− y(i)|),
where the generalized b.v. Lj(ψ, y(i)), j = 0, 1, satisfy

L1(ψ, y
(i)) + 2πβiL0(ψ, y

(i)) = 0 , βi ∈ R
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Resolvent by Krein-type formula
We introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2) → Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,
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Resolvent by Krein-type formula
We introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2) → Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,

canonical embeddings of free resolvent R(z) to Hi by
Ri,L(z) := τiR(z) : L2 → Hi, RL,i(z) := [Ri,L(z)]∗, and
Rj,i(z) := τjRL,i(z) : Hi → Hj, and
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Resolvent by Krein-type formula
We introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2) → Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,

canonical embeddings of free resolvent R(z) to Hi by
Ri,L(z) := τiR(z) : L2 → Hi, RL,i(z) := [Ri,L(z)]∗, and
Rj,i(z) := τjRL,i(z) : Hi → Hj, and

operator-valued matrix Γ(z) : H0 ⊕H1 → H0 ⊕H1 by

Γij(z)g := −Ri,j(z)g for i 6= j and g ∈ Hj ,

Γ00(z)f :=
[

α−1 − R0,0(z)
]

f if f ∈ H0 ,

Γ11(z)ϕ :=
(

sβ(z)δkl −Gz(y
(k), y(l))(1−δkl)

)

ϕ ,

with sβ(z) := β + s(z) := β + 1
2π (ln

√
z

2i − ψ(1))

21st Max Born Symposium Mathematical Problems in Nonrelativistic Quantum Dynamics; Wrocław, June 28, 2006 – p. 22/43



Resolvent by Krein-type formula

To invert it we define the “reduced determinant”

D(z) := Γ11(z) − Γ10(z)Γ00(z)
−1Γ01(z) : H1 → H1 ,
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Resolvent by Krein-type formula

To invert it we define the “reduced determinant”

D(z) := Γ11(z) − Γ10(z)Γ00(z)
−1Γ01(z) : H1 → H1 ,

then an easy algebra yields expressions for “blocks” of
[Γ(z)]−1 in the form

[Γ(z)]−1
11 = D(z)−1 ,

[Γ(z)]−1
00 = Γ00(z)

−1 + Γ00(z)
−1Γ01(z)D(z)−1Γ10(z)Γ00(z)

−1 ,

[Γ(z)]−1
01 = −Γ00(z)

−1Γ01(z)D(z)−1 ,

[Γ(z)]−1
10 = −D(z)−1Γ10(z)Γ00(z)

−1 ;

thus to determine singularities of [Γ(z)]−1 one has to find
the null space of D(z)

21st Max Born Symposium Mathematical Problems in Nonrelativistic Quantum Dynamics; Wrocław, June 28, 2006 – p. 23/43



Resolvent by Krein-type formula
We can write Rα,β(z) ≡ (Hα,β − z)−1 also as a perturbation
of the “line only” Hamiltonian H̃α with the resolvent

Rα(z) = R(z) +RL0(z)Γ
−1
00 R0L(z)

We define Rα;L1(z) : H1 → L2 by Rα;1L(z)ψ := Rα(z)ψ ↾Π for
ψ ∈ L2 and Rα;L1(z) := R

∗
α;1L(z). Then we have the result:
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Resolvent by Krein-type formula
We can write Rα,β(z) ≡ (Hα,β − z)−1 also as a perturbation
of the “line only” Hamiltonian H̃α with the resolvent

Rα(z) = R(z) +RL0(z)Γ
−1
00 R0L(z)

We define Rα;L1(z) : H1 → L2 by Rα;1L(z)ψ := Rα(z)ψ ↾Π for
ψ ∈ L2 and Rα;L1(z) := R

∗
α;1L(z). Then we have the result:

Theorem [E.-Kondej ’04]: For z ∈ ρ(Hα,β) with Im z > 0 the
resolvent Rα,β(z) := (Hα,β − z)−1 equals

Rα,β(z) = R(z) +
1
∑

i,j=0

RL,i(z)[Γ(z)]−1
ij Rj,L(z)

= Rα(z) + Rα;L1(z)D(z)−1
Rα;1L(z)
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Resonance poles
The decay is due to the tunneling between points and line.
It is absent if the interaction is “switched off” (i.e., line “put
to an infinite distance”); the corresponding free Hamiltonian
is H̃β := H0,β. It has m eigenvalues, 1 ≤ m ≤ n; we assume
that they satisfy the condition

−1

4
α2 < ǫ1 < · · · < ǫm < 0 and m > 1 ,

i.e., the embedded spectrum is simple and non-trivial.
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Resonance poles
The decay is due to the tunneling between points and line.
It is absent if the interaction is “switched off” (i.e., line “put
to an infinite distance”); the corresponding free Hamiltonian
is H̃β := H0,β. It has m eigenvalues, 1 ≤ m ≤ n; we assume
that they satisfy the condition

−1

4
α2 < ǫ1 < · · · < ǫm < 0 and m > 1 ,

i.e., the embedded spectrum is simple and non-trivial.

Let us specify the interactions sites by their Cartesian
coordinates, y(i) = (ci, ai). We also introduce the notations
a = (a1, ..., an) and dij = |y(i) − y(j)| for the distances in Π

To find resonances in our model we rely on a BS-type
argument; our aim is to find zeros of the function D(·)
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Resonance poles, continued

We seek analytic continuation of D(·) across (−1
4α

2, 0) ⊂ R

denoting it as D(·)(−1). The first component of Γ11(·)(l) is
obtained easily. To find the second one let us introduce

µij(z, t) :=
iα

25π

(α− 2i(z − t)1/2) ei(z−t)1/2(|ai|+|aj |)

t1/2(z − t)1/2
eit1/2(ci−cj) .

Then the matrix elements of (Γ10Γ
−1
00 Γ01)

(·)(·) are

θ
(−1)
ij (λ) = −

∫ ∞

0

µ0
ij(λ, t)

t− λ− α2/4
dt− 2gα,ij(λ)

where

gα,ij(z) :=
iα

(z + α2/4)1/2
e−α(|ai|+|aj |)/2 ei(z+α2/4)1/2(ci−cj) ;

the values at the segment and in C+ are expressed similarly
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Resonance poles, continued

Then we can express detD(−1)(z). To study weak-coupling
asymptotics it is useful to introduce a reparametrization

b̃(a) ≡ (b1(a), . . . , bn(a)), bi(a) = e−|ai|
√−ǫi

denoting the quantity of interest as η(b̃, z) = detD(−1)(a, z)
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Resonance poles, continued

Then we can express detD(−1)(z). To study weak-coupling
asymptotics it is useful to introduce a reparametrization

b̃(a) ≡ (b1(a), . . . , bn(a)), bi(a) = e−|ai|
√−ǫi

denoting the quantity of interest as η(b̃, z) = detD(−1)(a, z)

If b̃ = 0 the zeros are, of course, ev’s of the point-interaction
Hamiltonian H̃β. Using implicit-function theorem we find the
following weak-coupling asymptotic expansion,

zi(b) = ǫi + O(b) + iO(b) where b := max
1≤i≤m

bi

21st Max Born Symposium Mathematical Problems in Nonrelativistic Quantum Dynamics; Wrocław, June 28, 2006 – p. 27/43



Resonance poles, continued

Then we can express detD(−1)(z). To study weak-coupling
asymptotics it is useful to introduce a reparametrization

b̃(a) ≡ (b1(a), . . . , bn(a)), bi(a) = e−|ai|
√−ǫi

denoting the quantity of interest as η(b̃, z) = detD(−1)(a, z)

If b̃ = 0 the zeros are, of course, ev’s of the point-interaction
Hamiltonian H̃β. Using implicit-function theorem we find the
following weak-coupling asymptotic expansion,

zi(b) = ǫi + O(b) + iO(b) where b := max
1≤i≤m

bi

Remark: This model can exhibit also other long-living
resonances due to weakly violated mirror symmetry ,
however, we are not going to consider them here
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Dot states
By assumption there is a nontrivial discrete spectrum of H̃β

embedded in (−1
4α

2, 0). Let us denote the corresponding
normalized eigenfunctions ψj , j = 1, . . . ,m, given by

ψj(x) =

m
∑

i=1

d
(j)
i φ

(j)
i (x) , φ

(j)
i (x) :=

√

−ǫj
π
K0(

√

−ǫj |x− y(i)|),

where vectors d(j) ∈ C
m solve the equation Γ11(ǫj)d

(j) = 0

and the normalization condition, ‖φ(j)
i ‖ = 1, reads

|d(j)|2 + 2Re

m
∑

i=2

i−1
∑

k=1

d
(j)
i d

(j)
k (φ

(j)
i , φ

(j)
k ) = 1 .

In particular, if the distances in Π are large (the natural
length scale is given by (−ǫj)−1/2), the cross terms are
small and each |d(j)| is close to one
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Decay of the dot states
Now we specify the unstable system identifying its Hilbert
space PH with the span of ψ1, . . . , ψm. If it is prepared at
t = 0 in a state ψ ∈ PH, then the undisturbed decay law is

Pψ(t) = ‖P e−iHα,βtψ‖2
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Decay of the dot states
Now we specify the unstable system identifying its Hilbert
space PH with the span of ψ1, . . . , ψm. If it is prepared at
t = 0 in a state ψ ∈ PH, then the undisturbed decay law is

Pψ(t) = ‖P e−iHα,βtψ‖2

Our model is similar to (multidimensional) Friedrichs model ,
therefore modifying the standard argument [Demuth’76], cf.
[E.-Ichinose-Kondej’05], one can check that in the
weak-coupling situation the leading term in Pψ(t) will come
from the appropriate semigroup evolution on PH, in
particular, for the basis states ψj we will have a dominantly
exponential decay, Pψj

(t) ≈ e−Γjt with Γj = 2 Im zj(b)
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Decay of the dot states
Now we specify the unstable system identifying its Hilbert
space PH with the span of ψ1, . . . , ψm. If it is prepared at
t = 0 in a state ψ ∈ PH, then the undisturbed decay law is

Pψ(t) = ‖P e−iHα,βtψ‖2

Our model is similar to (multidimensional) Friedrichs model ,
therefore modifying the standard argument [Demuth’76], cf.
[E.-Ichinose-Kondej’05], one can check that in the
weak-coupling situation the leading term in Pψ(t) will come
from the appropriate semigroup evolution on PH, in
particular, for the basis states ψj we will have a dominantly
exponential decay, Pψj

(t) ≈ e−Γjt with Γj = 2 Im zj(b)

Remark: The long-time behaviour of Pψj
(t) is different from

Friedrichs model, but this is not important here
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Comparison: stable and Zeno dynamics
Suppose now that we perform the Zeno measurement at
our system. We have dimP <∞ and PH ⊂ Q(Hα,β), so
HP = PHα,βP with the following matrix representation

(ψj , HPψk) = δjkǫj − α

∫

Σ
ψ̄j(x1, 0)ψk(x1, 0) dx1 ,

where the first term corresponds, of course, to H̃β
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Comparison: stable and Zeno dynamics
Suppose now that we perform the Zeno measurement at
our system. We have dimP <∞ and PH ⊂ Q(Hα,β), so
HP = PHα,βP with the following matrix representation

(ψj , HPψk) = δjkǫj − α

∫

Σ
ψ̄j(x1, 0)ψk(x1, 0) dx1 ,

where the first term corresponds, of course, to H̃β

Theorem [E.-Ichinose-Kondej’05]: The two dynamics do
not differ significantly for times satisfying

t≪ C e2
√
−ǫ|ã| ,

where C is a positive number and |ã| = mini |ai|, ǫ = maxi ǫi
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Comparison: stable and Zeno dynamics
Suppose now that we perform the Zeno measurement at
our system. We have dimP <∞ and PH ⊂ Q(Hα,β), so
HP = PHα,βP with the following matrix representation

(ψj , HPψk) = δjkǫj − α

∫

Σ
ψ̄j(x1, 0)ψk(x1, 0) dx1 ,

where the first term corresponds, of course, to H̃β

Theorem [E.-Ichinose-Kondej’05]: The two dynamics do
not differ significantly for times satisfying

t≪ C e2
√
−ǫ|ã| ,

where C is a positive number and |ã| = mini |ai|, ǫ = maxi ǫi

Proof: The norm of Ut := (e−iH̃βt − e−iHP t)P is small as long
as t‖(H̃β −HP )P‖ ≪ 1; to see when this is true one has to
estimate contribution of the cross-terms. �
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There are more possibilities
It can happen that the two dynamics are identical. Choose,
e.g., H0 := −∆D

Ω ⊕−∆D
Ωc, where Ωc := R

d \ Ω̄, and suppose
that “switching in” the decay means to remove the Dirichlet
barrier between the two complementary regions.
In this case the Zeno-type permanent observation obviously
restores the stable dynamics
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There are more possibilities
It can happen that the two dynamics are identical. Choose,
e.g., H0 := −∆D

Ω ⊕−∆D
Ωc, where Ωc := R

d \ Ω̄, and suppose
that “switching in” the decay means to remove the Dirichlet
barrier between the two complementary regions.
In this case the Zeno-type permanent observation obviously
restores the stable dynamics

On the other hand, the two dynamics can be different from
the outset . Replace H0 above by the Neumann direct sum
−∆N

Ω ⊕−∆N
Ωc, so the Zeno and stable time-evolution

generators in PH are −∆N
Ω and −∆D

Ω , respectively.

If Ω is precompact and ψ is Neumann ground state,
ψ(x) = |Ω|−1/2, it is unchanged under the stable dynamics
while under Zeno one it can evolve into a function which
can be fractal for almost all times [Berry’96, Thaller’00]
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Back to “unperturbed” decay
The last example inspires to ask how the “unperturbed”
decay law can look like, say, when ψ is not in the domain
of the “stable” Hamiltonian.
Guess: an irregular behaviour expected when the decay is
due to a (weak) tunneling through a potential barrier
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Back to “unperturbed” decay
The last example inspires to ask how the “unperturbed”
decay law can look like, say, when ψ is not in the domain
of the “stable” Hamiltonian.
Guess: an irregular behaviour expected when the decay is
due to a (weak) tunneling through a potential barrier

For definiteness we consider the so-called Winter model ,

Hα = −∆ + αδ(|x| −R) , α > 0 , R > 0 ;

we restrict our attention to the s-wave reducing the task to
one-dimensional problem having the Hamiltonian on L2(R+)

hα = − d2

dr2
+ αδ(r −R)

with D(hα) = {φ ∈W 2,2(R+) : φ(0) = 0, φ′(R+) − φ′(R−) = αφ(R)}
21st Max Born Symposium Mathematical Problems in Nonrelativistic Quantum Dynamics; Wrocław, June 28, 2006 – p. 32/43



Decay in Winter model
Using ψ(~r, t) = e−iHαtψ(~r, 0) and the reduced wave function,
ψ(~r, t) = 1√

4π
r−1φ(r, t), we can express the decay law as

P (t) =

R
∫

0

|φ(r, t)|2 dr

with the initial state φ(·, 0) support contained in BR(0)
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Decay in Winter model
Using ψ(~r, t) = e−iHαtψ(~r, 0) and the reduced wave function,
ψ(~r, t) = 1√

4π
r−1φ(r, t), we can express the decay law as

P (t) =

R
∫

0

|φ(r, t)|2 dr

with the initial state φ(·, 0) support contained in BR(0)

The model is solvable and the time evolution can be
expressed through the integral kernel of the resolvent,

e−ihαt =
1

π
lim
ε↓0

∞
∫

0

e−iλt Im
1

hα − λ− iε
dλ ;

recall that σ(hα) = [0,∞) for α > 0
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Green’s function
The resolvent kernel is given by Krein’s formula,

1

hα − k2
=

1

h0 − k2
+ λ(k)(Φk, ·)Φk(r) ,

where Φk(r) = 1
k sin(kr) eikR holds for r < R, and by a direct

calculation one finds λ(k) = −α
(

1 + iα
2k (1 − e2ikR)

)−1
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Green’s function
The resolvent kernel is given by Krein’s formula,

1

hα − k2
=

1

h0 − k2
+ λ(k)(Φk, ·)Φk(r) ,

where Φk(r) = 1
k sin(kr) eikR holds for r < R, and by a direct

calculation one finds λ(k) = −α
(

1 + iα
2k (1 − e2ikR)

)−1

This gives u(t, r, r′) = 1
π limε↓0

∞
∫

0

e−ik
2t p(k, r, r′) 2k dk for the

integral kernel of the evolution operator e−ihαt, where

p(k, r, r′) =
2k sin(kr) sin(kr′)

π(2k2 + 2α2 sin2 kR + 2kα sin 2kR)
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Resonance expansion
Singularities of p(·, r, r′) are resonances of the problem
and their mirror images, S = {kn, −kn, k̄n, −k̄n : n ∈ N},
around which the function behaves as

p(k, r, r′) =
i

2π

vn(r)vn(r
′)

k2 − k2
n

+ χ(k, r, r′) ,

where vn solves hαvn(r) = k2
nvn(r) and χ is locally analytic
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Resonance expansion
Singularities of p(·, r, r′) are resonances of the problem
and their mirror images, S = {kn, −kn, k̄n, −k̄n : n ∈ N},
around which the function behaves as

p(k, r, r′) =
i

2π

vn(r)vn(r
′)

k2 − k2
n

+ χ(k, r, r′) ,

where vn solves hαvn(r) = k2
nvn(r) and χ is locally analytic

For r, r′ < R the function p(·, r, r′) decreases in every
direction of the k-plane; thus it can be expressed as sum
over the pole singularities

p(k, r, r′) =
∑

k̃∈S

1

k − k̃
Resk̃ p(k, r, r

′)

and by residue theorem we have
∑

k̃∈S Resk̃ p(k, r, r
′) = 0
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Resonance expansion, continued

Using symmetry of S and k−n := −k̄n we get

p(k, r, r′) =
∑

n∈Z

i

2π

1

k2 − k2
n

k

kn
vn(r)vn(r

′) ,

∑

n∈Z

1

kn
vn(r)vn(r

′) = 0 ,
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Resonance expansion, continued

Using symmetry of S and k−n := −k̄n we get

p(k, r, r′) =
∑

n∈Z

i

2π

1

k2 − k2
n

k

kn
vn(r)vn(r

′) ,

∑

n∈Z

1

kn
vn(r)vn(r

′) = 0 ,

and from here the sought kernel is expressed as

u(t, r, r′) =
∑

n∈Z

M(kn, t)vn(r)vn(r
′)

with M(kn, t) = 1
2 eu

2

n erfc (un) and un := −e−iπ/4kn
√
t

21st Max Born Symposium Mathematical Problems in Nonrelativistic Quantum Dynamics; Wrocław, June 28, 2006 – p. 36/43



Resonance expansion, continued
This yields decay law in the form

P (t) =
∑

n, l

CnC̄lInlM(kn, t)M(kl, t)

with Cn :=
R
∫

0

φ(r, 0)vn(r) dr and Inl :=
R
∫

0

vn(r)v̄l(r) dr
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Resonance expansion, continued
This yields decay law in the form

P (t) =
∑

n, l

CnC̄lInlM(kn, t)M(kl, t)

with Cn :=
R
∫

0

φ(r, 0)vn(r) dr and Inl :=
R
∫

0

vn(r)v̄l(r) dr

To make use of it we need resonance wave functions which
are vn(r) =

√
2Qn sin(knr)with the coefficient Qn equal to

( −2ik2
n

2kn + α2R sin 2knR + α sin 2knR + 2knαR cos 2knR

)1/2

Now we can pass to numerical examples choosing α = 500
using cut-off with |n| ≤ 1000 for the series evaluation
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Example: constant in the ball

We choose first φ(r, 0) = R−3/2
√

3r for the initial state
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The decay law plot; in the inset we show logarithmic
derivative averaged over lengths of about T/200.
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Example: integrable singularity at origin

Choose instead φ(r, 0) = R−1/2 for the initial state which
means to start from Neumann ground state on (0, R)
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Plotting the same quantities we see a similar behavior
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The wave function plot
For the second example plot the corresponding |φ(r, t)|2

 0
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t=T/8
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t=T/27

for t = T/8, T/16, and T/27 (the revival time for α = ∞
is T/8). The decay modifies the step-function form
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More on decay law derivatives

A more detailed analysis of Ṗ (t) = −2Im (φ′(R, t)φ̄(R, t))
(equal to flux through the barrier) shows that

If the coefficients in φ(r, t) ≈∑nCn exp(−ik2
nt)vn(r)

decay as n−p with p > 1 we have Ṗ (t) → 0, uniformly
in time, as α → ∞
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More on decay law derivatives

A more detailed analysis of Ṗ (t) = −2Im (φ′(R, t)φ̄(R, t))
(equal to flux through the barrier) shows that

If the coefficients in φ(r, t) ≈∑nCn exp(−ik2
nt)vn(r)

decay as n−p with p > 1 we have Ṗ (t) → 0, uniformly
in time, as α → ∞

Slow decay: take Cn = (−1)n+1
√

6
Rkn

corresponding to

our first example, and limit of Ṗ (tα) as α→ ∞ at the
moving value tα := t(1 + 2/αR). In this case for
irrational multiples of T we find that Ṗ (t) → 0
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More on decay law derivatives

A more detailed analysis of Ṗ (t) = −2Im (φ′(R, t)φ̄(R, t))
(equal to flux through the barrier) shows that

If the coefficients in φ(r, t) ≈∑nCn exp(−ik2
nt)vn(r)

decay as n−p with p > 1 we have Ṗ (t) → 0, uniformly
in time, as α → ∞

Slow decay: take Cn = (−1)n+1
√

6
Rkn

corresponding to

our first example, and limit of Ṗ (tα) as α→ ∞ at the
moving value tα := t(1 + 2/αR). In this case for
irrational multiples of T we find that Ṗ (t) → 0

The same is true for t = p
q T with pq odd . In contrast,

for pq even we get nonzero values, for instance, at the
period we have limα→∞ Ṗ (Tα) = − 4

3
√

3
≈ −0.77
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Some open questions

Some questions concerning Zeno dynamics remain
open; among them, the natural conjecture that the
Zeno product formula holds in strong operator topology
for any semibounded H
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Some open questions

Some questions concerning Zeno dynamics remain
open; among them, the natural conjecture that the
Zeno product formula holds in strong operator topology
for any semibounded H

Also, can the formula be valid for physically interesting
Hamiltonians unbounded from below such as Dirac
operators?
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Some open questions

Some questions concerning Zeno dynamics remain
open; among them, the natural conjecture that the
Zeno product formula holds in strong operator topology
for any semibounded H

Also, can the formula be valid for physically interesting
Hamiltonians unbounded from below such as Dirac
operators?

What rigorous claims can be made about “irregular”
decays like the one in the Winter model example?
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