Contribution Title:
Authors:
Presenting author:
Affilation:

E-mail:
Invited speaker:
YRS seminar:

ON THE NUMBER OF FACTORS IN CODINGS OF THREE INTERVAL EXCHANGE
P. Ambrož, Z. Masáková, E. Pelantová
Ambrož P.
Doppler Institute \& Department of Mathematics, FNSPE, Czech Technical University in Prague
petr.ambroz@fjfi.cvut.cz YES

Since the discovery of solid state materials with discrete diffraction diagram revealing crystallographically forbidden 5 -fold symmetry, the attention of numerous mathematicians and physicists has been focused on the study of mathematical models for these materials - 'quasicrystals'. The most frequently used model is the so-called cut-and-project set, which arises as a projection of chosen points of a higher dimensional lattice on a lower dimensional 'physical space'.

We restrict ourselves to the most simple case of 2-dimensional lattice and 1-dimensional physical space and we inspect the total number of possible local configurations of modeled quasicrystals. The structure of the physical space of such cut-and-project sets can be equivalently described by infinite ternary words coding transformations of exchange of three intervals with permutation $(3,2,1)$.

The aim is to count the cardinality of the set $3 \operatorname{iet}(N)$ of factors of length N which belong to the language of an infinite word coding such a transformation. We use the strong relation of 3 iet words and 2 iet words coding exchange of two intervals, i.e., Sturmian words. The known asymptotic formula \#2iet $(N) / N^{3} \sim 1 / \pi^{2}$ for the number of Sturmian factors allows us to find bounds $1 /\left(3 \pi^{2}\right)+o(1) \leq \# 3 \operatorname{iet}(N) / N^{4} \leq 2 / \pi^{2}+o(1)$.

