Contribution Title:

Authors: Presenting author: Affilation: E-mail: Invited speaker: YRS seminar: STEADY COMPRESSIBLE FOURIER SYSTEM P. B. Mucha, M. Pokorny Pokorný M. Charles University, Prague pokorny@karlin.mff.cuni.cz NAVIER-STOKES-

We study steady flow of a compressible heat conducting fluid in a bounded domain $\Omega \subset \mathbb{R}^3$. We consider either the slip boundary condition or the homogeneous Dirichlet boundary condition for the velocity and so-called Newton's boundary condition for the temperature. For the pressure law $p(\rho, \theta) \sim \rho^{\gamma} + \theta \rho$ with $\gamma > 7/3$ we show that under reasonable technical assumptions on the data of the problem, there is a weak solution to the above mentioned system. Moreover, for the slip boundary condition and $\gamma > 3$ the solution is such that the density $\rho \in L^{\infty}(\Omega)$, the velocity $\mathbf{v} \in W^{1,q}(\Omega)$ and the temperature $\theta \in W^{1,q}(\Omega)$ for any $1 \leq q < \infty$.

NO