Contribution Title: PRO-C*-DYNAMICAL SYSTEMS WITH CROSSED

PRODUCTS C*-ALGEBRAS

Authors: M. Joita Presenting author: Joita M.

Affilation: University of Bucharest E-mail: mjoita@fmi.unibuc.ro

Invited speaker:

YRS seminar: NO

A pro- C^* -algebra is a complete Hausdorff complex topological *-algebra A whose topology is determined by its continuous C^* -seminorms in the sense that a net $\{a_i\}_{i\in I}$ converges to 0 in A if and only if the net $\{p(a_i)\}_{i\in I}$ converges to 0 for all continuous C^* -seminorms p on A. For a pro- C^* -algebra A, the set S(A) of all continuous C^* -seminorms on A is directed. A pro- C^* -dynamical system is a triple (G, α, A) , where G is a locally compact group, A is a pro- C^* -algebra and α is a continuous action of G on A such that there is a cofinal subset of S(A) consisting of the α -invariant continuous C^* -seminorms (that is, $p(\alpha_g(a)) = p(a)$ for any $a \in A$ and for all $g \in G$). The set $C_c(G, A)$ of all continuous functions from G to A with compact support is a *-algebra with convolution of two functions as product and the involution defined by $f^\#(t) = \Delta(t)^{-1}\alpha_t(f(t^{-1})^*)$, where Δ is the modular function on G. For any $p \in S(A)$, the map N_p : $C_c(G, A) \to [0, \infty)$ defined by

$$N_p(f) = \int_C p(f(s))ds$$

where ds denotes a left Haar measure on G, is a submultiplicative *-seminorm on $C_c(G,A)$. The covariance algebra $L^1(G,\alpha,A)$ associated to (G,α,A) is an m^* -convex algebra with bounded approximate unit and it is obtained by the Hausdorff completion of $C_c(G,A)$ with respect to the topology defined by the family of submultiplicative *-seminorms $\{N_p\}_{p\in S(A)}$. The full crossed product associated to (G,α,A) is the enveloping pro- C^* -algebra of the covariance algebra. In [S. J. Bhatt, D. J. Karia, Topological algebras with C^* -enveloping algebras, Proc. Indian Acad. Sci (Math. Soc.) 102 (1993), 201-215] are proved sufficient and necessary conditions under which an m^* -convex algebra with bounded approximate admits a C^* -algebra as enveloping pro- C^* -algebra. In this talk we discuss about pro- C^* -dynamical systems with crossed product C^* -algebras.