Contribution Title:	H–PRINCIPLE AND FLUID DYNAMICS
Authors:	C. De Lellis, L. Székélyhidi
Presenting author:	De Lellis C.
Affilation:	University of Zürich
E-mail:	delellis@math.uzh.ch
Invited speaker:	Topical session
YRS seminar:	NO

The Euler equations are perhaps the oldest system of partial differential equations derived in fluid dynamics. The h principle is a concept introduced in the seventies by Gromov to unify several counterintuitive phenomena in differential geometry. Two famous instances of the h-principle are the Nash-Kuiper C^1 isometric embeddings and the Smale's Eversion Theorem.

In the nineties Scheffer and Shnirelman have produced complicated examples of solutions to the Euler equations which display a very surprising and patological behavior. In a recent joint work with Laszló Székélyhidi we have shown that these examples have a rather simple interpretation as a kind of h-principle. Our approach allows to go beyond the examples of Scheffer and Shnirelman and shows interesting connections to some aspects of the theory of fully developed turbulence.