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Abstract

In this paper we extend our recent results [P. Jizba, T. Arimitsu Physica A 340 (2004) 110] on q-nonextensive statistics

with non-Tsallis entropies. In particular, we combine an axiomatics of Rényi with the q-deformed version of Khinchin

axioms to obtain the entropy which accounts both for systems with embedded self-similarity and q-nonextensivity. We find

that this entropy can be uniquely solved in terms of a one-parameter family of information measures. The corresponding

entropy maximizer is expressible via a special function known under the name of the Lambert W-function. We analyze the

corresponding ‘‘high’’ and ‘‘low-temperature’’ asymptotics and make some remarks on the possible applications.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The idea that Gibbsian statistical thermodynamics and Shannon’s communication theory share the same
line of reasoning was originally introduced by Edwin Jaynes in his influential 1957 papers [1]. There he
proposed the Maximum Entropy Principle (MaxEnt) as a general inference procedure with a direct relevance
to statistical physics. A standard frame of statistical thermodynamics appeared as soon as the notion of
entropy was introduced. In particular, Jaynes’s MaxEnt utilized Shannon’s entropy, or better, Shannon’s
information measure (¼ S), as an inference functional. The central rôle of Shannon’s entropy as a tool for
inductive inference (i.e., inference where prior information are given in terms of expectation values) was
further demonstrated in works of Faddeyev [2], Shore and Johnson [3], Wallis [4] and others. Following
Jaynes, one should view the MaxEnt distribution (or maximizer) as a distribution that is maximally
noncommittal with regard to missing information and that agrees with all what is known about prior
information, but expresses maximum uncertainty with respect to all other matters [1].

With the advancement in information theory it has become clear that Shannon’s entropy is not the only
feasible information measure. Indeed, many modern communication processes, including signals, images and
coding systems, often operate in complex environments dominated by conditions that do not match the basic
e front matter r 2006 Elsevier B.V. All rights reserved.
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tenets of Shannon’s communication theory. For instance, buffer memory (or storage capacity) of a
transmitting channel is often finite, coding can have a non-trivial cost function, codes might have variable-
length codes, sources and channels may exhibit memory or losses, etc. Post-Shannon developments of
information theory offer various generalized measures of information to deal with such situations. Measures
of Havrda-Charvát [5], Sharma-Mittal [6], Rényi’s [7] and Kapur’s [8] can serve as examples.

If the parallel between information theory and statistical physics has a deeper reason, as advocated by
Jaynes, then one should expect similar progress also in statistical physics. Indeed, in the past 20 years,
physicists have begun to challenge the assumptions of Gibbs’s statistics such as ergodicity or metric
transitivity. This happened when evidence accumulated showing that there are many situations of practical
interest requiring statistics which do not conform with Gibbs’s exponential maximizers. Examples include
percolation, cosmic rays, turbulence, granular matter, clustered volatility, etc.

When trying to generalize Gibbs’s entropy, the information-theoretic parallel with statistical thermo-
dynamics provides a useful conceptual guide. The natural strategy that fits this framework is to revisit the
axiomatic rules governing Shannon’s entropy and potential extensions translate into a language of statistical
physical. The usual axiomatics of Khinchin [9] is prone to several cogent generalizations. Among those, the
additivity of independent mean information is a natural axiom to attack. In this way, two fundamentally
distinct generalization schemes have been pursued in the literature; one redefining the statistical mean and
another generalizing the additivity rule. While the first leads to Rényi’s entropies [7,10] that are nature tool in
systems with embedded self-similarity [11], the second scheme yields various deformed entropies [12] that play
important rôle in long-range/time correlated systems.

It is to be expected that a suitable merger of the above generalizations could provide a new conceptual
frame suitable for a statistical description of systems possessing both self-similarity and long-range
correlations. Such systems are quite pertinent with examples spanning from the early cosmological phase
transitions to currently much studied quantum phase transitions (frustrated spin systems, Fermi liquids, etc.).
Our aim was to study one particular merger, namely merger of Rényi and Tsallis–Havrda–Charvát (THC)
entropies.

The structure of this paper is the following: in Section 2 axiomatics of Rényi and THC entropies are
reviewed. In Section 3 we formulate a new axiomatics which aims at unifying the Rényi and THC entropies.
Such an axiomatics allows for only one one-parameter family of information measures. Basic properties of this
new class of entropies are discussed in Section 4. The ensuing maximizer is calculated in Section 5. There we
show that MaxEnt distribution is expressible through the Lambert W-function. We analyze the corresponding
‘‘high’’ and ‘‘low-temperature’’ asymptotics and discuss the corresponding non-trivial structure of the
parameter space. A final discussion is given in Section 6.
2. Rényi’s and THC entropies—axiomatic viewpoint

As already said, RE represents a step towards more realistic situations encountered in information theory.
Since RE’s have a firm operational characterization given in terms of block coding and hypotheses testing (see,
e.g., Ref. [13]), it can be directly measured. This is typically happening, e.g., in communication systems with
the buffer overflow problem or in variable-length coding with an exponential cost constraint. RE’s are also
indispensable in various branches of physics that require self-similar sample spaces. Examples being chaotic
dynamical systems or multifractals. RE of order q that is assigned to a discrete distribution P ¼ fp1; . . . ; png is
defined as

IqðPÞ ¼
1

ð1� qÞ
ln

Xn

k¼1

ðpkÞ
q

 !
; q40. (1)

For simplicity’s sake we use the base e of natural logarithms. RE thus defined is then measured in natural
units—nats, rather than bits.1
1To convert, note that 1 bit ¼ 0:693nats.
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In his original work Rényi [10] introduced a one-parameter family of information measures (¼RE) which he
based on axiomatic considerations. His axioms have been further sharpened by Darótzy [14] and others [15]. It
has been recently shown in Ref. [11] that RE can be conveniently characterized by the following set of axioms:
(1)
 For a given integer n and given P ¼ fp1; p2; . . . ; png (pkX0;
Pn

k pk ¼ 1), IðPÞ is a continuous with respect
to all its arguments.
(2)
 For a given integer n, Iðp1; p2; . . . ; pnÞ takes its largest value for pk ¼ 1=n (k ¼ 1; 2; . . . ; n) with the
normalization I 1

2
; 1
2

� �
¼ ln 2. P
(3)
 For a given q 2 R; IðA \ BÞ ¼ IðAÞ þIðBjAÞ with IðBjAÞ ¼ g�1ð k RkðqÞgðIðBjA ¼ AkÞÞÞ, and RkðqÞ ¼

p
q
k=
P

k p
q
k with pk ¼ PðAkÞ.
(4)
 g is invertible and positive in ½0;1Þ.

(5)
 Iðp1; p2; . . . ; pn; 0Þ ¼ Iðp1; p2; . . . ; pnÞ, i.e., adding an event of probability zero (impossible event) we do not

gain any new information.
These axioms markedly differ from those utilized in Refs. [10,14,15]. Important distinction is the emergence of
the zooming (or escort) distribution RðqÞ in axiom 3. Note also that RE of two independent experiments is
additive. In fact, it was proved in Ref. [10] that RE is the most general information measure compatible with
additivity of independent information and the Kolmogorov system of probability.

Among variety of deformed entropies the currently popular one is the q-deformed Shannon’s entropy,
better known as THC entropy. As the classical additivity of independent information is not valid there, one
may infer that the typical playground for THC entropy should be in systems with non-vanishing long-range/
time correlations: e.g., in statistical systems with quantum non-locality or in various option-price models. In
the case of discrete distributions P ¼ fp1; . . . ; png THC entropy takes the form:

SqðPÞ ¼
1

ð1� qÞ

Xn

k¼1

ðpkÞ
q
� 1

" #
; q40. (2)

Axiomatic treatment was recently proposed in Ref. [16] and it consists of four axioms
(1)
 For a given integer n and given P ¼ fp1; p2; . . . ; png (pkX0;
Pn

k pk ¼ 1), SðPÞ is a continuous with respect
to all its arguments.
(2)
 For a given integer n, SðPÞ takes its largest value for pk ¼ 1=n (k ¼ 1; 2; . . . ; n). P

(3)
 For a given q 2 R; SðA \ BÞ ¼SðAÞ þSðBjAÞ þ ð1� qÞSðAÞSðBjAÞ with SðBjAÞ ¼ k RkðqÞ

SðBjA ¼ AkÞ.

(4)
 Sðp1; p2; . . . ; pn; 0Þ ¼ Sðp1; p2; . . . ; pnÞ.
As said before, one keeps here the linear mean but generalizes the additivity law. In fact, the additivity law in
axiom 3 is nothing but the Jackson sum of the q calculus.
3. Axiomatic merger

As a natural axiomatic merger of previous two axiomatics one can choose
(1)
 For a given integer n and given P ¼ fp1; p2; . . . ; png (pkX0;
Pn

k pk ¼ 1), DðPÞ is a continuous with respect
to all its arguments.
(2)
 For a given integer n, DðPÞ takes its largest value for pk ¼ 1=n (k ¼ 1; 2; . . . ; n). P�

(3)
 For a given q 2 R; DðA \ BÞ ¼ DðAÞ þDðBjAÞ þ ð1� qÞDðAÞDðBjAÞ with DðBjAÞ ¼ f �1 k RkðqÞ

f DðBjA ¼ AkÞð ÞÞ.

(4)
 f is invertible and positive in ½0;1Þ.

(5)
 Dðp1; p2; . . . ; pn; 0Þ ¼ Dðp1; p2; . . . ; pnÞ.
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In Refs. [17,18] it has been shown that the above axioms allow for only one one-parameter class of solutions
given by
DqðAÞ ¼
1

1� q
ðe�ð1�qÞ

P
k
RkðqÞ ln pk � 1Þ ¼

1

1� q

Y
k

ðpkÞ
�ð1�qÞRkðqÞ � 1

 !
. (3)

Here h. . . iq is defined with respect to the distribution RkðqÞ. We can further recast the relation (3) into another,
more convenient form

DqðAÞ ¼
1

1� q
e�ð1�qÞ2 dIq=dq

Xn

k¼1

ðpkÞ
q
� 1

 !
. (4)

Eqs. (3)–(4) represent the sought information measure.

4. Basic properties of Dq

Before studying the implications of the formulas (3)–(4), there is one immediate consequence which
warrants special mention. In particular, from the condition dIq=dqp0 (see, e.g., Ref. [7]) one has

DqðAÞ
XSqðAÞ if qp1;

pSqðAÞ if qX1;

(
(5)

with equality, iff q ¼ 1 or dIq=dq ¼ 0. This happens only when P is uniform or trivial, i.e., f1; 0; . . . ; 0g. By
utilizing the known properties of Iq and Sq we have

0pSðPÞpIqðPÞpSqðPÞpDqðPÞplnq n for 0oqp1,

0pDqðPÞpSqðPÞpIqðPÞpSðPÞp ln n for qX1. ð6Þ

This means that by investigating the information measureDq with the given qo1 we receive more information
than restricting to Iq or Sq only. On the other hand, when q41 then both Iq and Sq are more informative
than Dq. In practice one usually requires more than one q to gain more complete information about a system.
In fact, when entropies Iq or Sq are used, it is necessary to know them for all q in order to obtain a full
information on a given statistical system [11]. For applications in strange attractors the reader may see
Ref. [19], for reconstruction theorems see, e.g., Refs. [7,11].

Let us state here some of the basic characteristics ofDq. Among properties that are common to both Rényi’s
and THC entropies we find
(a)
 DqðP ¼ f1; 0; . . . ; 0gÞ ¼ 0,

(b)
 DqðPÞX0,

(c)
 Dq is decisive, i.e., Dqð0; 1Þ ¼ Dqð1; 0Þ,

(d)
 Dq is expansible, i.e., Dqðp1; . . . ; pnÞ ¼ Dqð0; p1; . . . ; pnÞ,

(e)
 D1 ¼ I1 ¼ S1 ¼ S,

(f)
 Dq involves a single free parameter—q,

(g)
 Dq is symmetric, i.e., Dqðp1; . . . ; pnÞ ¼ Dqðpkð1Þ

; . . . ; pkðnÞ
Þ,
(h)
 Dq is bounded.
Among features inherited from Rényi’s entropy we can find
(i)
 DqðAÞ ¼ f �1ð
P

k RkðqÞf ðDqðAkÞÞÞ,

(j)
 Dq is a strictly decreasing function of q, i.e., dDq=dqp0, for any q40.
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Result (i) follows from the fact that Dq is a monotonically decreasing function of hlnPiq and that hlnPiq is a
monotonically increasing function of q. Finally, properties imprinted from Tsallis entropy include
(k)
 maxP DqðPÞ ¼ DqðP ¼ f1=n; . . . ; 1=ngÞ ¼ lnq n,

(l)
 Dq is q non-extensive, i.e., DðA \ BÞ ¼ DðAÞ þDðBjAÞ þ ð1� qÞDðAÞDðBjAÞ.
The issue of thermodynamic stability will be discussed separately in Section 5.1.

5. MaxEnt distributions for Dq

According to information theory, the MaxEnt principle yields distributions which reflect least bias and
maximum ignorance about information not provided to a recipient (or observer). Important feature of the
usual Gibbsian MaxEnt formalism is that maximizers are all greater than zero and that the maximal entropy is
a concave function of the values of the prescribed constraints [20].

Let us first address the issue of the Dq maximizer. We start by seeking the conditional extremum of Dq

subject to the constraints imposed by the q-averaged value of energy E

hEiq ¼
X

k

RkðqÞEk. (7)

By considering the normalization condition for pi we should extremize the functional

LqðPÞ ¼ DqðPÞ � O
P

k ðpkÞ
qEkP

k ðpkÞ
q � F

X
k

pk, (8)

with O and F being the Lagrange multipliers. Setting the derivatives of LqðPÞ with respect to p1; . . . ; pn to zero,
we obtain

qLqðPÞ

qpi

¼ eðq�1ÞhlnPiqðqðhlnPiq � ln piÞ � 1Þ
ðpiÞ

q�1P
k ðpkÞ

q

� OqðEi � hEiqÞ
ðpiÞ

q�1P
k ðpkÞ

q � F ¼ 0; i ¼ 1; 2; . . . ; n. ð9Þ

Note that when q! 1 then (9) reduces to the usual condition for Shannon’s maximizer. This, in turn, ensures
that in the q! 1 limit the maximizer boils down to Gibbs’s distribution. To proceed we note that Eq. (9) can
be cast to the form

FðpiÞ
1�q
X

k

ðpkÞ
q
¼ eðq�1ÞhlnPiq ðqðhlnPiq � ln piÞ � 1Þ � qOðEi � hEiqÞ. (10)

By multiplying both sides by RiðqÞ, summing over i and taking the normalization condition
P

k pk ¼ 1, we
obtain

F ¼ �eðq�1ÞhlnPiq )
lnð�FÞ
q� 1

¼ hlnPiq ) DqðPÞjmax ¼
1

q� 1
ðFþ 1Þ. (11)

Plugging result (11) back into (10) we have

X
k

ðpkÞ
q
¼ ðpiÞ

q�1 q ln pi þ 1�
q lnð�FÞ

q� 1
�

qO
F
ðEi � hEiqÞ

� �� �
, (12)

which must hold for any index i. On the substitution

Ei ¼ 1�
q lnð�FÞ

q� 1
�

qO
F

DqEi; DqEi ¼ Ei � hEiq, (13)
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we finally obtain the equation

kðpiÞ
1�q
¼ q ln pi þ Ei;

X
k

ðpkÞ
q
� k. (14)

This has the solution

pi ¼
q

kðq� 1Þ
W

kðq� 1Þ

q
eðq�1ÞEi=q

� �� �1=ð1�qÞ

¼ exp

W
kðq� 1Þ

q
eðq�1ÞEi=q

� �
ðq� 1Þ

� Ei=q

8>><
>>:

9>>=
>>;, (15)

with W ðxÞ being the Lambert W-function [21].
Some comments are now in order. First, pi’s as prescribed by (15) are positive for any value of q40. This is

a straightforward consequence of the following two identities [21]:

W ðxÞ ¼
X1
n¼1

ð�1Þn�1nn�2

ðn� 1Þ!
xn; W ðxÞ ¼ xe�W ðxÞ. (16)

Indeed, the first relation ensures that for xo0 also W ðxÞo0 and hence W ðxÞ=x40. Thus for 0oqo1 the
positivity of pi’s is proven. Positivity for qX1 follows directly from the second relation. Second, as q! 1 the
entropy Dq ! S and hence pi’s defined by (15) approaches the Gibbs distribution. To see that this is the case,
let us realize that

Fjq¼1 ¼ �1; Eijq¼1 ¼ 1þHþ OðEi � hEiÞ and kjq¼1 ¼ 1. (17)

Then

pijq¼1 ¼ expð1� ð1þHþ OðEi � hEiÞÞÞ ¼ expðOF � OEiÞ ¼ e�OEi=Z, (18)

which after identification Ojq¼1 ¼ b leads to the desired result. Note also that (15) is invariant under uniform
translation of the energy spectrum, i.e., the corresponding pi is insensitive to the choice of the ground-state
energy. Third, there does not seem to be any simple method for determining F and O in terms of hEiq. In fact,
only asymptotic situations for large and vanishingly small O can be successfully tackled. For this purpose we
briefly remark on the asymptotic behavior of pi in regard to O.

We first assume that O51—‘‘high-temperature expansion’’—then from (16) follows

W
kð1� qÞ

Fq
eðq�1Þ=q exp ð1� qÞ

O
F

DqEi

� �� �
�W ðxÞ½1� ð1� qÞO�DqEi�,

with

O� ¼ �
O

FðW ðxÞ þ 1Þ
; x ¼ �

kðq� 1Þ

Fq
exp

q� 1

q

� �
.

The relation (15) then implies that

pi ¼
½1� ð1� qÞO�DqEi�

1=ð1�qÞP
k ½1� ð1� qÞO�DqEk�

1=ðq�1Þ
¼ Z�1½1� ð1� qÞO�DqEi�

1=ð1�qÞ, (19)

with the partition function

Z ¼
X

k

½1� ð1� qÞO�DqEk�
1=ð1�qÞ ¼

q

kðq� 1Þ
W ðxÞ

� �1=ðq�1Þ
. (20)

The distribution (19) agrees with the so-called third version of thermostatics introduced by Tsallis et al. [22]. It
can by also formally identified with the maximizer for RE [23]. Clearly, O� is not a Lagrange multiplier, but O�

passes to b at q! 1 (in fact, F!�1, O! b and W ðxÞ ! 0 at q! 1). Note also that when O ¼ 0 (i.e., no
energy constraint) then pi ¼ 1=n which reconfirms that Dq reaches its maximum for uniform distribution.
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From the physical standpoint it is the asymptotic behavior at Ojðq� 1Þ=Fjb1—‘‘low-temperature’’
expansion—that is most intriguing. This is because the branching properties of the Lambert W-function at
negative argument make the structure of P non-trivial. To this end one can distinguish four distinct situations

ða1Þ ðq� 1Þ40 and DqEio0; ða2Þ ðq� 1Þ40 and DqEi40,

ðb1Þ ðq� 1Þo0 and DqEio0; ðb2Þ ðq� 1Þo0 and DqEi40.

Cases ða1Þ and ða2Þ are much simpler to start with as the argument of W is positive. W is then a real and single
valued function which belongs to the principal branch of W known as W 0. When DqEio0 then ða1Þ implies
W ðzÞ � z and hence

pi ¼
1

jFj

� �1=ð1�qÞ

e�1=q exp �
O
jFj

DqEi

� �
¼ Z�11 exp �

O
jFj

DqEi

� �
, (21)

with

Z1 ¼
1

jFj

� �1=ðq�1Þ

e1=q.

Note that in this case pi is of a Boltzmann type. On the other hand, the ða2Þ situation implies the asymptotic
expansion [21]:

W ðzÞ � lnðzÞ � lnðlnðzÞÞ ) pi ¼ Z�12 ½1� ð1� qÞO�DqEi�
1=ð1�qÞ, (22)

with

Z2 ¼
q

kðq� 1Þ
ln

kðq� 1Þ

jFjq
eðq�1Þ=q

� �� �1=ðq�1Þ
; O� ¼

O

jFj ln
kðq� 1Þ

jFjq
exp

q� 1

q

� �� � .

Although the distribution (22) formally agrees with Tsallis et al. distribution, it cannot be identified with it as
O� does not tend to b in the q! 1 limit. In fact, the limit q! 1 is prohibited as it violates the ‘‘low-
temperature’’ condition Ojðq� 1Þ=Fjb1. Note particularly that our MaxEnt distribution represents in the
‘‘low-temperature’’ regime a heavy tailed distribution with Boltzmannian outset—behavior typical, e.g., for
income distributions. When O and q41 are fixed one may find k and F from the normalization condition and
sewing condition at DqE ¼ 0. However, because the ‘‘low-temperature’’ approximation does not allow to
probe regions with small DqE one must numerically optimize the sewing by interpolating the forbidden parts
of DqE axis [18].

Cases ðb1Þ and ðb2Þ have much richer structure than ða1Þ and ða2Þ. This is due to the negativity of the
argument that enters the W function. A remarkable upshot of this is an existence of a strongly suppressive
effect in the occupation of the high-energy states. In addition, the suppression appears in two different ways
depending on the value of ð1� qÞ=jFj. Analogous type of behavior is known in quantum phase transitions
[24]. Complete discussion of this phenomenon will be presented in Ref. [18].

5.1. Thermodynamic stability—concavity issue

In the following we are going to address the issue of thermodynamic stability. Note that in contrast to
information-theoretic entropy Dq, Dqjmax is the system entropy, i.e., it depends on the system state variables.
Thermodynamic stability then consists of showing that Dqjmax is a concave function of the energy constraint
[20]. So we wish to show that

q2DqðPÞjmax

qhEi2q
¼

q2DqðhEiqÞ

qhEi2q
p0. (23)
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This can be done by observing that [21]

dW ðxÞ

dx
¼

W ðxÞ

xðW ðxÞ þ 1Þ
and

d2W ðxÞ

dx2
¼ �

W ðxÞ2ðW ðxÞ þ 2Þ

x2ðW ðxÞ þ 1Þ3
. (24)

If we combine (24) with the fact that dDqðPÞjmax=dF ¼ 1=ðq� 1Þ we obtain

q2DqðPÞjmax

qhEi2q
¼ ð1� qÞ2

jFj
O
hlnPiqp0. (25)

Thus Dq is thermodynamically stably for any q.

6. Conclusions

In this paper we have reviewed the main aspects of the recently proposed information measure Dq. In
contrast to presently popular generalizations based on deformed entropies, we have aimed here at a strictly
axiomatic approach. This is because we hold that one cannot proceed the formal generalization of the entropy
in physics by ignoring the consistency with information theory. As a rule, axiomatic treatments of information
measures have the benefit of a closer passage to operational characterizations and hence to a systematic use in
practical applications.

We hope that the proposed axiomatics might serve as a novel playground for q-nonextensive systems with
embedded self-similarity. Indeed, our conclusions hint that Dq could play a relevant rôle in quantum phase
transitions and/or in econophysics.

The reader may note that we have not checked Dq for Lesche’s observability criterium [25] (also known as
experimental robustness). This is because in our view the use of Lesche’s condition as the stability criterion is
rather doubtful, see e.g., Refs. [26,27]. In this connection Yamano’s local stability criterion [27] would seem
more appropriate concept to use. Work along those lines is currently in progress.

Finally we should stress that the presented entropy Dq has many desirable attributes: like THC entropy it
satisfies the nonextensive q-additivity, involves a single parameter q, goes over into S in the limit q! 1, it
complies with thermodynamic stability, continuity, symmetry, expansivity, decisivity, etc. On that basis it
would appear that both Sq and Dq have an equal right to serve as a generalization of statistical
thermodynamics.
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