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Abstract

By using the Feynman–Hibbs prescription for the evolution amplitude, we quantize the sys-

tem of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman�s
dual system. The time-dependent quantum states of such a system are constructed and dis-

cussed entirely in the framework of the classical theory. The corresponding geometric (Panch-

aratnam) phase is calculated and found to be directly related to the ground-state energy of the

1D linear harmonic oscillator to which the 2D system reduces under appropriate constraint.
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1. Introduction

From the very outset of quantum theory a tremendous effort has been devoted to

answering the question where is the boundary between the classical (macroscopic)

and the quantum (microscopic) world, or in other words, when a quantum system
starts to behave classically. The correspondence principle introduced by Bohr in

the end of 1920s served as a heuristic prescription to construct quantum mechanics.

Roughly speaking, the quantum theory should approach the classical theory in the

limit of large quantum numbers. However, in general, this limit is quite subtle

[1,2]. On the other hand, a typical statement in majority of standard textbooks is that

classical mechanics applies in the limit �h ! 0, and this paradigm has become over the

years a starting point for a host of semi-classical asymptotic treatments [3–5]. Yet,

still many precautions should be taken when it comes to non-physical infinities at
caustics, boundary layers analysis or to connection rules [6,7]. In terms of canoni-

cally conjugated variables, say p and q, the connection between the classical and

quantum descriptions has been established by Ehrenfest�s theorems [1,4,8] which give

the law of motion for the mean values of the operators p̂ and q̂ in a form emulating

the classical equations of motion. However, only for systems with quadratic Hamil-

tonians is this correspondence exact, i.e., the mean values hp̂i and hq̂i follow classical

phase-space trajectories [4]. In particular, the system of quantum harmonic oscilla-

tors with bilinear coupling can be completely characterized using classical trajecto-
ries because the quantum Wigner function satisfies the classical Liouville equation

[9].

In the present article, the first of the series, we attempt to shed some further light

on the quantum–classical relation by studying the quantization of the 2D system of a

damped harmonic oscillator coupled to its time-reversed image, first introduced by

Bateman [10]. Bateman�s dual system received considerable attention in the past as

it represents a simple explicit example of a dissipative system which could be tackled

by means of canonical quantization [11–13]. However, the quantum mechanics (QM)
of this system is plagued with many conceptual problems [11,12] (e.g., the wave func-

tions cannot be normalized in the usual manner, the Hamiltonian is not self-adjoint

and represents the energy only for a restricted set of dynamical solutions) and it was

shown [13] that a consistent quantization can only be achieved in quantum field the-

ory (QFT). More recently, Bateman�s system has been studied in connection with

(Chern-Simons) gauge theories [14], as an example of an exactly decoherent system

[15] and as a toy model for the recent proposal by G.�t Hooft about deterministic

QM [16,17]. These aspects as well as the QFT of the Bateman system will be the ob-
ject of future papers. The aim of this paper is to present a thorough analysis of the

QM of this system which will be the basis for the next papers: our results include the

time-dependent wave functions and the geometric phases associated to them. We

also study the reduction of the 2D Bateman system to the 1D linear harmonic oscil-

lator (l.h.o.).

An outline of the paper is as follows:

In Section 2 we quantize Bateman�s system by using the Feynman–Hibbs pre-

scription for the time-evolution amplitude (kernel) [18–20]: this allows us to avoid
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the pitfalls of canonical quantization. We show that the kernel is fully expressible

in terms of solutions of the classical equations of motion and that it is invariant

with respect to the choice of the fundamental system of those solutions. This might

be viewed as a two-dimensional extension of an existing one-dimensional result

[20]. An important ingredient of the kernel calculation is the fluctuation factor
[19]. This is calculated by employing the Van Vleck–Pauli–Morette determinant

technique which allows us to avoid a direct manipulation of the Schr€odinger equa-
tion. Instead, only the phase-space structure of the classical solutions (e.g., La-

grangian manifold) is used.

In Section 3 we use Mehler�s formula [21,22] for a spectral decomposition of the

kernel in order to obtain the time-dependent wave functions in hyperbolic radial co-

ordinates (r; u). They are expressed in terms of generalized Laguerre polynomials and

are shown to satisfy the correct time-dependent Schr€odinger equation. The explicit
form of the wave functions uncovers the root of the difficulties connected with the

canonical quantization—the unboundedness of Bateman�s system in the hyperbolic

angle u. Use of the radial kernel [19] allows us to factorize away the explicit u depen-

dence. The ‘‘radial’’ wave functions then correctly fulfill both orthonormalization

and completeness relations. In addition, the radial wave functions satisfy the radial,

time-dependent Schr€odinger equation with the Hamiltonian Ĥl. For the ‘‘azimuthal’’

quantum number l ¼ � 1
2
, the latter turns out to be formally identical with the Ham-

iltonian of the 1D l.h.o..
To better understand the structure of the wave functions, we focus our attention

on the algebraic setting of Bateman�s Hamiltonian. Identifying the dynamical group

as SUð1; 1Þ, we are able to pinpoint the structure of the ground state, which turns out

to be a (squeezed) coherent state. The aforementioned peculiar behavior of the wave

functions is then attributed to the remarkable properties of the SUð1; 1Þ group rep-

resentations: the unboundedness of Bateman�s system in the variable u could be seen

as a consequence of the non-existence of a unitary irreducible representation of

SUð1; 1Þ in which the generator J2 would have at the same time a real and discrete
spectrum [23]. The requirement of discreteness of the J2 spectrum then leads to an

effective non-hermiticity and oddness of J2 under time reversal. To accommodate this

point in the Feynman–Hibbs kernel prescription, a new inner product has to be de-

fined. In fact, one of the merits of the presented method is that it naturally provides

the consistent inner product for wave functions (the rather artificial and involved

method of Racah [11] is not needed). In the case when we restrict our attention to

the stationary quantum states, the connection with existing canonical quantization

results [11–13] is readily established.
With the (full) time-dependent wave functions at hand, we are able to calculate in

Section 4 the exact geometric (Pancharatnam) phase for Bateman�s dual system. We

find that Pancharatnam�s phase is explicitly �h independent and consists of three au-

tonomous contributions: overall ground-state fluctuations of p̂ and x̂ gathered dur-

ing the period of evolution and the Morse index.

We then show that the (full) wave functions become periodic in configuration

space when the hyperbolic angle u solves the classical equations of motion. In this

case the period of the wave functions matches the inverse of the reduced frequency
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of the original Bateman dual system and Pancharatnam�s phase boils down to the

ordinary Berry–Anandan phase. In Section 5 we take this observation over to the

radial wave functions and then, by setting l ¼ � 1
2
, to the 1D l.h.o. Because the har-

monic oscillator wave functions obtained in this way are constructed entirely from

the fundamental system of solutions of Bateman�s dual system, the Berry–Anandan
phase bears an imprint (or memory) of the original 2D system even after the reduc-

tion to the 1D l.h.o. is performed. The geometric phase thus obtained can be directly

identified with the zero point energy of the 1D l.h.o., and, in general, it is different

from the usual E0 ¼ �hX=2. This is in line with the results obtained in [17].
2. Time-evolution amplitude (kernel) for Bateman’s dual system

In the following a decisive rôle will be played by the matrix elements of the time

evolution operator Uðtb; taÞ in the localized state basis
hxb; tbjxa; tai � hxbjUðtb; taÞjxai: ð1Þ

They are referred as time-evolution amplitudes, or simply kernels. Due to the fact that

Uðtb; taÞ fulfills the time-dependent Schr€odinger equations
i�h
o

otb
Uðtb; taÞ ¼ Ĥ Uðtb; taÞ;

i�h
o

otb
Uðta; tbÞ ¼ �Uðta; tbÞ Ĥ ; tb > ta;

ð2Þ
the kernel satisfies the equations [24]:
i�h
o

otb
hxb; tbjxa; tai ¼ Ĥð � i�hoxb ; xbÞ hxb; tbjxa; tai;

i�h
o

otb
hxa; tajxb; tbi ¼ �T Ĥ yð � i�hoxb ; xbÞT �1 hxa; tajxb; tbi; tb > ta;

ð3Þ
with the initial condition
lim
tb!ta

hxa; tajxb; tbi ¼ dðxa � xbÞ: ð4Þ
Here T is the (anti-unitary) time reversal operator and Ĥ y is the Hermitian-adjoint

Hamiltonian (in most applications Ĥ is both Hermitian and even under time reversal

so y and T are usually omitted). An important observation is that for quadratic

Hamiltonians the kernel has a very simple form, namely
hxb; tbjxa; tai ¼ F ½ta; tb� exp
i

�h
Scl½x�

� �
; tb > ta: ð5Þ
The function F ½ta; tb� is the so called fluctuation factor [19] and is independent of both

xa and xb [18,19]. The form (5) is usually attributed to Feynman and Hibbs [19,20],

but one may readily see that it is nothing but the kernel version of the celebrated
WKB approximation (often referred to as the Van Vleck [7] formula), which turns

out to be an exact relation for quadratic Hamiltonians.
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For a system with a time-independent Hamiltonian, the kernel reads
hxb; tbjxa; tai ¼ hxbj exp
�
� i

�h
Ĥðtb � taÞ

�
jxai: ð6Þ
Inserting the resolution of unity (completeness relation)
X
m

jwmihwmj ¼ 1:
(here jwmi are orthonormal base kets at t ¼ 0 spanning the Hilbert space) into (6), we

obtain that
hxb; tbjxa; tai ¼
X
m

wmðxb; tbÞw�
mðxa; taÞ: ð7Þ
Here we have identified wmðx; tÞ ¼ hxjwmðtÞi. The symbol � denotes usual complex

conjugation. Note that wmðx; tÞ and w�
mðx; tÞ, obey first and second equation in (3),

respectively.

In the following we shall use the Feynman–Hibbs prescription (5) for the the

quantization of Bateman�s dual system [11,13]. Our analysis will also reveal a host

of subtleties which are hidden in the seemingly clear relation (5).

2.1. Lagrangian and classical equations of motion

Bateman�s dual model describes a 2D interacting system of damped-amplified har-

monic oscillators. The corresponding Lagrangian reads [10–14,22]
L ¼ m _x _y þ c
2
ðx _y � _xyÞ � jxy ð8Þ
giving the (classical) equations of motion:
m€xcl þ c _xcl þ jxcl ¼ 0;

m€ycl � c _ycl þ jycl ¼ 0:
ð9Þ
It is interesting to observe that the equation for x describes the damped harmonic

oscillator, while the equation for y characterizes the amplified oscillator. In addition,

with appropriate initial conditions both systems are mutual mirror images. In this

sense it may be sometimes helpful to think of y as describing an effective degree of

freedom for the reservoir to which system with the x degree of freedom is coupled

[11,13,14].

In the following it will be useful to work with the rotated variables [14]:

x1 ¼ ðxþ yÞ=
ffiffiffi
2

p
, x2 ¼ ðx� yÞ=

ffiffiffi
2

p
. Then
L ¼ m
2
ð _x21 � _x22Þ þ

c
2
ð _x1x2 � _x2x1Þ �

j
2
ðx21 � x22Þ ¼

m
2
_x _xþ c

2
x ^ _x� j

2
xx; ð10Þ
where we introduced the notation ab ¼ gab aabb, a ^ b ¼ eabaabb and xa ¼ ðx1; x2Þ with
the metric tensor gab ¼ ðr3Þab (note also that eab ¼ �eab). The corresponding con-

jugate momenta read
p ¼ m _x� 1

2
cr1x: ð11Þ
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In ðx1; x2Þ coordinates the equations of motion read
m€xcl þ cr1 _xcl þ jxcl ¼ 0: ð12Þ

Notice that if uðtÞ is a solution of (12) so are r1uðtÞ, r3uð�tÞ, and ir2uð�tÞ. For the
future reference it is useful to realize that the Wronskian is t independent (i.e., it is a
time invariant of the system). Indeed, in our case the Wronskian has the form (t0 is
arbitrary):
W ðtÞ ¼ W ðt0Þ exp
�
�
Z t

t0

dtTr
c
m
r1

� ��
; ð13Þ
Eq. (13) is nothing but Liouville�s theorem of a differential calculus applied to (12).

2.2. Classical action

Using the usual definition for the action:
S½x� ¼
Z tb

ta

dt L;
we can write
Scl½x� ¼
Z tb

ta

dt
m
2

d

dt
ðx1 _x1

��
� x2 _x2Þ � x1€x1 þ x2€x2

�
� c
2
ðx1 _x2 � x2 _x1Þ

� j
2
ðx21 � x22Þ

�

¼ m
2
ðx1 _x1 � x2 _x2Þjtbta �

Z tb

ta

dt
x

2
ðm€xþ cr1 _xþ jxÞ

¼ m
2
½xclðtbÞ _xclðtbÞ � xclðtaÞ _xclðtaÞ�: ð14Þ
2.3. Fundamental system of solutions

A fundamental system of solutions (i.e., a maximal system of linearly independent

solutions) for Eq. (12) consists of four real 1� 2 vectors ui ði ¼ 1; 2; 3; 4Þ. The reason
why there are four independent solutions is, roughly speaking, a result of the fact

that we have two boundary conditions for each index. Independence of solutions

may be checked via the Wronskian, which has to be non-zero at least at one time
t (actually the Wronskian is time independent here). In our case the Wronskian is

the determinant of a 4� 4 matrix:
W ðtÞ ¼ W ðt0Þ ¼
u1 u2 u3 u4
_u1 _u2 _u3 _u4

����
����: ð15Þ
An important technical simplification may be achieved by realizing that we may

always find such a fundamental system where two arbitrary solutions (say, u3 and u4)

are set to zero at ta. This is due to the fact that in order to fulfill the boundary
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condition on xðtaÞ we need only two linearly independent vectors. Let us fix the

following convention: u3 � v1 and u4 � v2. Then the condition on the fundamental

system may be rephrased as
W ðtÞ ¼ W ðtaÞ ¼ u1ðtaÞu2ðtaÞj j � j _v1ðtaÞ _v2ðtaÞj 6¼ 0:
Note that if we had assumed the existence of a fundamental system having three

linearly independent solutions being zero at ta, the Wronskian would vanish iden-

tically. Any real solution of (12) might thus be written as
xclðtÞ ¼ a1u1ðtÞ þ a2u2ðtÞ þ b1v1ðtÞ þ b2v2ðtÞ;

with ai and bi being real numbers. Applying Cramer�s rule, the solution xclðtÞ with
two fixed points xclðtaÞ � xa and xclðtbÞ � xb reads
xclðtÞ ¼
u1ðtÞD1 þ u2ðtÞD2 þ v1ðtÞD3 þ v2ðtÞD4½ �

UaVb
; ð16Þ
where Ua ¼ ju1ðtaÞu2ðtaÞj, Vb ¼ jv1ðtbÞv2ðtbÞj and
D1 ¼
xa u2ðtaÞ 0 0

xb u2ðtbÞ v1ðtbÞ v2ðtbÞ

����
���� ¼ xa ^ u2ðtaÞ � Vb;

D2 ¼
u1ðtaÞ xa 0 0

u1ðtbÞ xb v1ðtbÞ v2ðtbÞ

����
���� ¼ �xa ^ u1ðtaÞ � Vb;

D3 ¼
u1ðtaÞ u2ðtaÞ xa 0

u1ðtbÞ u2ðtbÞ xb v2ðtbÞ

����
����;

D4 ¼
u1ðtaÞ u2ðtaÞ 0 xa

u1ðtbÞ u2ðtbÞ v1ðtbÞ xb

����
����:

ð17Þ
An equivalent, and more useful, way of writing xclðtÞ is to expand it in terms of xa

and xb. After some algebra we get
xclðtÞ ¼
x1aB1ðtÞ þ x2aB2ðtÞ þ x1bB3ðtÞ þ x2bB4ðtÞ
	 


UaVb
; ð18Þ
where
BiðtÞ ¼
B1
i ðtÞ

B2
i ðtÞ

� �
: ð19Þ
B1
i and B2

i are given by the determinant D,
D ¼ u1ðtaÞ u2ðtaÞ 0 0

u2ðtbÞ u2ðtbÞ v1ðtbÞ v2ðtbÞ

����
���� ¼ UaVb; ð20Þ
with ith row substituted by ðu11ðtÞ; u12ðtÞ; v11ðtÞ; v12ðtÞÞ or ðu21ðtÞ; u22ðtÞ; v21ðtÞ; v22ðtÞÞ, re-
spectively. So for example:
B1
3ðtÞ ¼

u1ðtaÞ u2ðtaÞ 0 0

u11ðtÞ u12ðtÞ v11ðtÞ v12ðtÞ
u2ðtbÞ u2ðtbÞ v2ðtbÞ v2ðtbÞ

������
������: ð21Þ
1 2 1 2
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As a result, the classical action Scl½x� might be written as
Scl½x� ¼
m
2D

x1a xb
_B1ðtbÞ

h
þ x2a xb

_B2ðtbÞ þ x1b xb
_B3ðtbÞ þ x2b xb

_B4ðtbÞ

� x1a xa
_B1ðtaÞ � x2a xa

_B2ðtaÞ � x1b xa
_B3ðtaÞ � x2b xa

_B4ðtaÞ
i
: ð22Þ
An explicit representation of the action is
Scl½x� ¼
m
2D

h
� x1a
� �2 _B1

1ðtaÞ þ x2a
� �2 _B2

2ðtaÞ þ x1b
� �2 _B1

3ðtbÞ � x2b
� �2 _B2

4ðtbÞ

þ x1ax
2
a

_B2
1ðtaÞ

�
� _B1

2ðtaÞ
�
þ x1bx

2
b

_B1
4ðtbÞ

�
� _B2

3ðtbÞ
�

þ x1ax
1
b

_B1
1ðtbÞ

�
� _B1

3ðtaÞ
�
� x1ax

2
b

_B2
1ðtbÞ

�
þ _B1

4ðtaÞ
�

þ x2ax
2
b

_B2
4ðtaÞ

�
� _B2

2ðtbÞ
�
þ x2ax

1
b

_B1
2ðtbÞ

�
þ _B2

3ðtaÞ
�i

:

Using the basic properties of determinants it is possible to show now that both

Scl½x� and xclðtÞ are independent of the choice of the fundamental system of solutions.

We show this in Appendix B.

2.4. Fluctuation factor

We can now take advantage of the Feynman–Hibbs observation [18,19] about the

time-evolution amplitude (kernel) for systems governed by quadratic Hamiltonians:
hxb; tbjxa; tai ¼ F ½ta; tb� exp
i

�h
Scl½x�

� �
; tb > ta: ð23Þ
As remarked, the fluctuation factor F ½ta; tb� is independent of xa and xb. In addition,

from (23) follows that:
F ½ta; tb� ¼ h0; tbj0; tai ¼ h0jUðtb; taÞj0i;

and so for time-independent Ĥ one has F ½ta; tb� ¼ F ½tb � ta�.

The most usual way of calculating the fluctuation factor is via the Van Vleck–Pa-

uli–Morette determinant [25–27]
F ½ta; tb� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det2

i

2p�h
o2Scl

oxa
aox

b
b

 !vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det2

i

2p�h
opa a

oxb
b

 !vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det2

i

2p�h
opb a

oxb
a

 !vuut : ð24Þ
The symbol det2ð. . .Þ denotes 2� 2 determinant. In Eq. (24) we have also used the

identities pa ¼ �ðoScl=oxaÞ and pb ¼ ðoScl=oxbÞ (one should take a little care when

using the covariant and contravariant indices). Indices a and b are kept fixed

throughout calculation.
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Actually (24) is correct only for sufficiently short elapsed times tb � ta as it was

proved by Pauli [28]. In the general case, the determinant on the RHS of (24) will

become infinite every time the classical (position space) orbit touches (or crosses)

a caustic. A detailed examination of quadratic systems reveals [7,19] that (23) re-

mains valid even after passing through the caustic, provided we write the fluctuation
factor as
1 T

a caust

when p

conjug
F ½ta; tb� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det2

i

2p�h
opb a

oxb
a

 !�����
�����

vuut ; ð25Þ
and insert a factor expð�ip=2Þ for every reduction of the rank of
1= det2 o2Scl=oxa

aox
b
b

� �
at the caustic. Thus, we have (tb > ta):
hxb; tbjxa; tai ¼ exp
�
� i

p
2
na;b
�
F ½ta; tb� exp

i

�h
Scl½x�

� �
: ð26Þ
Here na;b is the Morse (or Maslov) index [3,7,19,29–31] of the classical path running

from xa to xb.
1 The form (26) is due to Gutzwiller [32] and the prescription (26) is

nothing but the connection formula for relating the kernels on both sides of the

caustic in a continuous way [3]. To simplify the discussion we omit for a while the

delicate issue of caustics assuming that the determinant in (24) is positive. We shall,

however, return to it in Sections 4 and 5.

Now we are ready to calculate the fluctuation factor. A little algebra gives us
F ½ta; tb� ¼
m

4p�hD

h
� _B1

1ðtbÞ _B1
2ðtbÞ

�
� _B1

3ðtaÞ _B1
2ðtbÞ þ _B1

1ðtbÞ _B1
3ðtaÞ � _B1

3ðtaÞ _B1
3ðtaÞ

þ _B2
4ðtaÞ _B2

1ðtbÞ þ _B2
4ðtaÞ _B1

4ðtaÞ � _B2
2ðtbÞ _B2

1ðtbÞ � _B2
2ðtbÞ _B1

4ðtaÞ
�i1

2

¼ m
2p�h

ffiffiffiffiffi
W
D

r
: ð27Þ
Here we have used the equations of the motion and the fact that the Wronskian

is time independent. Since the kernel is uniquely determined from the classical

action, our argument on the uniqueness of the classical action implies that

hxb; tbjxa; tai does not depend on the choice of a fundamental system. Note also

that due to the fact that F ½ta; tb� ¼ F ½tb � ta�, it follows from (27) that Dðta; tbÞ ¼
Dðtb � taÞ.
he set of all points where the inverse of the Van Vleck–Pauli–Morette determinant vanishes is called

ic. The Morse index then counts how many times the classical orbit crosses (or touches) the caustic

assing from the initial to the final position. In the literature, crossing points are often called focal or

ate points.
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3. Wave functions for Bateman’s dual system

3.1. Wave functions wn;l(r; u; t) and wn;l(r; t)

In order to calculate the wave function it is useful to rewrite the kernel in hyper-
bolic polar coordinates ðr; uÞ, with x1 ¼ r cosh u and x2 ¼ r sinh u, and then apply

the defining relation [18]:
hrb; ub; tbjra; ua; tai ¼
X
n;l

wn;lðrb; ub; tbÞw
ð�Þ
n;l ðra; ua; taÞ; tb > ta: ð28Þ
Here we have used the symbol ð�Þ instead of the usual complex conjugation symbol

�—the need for this refinement will show up in the following. Invoking (5), (22), and

(27) (see also Appendix C) we obtain:
hrb; ub; tbjra; ua; tai ¼
m
2p�h

ffiffiffiffiffi
W
D

r
exp

im
2D�h

��
� r2a _B

1
1ðtaÞ þ r2b _B

1
3ðtbÞ

þ 2rarb _B1
1ðtbÞ coshðDuÞ � 2rarb _B2

1ðtbÞ sinhðDuÞ
��

¼ m
2p�h

ffiffiffiffiffi
W
D

r
exp

im
2�h

 "
� r2a
	

þ r2b

 _B1

1ðtaÞ
D

þ 2rarb
_B1
1ðtbÞ
D

coshðDuÞ
"

�
_B2
1ðtbÞ
D

sinhðDuÞ
#!#

;

Du ¼ ub � ua; tb > ta:

ð29Þ
By observing that
½ _B1
1ðtbÞ�

2 � ½ _B2
1ðtbÞ�

2 ¼ WD; ð30Þ
we can put
_B1
1ðtbÞ
D

¼
ffiffiffiffiffi
W
D

r
cosh a;

_B2
1ðtbÞ
D

¼
ffiffiffiffiffi
W
D

r
sinh a:
In Appendix D we show that
aðta; tbÞ ¼ C ðta � tbÞ þ b: ð31Þ
Here C ¼ c=2m and b is a complex constant. It is also useful to denote the reduced

oscillators frequency as X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=mÞðj� ðc2=4mÞ

p
Þ. If not indicated otherwise, X will

be assumed to be real throughout. That is, we shall mostly be concerned with the
under-damped case although occasionally a result can be taken over to the over-

damped case.
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Eq. (31) allows to rewrite the kernel (29) in the following form:
2 B

u ¼ �1
3 B

invaria
hrb; ub; tbjra; ua; tai ¼
m
2p�h

ffiffiffiffiffi
W
D

r
exp

�
� im
4D�h

dD
dta

r2a

�
� dD

dtb
r2b

��

� exp
im
�h

ffiffiffiffiffi
W
D

r
rarb coshðDu

"
� aÞ

#
: ð32Þ
This expression may be recast into a more suitable form if we apply the Laurent

expansion [21,22]2
expðia coshðuÞÞ ¼
X1
l¼�1

ð�1Þl Ilð�iaÞe�lu; ð33Þ
(Ilð. . .Þ are the modified (or hyperbolic) Bessel functions) together with the addition
theorem for the generalized Laguerre polynomials Ll

n (Mehler�s formula [21,22]):
X1
n¼0

n!
Ll
nðz1ÞLl

nðz2Þbn
Cðnþ lþ 1Þ ¼ ðz1z2bÞ�

1
2
l

1� b
exp

h
� b

z1 þ z2
1� b

i
Il 2

ffiffiffiffiffiffiffiffiffiffi
z1z2b

p

1� b

� �
: ð34Þ
For this purpose we set
z1 ¼
m
�h

ffiffiffiffiffi
W

p r2a
qðtaÞ

; z2 ¼
m
�h

ffiffiffiffiffi
W

p r2b
qðtbÞ

;

with r2a; r
2
b P 03 and
qðtÞ ¼ V ðtÞW
Z

dt
V ðtÞ

� �2

þ V ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i<j

uiðtÞ ^ ujðtÞ
� �2vuut : ð35Þ
This allows to identify the parameter b appearing in (34) with bðtbÞ, where bðtÞ
reads
bðtÞ ¼ �i
ffiffiffiffiffiffiffiffiffi
V ðtÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðtÞ � V ðtÞ

p
i
ffiffiffiffiffiffiffiffiffi
V ðtÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðtÞ � V ðtÞ

p ¼
� i

ffiffiffiffiffiffiffiffiffi
V ðtÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðtÞ � V ðtÞ

p� �2
qðtÞ

¼ exp

 
� i2 arcsin

ffiffiffiffiffiffiffiffiffi
V ðtÞ
qðtÞ

s !
;

where V ðtÞ ¼ u3ðtÞ ^ u4ðtÞ ¼ v1ðtÞ ^ v2ðtÞ. Note that qðtaÞ ¼ Ua and that bðtaÞ ¼ 1.
The previous manipulations permit us to formulate the kernel in the desired

form
ecause expðia coshðuÞÞ is an analytic function of u—the only essential singularities are in

—the Laurent expansion (33) is well defined for any complex u.
ecause coshðuÞP sinhðuÞ then jx1jP jx2j and so we have automatically that r2 P 0 is a kinematic

nt.
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hrb; ub; tbjra; ua; tai ¼
i

p

X
n;l

n!
Cðnþ lþ 1Þ b�ðtaÞbðtb½ Þ�nþ

lþ1
2

m
�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

qðtaÞqðtbÞ

s !lþ1

� Ll
n

m
�h

ffiffiffiffiffi
W

p r2a
qðtaÞ

� �
Ll
n

m
�h

ffiffiffiffiffi
W

p r2b
qðtbÞ

� �
ðrarbÞl

� exp
m
2�h

i

2

_qðtbÞ
qðtbÞ

" 
�

ffiffiffiffiffi
W

p

qðtbÞ

#
r2b �

m
2�h

i

2

_qðtaÞ
qðtaÞ

"
þ

ffiffiffiffiffi
W

p

qðtaÞ

#
r2a

!

� exp lðuaf � ub þ aðta; tbÞÞg: ð36Þ
Let us identify the wave function wn;lðr; u; tÞ ¼ hr; ujwn;lðtÞi. Note that Eq. (36) im-

mediately implies that wð�Þ
n;l ðr; u; tÞ cannot be associated with w�

n;lðr; u; tÞ. It is not

difficult to see that this peculiar behavior goes into account of the seemingly harmless

expansion (33). The point is that we have tacitly used the discrete (Laurent) ex-

pansion even if an alternative integral (continuous) expansion was available [21].

This favoritism towards discrete l�s was deliberate (see also next Section). A careful
analysis will reveal that the discreteness of l is not compatible with a unitary rep-

resentation of the dynamic symmetry group of the theory. The remedy will be found

in a self-adjoint extension of Ĥ and it will turn out that wð�Þ
n;l ðr; u; tÞ ¼ wn;lðr;�u;�tÞ.

Now, from (28) and (36) we may deduce the wave functions
wn;lðr; u; tÞ ¼
ffiffiffi
1

p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

Cðnþ lþ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffi
m

�hqðtÞ

r
W 1=4

� �lþ1

½bðtÞ�nþ
lþ1
2 Ll

n

m
�h

ffiffiffiffiffi
W

p r2

qðtÞ

� �
rl

� exp
m
2�h

i

2

_qðtÞ
qðtÞ

" 
�

ffiffiffiffiffi
W

p

qðtÞ

#
r2
!
exp



� l u
�

þ Ct � b
2

��
;

wð�Þ
n;l ðr; u; tÞ ¼

ffiffiffi
1

p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

Cðnþ lþ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffi
m

�hqðtÞ

r
W 1=4

� �lþ1

½b�ðtÞ�nþ
lþ1
2 Ll

n

m
�h

ffiffiffiffiffi
W

p r2

qðtÞ

� �
rl

� exp

 
� m
2�h

i

2

_qðtÞ
qðtÞ

"
þ

ffiffiffiffiffi
W

p

qðtÞ

#
r2
!
exp l u

�

þ Ct � b

2

��
:

ð37Þ

Obviously, neither wn;lðr; u; tÞ nor wð�Þ

n;l ðr; u; tÞ belong to ordinary Hilbert space be-

cause they cannot be normalized in the usual manner (they do not belong to the

space of square integrable functions ‘2). The latter observation is in agreement with

[11,13], and we shall comment more on this point in the next subsection. We note

that the kernel (29) (and consequently the wave functions (37)) satisfies the time-
dependent Schr€odinger equation:4
ctually wð�Þ
n;l ðr; u; tÞ fulfills the time-reversed (time-dependent) Schr€odinger equation, see Eq. (49).
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i�h
o

otb

�
� Ĥðrb; ubÞ

�
hrb; ub; tbjra; ua; tai ¼ 0; tb > ta;
where
Ĥ ¼ 1

2m
p̂2r

�
� 1

r2
p̂2u þ m2X2r2

�
� Cp̂u

¼ 1

2m

�
� �h2

o2

or2
� �h2

r
o

or
þ �h2

r2
o2

ou2
þ m2X2r2

�
þ i�hC

o

ou
: ð38Þ
The Hamiltonian (38) is the so called Bateman Hamiltonian [11]. We now define the

radial kernel hrb; tbjra; tain;l as [19]
hrb; ub; tbjra; ua; tai ¼
X
n;l

hrb; tbjra; tain;l
p
ffiffiffiffiffiffiffiffi
rarb

p elðaðtÞ�DuÞ:
The corresponding wave function wn;lðr; tÞ ¼ hrjwn;lðtÞi reads
wn;lðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
Cðnþ lþ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffi
m

�hqðtÞ

r
W 1=4

� �lþ1

½bðtÞ �nþ
lþ1
2 rlþ

1
2 Ll

n

m
�h

ffiffiffiffiffi
W

p
r2=qðtÞ

� �

� exp
m
2�h

i

2

_qðtÞ
qðtÞ

" 
�

ffiffiffiffiffi
W

p

qðtÞ

#
r2
!
: ð39Þ
It is simple to persuade oneself that wn;lðr; tÞ fulfills both the orthonormalization

condition
Z 1

�1
drwð�Þ

n;l ðr; tÞwn0;lðr; tÞ ¼ dnn0 ;
and the resolution of unity
X1
n¼0

wð�Þ
n;l ðr; tÞwn;lðr0; tÞ ¼ dðr � r0Þ:
Note that both the radial kernel and the wave function Eq. (39) satisfy the time-

dependent Schr€odinger equation
i�h
o

otb

�
� ĤlðrbÞ

�
hrb; tbjra; tain;l ¼ 0; tb > ta;
where
Ĥl ¼
1

2m

�
� �h2

o2

or2
þ �h2

r2
l2
�

� 1

4

�
þ m2X2r2

�
� i�h _aðtÞ l� i�hC l: ð40Þ
The term proportional to 1=r2 is analogous to the centrifugal barrier known from

rotationally invariant systems and so the quantum number l can be viewed as analog

of the azimuthal quantum number. Note that, due to the structure of aðta; tbÞ, the
term _aðtÞ þ C must be zero.
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Since the generalized Laguerre polynomials Ll
n are defined for all l 2 C indices,5

the wave functions (39) satisfy the time-dependent Schr€odinger equation with the

Hamiltonian (40) also for non-integer l�s. The key observation then is that if we con-

tinue l to the values � 1
2
, the Hamiltonian Ĥl describes the 1D l.h.o.. If we make use

of the rules connecting Hermite polynomials with the l ¼ � 1
2
Laguerre polynomials

[21], we may rewrite the continued radial wave functions in a simple form
5 A
wn;1
2
ðr; tÞ ¼ 1

22nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n!C nþ 3
2

� �
s ffiffiffiffiffiffiffiffiffiffiffi

m
�hqðtÞ

r
W

1
4

� �1
2

½bðtÞ�nþ
3
4H2nþ1

ffiffiffiffiffiffiffiffiffiffiffi
m

�hqðtÞ

r
W

1
4 r

� �

� exp
m
2�h

i

2

_qðtÞ
qðtÞ

" 
�

ffiffiffiffiffi
W

p

qðtÞ

#
r2
!
;

wn;�1
2
ðr; tÞ ¼ 1

22n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n!C nþ 1
2

� �
s ffiffiffiffiffiffiffiffiffiffiffi

m
�hqðtÞ

r
W

1
4

� �1
2

½bðtÞ�nþ
1
4H2n

ffiffiffiffiffiffiffiffiffiffiffi
m

�hqðtÞ

r
W

1
4 r

� �

� exp
m
2�h

i

2

_qðtÞ
qðtÞ

" 
�

ffiffiffiffiffi
W

p

qðtÞ

#
r2
!
: ð41Þ
In passing we mention that the quantum numbers n and l appearing in (36) and (37)

have been seemingly independent. So far the only obvious restriction was that nP 0

integers. However, for a consistent probabilistic interpretation (in the r variable) and
analytical continuation (41), the wave function wn;lðr; u; tÞ is required to be bounded

for jrj < 1. Using the asymptotic expansion for Ll
nðzÞ (see e.g. [21,22]):
Ll
nðzÞ ¼

½Cðnþ lþ 1Þ�2

n!Cðlþ 1Þ 1 F1ð�n; lþ 1; zÞ � Cðnþ lþ 1Þ
n!

ð�zÞn; z ! 1

� 1� n
l
z; z ! 0;
where 1F1ð�n; lþ 1; zÞ is the confluent hypergeometric series [22]. It is not difficult to

see that the only allowed values of n and l at which wn;lðr; u; tÞ fulfills above

requirements are those where:
2nþ lþ 1 ¼ 0;�1;�2; . . . ; l 6¼ 0: ð42Þ

So jljP 1 and nP 0.

3.2. Meaning of quantum numbers n and l

Let us now consider the meaning of the quantum numbers n and l. To do this we

must first understand the algebraic structure of the Hamiltonian (38). In [11,13] the

following ladder operators were introduced:
nalytic continuation for l with RðlÞ ¼ �1;�2;�3; . . . is however required, see e.g. [33].
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A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2�hmX

p p̂1
h

� imXx1
i
;

B ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2�hmX

p p̂2
h

� imXx2
i
;

ð43Þ
with
½A;Ay� ¼ ½B;By� ¼ 1; ½A;B� ¼ ½A;By� ¼ 0: ð44Þ

The Hamiltonian (38) can be then rewritten as
Ĥ ¼ �hXðAyA� ByBÞ þ i�hCðAyBy � ABÞ ¼ 2�hðXC � CJ2Þ; ð45Þ
where we have made explicit the associated SOð2; 1Þ � SUð1; 1Þ algebraic structure:
C2 ¼ 1

4
ðAyA� ByBÞ2;

Jþ ¼ AyBy; J� ¼ AB;

J3 ¼
1

2
ðAyAþ ByBþ 1Þ;

½Jþ; J�� ¼ �2J3; ½J3; J�� ¼ �J�:

ð46Þ
Here C is the only Casimir operator (SUð1; 1Þ has rank 1). In addition, ½C; Ĥ � ¼
½J2; Ĥ � ¼ 0. If one defines
J1 ¼
1

2
ðJþ þ J�Þ; J2 ¼ � i

2
ðJþ � J�Þ; ð47Þ
the more familiar SUð1; 1Þ algebraic structure appears:
½J1; J2� ¼ �iJ3; ½J3; J2� ¼ �iJ1; ½J1; J3� ¼ �iJ2;
with
C2 ¼ J 2
3 � J 2

2 � J 2
1 þ

1

4
: ð48Þ
It is simple to check that
C ¼ 1

4�hXm
p̂2r

�
� 1

r2
p̂2u þ m2X2r2

�
;

J2 ¼
1

2�h
p̂u:
In this connection it is important to recognize that the system described by the

Hamiltonian (45) is both conservative and invariant under time reversal. Because the
latter point has been treated in the literature in a somehow ambiguous fashion (cf.

[11]), we discuss it in detail in Appendix E. We prove there that TCT �1 ¼ C and

T J2T �1 ¼ J2 from which it follows that T ĤT �1 ¼ Ĥ . It is precisely this time-reversal

issue which obscures the quantization of Bateman�s system, bringing about many

subtleties which are difficult to grasp without an explicit knowledge of the time-

dependent wave functions (37).
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Now, the crucial observation is that although from (47), i.e., from the very defi-

nition, J2 appears to be Hermitian, (37) implies that it has a purely imaginary spec-

trum in jwn;lðtÞi (and this holds for all t). The root of this ‘‘pathological’’ behavior is
in the non-existence of a unitary irreducible representation of SUð1; 1Þ in which J2
would have at the same time a real and discrete spectrum [23]. Nevertheless, both
the discreteness and complexness of J2 spectra are vital in our analysis since they

bring dissipative features in the dynamics: this was also the case considered in

[11–13], to which we are going to compare our results. Thus the usual unitary rep-

resentations of SUð1; 1Þ are clearly not useful for our purpose. On the other hand,

by resorting to non-unitary representations of SUð1; 1Þ (known as non-unitary prin-

cipal series [35,36]) we lose the hermiticity6 of J2 and hence the spectral theorem

along with the resolution of unity.

Actually the situation is not so hopeless. One may indeed redefine the inner prod-
uct [13,36] to get a unitary irreducible representation (known as complementary se-

ries [35,36]) out of non-unitary principal series. This may be easily done when we

notice, using (28), (37) and Schwinger�s prescription (3), that the states wð�Þ
n;l are not

simple complex conjugates of wn;l because they fulfill the time-dependent Schr€odin-
ger equation
6 T

and th
i�h
o

ot

�
þ T Ĥ yðr; uÞT �1

�
wð�Þ

n;l ðr; u; tÞ ¼ 0; ð49Þ
with the (effectively) non-Hermitian Hamiltonian. Accordingly, what we have

loosely denoted in (28) as wð�Þ
n;l ðr; u; tÞ is actually
hT wn;lð�tÞjr; ui ¼ hwn;lð�tÞjr;�ui� ¼ wn;lðr;�u;�tÞ; ð50Þ
as can be also double-checked from the explicit form (37). For the sake of simplicity

we use ½T jwn;lðtÞi�
y ¼ hT wn;lðtÞj. Clearly, if J2 were Hermitian then wð�Þ

n;l ¼ w�
n;l as one

would expect.

The above considerations have some important implications. To see this, let us

rewrite the kernel (36) by means of the states jwn;lðtÞi:
hrb; ub; tbjra; ua; tai ¼
X
n;l

wn;lðrb; ub; tbÞw
ð�Þ
n;l ðra; ua; taÞ

¼
X
n;l

hrb; ubjwn;lðtbÞihT wn;lð�taÞjra; uai: ð51Þ
We can formally introduce the conjugation operation (‘‘bra vector’’) as hwn;lðtÞj �
½T jwn;lð�tÞi�y. Then the resolution of unity can be written in a deceptively simple

form
X
n;l

jwn;lðtÞihwn;lðtÞj ¼ 1: ð52Þ
o be precise, we should talk about self-adjointness rather than hermiticity, but we shall assume here

roughout that this ambiguity does not cause any harm in the present context.
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The price which has been paid for this simplicity is that we have endowed the

Hilbert space with a new inner product. In this context two points should be

stressed. First, under the new inner product jwn;lðtÞi has a finite (and positive)

norm. Second, J2 is Hermitian with respect to this inner product. Indeed, inte-

grating by parts we get
hwn;lðtÞjJ2wm;kðtÞi ¼
Z

drdu rwð�Þ
n;l ðr; u; tÞ

�
� i

2

o

ou

�
wm;kðr; u; tÞ

¼
Z

drdu r
��
� i

2

o

ou

�
wn;lðr; u; tÞ

�ð�Þ
wm;kðr; u; tÞ

¼ hJ2wn;lðtÞjwm;kðtÞi: ð53Þ
In (53) we have applied (52) and (50) together with the fact that the ‘‘surface’’ term is

zero (if k 6¼ l then integration w.r.t. the variable r gives zero [21], if k ¼ l then the

product wð�Þ
n;l wm;l is u independent).

Note that the (53) implies that ½T J2T �1�y ¼ J2, or equivalently: T J y
2T

�1 ¼ J2. In-
deed,
hJ2wn;lðtÞj ¼ ½T J2jwn;lð�tÞi�y ¼ hwn;lðtÞj½T J2T �1�y: ð54Þ
The spurious time irreversibility of J2 apparent in (54) is an obvious consequence of

dealing with the non-unitary representation of SUð1; 1Þ. This is understandable,

since a mechanism which does not preserve the norm (dissipation) is inherently

connected with time irreversibility. From a mathematical point of view, we can in-

terpret the relation T J2T �1 ¼ J y
2 as a self-adjoint extension of J2 in the space spanned

by the jwn;lðtÞi vectors. It should be also clear that when J2 is time reversible (e.g., in
the usual Hilbert space ‘2) it is also automatically Hermitian.

A pivotal consequence of the above is that
hwn;lðtÞj ¼ T jwn;lð
	

� tÞi

y ¼ T e

it
�h Ĥ jwn;lð0Þi

h iy
¼ hwn;lð0Þje

it
�h Ĥ : ð55Þ
Thus, the time-evolution operator is unitary under the new inner product. It is this

unitarity condition, intrinsically built in the kernel formula (6) (and successively
taken over by the Feynman–Hibbs prescription), which naturally leads to a ‘‘con-

sistent’’ inner product introduced in a somehow intuitive manner in [11,13]. From

now on the modified inner product will be always tacitly assumed.

So far we have dealt with the peculiar structure of the Hilbert space. To interpret

the quantum numbers n; l labelling the constituent states, we start with the observa-

tion that from the explicit form (37) one can readily construct the Hermitian oper-

ator ~C (commuting with J2) which is diagonalized by wn;lðr; u; tÞ. Indeed one may

check that
J2wn;lðr; u; tÞ ¼ � i

2

o

ou
wn;lðr; u; tÞ ¼ i

l
2
wn;lðr; u; tÞ;

~Cwn;lðr; u; tÞ ¼
ffiffiffiffiffi
W

p

2Xq
ð2nþ lþ 1Þ wn;lðr; u; tÞ:

ð56Þ
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Here  !

~C ¼ C � m

4X�h
X2 � W

q2
� _q2

4q2
r2 þ i

4X

_q
q

r
o

or

�
þ 1

�

¼ e2f R̂ðtÞC R̂�1ðtÞ: ð57Þ
The unitary operator R̂ðtÞ has the form
R̂ðtÞ ¼ Ŝðn; tÞ expðifGAÞ expðifGBÞ;
Ŝðn; tÞ ¼ expðin r2Þ;
with
GA ¼ i
1

2
A2
�

� ðAyÞ2
�
; GB ¼ i

1

2
B2
�

� ðByÞ2
�
;

and � �

f ¼ 1

4
ln

W

X2q2
; n ¼ m

4�h
_q
q

) n ¼ � m
2�h

_f:
The reader may recognize in GA and GB the SUð1; 1Þ displacement operators (i.e.,

generalized coherent states generators) [35]. Alternatively, one may view GA and GB

as the single-mode squeeze operators [37]. One may also notice that J2 is nothing but

the generator of two mode-squeeze [37]. Actually, the fact that there should be a
close connection between SUð1; 1Þ squeezed states and damped oscillators was firstly

proposed in [38]. Finally we should point out that in deriving (57) the relation

p̂r ¼ �i�h ðo=or þ 1=2rÞ was used [19].

From Eq. (57) we find that ~C is Hermitian whenever q is a real function and

T ~CðtÞT �1 ¼ ~Cð�tÞ. The latter together with Eq. (56) implies that
T jwn;lðtÞi ¼ jwnþl;�lð�tÞi; ð58Þ
and so in the static case (i.e., when qðtÞ ¼ const: and V ðtÞ ¼ q sin2ðXtÞ, see also

Section 5) we have
J2 jws
n;li ¼ i

l
2
jws

n;li;

C jws
n;li ¼

1

2
ð2nþ lþ 1Þjws

n;li:
ð59Þ
Here (and throughout) the convention jws
n;li � jws

n;lð0Þi is employed. Notice that in
view of relations (E.13) and (58), the time reversed stationary states fulfill the

condition:

T jws

n;li ¼ jws
nþl;�li: ð60Þ
Using (56), (57), and (59), we can find the relation between jwn;lðtÞi and the sta-

tionary states jws
n;li. The following relation holds:
jwn;lðtÞi ¼ R̂ðtÞ jws
n;li: ð61Þ
Thus the vectors jwn;lðtÞi appearing in the spectral decomposition of the kernel (28)

have a tight connection with SUð1; 1Þ coherent states and, as we shall see soon, they
describe indeed coherent states which (if expressed in the jr; ui representation) rotate
in their position spread and/or pulsate in their width (‘‘breathers’’).
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However, before discussing other algebraic properties of the time-dependent

states jwn;lðtÞi, it is convenient to establish a connection with the results presented

in [11,13]. Let us first denote by fjnA; nBig the set of eigenstates of AyA and ByB. From
(44) follows that nA and nB are non-negative integers. Defining
j ¼ 1

2
ðnA � nBÞ; m ¼ 1

2
ðnA þ nBÞ; ð62Þ
we can label the eigenstates of C and ðJ3 � 1
2
Þ as jj;mi rather than jnA; nBi. As a result

one may write
Cjj;mi ¼ j jj;mi; J3jj;mi ¼ m
�

þ 1

2

�
jj;mi; ð63Þ
with two obvious conditions: jjj ¼ 0; 1
2
; 1; 3

2
; . . . and m ¼ jjj; jjj þ 1

2
; jjj þ 1; . . . The

latter is compatible with (42).

Defining the vacuum state j0; 0i as the state fulfilling A j0; 0i ¼ B j0; 0i ¼ 0, then
the discrete states jj;mi can be explicitly written as
jj;mi ¼ cj;m ðAyÞjþm ðByÞm�j j0; 0i; ð64Þ

with �1=2
cj;m ¼ ½ðjþ mÞ! ðm� jÞ!� :
To relate the eigenstates of J2 with those of J3 above constructed, we may employ the

following relation
expðhJ1ÞJ2 expð�hJ1Þ ¼ �J2 cos h� iJ3 sin h;
with h 2 C, to obtain that
J2 ¼ �i exp
�
� p

2
J1
�
J3 exp

�
� p

2
J1
�
: ð65Þ
The former implies that
J2jWð�Þ
j;m i ¼ �i m

�
þ 1

2

�
jWð�Þ

j;m i;

jWð�Þ
j;m i ¼ exp

�
� p

2
J1
�
jj;mi:

ð66Þ
Because C commutes both with J2 and J1, we also have
CjWð�Þ
j;m i ¼ j jWð�Þ

j;m i: ð67Þ
The relation (67) coincides with the result found in [11]. Similar identity was also

realized in [13].

Comparing (66) and (67) with (59) we can identify
jws
n;li ¼ WðþÞ

nþl
2
þ1

2
; l
2
�1

2

��� E
; ð68Þ
(note, as mP 0; lP 1) or equivalently
jWðþÞ
j;m i ¼ ws

j�m�1; 2mþ1

��� E
: ð69Þ
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Similar identification holds for jWð�Þ
j;m i ;
jws
n;li ¼ Wð�Þ

nþl
2
þ1

2
;�l

2
�1

2

��� E
; ð70Þ
(l6 � 1) or equivalently
jWð�Þ
j;m i ¼ ws

jþm;�2m�1

��� E
: ð71Þ
Matching (60) with ()(68)–(71), the states jWðþÞ
j;m i and jWð�Þ

j;m i can be related in a simple

way, namely
T jWðþÞ
j;m i ¼ jWð�Þ

j;m i ¼ jWðþÞ
j;�ðmþ1Þi; ð72Þ
which can be interpreted as a continuation of jWðþÞ
j;m i to negative m�s. Eq. (72) we can

check the consistency of the inner product defined above. Indeed, using (66) we have
hws
n;ljw

s
n0 ;l0 i ¼ Wð�Þ

nþl
2
þ1

2
; l
2
�1

2

WðþÞ
n0þl0

2
þ1

2
; l
0
2
�1

2

����
� �

¼ n
�

þ l
2
þ 1

2
;
l
2
� 1

2
n0
���� þ l0

2
þ 1

2
;
l0

2
� 1

2

�
¼ dnn0; ll0 : ð73Þ
Now, to understand better the physical nature of jwn;lðtÞi let us first note that
Ay

B

� �
and

A
�By

� �t
are right and left SUð1; 1Þ doublets, respectively. For instance, under an SUð1; 1Þ
rotation
eig J1
Ay

B

� �
e�ig J1 ¼ cosh g

2
i sinh g

2

�i sinh g
2

cosh g
2

� �
Ay

B

� �
¼ M

Ay

B

� �
: ð74Þ
The transformation matrix M is then clearly an element of the SUð1; 1Þ group as

Myg ¼ gM�1 ; g ¼ diagð1;�1Þ. Analogous transformation rules hold also for
‘‘rotations’’ with respect to J2 and J3.

Thus, in terms of the ladder operators A and B, the states jWð�Þ
j;m i read
jWð�Þ
j;m i ¼ cj;m

Ay � Bffiffiffi
2

p
� �jþm By � Affiffiffi

2
p

� �m�j

exp½�p=4ðAyBy þ ABÞ� j0; 0i;
and so
jws
n;li ¼ ~cn;l ðAy þ BÞn ðBy þ AÞjlj�n�1

exp½p=4 ðAyBy þ ABÞ� j0; 0i; ð75Þ

with
~cn;l ¼ n! ðjlj
	

� n� 1Þ!2jlj�1

�1=2

:

It follows from (68) and (70) that (75) is true both for lP 1 and l6 � 1. Using the

Baker–Campbell–Hausdorff relation one can find that
exp½hJ1� ¼ exp tan
h
2

� �
Jþ

� �
exp 2 lg cos

h
2

� �
J3

� �
exp tan

h
2

� �
J�

� �
; ð76Þ
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(the formula (76) is an analog of the Gaussian decomposition well known from

SOð3Þ group) and so (75) can be recast into a simple form
jws
n;li ¼

~cn;lffiffiffi
2

p ðAy þ BÞn ðBy þ AÞjlj�n�1
expðJþÞ j0; 0i

¼ cn;l ðAyÞn ðByÞjlj�n�1 j0ii; ð77Þ
with
A ¼ 1ffiffiffi
2

p ðA� ByÞ; B ¼ 1ffiffiffi
2

p ðB� AyÞ;

Ay ¼ 1ffiffiffi
2

p ðAy þ BÞ; By ¼ 1ffiffiffi
2

p ðBy þ AÞ:
ð78Þ
Since, the canonical commutation relations are conserved by a similarity transfor-

mation (74), A and Ay are new annihilation and creation operators, respectively (the

same holds true for B and By), with a new vacuum state j0ii However, because the

similarity transformation (74) for g ¼ �ip=2 is not a unitary transformation, A and

Ay (and B, By) are not Hermitian conjugates. This should not be surprising: we have

already observed that the state jws
n;li does transform under a non-unitary represen-

tation of SUð1; 1Þ and recognized this point as the origin of the ‘‘anomalous’’ be-

havior of wn;l and wð�Þ
n;l . However, it should be born in mind that under the inner

product above introduced the A, Ay (and B, By) are Hermitian conjugates. Indeed,

one may readily check that, for instance, hh0jA ¼ hhAy 0j.
In connection with Eq. (77) we should mention that j0ii ¼ 1=

ffiffiffi
2

p
expðJþÞ½ �j0; 0i is a

two-mode Glauber coherent state [37]. The coherent state j0ii can be physically vi-

sualized as a boson condensate or as a new vacuum associated with A and B oper-

ators. This suggests to us that the state jws
n;li can be interpreted as an excited state of

n type-A oscillators, and ðjlj � n� 1Þ type-B oscillators with the coherent state type

vacuum j0ii ¼ jws
0;�1i.

Yet another, interesting interpretation of jws
n;li can be obtained if we employ the

SUð1; 1Þ coherent states (i.e., generalized coherent states [35]). We demonstrate this

in Appendix F.

Using (77) it is now simple to interpret the quantum numbers n and l appearing in
the time-dependent states jwn;lðtÞi. Let us first observe that
~AyðtÞ � R̂ðtÞAy R̂�1ðtÞ ¼ aAy � bBy

~ByðtÞ � R̂ðtÞBy R̂�1ðtÞ ¼ a�By � b�Ay;
ð79Þ
(��� denotes a complex conjugation) where
a ¼ 1

 
þ i

4X

_q
q

!
cosh f� i

4X

_q
q

sinh f

b ¼ 1

 
� i

4X

_q
q

!
sinh fþ i

4X

_q
q

cosh f:
and jaj2 � jbj2 ¼ 1. In a similar manner, we also find
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~AðtÞ � R̂ðtÞA R̂�1ðtÞ ¼ a�Aþ b�B
~BðtÞ � R̂ðtÞB R̂�1ðtÞ ¼ aBþ bA:

ð80Þ
Inverting Eqs. (79) and (80) we immediately get the following useful relations:
ffiffiffi
2

p
A ¼ a ~By

�
þ ~A

�
þ b� ~Ay

�
� ~B

�
;ffiffiffi

2
p

Ay ¼ a� ~Ay
�

� ~B
�
þ b ~By
�

þ ~A
�
;ffiffiffi

2
p

B ¼ a� ~Ay
�

þ ~B
�
þ b ~By
�

� ~A
�
;ffiffiffi

2
p

By ¼ a ~By
�

� ~A
�
þ b� ~Ay

�
þ ~B

�
:

ð81Þ
By virtue of unitarity of R̂ðtÞ the ~AðtÞ; ~AyðtÞ (and ~BðtÞ; ~ByðtÞ) are new annihilation and

creation operators (albeit not Hermitian conjugates) with the vacuum state
j½f; n; t�ii ¼ R̂ðtÞ j0ii ¼ Ŝðn; tÞj½f; t�ii:

Hence, from (77) we have
jwn;lðtÞi ¼ cn;l ð~AyðtÞÞn ð~ByðtÞÞjlj�n�1 j½f; n; t�ii; ð82Þ
As a matter of fact, the state
j½f; t�ii ¼ expðifGAÞ expðifGBÞ j0ii;

is also a coherent state (it saturates the uncertainty relations) called two-mode

squeezed state [37] or (from rather historical reasons) (two-mode) two-photon co-

herent state [40]. Term squeeze (or squeezing) coined in [40] reminds that although

the dispersions of canonical variables saturate the uncertainty relations their dis-

tribution over the phase space is distorted (or ‘‘squeezed’’) in such a way that the

dispersion of one canonical variable is reduced at the cost of an increase in the
dispersion of the canonically conjugated one. The concept of squeezing can be ex-

tended also to SUð1; 1Þ coherent states [41], however, the actual interpretation is in

this case somehow less clear and states thus obtained do not seem to be particularly

relevant in the present context.

The physical meaning of j½f; n; t�ii can be understood from the corresponding

dispersions of x̂i and p̂i;
ðDx̂1Þ2
D E

¼ � �h
2mX

A
�Dh

� Ay�2E� A
��

� Ay��2i ¼ �h
2mX

expð�2fÞ;

ðDx̂2Þ2
D E

¼ ðDx̂1Þ2
D E

;

ðDp̂1Þ2
D E

¼ �hmX
2

A
�Dh

þ Ay�2E� A
��

þ Ay��2i
¼ �hmX

2
expð2fÞ
�

þ _f=X
� �2

expð � 2fÞ
�
;

ðDp̂2Þ2
D E

¼ ðDp̂1Þ2
D E

:

ð83Þ
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It is important to realize that (83) are obtained using (81) together with the modified

inner product. So, for example, the relation
hhi~Ay½f; n; t�j ¼ fT ½i~Ayj½f; n;�t�ii�gy ¼ ihh½f; n; t�j~By;
has to be employed. We may easily observe that if q ¼ const: (i.e., Ŝðn; tÞ ¼ 1),

the dispersions (83) saturate the Heisenberg uncertainty relations. As a result, the

state j½f; t�ii is indeed the squeezed coherent state with the squeeze parameter f. If
we evaluate the coherent state in the position representation we get a (minimum)

wave packet specified by its half-width (stipulated via the x̂i dispersion) and by
the mean position (stipulated via mean of x̂i) [42]. If q 6¼ const: (i.e., Ŝðn; tÞ 6¼ 1)

we do not have any more a minimum uncertainty packet—uncertainty product

does not stay �h2=4 any more. Apart from the time dependence gained through f
(which would still allow for the minimum uncertainty wave packet) there is an

additional contribution in the dispersion of p̂i as it can be directly observed from

(83). So depending on the time behavior of f, the wave packet width now os-

cillates and/or spreads and this, in turn, ‘‘deflects’’ the dispersion of p̂i from that

of minimum uncertainty product.
It follows that Eq. (82) allows for a simple physical explication of hr; ujwn;lðtÞi: the

state hr; ujwn;lðtÞi describes the excited state of n type-~A oscillators, and (jlj � n� 1)

type-~B oscillators with the vacuum state hr; uj½f; n; t�ii. The vacuum state itself is rep-

resented by the static wave packet which pulsates (and/or spreads) in its width. The

excitations then may be understood as 2D Galilean boosts combined with SUð1; 1Þ
rotations.
4. Geometric phase for Bateman’s Dual System

4.1. Intermezzo: geometric phase

Since in the following an important rôle will be played by geometric phases, we

give here a very brief introduction to this subject.

One has first to recall that a Hilbert space H is a line bundle over the projective

space P, i.e., the equivalence class of all vectors that differ by a multiplication with a
complex number. We shall denote a generic element of P as j~wi. The inner product

on H naturally endows P with two important geometric structures: a metric [43,44]
ds2 ¼ jjdj~wijj2 � jh~wjdj~wij2; ð84Þ

and a Uð1Þ connection (Berry connection [44,45])
A ¼ ih~wjdj~wi: ð85Þ

When a point evolves on P along a closed loop, say c, the total phase change /tot of

jwi on H consist of two contributions: the dynamical part
/dyn ¼ ��h�1

Z s

0

dt hwðtÞjĤ jwðtÞi; ð86Þ
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(with s being the time period at which the system traverses the whole loop c), and the

geometric part (Berry–Anandan phase)7
7 It

phase

is usua

is a su
expði/BAÞ ¼ expði/tot � i/dynÞ

¼ hwð0ÞjwðsÞi exp i

Z s

0

dthwðtÞji d
dt

jwðtÞi
� �

¼ exp i

Z s

0

dt h~wðtÞji d
dt

j~wðtÞi
� �

¼ exp i

Z
c
A

� �
: ð87Þ
So the Berry–Anandan phase /BA may be geometrically understood as (an)holon-

omy with respect to the natural (Berry�s) connection on the projective space P [43]. It

is needless to say that all above relations are meant to be valid only for states jwðtÞi
being normalized to unity. In general, corresponding division of the state norm must
be invoked. As our states wn;lðr; u; tÞ are not normalized, this should be kept in mind

in the following where, for clarity of notation, we shall omit this normalization

factor.

Actually, the geometric phase can also be defined for open paths. In this case the

phase is usually referred to as Pancharatnam�s phase [47]. The trick is that any path

on P can be closed by joining endpoints with a geodesic constructed with respect to

the metric (84). The geometric phase of the loop thus constructed is then defined to

be equal to the geometric phase associated to the open path. So, if co is an open path
on P and cg is the corresponding geodesic on P, then the associated Pancharatnam

phase /P reads
expði/PÞ ¼ exp i

Z
coþcg

A
 !

¼ exp i

Z
co

A
 !

¼ exp i

Z tf

ti

dt h~wðtÞji d
dt

j~wðtÞi
� �

¼ hwðtiÞjwðtf Þi exp i

Z tf

ti

dt hwðtÞji d
dt

jwðtÞi
� �

: ð88Þ
Here we have used the fact that parallel transport along a geodesic does not bring

any anholonomy. Note that /P is well defined only if the endpoints are not or-

thogonal. It should be also clear that /P is defined only modulo 2p.

4.2. Exact geometric phase in Bateman’s system

To find the geometric phase for Bateman�s system we firstly compute the dynam-
ical phase
would be perhaps more correct to call the geometric phase presented in this paper as Anandan�s
[44] or Aharonov–Anandan�s phase [43]. However, due to a historical reasons, the Berry phase [46]

lly taken as a synonym for any cyclic geometric phase. We feel that the name Berry–Anandan phase

itable compromise between rigor and tradition.
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/dyn ¼ �
Z tf

ti

dt hwn;lðtÞji
d

dt
jwn;lðtÞi ¼ ��h�1

Z tf

ti

dt hwn;lðtÞjĤ jwn;lðtÞi:
Using (37), (56), and (57) we find that
/dyn ¼ �ð2nþ lþ 1Þ
Z tf

ti

dt

ffiffiffiffiffi
W

p

2q

_q2

4W

 
þ X2q2

W
þ 1

!
þ iCl ðtf � tiÞ: ð89Þ
In order to proceed further it is convenient to define the complex number
zðtÞ ¼ i

ffiffiffiffiffiffiffiffiffi
V ðtÞ
qðtÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V ðtÞ

qðtÞ

s
:

Notice that z�z ¼ 1. When evolving in the time interval ðti; tf Þ, zðtÞ traverses a curve c
in the Gaussian plane. The index of the curve c (i.e., the number of revolutions

around the origin) is then defined as [48]:
indc ¼ 1

2pi

I
c

dz
z
: ð90Þ
Consequently the dynamic phase can be rewritten in the form
/dyn ¼� ð2nþ lþ 1Þ
Z tf

ti

dt
_q2

8q
ffiffiffiffiffi
W

p
 

þ X2q

2
ffiffiffiffiffi
W

p
!

� ð2nþ lþ 1Þðp indcÞ

þ iCl ðtf � tiÞ: ð91Þ
Using (90) we may write also the total phase in a fairly compact form, indeed
/tot ¼ arg hwn;lðtiÞjwn;lðtf Þi
� �

¼ �ð2nþ lþ 1Þ arcsin

ffiffiffiffiffiffiffiffiffiffiffi
V ðtf Þ
qðtf Þ

s 
� arcsin

ffiffiffiffiffiffiffiffiffiffi
V ðtiÞ
qðtiÞ

s !
� p

2
ni;f þ iClðtf � tiÞ

¼ �ð2nþ lþ 1Þð2p indc Þ � p
2
ni;f þ iClðtf � tiÞ; ð92Þ
With ni;f being the Morse index of the classical trajectory running between xi and xf .

At this stage a remark should be added. The fact that we get an imaginary piece

both in /tot and /dyn should not be surprising because we work with the modified

inner product. Notice that the ‘‘troublesome’’ contribution in /tot and /dyn correctly

flips sign if one passes from wð. . .Þ to wð�Þð. . .Þ.
Substituting (91) and (92) into the equation Eq. (88), we get Pancharatnam�s

phase
/P ¼ ð2nþ lþ 1Þ
Z tf

ti

dt
_q2

8q
ffiffiffiffiffi
W

p
 

þ X2q

2
ffiffiffiffiffi
W

p
!

� ð2nþ lþ 1Þ p indcð Þ � p
2
ni;f :

ð93Þ

Note that because q, W , and V are solely constructed out of solutions of the classical

equations of motion, /P is manifestly �h independent.
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The meaning of the terms on the RHS of (93) can be easily understood. Let us

assemble the first two pieces in Eq. (93) together. Using the fact that
q ¼
ffiffiffiffiffi
W

p

X
expð�2fÞ;
(see explanation below Eq. (57)) together with (35) we obtain
/P ¼ ð2nþ lþ 1Þ X
2

Z tf

ti

dt expð
�

� 2fÞ þ expð2fÞ expð � 2fÞ ð _f=XÞ
�
þ p

2
ni;f

¼ ð2nþ lþ 1Þ
Z tf

ti

dt
ðDp̂iÞ2
D E

�hm

0
@ þ

mX ðDx̂iÞ2
D E
�h

1
Aþ p

2
ni;f : ð94Þ
The index ‘‘i’’ is either 1 or 2 (it really does not matter as dispersions are symmetric,

one may write also the symmetrized version with the prefactor 1
2
, however, some care

should be taken as we do not have Euclidean scalar product and so, for instance,

ðp̂2Þ2 ¼ �p̂2p̂2). It is important to recognize that h. . .i in (94) represents the mean

value with respect to the ground state.

Thus /P is a collection of three contributions; overall ground-state fluctuations of
p̂ and x̂ gathered during the time period tf � ti and the Morse index. While the first

two are basic characteristics of the ground-state wave packet, the Morse index con-

tribution, on the other hand, reflects the geometrical features of the path traversed

by the ground-state wave packet in the configuration-space. As explained before,

its presence is inevitable for providing a correct analytical continuation of the Feyn-

man–Hibbs kernel prescription around the focal points.

The above considerations show that the properties of /P are basically encoded

in the structure and in the time dependence of the ground state. This intertwining
of the ground state with geometric phase will be of a crucial importance in the

following.

An interesting question which one can raise in the present context is how the non-

abelian (Wilczek–Zee) geometric phase [49] looks in Bateman�s system and to what

extent it influences the presented results. This is definitely a challenging task as there

does not exist at present any formulation of non-abelian geometric phases outside of

the scope of adiabatic approximation (i.e., geometric phases pioneered by Berry). As

the geometric phases (87), (88), and (93) are rather Aharonov–Anandan type, such
an extension would be of a particular interest. We intend to investigate this question

in the future work.
5. The ground state of the 1D linear harmonic oscillator

5.1. Berry–Anandan phase

An interesting implication of (93) arises when we turn our attention to the special

case of l ¼ � 1
2
. From Section 3 we know that such a choice corresponds to the 1D

l.h.o. In addition, from (37) and (41) we see that the following relation between the
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1D l.h.o. wave function wlho
n ðr; tÞ � wn;�1

2
ðr; tÞ and Bateman�s system wave function

wn;lðr; u; tÞ holds:
wlho
n ðr; tÞ ¼

ffiffiffiffiffiffi
p r

p
wn;�1

2
ðr;�Ct þ b=2; tÞ: ð95Þ
The important point about wlho
n ðr; tÞ is that it is constructed exclusively from the

fundamental system of solutions corresponding to Bateman�s dual system, and not,

as one could expect, from fundamental system of solutions of the 1D l.h.o. In ad-

dition, it should be noted that the value u ¼ �Ct þ b=2 entering (95) is nothing but

the solution of the classical equations of the motion: _u ¼ oH=opu, _pu ¼ �oH=ou with

the classical pu ¼ J2 ¼ 0 and Bateman�s dual Hamiltonian H . One may naturally

wonder then whether some measurable information about the original system could

be tracked down in wlho
n ðr; tÞ. We shall see that this is indeed the case: a memory

of the underlying Bateman�s system is imprinted in the ground state energy of the
reduced system.

Let us look at the geometric phase of the 1D l.h.o. ‘‘inherited’’ through the reduc-

tion (95). Being s the mutual period of both q and V , then the following chain of

reasonings holds:
wlho
n ðr; sÞ ¼

ffiffiffiffiffiffi
p r

p
wn;�1

2
ðr; u; sÞju¼b=2�sC

¼
ffiffiffiffiffiffi
p r

p
expfi/totgwn;�1

2
ðr; u; 0Þ

� �
ju¼b=2�sC

¼
ffiffiffiffiffiffi
p r

p
expfi /tot½
�

� sCpu=�h�gwn;�1
2
ðr; uþ sC; 0Þ

�
ju¼b=2�sC

¼ exp i /BA

�

þ 1

�h

Z s

0

hwlho
n ðtÞjĤ�1

2
jwlho

n ðtÞidt
��

wlho
n ðr; 0Þ: ð96Þ
On the other hand, because of the periodicity of q and V , the wave function wlho
n ðr; tÞ

must be s-periodic as well. This implies that wlho
n ðr; 0Þ ¼ ei2pmwlho

n ðr; sÞ, where m is an

arbitrary integer. Using the fact that /BA is defined modulo 2p we can write
Z s

0

hwlho
n ðtÞjĤ�1

2
jwlho

n ðtÞidt ¼ �h 2pnð � /BAÞ: ð97Þ
In particular, if wlho
n ðr; tÞ are eigenstates of Ĥ�1

2
, then we get the quantized energy

spectrum:
Elho
n ¼ �h

s
ð2pn� /ABÞ: ð98Þ
In the usual semiclassical treatment the presence of the Berry–Anandan phase

modifies the energy spectrum via the Bohr–Sommerfeld quantization condi-
tion[30,50]. In the case of the simple 1D l.h.o. (not the one obtained from the Bat-

eman�s system after reduction), the Berry–Anandan phase materializes only due to

the Morse index contribution, i.e., /BA ¼ �pna;b=2. When ðtb � taÞ ¼ s ¼ 2p=X, the
Morse index is simple [19]: na;b ¼ 2 and one recovers the standard relation:
~Elho
n ¼ �hX n

�
þ 1

2

�
: ð99Þ
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In this respect the result (98) might seem rather peculiar, especially in the case when

/BA 6¼ �p. The fact that /BA can indeed be different from �p will be explicitly il-

lustrated in the following subsection. However, the basic reason for this to happen is

not difficult to understand: the Morse index of the underlying Bateman�s system (at

u ¼ �Cs ) is not necessarily equal to the Morse index of the corresponding 1D l.h.o.
at the same elapsed time s.

Let us add two more comments at the end. Firstly, the foregoing analysis can be

naturally extended on the case l ¼ þ 1
2
, but instead of doing that we may directly ob-

serve from (41) that
~wlho
n ðr; tÞ � wn;1

2
ðr; tÞ ¼ wnþ1

2
;�1

2
ðr; tÞ; ð100Þ
so the 1D l.h.o. states obtained from wn;1
2
ðr; tÞ describe the higher energy states

than wlho
n ðr; tÞ, and thus, for instance, the ground state comes entirely from the

l ¼ � 1
2
case. Secondly, it may happen that q and V can have more than one

common period. Such periods can give rise to (generally) different (not modð2pÞ)
Berry–Anandan phases. This situation is fairly standard in many systems (see

e.g., [20]) and the corresponding phases have as a rule different physical con-

sequences.

5.2. Practical example—stationary states

To elucidate the previous analysis, we consider here an explicit example in which

the following fundamental system of solutions is chosen:
u11ðtÞ ¼
ffiffiffi
2

p
cosðXtÞ coshðCtÞ;

u12ðtÞ ¼ �
ffiffiffi
2

p
cosðXtÞ sinhðCtÞ;

u21ðtÞ ¼
ffiffiffi
2

p
cosðXtÞ sinhðCtÞ;

u22ðtÞ ¼ �
ffiffiffi
2

p
cosðXtÞ coshðCtÞ;

v11ðtÞ ¼
ffiffiffi
2

p
sinðXtÞ coshðCtÞ;

v12ðtÞ ¼ �
ffiffiffi
2

p
sinðXtÞ sinhðCtÞ;

v21ðtÞ ¼
ffiffiffi
2

p
sinðXtÞ sinhðCtÞ;

v22ðtÞ ¼ �
ffiffiffi
2

p
sinðXtÞ coshðCtÞ:

ð101Þ
The Wronskian is
W ¼

ffiffiffi
2

p
0 0 0

0 �
ffiffiffi
2

p
0 0

0
ffiffiffi
2

p
C

ffiffiffi
2

p
X 0

�
ffiffiffi
2

p
C 0 0 �

ffiffiffi
2

p
X

��������

��������
¼ 4X2; ð102Þ
and the determinant D
D ¼ 4 sin2 Xðtb � taÞ:
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As a result we have
B1
1ðtÞ ¼ 4 cosh½Cðt � taÞ� sin½Xðtb � tÞ� sin½Xðtb � taÞ�;

B1
3ðtÞ ¼ 4 cosh½Cðtb � tÞ� sin½Xðt � taÞ� sin½Xðtb � taÞ�;

B2
1ðtÞ ¼ 4 sinh½Cðta � tÞ� sin½Xðtb � tÞ� sin½Xðtb � taÞ�:
The classical action has the form
Scl ¼
mX

2sin½Xðtb � taÞ�
ðr2a
�

þ r2bÞ cos½Xðtb � taÞ� � 2rarb cosh½ub � ua �Cðtb � taÞ�
�
;

ð103Þ

and we find that the fluctuation factor reads
F ½ta; tb� ¼
m
2p�h

X
j sin½Xðtb � taÞ�j

: ð104Þ
Eqs. (103) and (104) lead to the kernel:
hrb; ub; tbjra; ua; tai ¼
m
2p�h

X
j sin½Xðtb � taÞ�j

exp
imX

2�h sinðXðtb � taÞÞ

�

� ðr2a
�

þ r2bÞ cosðXðtb � taÞÞ � 2rarb coshðDu� Cðtb � taÞÞ
��

:

ð105Þ

Note that the kernel is indeed independent of the fundamental system of solutions.

One may check that the kernel (105) satisfies the time-dependent Schr€odinger
equation (38).

We now rewrite the kernel applying the expansion (36). Remembering that there

is an absolute value in (105) and employing the fact that
V ðtÞ ¼ 2 sin2ðXtÞ;
qðtÞ ¼ 2;

bðtÞ ¼ e�2iXt;
we get � � � � � �

hrb; ub; tbjra; ua; tai ¼

i

p

X
n;l

n!
Cðnþ lþ 1Þ

mX
�h

lþ1

Ll
n

mX
�h

r2a Ll
n

mX
�h

r2b

� ðrarbÞl e�
mX
2�h r2aþr2bð Þ e�iXð2nþlþ1Þðtb�taÞ e�lDu�lCðtb�taÞ: ð106Þ
The explicit form of the wave function is then
wn;lðr;u; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
pCðnþ lþ 1Þ

s
m
ffiffiffiffi
X

p

�h

 !lþ1
2

rl e�
mX
2�h r

2

Ll
n

mX
�h

r2
� �

e�lðuþCtÞ e�iXð2nþlþ1Þt:

ð107Þ

The radial wave function is on the other hand:
wn;lðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
pCðnþ lþ 1Þ

s
m
ffiffiffiffi
X

p

�h

 !lþ1
2

rlþ
1
2 e�

mX
2�h r

2

Ll
n

mX
�h

r2
� �

e�iXð2nþlþ1Þt:

ð108Þ
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Note that wn;lðr; tÞ is an eigenstate of Ĥl. In passing it is also interesting to consider

the reduced wave function jwiHI
which is obtained from the full one through the

formula jwiHI
¼ exp½�Ctou�jwiH . This amounts to substitute u with ðu� CtÞ into the

total wave function (107), which then becomes
8 D

other L

under
wn;lðr; u� Ct; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
pCðnþ lþ 1Þ

s
m
ffiffiffiffi
X

p

�h

 !lþ1
2

rl e�
mX
2�h r

2

� Ll
n

mX
�h

r2
� �

e�lu e�iXð2nþlþ1Þt: ð109Þ
It is easy to verify that it satisfies the reduced Schr€odinger equation:
iotwn;lðr; u� Ct; tÞ ¼ 2XCwn;lðr; u� Ct; tÞ; ð110Þ
Because V is periodic with fundamental period s ¼ p=X and because wn;�1
2
is an ei-

genstate of Ĥ�1
2
, the energy spectrum of the related 1D l.h.o. is done by the prescrip-

tion (98). The corresponding ground-state energy can be calculated from (93) and

(98). We obtain
Elho
0 ¼ ��h

/BA

s
¼ �hp

na;b
2s

: ð111Þ
We see therefore that the fundamental system (101) reflects the dynamics of the

underlying Bateman�s dual system in Elho
0 only via the Morse index na;b. To find na;b,

we first define a Lagrangian manifold [3,7]: L ¼ fx; p ¼ oScl=oxg, where Scl is the

action taken as a function of the end point x (¼ xb). For quadratic actions the
Lagrangian manifold is clearly n-dimensional plane in the 2n-dimensional phase

space. Because the starting point of our analysis was the (configuration-space) kernel

we are primarily interested in orbits for which the initial and final positions are given.

Of course, if the initial position and momenta were given, then we would have a

unique orbit, but since instead we have initial and final positions, it is not clear that

any such orbit exists, and if does, whether it is unique. Let us therefore consider the

time evolution of L. As time progresses, the Lagrangian manifold evolves (foliates)

the phase space.8 If we denote a point of the initial-time Lagrangian manifold as
za ¼ ðpa; xaÞ (note that set of all such point forms the Cauchy data for the Hamil-

tonian dynamics) then due to quadratic nature of H the final-time point zb is related

with za via linear canonical transformation (symplectic matrix): zb ¼ Sza , where

S ¼ Sðta; tbÞ. Taking only the x part of zb we may write
xb ¼ S1pa þ S2xa () S1pa ¼ �S2xa þ xb: ð112Þ

Clearly, if S1ðta; tbÞ were invertible (i.e., if detðS1Þ 6¼ 0) then for given points xb and xa

would exist only one pa and consequently only one classical orbit would run between xb

and xb. If however detðS1Þ ¼ 0, then either none or infinitely many solutions may be
ue to its very definition, Lagrangian manifolds transform under canonical transformations into

agrangian manifolds [3]. So namely Lagrangian manifolds evolve into other Lagrangian manifolds

(Hamiltonian) time evolution.
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obtained, depending on the ranks of S1 and the corresponding augment matrix. So if

detðS1Þ ¼ 0 and xa and xb are such that Eq. (112) is not satisfied, then there are no

orbits arriving at xb. If, however, xa and xb satisfy Eq. (112), then there is an n-di-
mensional infinity of initial momenta whichmaps onto xb and thus density of particles

is infinite at xb—orbits are focused in the configuration space (the situation is sche-
matically depicted in Fig. 1).It is not difficult to see that the precarious points xb in

which detðS1Þ ¼ 0 are precisely the focal (conjugate) points. Indeed,
Fig. 1

the ini

respon
0 ¼ detðS1Þ ¼ det2
oxa

b

opba

 !
¼ det2

o2Scl
oxa

ax
b
b

 !�1
2
4

3
5:
When passing through a caustic, detðS1Þ may change the sign depending on the rank

of detðS1ðta; tbÞÞ at the caustic. The caustic is said to have multiplicity k if the rank of

detðS1ðta; tbÞÞ is k. The change of sign will directly influence the form of the fluctu-

ation factor F ½ta; tb� (which is basically the square root of 1= det½S1ðta; tbÞ�) as the

correct branch cut must be chosen. The phase of F ½ta; tb� can be consistently pre-

scribed demanding continuity in the kernel [3]. It turns out that a phase factor

expð�ikp=2Þ must appear when passing a caustic of multiplicity k. As more caustics

are passed along an orbit, the phase factor will accumulate. The Morse index na;b
appearing in (26) then simply counts caustics (including their multiplicity) encoun-

tered by an orbit passing from the initial to the final Lagrangian manifold.

Let us analyze our particular situation. Using the Hamilton equations of motion

we easily get the following solution for z � ðp1; p2; x1; x2Þ (to be specific we work here

in ðx1; x2; p1; p2Þ phase-space coordinates)
. Evolution of a Lagrangian manifold schematically depicted at three distinct times. Note that due to

tial condition (4) we have La ¼ fxa; pa ¼ anythingg, note also that the Lagrangian manifold Lb is

sible for a caustic at xb. Five possible orbits are shown.
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are plo

t ¼ 2p
m ¼ 1.
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z ¼ exp ðt
	

� taÞ
c
2m r1 �mX2r3
1
mr3 � c

2m r1

� ��
za

¼ exp ðt
�

� taÞ
0 �mX2r3

1
m r3 0

� ��
exp ðt

�
� taÞ

c
2mr1 0

0 � c
2m r1

� ��
za; ð113Þ
and so
S1ðta; tbÞ ¼
sin½Xðtb � taÞ�

Xm
r3: ð114Þ
To get the Morse index for the Berry–Anandan phase (111), we simply notice that

during the time interval (0; s) orbits pass one caustic at the conjugate time s ¼ p=X,
with multiplicity 2 (see Figs. 2–4). The Morse index is na;b ¼ 2 and the ground state

of the 1D l.h.o. Elho
0 ¼ �hX. Of course, if s is a period for V , 2s is also a period and any

integer (positive or negative) times s is likewise. It is clear then that the Morse index

based on any such period should be the same because V (and hence the wave

function) cannot distinguish whether the fundamental period alone or its integer

multiples are in use. Indeed, for instance, for the time interval (0; 2s) orbits pass two
caustics, at the conjugate times s ¼ p=X and s ¼ 2p=X, both with multiplicity 2 (see

Figs. 2–4). The Morse index is in such a case na;b ¼ 4 and we get again Elho
0 ¼ �hX.

We see then that although our prescription does not allow to pinpoint Elho
0 precisely

(the ground states are definedmodð�hXÞ), there is nowayhow to bring the usual fraction
1=2 into the result. The factor 2 is a ‘‘memory’’ of the underlying 2D system. The fact

that this may happen is not difficult to understand. The usual derivations of the ground

state energy hinge either on the Heisenberg–Weyl algebra or directly on the Schr€odin-
. Evolution of a Lagrangian manifold in ðx1; p1Þ phase space. Three orbits with different values of pa
tted. The Lagrangian manifold is shown at five different times. Note that times t ¼ p=X and

=X correspond to the conjugate times. This and the following plots are done for j ¼ 40, c ¼ 1:2,



Fig. 3. The same plot as Fig. 2 in the ðx1; p2Þ phase space.

Fig. 4. The corresponding ðx1; x2Þ configuration-space orbits. Focal points occur in xa and xb at times

t ¼ p=X and t ¼ 2p=X, respectively. Irrespective of the initial-time momenta, all orbits reach the focal

points at the same time.
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ger equation and thus have only local character while Berry–Anandan phase is (non-

local) global characteristics of a system. We may thus conclude that the ground state

of the reduced system can generally change according to the global properties of the

original underlying system on which the reduction is performed.

Actually the above analysis is still not the whole story. In the paper to follow we

will show that there is yet another—not so far considered—contribution to the

ground state energy, reflecting the dissipative nature of the system when working
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with the SUð1; 1Þ non-unitary representation. Such a contribution will manifest itself

in the form of an additional phase factor—‘‘dissipative’’ phase (see also [17]).
6. Conclusions

In this paper we have studied the quantization of Bateman�s dual system of

damped–antidamped harmonic oscillators [10,11] by using the Feynman–Hibbs ker-

nel formula. It has been known for some time that Bateman�s system is difficult to

quantize due to a multitude of conceptual problems [11–13]. In order to address

some of these problems and to improve our intuition for the complications involved,

we have found it very convenient that classical mechanics lies manifestly at the heart

of the Feynman–Hibbs prescription. Thanks to the fact that Bateman�s dual Ham-
iltonian (Lagrangian) is quadratic, the kernel is fully expressible in terms of the fun-

damental system of solutions of classical equations of motion and in addition, it is

independent of the choice of such classical solutions.

Using the spectral decomposition of the time-evolution amplitude we have been

able to calculate the full wave functions, fulfilling the time-dependent Scr€odinger
equation. This helped us to understand the reported controversy in the quantization

of Bateman�s system. We have shown that the above inconsistency has its origin in

two interrelated issues: apparent non-hermiticity of the Hamiltonian and oddness
of J2 under time reversal (and thus time irreversibility of the Hamiltonian). We have

argued that both these ‘‘pathologies’’ are the consequence of a single fact, namely that

what has been invariably used in the literature (mostly implicitly) was the non-unitary

irreducible representation of the SUð1; 1Þ dynamic group. The fact is that from the

representation theory it follows that there is no SUð1; 1Þ unitary irreducible represen-
tation in which J2 would have at the same time a real and discrete spectrum [23]. There

are then two possible solutions. We may work with the unitary representation of

SUð1; 1Þ—Bateman�s dual system will then be free of pathologies but not particularly
interesting from the physical point of view. The interesting features, e.g., dissipation

along with time irreversibility, enter the scene precisely when the non-unitary irreduc-

ible representation of SUð1; 1Þ is used. To treat the latter situation mathematically we

have to face the non-hermiticity of J2. The remedy naturally arises from the Feyn-

man–Hibbs prescription and is based on a redefinition of the inner product: we have

illustrated the mathematical and logical consistency of such a procedure. The relation

with existing results [11–13] was established and the corresponding underlying

SUð1; 1Þ coherent state structure of quantum states was discussed in detail. The reader
may contrast our approach with a somewhat more customary treatment of non-Her-

mitian quantum systems by means of resonant or Gamow states [51].

Although the kernel is invariant under the choice of the fundamental system of

classical solutions, this is not the case for the wave functions. For one-dimensional

quadratic systems it has been argued [20] that various choices of fundamental solu-

tions correspond merely to different unitary transformations. However, this shows

up not to be correct in our case. In fact, the basic feature of Bateman�s dual system
is that states are unitary inequivalent under SUð1; 1Þ symmetry. As a result, the wave
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functions and thus the geometric (Pancharatnam) phases are found to depend on the

choice of the fundamental system of classical solutions in a non-trivial way. It is also

worthwhile stressing that the geometric phases here obtained are given only in terms

of the parameters of classical solutions and are thus manifestly �h independent (as

should be expected from phases with entirely geometric origin).
The crucial observation made in the course of our analysis is that when we

analytically continue the ‘‘azimuthal’’ quantum number l to �1=2, the reduced

(or radial) wave functions formally fulfill the time-dependent Schr€odinger equa-

tion for the one-dimensional harmonic oscillator. We have found that the geomet-

ric phase of the 1D l.h.o. obtained via such a reduction is not equal to the

expected Berry phase [20], but bears a memory of the classical motion of the ori-

ginal Bateman dual system. This ‘‘shadow’’ of the underlying 2D system origi-

nates from three sources: overall ground-state dispersions of p̂ and x̂ gathered
during the period of evolution and the Morse index contribution. It should be

noted that the built-in memory in the geometric phase is not a new idea, having

been used in various contexts as the Born–Oppenheimer approximation [52] and

the dynamic quantum Zeno effect [53].

A remarkable feature of the reduction procedure is that it allows us to find a re-

lation between the ground-state energy of the 1D l.h.o. obtained after reduction and

the Pancharatnam phase. To put some flesh on the bones and to demonstrate the

mechanism at hand, we have resorted to a specific fundamental system of solutions.
The corresponding wave functions then proved to be, after reduction to those of a

simple 1D l.h.o., energy eigenstates and periodic with the period s, the latter being

connected with the reduced frequency of the original system. The reduced geometric

phase—Berry–Anandan phase—was then found to be directly proportional to the

ground-state energy of the 1D l.h.o. It was shown that the ground-state energy is

controlled by the Morse index affiliated with Bateman�s dual system (not with the

1D l.h.o. itself !). Finding a Lagrangian manifold and following its evolution in

phase-space, we were able to track down the number of focal points in the interval
ð0; sÞ and hence to identify the Morse index. It turned out that the ground-state en-

ergy thus acquired is different from the usual E0 ¼ �hX=2.
Finally, we remark that the reader may find some resonance of the method pre-

sented here with the results [54–56] which suggest that the quantum mechanical en-

ergy spectrum can be determined from purely classical quantities such as lengths and

stability indices of the periodic orbits alone. Whether or not this formal similarity

can go any further is definitely a challenging question which is being investigated

by the authors [17].
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Appendix A

It is useful to list some of the expressions of Section 2 as they look in ðx; yÞ coor-
dinates. The Lagrangian reads:
L ¼ m _x _y þ c
2
ðx _y � _xyÞ � jxy ¼ m

2
_x _xþ c

2
_x ^ x� j

2
xx; ðA:1Þ
where xa ¼ ðx; yÞ with the metric tensor gab ¼ ðr1Þab. The canonical momenta are
p ¼ m _x� 1

2
cr3x: ðA:2Þ
and the classical equations of motion can be written as
m€xcl þ cr3 _xcl þ jxcl ¼ 0: ðA:3Þ

Notice that if uðtÞ is a solution of (A.3) then r3uðtÞ, r1uð�tÞ, and ir2uð�tÞ are also

solutions.The Wronskian for the ðx; yÞ system is
W ðtÞ ¼ W ðt0Þ exp
�
�
Z t

t0

dtTr
c
m
r3

� ��
; ðA:4Þ
and the action reads
Scl½x� ¼
Z tb

ta

dt
m
2

d

dt
ðx _y

��
þ _xyÞ � x€y � €xy

�
þ c
2
ðx _y � _xyÞ � j

2
xy � j

2
xy
�

¼ m
2
ðx _y þ _xyÞjtbta �

Z tb

ta

dt
x

2
ðm€xþ cr3 _xþ jxÞ

¼ m
2
½xclðtbÞ _xclðtbÞ � xclðtaÞ _xclðtaÞ� ðA:5Þ
and more explicitly
Scl½x� ¼
m
2D

h
� ðx1aÞ

2 _B2
1ðtaÞ � ðx2aÞ

2 _B1
2ðtaÞ þ ðx1bÞ

2 _B2
3ðtbÞ

þ ðx2bÞ
2 _B1

4ðtbÞ � x1ax
2
a

_B1
1ðtaÞ

�
þ _B2

2ðtaÞ
�
þ x1bx

2
b

_B2
4ðtbÞ

�
þ _B1

3ðtbÞ
�

þ x1ax
1
b

_B2
1ðtbÞ

�
� _B2

3ðtaÞ
�
þ x1ax

2
b

_B1
1ðtbÞ

�
� _B2

4ðtaÞ
�

� x2ax
2
b

_B1
4ðtaÞ

�
� _B1

2ðtbÞ
�
þ x2ax

1
b

_B2
2ðtbÞ

�
� _B1

3ðtaÞ
�i

:

Finally, the fluctuation factor in ðx; yÞ coordinates is
F ½ta; tb� ¼
m

4p�hD

h
� _B2

1ðtbÞ _B2
2ðtbÞ

�
� _B2

3ðtaÞ _B2
2ðtbÞ � _B2

1ðtbÞ _B1
3ðtaÞ

þ _B2
3ðtaÞ _B1

3ðtaÞ þ _B1
4ðtaÞ _B1

1ðtbÞ � _B1
4ðtaÞ _B2

4ðtaÞ

� _B1
2ðtbÞ _B1

1ðtbÞ þ _B1
2ðtbÞ _B2

4ðtaÞ
�i1

2

¼ m
2p�h

ffiffiffiffiffi
W
D

r
: ðA:6Þ
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Notice that under transformation ðx1; x2Þ ! ðx; yÞ both W and D do not change.
Appendix B

We prove here that both Scl½x� and xclðtÞ are independent of the choice of the fun-
damental system. The proof can be done in two steps. First we show that both Scl½x�
and xcl do not depend on the scaling of ui and vi. Indeed, if we rescale, for example

u1 ! au1, then
Ua ! aUa; Vb ! Vb;

D1 ! D1; D2 ! aD2;

D3 ! aD3; D4 ! aD4:
Analogous relations are valid for other vectors. It is now simple to see that both Scl
and xcl remain unchanged under such a rescaling.

Second, we show that Scl and xcl remain unchanged under the substitution
u1 ! u1 þ au2 þ bv1 þ cv2; ðB:1Þ

where a, b, and c are arbitrary real constants. The previous substitution is possible to

achieve, for example, in successive steps:
u1 ! u1 þ bv1;

v1 ! v1 þ
c
b
v2;

v2 ! v2 þ
a
c
u2:
It may be directly seen that both Scl and xcl are invariant under each of the former

substitutions and so they are invariant with respect to (B.1), too. To see it more

explicitly let us perform, for instance, the substitution u1 ! u1 þ bv1, then
Ua ! Ua; Vb ! Vb;

D1 ! D1; D2 ! D2;

D4 ! D4; D3 ! D3 � bD1:
Plugging the previous substitution into (16), we get that xclðtÞ ! xclðtÞ. The same is

true for Scl as it might be directly seen from relations (14) and (A.5).

The previous two observations therefore lead us to the conclusion that Scl does
not depend on the particular choice of the fundamental system of solutions (express-

ible as a linear combination of ui and vi).
Appendix C

We derive here some relations used in Section 3.1. As we have mentioned in Sec-

tion 2.2, having one solution, say for ðx1; x2Þ coordinates, we can get another one if
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we multiply the original one by r3. So namely if one has the fundamental system of

solutions ðu1; u2; v1; v2Þ, one can generate another fundamental system

ðr3u1; r3u2; r3v1; r3v2Þ (it is simple to see that this is indeed a fundamental system

by looking at the Wronskian). Identical reasonings as in the Section 2.4 will lead

us to the result
xclðtÞ ¼
1

D
x1a

B2
2ðtÞ

B1
2ðtÞ

� ��
þ x2a

B2
1ðtÞ

B1
1ðtÞ

� �
þ x1b

B2
4ðtÞ

B1
4ðtÞ

� �
þ x2b

B2
3ðtÞ

B1
3ðtÞ

� ��
: ðC:1Þ
Comparing (C.1) with (18) we get the following useful identities:
B1
1ðtÞ ¼ B2

2ðtÞ; B2
1ðtÞ ¼ B1

2ðtÞ;
B1
3ðtÞ ¼ B2

4ðtÞ; B2
3ðtÞ ¼ B1

4ðtÞ:
ðC:2Þ
Similar analysis may be done with the fundamental systems ðr3u1ð�tÞ; r3u2
ð�tÞ;r3v1ð�tÞ; r3v2ð�tÞÞ and ðir2u1ð�tÞ; ir2u2ð�tÞ; ir2v1ð�tÞ; ir2v2ð�tÞÞ. In this case it

can be directly checked that we have
Bj
iðtÞ ¼ ð�1Þiþj Bj

ið�tÞ: ðC:3Þ

From the definition (20) and relations (C.2) we may observe that
d

dta
D ¼ 2 _B1

1ðtaÞ;
d

dtb
D ¼ 2 _B1

3ðtbÞ; ðC:4Þ
so namely
2
_B1
1ðtaÞ
D

¼ d

dta
lnD ¼ Tr D�1 d

dta
D

� �
; ðC:5Þ

2
_B1
3ðtbÞ
D

¼ d

dtb
lnD ¼ Tr D�1 d

dtb
D

� �
: ðC:6Þ
Here D ¼ detD. Because Dðta; tbÞ ¼ Dðtb � taÞ it fulfills the equation
dDðta; tbÞ
dta

þ dDðta; tbÞ
dtb

¼ 0;
and so we have the identity
_B1
1ðtaÞ ¼ � _B1

3ðtbÞ: ðC:7Þ
Appendix D

We prove here the relation (31). For this purpose it is simpler to work in the ðx; yÞ
coordinates. The kernel can be then constructed in analogous way as in ðx1; x2Þ co-
ordinate. A simple calculation shows that
Scl½r; u� ¼
m
2D

�
� r2a

2

dD
dta

þ r2b
2

dD
dtb

þ rarb eua�ub _B1
1ðtbÞ

�
þ eub�ua _B2

2ðtbÞ
��

; ðD:1Þ
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and that
_B1
1ðtbÞ _B2

2ðtbÞ ¼ WD:
The latter allows to identify
_B1
1ðtbÞ
D

¼
ffiffiffiffiffi
W
D

r
ea;

_B2
2ðtbÞ
D

¼
ffiffiffiffiffi
W
D

r
e�a:
This identification fixes a modulo ip and leads to the equation
a ¼ 1

2
ln

_B1
1ðtbÞ
_B2
2ðtbÞ

 !
: ðD:2Þ
In addition, from the symmetry reasonings result the following useful relations:
_B1
1ðtbÞ ¼ � _B2

4ðtaÞ; _B2
2ðtbÞ ¼ � _B1

3ðtaÞ:

Let us now consider _B1

1ðtbÞ. Its explicit structure reads
_B1
1ðtbÞ ¼

_u11ðtbÞ _u12ðtbÞ _v11ðtbÞ _v12ðtbÞ
u21ðtaÞ u22ðtaÞ v21ðtaÞ v22ðtaÞ
u1ðtbÞ u2ðtbÞ v1ðtbÞ v2ðtbÞ

������
������: ðD:3Þ
Rules for differentiation of determinants tell that _B1
1ðtbÞ fulfills the equation
d2

dt2a
_B1
1ðtbÞ �

c
m

d

dta
_B1
1ðtbÞ þ

j
m

_B1
1ðtbÞ ¼ 0; ðD:4Þ
with the boundary condition _B1
1ðtbÞjta¼tb

¼ 0. The general solution of (D.4) reads
_B1
1ðtbÞ ¼ eCðtaÞ eiXta f ðtbÞ

�
þ e�iXta~f ðtbÞ

�
: ðD:5Þ
Here f and ~f are some functions of tb. Applying the boundary condition we get
_B1
1ðtbÞ ¼ C e�Cðtb�taÞ sinXðtb � taÞ; ðD:6Þ
with C being a constant. The result is clearly the only one which is compatible with

the differential equation for _B2
4ðtaÞ (¼ � _B1

1ðtbÞ):
d2

dt2b
_B2
4ðtaÞ þ

c
m

d

dtb
_B2
4ðtaÞ þ

j
m

_B2
4ðtaÞ ¼ 0; ðD:7Þ
fulfilling the boundary condition _B2
4ðtaÞjtb¼ta

¼ 0.

The same reasonings can be now applied on _B2
2ðtbÞ. The latter fulfills the differen-

tial equation
d2

dt2a
_B2
2ðtbÞ þ

c
m

d

dta
_B2
2ðtbÞ þ

j
m

_B2
2ðtbÞ ¼ 0; ðD:8Þ
with the boundary condition _B2
2ðtbÞjta¼tb

¼ 0. The solution is
_B2ðtbÞ ¼ ~CeCðtb�taÞ sinXðtb � taÞ; ðD:9Þ
2
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with ~C being a constant. The result is the only one which is compatible with the

differential equation for _B1
3ðtaÞ (¼ � _B2

2ðtbÞ):
d2

dt2b
_B1
3ðtaÞ �

c
m

d

dtb
_B1
3ðtaÞ þ

j
m

_B1
3ðtaÞ ¼ 0; ðD:10Þ
fulfilling the boundary condition _B1
3ðtaÞjtb¼ta

¼ 0.

Gathering the results (D.2), (D.6), and (D.9) together we obtain
aðta; tbÞ ¼ Cðta � tbÞ þ lnC � ln ~C; ðD:11Þ

modulo ip. Using l�Hopital rule one may persuade oneself that limta!tb j _B2

2ðtbÞ
= _B1

1ðtbÞj ¼ jC=~Cj ¼ 1. Thus, lnC � ln ~C is either zero or purely imaginary.
Appendix E

Let us first emphasize that the formulation of a time reversal transformation must
avoid using properties of the forces or interactions that determine the dynamics, be-

cause it is the transformation properties of the dynamic equations which we seek to

determine. The latter is the crux often overlooked by many authors. Since the kine-

matics are those properties of the motion that are independent of the dynamics, we

require that the ‘‘admissible’’ time-reversal transformation should be formulated in

kinematic terms. This means that the time-reversal transformation must be consis-

tent with the algebraic structure of the operators representing the (kinematic) observ-

ables and that in the absence of forces or interactions (i.e., in the absence of causal
effects), the dynamic equations must be left invariant.

In our case the kinematic observables may be taken to be xa and P a (note that

P ¼ m _x are the kinetic momenta and not the full canonical momenta (11)). Working

in ðx1; x2Þ coordinates, the algebraic structure is then determined by the Heisenberg–

Weyl group
½xa; P b� ¼ i�hðr3Þab; ½x; r3� ¼ ½P; r3� ¼ 0; ðE:1Þ

On the other hand, if Ĥ0 is the Hamiltonian in the absence of interaction (c ¼ 0), the

dynamic (Schr€odinger) equation
i�h
d

dt
jwðtÞi ¼ Ĥ0jwðtÞi; ðE:2Þ
must transform under time reversal T into
i�h
d

dt0
jw0ðt0Þi ¼ Ĥ0jw0ðt0Þi; ðE:3Þ
where t0 ¼ �t. Applying T to both sides of Eq. (E.2) we obtain
T iT �1�h
d

dt
jw0ðt0Þi ¼ T Ĥ0T �1jw0ðt0Þi: ðE:4Þ
Comparing (E.4) with (E.3) and using the requirement that Ĥ0 is invariant under

time reversal we obtain the relation: T iT �1 ¼ �i. Invoking Wigner�s theorem [34],
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the latter implies that T must be antiunitary and thus may be written as T ¼ UK
with K being the complex conjugation operator and U being some unitary operator.

At the same time, in accordance with the classical conditions, time reversal re-

quires that
xT ¼ Bx; PT ¼ �BP: ðE:5Þ

The matrix B is supposed to leave Ĥ0 invariant under the time reversal. This means

that Btðr3ÞB ¼ r3 and B2 ¼ 1 (i.e., time reversal when repeated must restore the

original situation). So B must be part of a discrete (two-element) subgroup of

Oð1; 1;RÞ (i.e., the real Lorentz group in the plane). It is well known that the only
matrices fulfilling the above conditions are �1 and �r3.

To decide the form of B we use the fact that Ĥ0 is invariant under Oð1; 1;RÞ. This
means that x and P transform under Oð1; 1;RÞ in the usual manner, i.e.,
x0 ¼ UðeÞxU�1ðeÞ ¼ GðeÞx;
P0 ¼ UðeÞPU�1ðeÞ ¼ GðeÞP;

ðE:6Þ
where UðeÞ is a unitary representation of Oð1; 1;RÞ in the state space and GðeÞ is an
element of Oð1; 1;RÞ in 2-dimensional vector space. As a result, the following rela-
tion must hold for any G 2 Oð1; 1;RÞ:
UT xT �1U�1 ¼ UxT U
�1 ¼ GxT ¼ GBx: ðE:7Þ
However, the very same relation may be recast in a slightly different form, namely
UT xT �1U�1 ¼ UBxU�1 ¼ UBU�1Gx ¼ GtBG2x: ðE:8Þ

Comparing both (E.7) and (E.8) we get that GB ¼ GtBG2. As this must be true for

all G 2 Oð1; 1;RÞ, we can choose
GðeÞ ¼ expðer1Þ ¼ coshðeÞ þ sinhðeÞr1: ðE:9Þ

It is then obvious that the case B ¼ �1 is ruled out and we are left with B ¼ �r3.

However, the ‘‘+’’ sign is the only plausible one. This is because the signature of the

time reversal should be preserved under continuous change of coordinates and so

namely when we shrink the x2 coordinate into the origin (i.e., perform a dimensional

reduction) x1 coordinate must behave under time reversal as in ordinary 1D l.h.o.
As a upshot of the performed analysis we have the following transformations:
x ! xT ¼ T xT �1 ¼ r3x;

p ! p
T
¼ T pT �1 ¼ �r3p;

r ! rT ¼ T rT �1 ¼ r;

u ! uT ¼ T uT �1 ¼ �u;

ðE:10Þ
(here p are full, i.e., canonical momenta). Similarly, we find that
T AT �1 ¼ �A; T BT �1 ¼ B;

T JþT �1 ¼ �Jþ; T J�T �1 ¼ �J�;

T J1T �1 ¼ �J1; T J3T �1 ¼ J3;

ðE:11Þ
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and the time-reversed commutation relations
xa
T
; pb

T

h i
¼ �i�hðr3Þab; ½xT ; r3� ¼ ½p

T
; r3� ¼ 0: ðE:12Þ
Transformation rules (E.10) or (E.11) assert that
TCT �1 ¼ C; T J2T �1 ¼ J2: ðE:13Þ

We thus finally arrive at the conclusion that T ĤT �1 ¼ Ĥ . The latter is not actually
compatible with the time reversal presented in [11], where B ¼ 1 was incorrectly

assumed.
Appendix F

Using the fact that SUð1; 1Þ ladder operators are Jþ and J� and the SUð1; 1Þ vac-
uum state is the state jj; jjji (i.e., J� jj; jjji ¼ 0), we may write [35]:
jws
n;li ¼

1ffiffiffi
2

p
� �2jjjþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jjjÞ!ðm� jjjÞ!

ðmþ jjjÞ!

s
L2jjj
m�jjj

�
� Jþ

2

�
j1ii;

j ¼ nþ l
2
þ 1

2
; m ¼ l

2
� 1

2
:

ðF:1Þ
Here jzii ¼ expðzJþÞ jj; jjji is the (unnormalized) coherent state of SUð1; 1Þ [35]
(which can be identified with the Gelfand–Neimark z-basis [39]).

In deriving Eq. (F.1) we have employed (76) together with the ‘‘annihilation’’ and

‘‘creation’’ relations
ðJ�Þkjj;mi ¼ aj;m;k jj;m� ki; m� kP jjj
¼ 0; m� k6 jjj;

ðJþÞkjj;mi ¼ bj;m;k jj;mþ ki;
ðF:2Þ
where
aj;m;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� jÞ!ðmþ jÞ!

ðm� j� kÞ!ðmþ j� kÞ!

s
;

bj;m;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ k þ jÞ!ðmþ k � jÞ!

ðmþ jÞ!ðm� jÞ!

s
:

Note that ðJþJ�Þ jj;mi ¼ m2 � j2ð Þjj;mi. Form (F.1) suggests that the state jws
n;li can

be alternatively interpreted as an excited SUð1; 1Þ coherent state j1ii. Because La
nðxÞ is

a polynomial of n-th order in x, the relation (F.1) asserts that there is up to ðm� jjjÞ
new ‘‘SUð1; 1Þ excitations’’ condensed into the coherent state j1ii.
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