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Abstract

�t Hooft�s derivation of quantum from classical physics is analyzed by means of the classical path
integral of Gozzi et al. It is shown how the key element of this procedure—the loss of information
constraint—can be implemented by means of Faddeev–Jackiw�s treatment of constrained systems. It
is argued that the emergent quantum systems are identical with systems obtained in Blasone et al.
[Phys. Rev. A71 (2005) 052507] through Dirac–Bergmann�s analysis. We illustrate our approach with
two simple examples—free particle and linear harmonic oscillator. Potential Liouville anomalies are
shown to be absent.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The idea of quantum mechanics as the low-energy limit of some more fundamental
deterministic dynamics [1,2] has been revived recently by �t Hooft [3,4], in the attempt
for a radical solution of the so-called holographic paradox, originally formulated in the
context of black-hole thermodynamics [5,6].
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There is a widespread negative attitude towards the possibility of deriving quantum
from classical physics which relies on Bell�s inequalities [7]. However, although being clear
that quantum mechanics at laboratory scales violates these inequalities, a common preju-
dice is that Bell�s theorem should be true at all scales. As observed by �t Hooft [3], this need
not be the case because some premisses on which the usual forms of the Bell inequalities
are based may cease to hold at Planck scale.

By resorting to simple dynamical systems, �t Hooft has shown that an appropriate con-
straining procedure applied to the deterministic system, can reduce the physical degrees of
freedom so that quantum mechanics emerges. Such a reduction of the degrees of freedom
may be physically implemented by a mechanism of information loss (dissipation). This
idea has been further developed by several authors [4,8–13], and it forms the basis also
of this paper.

Our aim was to study �t Hooft�s quantization procedure by means of path integrals,
along the line of what done in our previous work [8]. However, in contrast to [8] here
we treat �t Hooft�s constrained dynamics by means of the Faddeev–Jackiw technique
[14]. The constrained dynamics enters into �t Hooft�s scheme twice: first, in the classical
starting Hamiltonian which is of first order in the momenta and thus singular in the Dir-
ac–Bergmann sense [15]. Second, in the information loss condition that one has to enforce
to achieve quantization [8]. In our previous paper [8], we have adopted the customary Dir-
ac–Bergmann technique, which is often cumbersome. Here, we want to point out the sim-
plifications arising from the alternative Faddeev–Jackiw method, which turns out to admit
a clearer exposition of the basic concepts.

The paper is organized as follows: In Section 2, we briefly discuss the main features of
�t Hooft�s scheme. By utilizing the Faddeev–Jackiw procedure, we present in Section 3 a
Lagrangian formulation of �t Hooft�s system, which allows us to quantize �t Hooft�s system
via path integrals in configuration space. It is shown that the fluctuating system produces a
classical partition function. In Section 4, we make contact with Gozzi�s superspace path
integral formulation of classical mechanics. In Section 5, we introduce �t Hooft�s constraint
which accounts for information loss. This is again handled by means of Faddeev–Jackiw
analysis. Central to this analysis is the fact that �t Hooft�s condition breaks the BRST sym-
metry and allows to recast the classical generating functional into a form representing a
genuine quantum-mechanical partition function. In Section 6, we present two simple
applications of our formalism. Associated technical details of the anomaly cancellation
are relegated to Appendix A. A final discussion is given in Section 7.

2. �t Hooft�s quantization procedure

In this section, we briefly review the main aspects of �t Hooft�s quantization procedure
[4,12] to be used in this work. The basic idea is that there exists a simple class of classical
systems that can be described by means of Hilbert space techniques without loosing their
deterministic character. Only after enforcing certain constraints expressing information
loss, one obtains bona fide quantum systems. Thus, the quantum states of actually
observed degrees of freedom (observables) can be identified with equivalence classes of
states that span the original (primordial) Hilbert space of truly existing degrees of freedom
(be-ables).

Such a scheme is realized in certain model quantum cases where one may indeed
identify the primordial systems of be-ables that are entirely deterministic. In discrete-time
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systems, this scenario has been successfully applied, e.g., to cellular automata with embed-
ded information loss [3] where the equivalence classes were invoked to obtain a unitary
evolution operator with a genuine quantum mechanical Hamiltonian. Further examples
of discrete-time systems can be found, e.g., in [9,13].

In the continuous cases the equivalence classes are tightly linked with the loss of informa-
tion condition—that is represented by a suitably chosen first class primary constraint—and
ensuing gauge freedom.As only the continuous times will be of concern here let us briefly ad-
dress the key points thereof. We begin by observing that classical systems of the form

Hðp; qÞ ¼ f aðqÞpa ð1Þ
with repeated indices summed, evolve deterministically even after quantization [12]. This
happens since in the Hamiltonian equations of motion

_qa ¼ fqa;Hg ¼ f aðqÞ; ð2Þ

_pa ¼ fpa;Hg ¼ �pa
of aðqÞ
oqa

; ð3Þ

the equation for the qa does not contain pa, making the qa be-ables. Because of the auton-
omous character of the dynamical equations (2) we can always decide to define a formal
Hilbert space spanned by the states {jqæ}, and define the associated momenta
p̂a ¼ �io=oqa. The quantum mechanical ‘‘Hamiltonian’’ generating (2) is then
Ĥ ¼ f aðq̂Þp̂a. Indeed, due to linearity of Ĥ in p̂a we have that q̂aðt þ DtÞ ¼ F a½q̂ðtÞ;Dt�
(Fa is some function) and hence ½q̂aðtÞ; q̂bðt0Þ� ¼ 0 for any t and t 0. This in turn implies that
the Heisenberg equation of the motion for q̂aðtÞ in the q-representation is identical with the
c-number dynamical equation (2).

The basic physical problem with systems described by the Hamiltonian (1) is that they
are not bounded from below. This defect can be repaired in the following way [12]: Let
qðq̂Þ be some positive function of q̂a with ½q̂; Ĥ � ¼ 0. Then, we perform splitting

Ĥ ¼ Ĥþ � Ĥ�; Ĥþ ¼ 1

4
q̂�1 q̂þ Ĥ

� �2
; Ĥ� ¼ 1

4
q̂�1 q̂� Ĥ

� �2
; ð4Þ

where Ĥþ and Ĥ� are positive definite operators satisfying

½Ĥþ; Ĥ�� ¼ ½q̂; Ĥ � ¼ 0. ð5Þ
We may now employ the Dirac canonical quantization of constrained systems and enforce
a lower bound upon the Hamiltonian by imposing the restriction

Ĥ�jwi ¼ 0 ð6Þ
on the Hilbert space of be-ables. The resulting physical state space, i.e. the space of observ-
ables has the energy eigenvalues that are trivially positive owing to

Ĥ jwi ¼ Ĥþjwi ¼ q̂jwi. ð7Þ
Concomitantly, in the Schrödinger picture the equation of motion

d

dt
jwti ¼ �iĤþjwti ð8Þ

has only positive frequencies on physical states. Note that due to condition (5) �t Hooft�s
constraint (6) is a first class constraint. It is well known in the theory of constrained
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dynamics [17] that first class conditions generate gauge transformation and thus not only
restrict the full Hilbert space but also produce equivalence classes of states. It should be
noticed that above equivalence classes are generally non-local, in the sense that two
states belong to the same class if they can be transformed into each other by gauge
transformation with the generator Ĥ�. If, in addition, the ensuing fiber bundle structure
is non-trivial one may encounter signatures of this through the emergence of geometric
phases.

�t Hooft proposed in [12] that in cases when the dynamical equations (2) describe the
configuration-space chaotic dynamical system, the equivalent classes could be related to
its stable orbits (e.g., limit cycles). The mechanism responsible for clustering of trajectories
to equivalence classes was identified by �t Hooft as information loss—after while one can-
not retrace back the initial conditions of a given trajectory, one can only say at what
attractive trajectory it will end up. As the mechanism of equivalent classes is embodied
in Eq. (6) we shall henceforth refer to it as information loss condition. Applications of
the the outlined ‘‘canonical’’ scenario were given, e.g., in [13].

As Feynman�s path integrals represent a legitimate alternative to canonical quantiza-
tion it is intriguing to formulate �t Hooft�s procedure in the language of path integrals.
Apart from the fact that path integrals have a close proximity to classical physics, they
have also the additional advantage that they can incorporate constraints in a straightfor-
ward manner. In this respect, the Faddeev–Jackiw treatment of constrained systems is an
interesting option which we are going to explore in the following.

3. Path integral quantization of �t Hooft�s system

We now consider the path integral quantization [16] of the class of systems described by
Hamiltonians of the type (1). Because of the absence of a leading kinetic term quadratic in
the momenta pa, the system can be viewed as singular and the ensuing quantization can be
achieved through some standard technique for quantization of constrained systems.

Particularly convenient is the technique proposed by Faddeev and Jackiw [14]. There
one starts by observing that a Lagrangian for �t Hooft�s equations of motion (2) and (3)
can be simply taken as

Lðq; _q; p; _pÞ ¼ p � _q� Hðp; qÞ; ð9Þ
with q and p being Lagrangian variables (in contrast to phase space variables). Note that L
does not depend on _p. It is easily verified that the Euler–Lagrange equations for the
Lagrangian (9) indeed coincide with the Hamiltonian equations (2) and (3). Thus given
�t Hooft�s Hamiltonian (1) one can always construct a first-order Lagrangian (9) whose
configuration space coincides with the Hamiltonian phase space. By defining 2N configu-
ration-space coordinates as

na ¼ pa; a ¼ 1; . . . ;N ;

na ¼ qa; a ¼ N þ 1; . . . ; 2N ;
ð10Þ

the Lagrangian (9) can be cast into the more expedient form, namely (summation conven-
tion understood)

Lðn; _nÞ ¼ 1

2
naxab

_n
b � HðnÞ. ð11Þ



472 M. Blasone et al. / Annals of Physics 320 (2005) 468–486
Here, x is the 2N · 2N symplectic matrix

xab ¼
0 I

�I 0

� �
ab

; ð12Þ

which has an inverse x�1
ab � xab. The equations of the motion read

_n
a ¼ xab oHðnÞ

onb
; ð13Þ

indicating that there are no constraints on n. Thus, the Faddeev–Jackiw procedure makes
the system unconstrained, so that the path integral quantization may proceed in the stan-
dard way. The time evolution amplitude is simply [16]

hn2; t2jn1; t1i ¼ N

Z nðt2Þ¼n2

nðt1Þ¼n1

Dn exp
i

�h

Z t2

t1

dt Lðn; _nÞ
� �

; ð14Þ

where N is some normalization factor, and the measure can be rewritten as

N

Z nðt2Þ¼n2

nðt1Þ¼n1

Dn ¼ N

Z qðt2Þ¼q2

qðt1Þ¼q1

DqDp. ð15Þ

Since the Lagrangian (9) is linear in p, we may integrate these variables out and obtain

hq2; t2jq1; t1i ¼ N

Z qðt2Þ¼q2

qðt1Þ¼q1

Dq
Y
a

d½ _qa � f aðqÞ�; ð16Þ

where d [f] ” �td(f(t)) is the functional version of Dirac�s d-function. Hence, the system de-
scribed by the Hamiltonian (1) retains its deterministic character even after quantization.
The paths are squeezed onto the classical trajectories determined by the differential equa-
tions _q ¼ f ðqÞ. The time evolution amplitude (16) contains a sum over only the classical
trajectories—there are no quantum fluctuations driving the system away from the classical
paths, which is precisely what should be expected from a deterministic dynamics.

The amplitude (16) can be brought into more intuitive form by utilizing the identity

d f ðqÞ � _q½ � ¼ d½q� qcl�ðdetMÞ�1
; ð17Þ

where M is a functional matrix formed by the second functional derivatives of the action
A½n� �

R
dt Lðn; _nÞ:

Mabðt; t0Þ ¼
d2A

dnaðtÞdnbðt0Þ

����
q¼qcl

. ð18Þ

The Morse index theorem ensures that for sufficiently short time intervals t2�t1 (before the
system reaches its first focal point), the classical solution with the initial condition
q (t1) = q1 is unique. In such a case, Eq. (16) can be brought to the form

hq2; t2jq1; t1i ¼ ~N

Z qðt2Þ¼q2

qðt1Þ¼q1

Dqd q� qcl½ �; ð19Þ

with ~N � N =ðdetMÞ. Remarkably, the Faddeev–Jackiw treatment bypasses completely
the discussion of constraints, in contrast with the conventional Dirac–Bergmann method
[15,17] where 2N (spurious) second-class primary constraints must be introduced to deal
with �t Hooft�s system, as done in [8].
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4. Emergent SUSY—signature of classicality

We now turn to an interesting implication of the result (19). If we had started in Eq.
(16) with an external current

~Lðn; _nÞ ¼ Lðn; _nÞ þ i�hJ � q; ð20Þ

integrated again over p, and took the trace over q, we would end up with a generating
functional

ZCM½J� ¼ ~N

Z
Dqd½q� qcl� exp

Z t2

t1

dtJ � q
� �

. ð21Þ

This coincides with the path integral formulation of classical mechanics postulated by
Gozzi et al. [18,19]. The same representation can be derived from the classical limit of a
closed-time path integral for the transition probabilities of a quantum particle in a heat
bath [8,16]. The path integral (21) has an interesting mathematical structure. We may re-
write it as.

ZCM½J� ¼ ~N

Z
Dqd

dA
dq

� �
det

d2A
dqaðtÞqbðt0Þ

����
���� exp

Z t2

t1

dtJ � q
� �

. ð22Þ

By representing the delta functional in the usual way as a functional Fourier integral

d
dA
dq

� �
¼

Z
Dk exp i

Z t2

t1

dtkðtÞ dA
dqðtÞ

� �

and the functional determinant as a functional integral over two real time-dependent
Grassmannian ghost variables ca (t) and �caðtÞ,

det
d2A

dqaðtÞdqbðt0Þ

����
���� ¼

Z
DcD�c exp

Z t2

t1

dtdt0�caðtÞ
d2A

dqaðtÞdqbðt0Þ cbðt
0Þ

� �
;

we obtain

ZCM½J� ¼
Z

DqDkDcD�c exp iS þ
Z t2

t1

dtJ � q
� �

; ð23Þ

with the new action

S½q;�c; c; k� �
Z t2

t1

dtkðtÞ dA
dqðtÞ � i

Z t2

t1

dt
Z t2

t1

dt0�caðtÞ
d2A

dqaðtÞdqbðt0Þ cbðt0Þ. ð24Þ

Since ZCM½J� can be derived from the classical limit of a closed-time path integral for the
transition probability, it comes to no surprise that S exhibits BRST (and anti-BRST) sym-
metry. It is simple to check [8] that S does not change under the symmetry transformations

dBRSTq ¼ �ec; dBRST�c ¼ �i�ek; dBRSTc ¼ 0; dBRSTk ¼ 0; ð25Þ
where �e is a Grassmann-valued parameter (the corresponding anti-BRST transformations
are related to (25) by charge conjugation). As noted in [19], the ghost fields �c and c are
mandatory at the classical level as their rôle is to cut off the fluctuations perpendicular

to the classical trajectories. On the formal side, �c and c may be identified with Jacobi fields



474 M. Blasone et al. / Annals of Physics 320 (2005) 468–486
[19,20]. The corresponding BRST charges are related to Poincaré–Cartan integral invari-
ants [21].

By analogy with the stochastic quantization the path integral (23) can be rewritten in a
compact form with the help of a superfield [16,18,22]

Uaðt; h; �hÞ ¼ qaðtÞ þ ihcaðtÞ � i�h�caðtÞ þ i�hhkaðtÞ; ð26Þ
in which h and �h are anticommuting coordinates extending the configuration space of q
variables to a superspace. The latter is nothing but the degenerate case of supersymmetric
field theory in d = 1 in the superspace formalism of Salam and Strathdee [23]. In terms of
superspace variables we see thatZ

d�hdhA½U� ¼
Z

dtd�hdhLðqðtÞ þ ihcðtÞ � i�h�cðtÞ þ i�hhkðtÞÞ ¼ �iS ð27Þ

To obtain the last line we Taylor expanded L and used the standard integration rules for
Grassmann variables. Together with the identity DU ¼ DqDcD�cDk we may therefore ex-
press the classical partition functions (21) and (22) as a supersymmetric path integral with
fully fluctuating paths in superspace

ZCM½J � ¼
Z

DU exp �
Z

dhd�hA½U�ðh; �hÞ
� 	

exp

Z
dtdhd�hCðt; h; �hÞUðt; h; �hÞ

� 	
.

Here, we have introduced the supercurrent Cðt; h; �hÞ ¼ �hhJðtÞ.
Let us finally add that under rather general assumptions it is possible to prove [8] that

�t Hooft�s deterministic systems are the only systems with the peculiar property that their
full quantum properties are classical in the Gozzi et al. sense. Among others, the latter also
indicates that the Koopman–von Neumann operator formulation of classical mechanics
[24] when applied to �t Hooft systems must agree with their canonically quantized coun-
terparts.

5. Inclusion of information loss

As observed in Section 2, the Hamiltonian (1) is not bounded from below, and this is
clearly true for any function fa (q). Hence, no deterministic system with dynamical equa-
tions _qa ¼ f aðqÞ can describe a stable quantum world. To deal with this situation we
now employ �t Hooft�s procedure of Section 2. We assume that the system (1) has n con-
served irreducible charges Ci, i.e.,

fCi;Hg ¼ 0; i ¼ 1; . . . ; n. ð28Þ
Then, we enforce a lower bound upon H, by imposing the condition that H� is zero on the
physically accessible part of a phase space.

The splitting of H into H� and H+ is conserved in time provided that
{H�,H} = {H+,H} = 0, which is ensured if {H+,H�} = 0. Since the charges Ci in (28)
form an irreducible set, the Hamiltonians H+ and H� must be functions of the charges
and H itself. There is a certain amount of flexibility in finding H� and H+. For conve-
nience take the following choice:

Hþ ¼ ðH þ aiC
iÞ2

4aiC
i ; H� ¼ ðH � aiC

iÞ2

4aiC
i ; ð29Þ
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where ai (t) are q and p independent. The lower bound is reached by choosing ai (t)C
i to be

non-negative. We shall select a combination of Ci which is p-independent [this condition
may not necessarily be achievable for general fa (q)].

In the Dirac–Bergmann quantization approach used in our previous paper [8], the
information loss condition (6) was a first class primary constraint. In the Dirac–Bergmann
analysis, this signals the presence of a gauge freedom—the associated Lagrange multipliers
cannot be determined from dynamical equations alone [15]. The time evolution of obser-
vable quantities, however, should not be affected by the arbitrariness of Lagrange multi-
pliers. To remove this superfluous freedom, one must choose a gauge. For details of this
more complicated procedure see [8].

In the Faddeev–Jackiw approach, Dirac�s elaborate classification of constraints to first
or second class, primary or secondary is avoided. It is therefore worthwhile to rephrase the
entire development in [8] once more in this approach. The information loss condition may
now be introduced by simply adding to the Lagrangian (11) a term enforcing

H�ðnÞ ¼ 0 ð30Þ
by means of a Lagrange multiplier. More in general we can take instead of H� any func-
tion / (n), such that / (n) = 0 implies H�(n) = 0. In this way, we obtain

Lðn; _nÞ ¼ 1
2
naxab

_n
b � HðnÞ � g/ðnÞ. ð31Þ

In Faddeev–Jackiw method, one directly applies the constraint and thus eliminates one of
na, say n1, in terms of the remaining coordinates. This reduces the dynamical variables to
2N � 1. Apart from an irrelevant total derivative, the canonical term naxab

_n
b
changes to

nif ijðn̂Þ _n
j
, with

f ijðn̂Þ ¼ xij � x1i
on1

onj
� ði $ jÞ

� �
. ð32Þ

Here, i, j = 2, . . ., 2N, and n̂ ¼ fn2; . . . ; n2Ng. Eliminating n1 also in the Hamiltonian H we
obtain the reduced Hamiltonian HRðn̂Þ, so that we are left with the reduced Lagrangian

LRðn̂; _̂nÞ ¼ 1
2
nif ijðn̂Þ _n

j � HRðn̂Þ. ð33Þ

At this point one must worry about the notorious operator-ordering problem, not know-
ing in which temporal order n̂ and

_̂
n must be taken in the kinetic term. A path integral in

which the kinetic term is coordinate-dependent can in general only be defined perturbat-
ively, in which all anharmonic terms are treated as interactions. The partition function is
expanded in powers of expectation values of products of these interactions which, in turn,
are expanded into integrals over all Wick contractions, the Feynman integrals. Each con-
traction represents a Green function. For the Lagrangian of the form (33), the contrac-
tions of two ni�s contain a Heaviside step function, those of one ni and one _ni contain a
Dirac d-function, and those of two _ni�s contain a function _dðt � t0Þ. Thus, the Feynman
integrals run over products of distributions and are mathematically undefined. Fortunate-
ly, a unique definition has recently been found. It is enforced by the necessary physical
requirement that path integrals must be invariant under coordinate transformations [25].

The Lagrangian is processed further with the help of Darboux�s theorem [26]. This al-
lows us to perform a non-canonical transformation ni 7!ðfs; zrÞ which brings LR to the
canonical form
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LRðf; _f; zÞ ¼ 1
2
fsxst

_f
t � H 0

Rðf; zÞ; ð34Þ

where xst is the canonical symplectic matrix in the reduced s-dimensional space. Dar-
boux�s theorem ensures that such a transformation exists at least locally. The variables
zr are related to zero modes of the matrix f ijðn̂Þ which makes it non-invertible. Each
zero mode corresponds to a constraint of the system. In Dirac�s language these would
correspond to the secondary constraints. Since there is no _zr in the Lagrangian, the
variables zr do not play any dynamical role and can be eliminated using the equations
of motion

oH 0
Rðf; zÞ
ozr

¼ 0. ð35Þ

In general, H 0
Rðf; zÞ is a nonlinear function of zr1 . One now solves as many zr1 as possible in

terms of remaining z�s, which we label by zr2 , i.e.,

zr1 ¼ ur1ðf; zr2Þ. ð36Þ
If H 0

Rðf; zÞ happens to be linear in zr2 , we obtain the constraints

ur2ðfÞ ¼ 0. ð37Þ

Inserting the constraints (36) into (34) we obtain

LRðf; _f; zÞ ¼ 1
2
fsxst

_f
t � H 00

RðfÞ � zr2ur2ðfÞ; ð38Þ

with zr2 playing the rôle of Lagrange multipliers. We now repeat the elimination procedure
until there are no more z-variables. The surviving variables represent the true physical de-
grees of freedom. In the Dirac–Bergmann approach, these would span the reduced phase
space C*.

Let us follow the procedure in more detail if there is just one variable z in (35) and only
Eq. (36) holds. As in [8], we can pass to the new set of canonical variables n ´ (f, z, pz)
with pz = /. Let us define the function

vðf; zÞ � oH 0
Rðf; zÞ
oz

¼ oHþðn1ðn̂Þ; n̂Þ
oz

¼ fHþ;/gjpz¼0 ¼ 0. ð39Þ

Its derivative is given by the Poisson bracket

ovðf; zÞ
oz

¼ fvðf; zÞ; pzg ¼ fv;/g 6¼ 0. ð40Þ

Because (40) is different from zero on account of (36) we can identify the function v (f,z)
with the implicit gauge fixing condition of the Faddeev–Jackiw analysis.

Let us now see how we can include the constraints (30) and (39) into the path integral
(21) for ZCM½J�. This cannot simply be done by inserting d-functionals d[/] and d[v] into
the integrand, since / and v may not be independent. Allowing for this, the path integral
reads (see [8])

ZCM½J � ¼
Z

Dnd½/�d½v�j det kf/; vgkj exp i

Z tf

ti

dt Lðn; _nÞ þ
Z tf

ti

dtJn
� �

. ð41Þ

Assuming that n1 can be eliminated globally from (31), we obtain
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ZCM½J� ¼
Z

Dn̂d½v�jdetkf/;vgkj det d/

dn1












����
����
�1

n1¼n1ðn̂Þ
exp i

Z tf

ti

dtLRðn̂; _̂nÞþ
Z tf

ti

dtJgðn̂Þ
� �

.

ð42Þ

After the Darboux transformation, this becomes

ZCM½J� ¼
Z

DfDzd½z� uðfÞ� exp i

Z tf

ti

dt LRðf; _f; zÞ þ
Z tf

ti

dtJgðf; zÞ
� �

; ð43Þ

where we have used the functional relation

d½v�jdet kf/; vgkj ¼ d
dHþ

dz

� �
det

d2Hþ

dzðtÞdzðt0Þ












����
���� ¼ d½z� uðfÞ�; ð44Þ

together with Jacobi–Liouville equality

oðn2; . . . ; n2N Þ
oðf1; . . . ; f2N�2; zÞ

¼ oðn2; . . . ; n2N ; pzÞ
oðf1; . . . ; f2N�2; z; pzÞ

oðf1; . . . ; f2N�2; z; pzÞ
oðn2; . . . ; n2N ; n1Þ

¼ opz
on1

� �
n̂

¼ o/

on1

� �
n1¼n1ðn̂Þ

. ð45Þ

With the notation H �
þðfÞ ¼ Hþðf; z ¼ uðfÞ; pz ¼ 0Þ, this can be rewritten as

ZCM½J� ¼
Z

Df exp i

Z tf

ti

dt ftxts
_f
s

� �
exp �i

Z tf

ti

dtH �
þðfÞ þ

Z tf

ti

dtJg�ðfÞ
� �

. ð46Þ

At this point we note that the result (46) is equivalent to the result derived in [8]. In fact,
when v in [8] coincides with the the form (39) and we set f ¼ ð�Q; �PÞ, z = Q1, and pz = P1,
then ZCM½J � from [8] reduces exactly to the form (46). In general cases, however, the gauge
fixing condition of the Dirac–Bergmann procedure can be chosen in a different way with
respect to the natural choice implicit in the Faddeev–Jackiw analysis. In such a situation
the resulting reduced Lagrangians do not coincide but are connected via a canonical trans-
formation.

Important simplification happens when H 0
R is independent of z (e.g., when / = H�).

In Dirac–Bergmann�s language this indicates that there is no secondary constraint. In
such a case the gauge fixing can be enforced by choosing v = z (see Faddeev in [27]),
and the procedure outlined in steps (41)–(46) is streamlined by the fact that |deti{/,
v}i| = 1. The corresponding coordinate basis {f,v,/} is known as the Shouten–Eisen-
hart basis [17].

6. Examples of emergent quantum systems

6.1. Free particle

We conclude our presentation by exhibiting how our quantization method works for a
simple system described by �t Hooft�s Hamiltonian

Hðq; pÞ ¼ xpy � ypx. ð47Þ
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Formally, this represents the z component of the angular momentum, whose spectrum is
unbounded from below. Alternatively, one can regard (47) as describing the mathematical
pendulum. This is because the corresponding dynamical equation (2) for q is a plane pen-
dulum equation with the pendulum constant l/g = 1. The Lagrangian (9) then reads

Lðq; _q; p; _pÞ ¼ px _xþ py _y � xpy þ ypx. ð48Þ

Here, indeed, the L is _p-independent, as discussed in Section 3. It is well known [28] that
the system (47) has two independent constants of motion—the Casimir functions:

C1 ¼ x2 þ y2; C2 ¼ xpx þ ypy . ð49Þ

Only C1 is p-independent, so that �t Hooft�s constraint q (q) acquires the form:
q (q) = a1C1 (q), with the constant a1 to be determined later.

The Faddeev–Jackiw procedure is based on the reduced Lagrangian

LRðn̂; _̂nÞ ¼ _ypy þ
_x
y
ðpyx� a1ðx2 þ y2ÞÞ � a1ðx2 þ y2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p d

dt

"
�2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
arct

x
y

� �
�

xpx þ ypyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
#
� a1ðx2 þ y2Þ.

ð50Þ

We can diagonalize the symplectic structure by means of the Darboux transformation

pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; f ¼ �2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
arct

x
y

� �
�

xpx þ ypyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p . ð51Þ

Thus, up to a total derivative, the reduced Lagrangian (50) goes over into

LRðf; _f; zÞ ¼ 1
2
fsxst

_f
t � a1ðpfÞ

2
; ð52Þ

with the symplectic notation f ” f1 and pf ” f2. The reduced Hamiltonian is z-independent
and thus v = z. Note that (51) together with

z ¼ �arct
x
y

� �
and p2z ¼ /2 ¼ 4a1p2fH� ð53Þ

constitutes the canonical transformation n ´ (f, z, pz).
Due to a non-linear nature of the canonical transformation (51) and (53) we must check

up the path integral measure for a potential anomaly. In Appendix A, we show that
although the anomaly is indeed generated, it gets cancelled due to the presence of the con-
straining d–functionals in the measure. In other words, the Liouville anomaly is not pres-
ent in the reduced phase space. In addition, because (52) is cyclic in f, it can be argued [31]
that no new (non-classical) corrections to the Hamiltonian are generated in the action after
the above canonical transformation is performed.

Let us now set a1 = 1/2m�h. After changing in the path integral the variable f (t) to f (t)/�h
we obtain the path integral measure of quantum systems

Df �
Y
i

dfðtiÞdpfðtiÞ
2p�h

� �
. ð54Þ
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In addition, the prefactor 1/�h in the exponent emerges correctly. Thus, the classical parti-
tion function of Gozzi et al. turns into the quantum partition function for a free particle of
mass m. As the constant a1 represents the choice of units (or scale factor) for C1 we see that
the quantum scale �h is implemented into the partition function via the choice of the infor-
mation loss condition.

A free particle can emerge also from another class of �t Hooft�s systems. Such systems
can be obtained by modifying slightly the previous discussion and considering instead the
Hamiltonian

H ¼ xpy � ypx þ kðx2 þ y2Þ; ð55Þ

where k is a constant. �t Hooft�s information loss condition and q (q) remain clearly the
same as in the previous case. The reduced Lagrangian then reads

LRðn̂; _̂nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p d

dt

"
�2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
arct

x
y

� �
�

xpx þ ypyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
#
� a�1ðx2 þ y2Þ

ð56Þ
with a�1 ¼ a1 þ k. Identical reasonings as in the preceding situation lead again to a proper
quantum-mechanical partition function for a free particle.

6.2. Harmonic oscillator

In a previous paper that utilized the Dirac–Bergmann treatment [8], it was shown that
the system (47) can be also used to obtain the quantized linear harmonic oscillator. This is
because there is a certain ambiguity in imposing �t Hooft�s condition. This will be illustrat-
ed with / = xpy� ypx�a1(x

2 + y2) used in Eq. (53). The constraint / = 0 can be equiva-
lently written as

/ ¼ x ^ A ¼ 0 ð57Þ
with x = (x,y) and A = (px + a1y,py � a1x). The solution of / = 0 is formally given by

x ¼ a px þ a1yð Þ; y ¼ a py � a1x
� �

; ð58Þ

where a is an arbitrary real number. Note that a = 0 and a = 1 also cover the singular
cases jxj = 0 and jAj = 0, respectively. Inasmuch, instead of one first class condition
/ = 0 we can consider two second-class constraints:

/1 ¼ px �
x
a
þ a1y

� 
¼ 0

/2 ¼ py �
y
a
� a1x

� 
¼ 0

ð59Þ

({/1,/2} = 2a1 „ 0). Equivalently one may view /1 as a primary first class constraint and
/2 as the gauge fixing condition. To make contact with the Faddeejev–Jackiw procedure
we chose the second scenario. The corresponding reduced Lagrangian is then

LRðn̂; _̂nÞ ¼ _ypy þ _x
x
a
� a1y

� 
� xpy þ y

x
a
� a1y

� 
¼ � 1

2a1
py þ a1x�

y
a

�  d

dt
px þ a1y �

x
a

� 
� xpy þ y

x
a
� a1y

� 
.

ð60Þ
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At this point we can perform Darboux�s transformation:

pf ¼
1ffiffiffi
2

p py þ a1x�
y
a

� 
;

f ¼ � 1ffiffiffi
2

p
a1

px �
x
a
� a1y

� 
;

z ¼ /2=2a1 ¼
1

2a2
py �

y
a
� a1x

� 
.

ð61Þ

The reduced Lagrangian (60) then becomes

LRðf; _f; zÞ ¼ 1
2
fsxst

_f
t � 1

2a1
p2f �

a1
2

f2 � 2z2
� �

ð62Þ

(f ” f1, pf ” f2). The stabilization condition v (f,z) = 0 in this case yields the gauge fixing
condition

vðf; zÞ ¼ oH 0
Rðf; zÞ
oz

¼ �2a1z ¼ 0. ð63Þ

By plugging z = 0 into Eq. (62) (i.e., by enforcing a gauge constraint) we eliminate the var-
iable z and obtain a non-degenerate reduced Lagrangian

LRðf; _fÞ ¼ 1
2
fsxst

_f
t � 1

2a1
p2f �

a1
2
f2. ð64Þ

The canonical transformation n ´ (f,z,pz) is completed by identifying

pz ¼ �/1 ¼ �px � a1y þ
x
a
. ð65Þ

Note that, similarly as in the previous case, {pf,f,z,pz} can be identified with the Shouten–
Eisenhart basis.

By choosing a1 = 1/m�h and rescaling f (t) ´ f (t)/�h in the path integral (46) we obtain
the quantum partition function for the linear harmonic oscillator with a unit frequency.
One can again observe that the fundamental scale (suggestively denoted as �h) enters the
partition function in a correct quantum mechanical manner. This is precisely the result
which �t Hooft conjectured for the system (47) in [12].

Because the canonical transformation n ´ (f,z,pz) is in this case linear it does not in-
duce anomaly in the path integral measure nor in the action (see also Appendix A).

In the framework of the Dirac–Bergmann treatment both results discussed above were
already derived in [8]. It is clear that other emergent quantum systems can be generated in
an analogous manner. For instance, in [8] free particle weakly coupled to Duffing�s oscil-
lator was obtained from the Rössler system. Further development in this direction is pres-
ently in progress.

7. Summary

Let us summarize the novel elements of this paper in comparison with our previous
work [8]. Here, we have utilized the Faddeev–Jackiw treatment of singular Lagrangians
[14] which entirely obviates the need for the Dirac–Bergmann distinction between first
and second class, primary and secondary constraints used in [8]. Both approaches, howev-
er, require a doubling of configuration space degrees of freedom. Apart from formulating
the path integral for singular Hamiltonians, the Faddeev–Jackiw method is convenient in
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imposing �t Hooft�s information loss condition. In the Dirac–Bergmann scheme, this con-
dition represents a first class subsidiary constraint which has to be supplemented by a
gauge fixing condition [8]. In the Faddeev–Jackiw procedure the degrees of freedom are
reduced before quantization. This seems at first sight simpler than the Dirac–Bergmann
method, but it can be complicated in practice. In particular, the change of coordinates
(Darboux coordinates) from the pre-symplectic to a symplectic form plus nondynamical
z-variables may be involved, or even impossible. A detailed discussion of such difficulties
can be found, for instance, in [29].

In the Dirac–Bergmann procedure, the reduction to physical degrees of freedom is per-
formed by dividing the constraints into first class and second class. Second-class constraints
are removed via Dirac�s brackets machinery while the first class constrains can be imposed
only after the gauge fixing procedure. In the Faddeev–Jackiw treatment one does not need
to classify constraints and perform gauge fixing. Any possible gauge conditions are taken
care of implicitly by the reduction procedure. If the implicit gauge conditions are global, it
is possible to show [30] that both the Faddeev–Jackiw treatment and Dirac–Bergmann pro-
cedure leads to the same reduced system. If they are only local, this equivalence between the
two schemes may be obstructed by unwanted Gribov ambiguities. Thus, under the assump-
tion that there exists a global Darboux transformation we have shown that �t Hooft�s quan-
tization program performed with the Dirac–Bergmann and the Faddeev–Jackiw procedure
lead to equivalent path integral representations of emergent quantum systems.

Another problem may come from the the specific form of the Darboux transformation.
Although it is essentially non-canonical, it shows up as a canonical transformation in the
original configuration space in which the constraints are embedded. Under normal circum-
stances, the path integral measure is not Liouville-invariant under canonical transforma-
tions, often developing an anomaly [31,32]. This may invalidate our formal path integral
manipulations in Section 4. Fortunately, the forewarned is also forearmed: if the canonical
transformations are linear it can be argued [31] that an anomaly is not present. This strat-
egy seems to be simpler to utilize in the Dirac–Bergmann than in Faddeev–Jackiw ap-
proach. This is because in the Dirac–Bergmann analysis the gauge constraint is
introduced by hand (provided it is admissible) and hence one can try to choose it in a
way that the resulting canonical transformation is linear or at least free of the anomaly.

In the Dirac–Bergmann approach it seems also easier to handle the ordering problem
mentioned in Section 5. This is because �t Hooft�s constraint is there implemented directly
via the linear canonical transformation in the extended phase space. Due to the fact thatZ t2

t1

dt ðp _q� Hðp; qÞÞ ¼
Z t2

t1

dt ðP _Q � H �ðP;QÞÞ;

under a canonical transformation (modulo total derivative) there is no explicit coordinate
dependence in the term _QP. Thus the path integral is in this case well defined even globally.
This should be contrasted with the Faddeev–Jackiw method where the phase space is not
extended and �t Hooft�s constraint is imposed directly through a non-canonical transforma-
tion. Although the latter is only a halfway step toward an ultimately canonical transforma-
tion it causes the path integral to be well defined only perturbatively at these stages.

Note finally that according to analysis in Section 5, when we start with the N-dimen-
sional classical system (q variables) then the emergent quantum dynamics has N � 1
dimensions (f variables). This reduction of dimensionality vindicates in part the terminol-
ogy ‘‘information loss’’ used throughout the text.
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Appendix A

In the operator approach to quantum mechanical systems, any non-trivial change of
variables is complicated by the ordering and non-commutativity of the constituent oper-
ators that occur in expressions. Due to c-number nature of path integrals such difficulties
are not immediately apparent. However, a careful analysis of time-sliced representations
of path integrals reveals that complications related with canonical transformations are
hidden in two places [16,31,32]. (a) the path-integral phase space measure cannot be
viewed as a product of Liouville measures and, as a rule, canonical transformations often
produce anomaly—the Jacobian is not unity. (b) the time sliced canonical transformation
may generate in the action additional terms that are of order O(DP) and O(DQ) (P and Q
are new variables, DX stands for X(ti+1)�X(ti)), i.e., terms that need not vanish in the con-
tinuous limit (i.e, when Dt ” � fi 0). It is purpose of this appendix to show that neither (a)
nor (b) are hampering conclusions of Section 6.

As for (a), it can be shown [31] that to the lowest order the anomalous inverse Jacobian
for our canonical transformation (x,y,px,py) ” n ´ (f,z,pz) can be written as

J�1 ¼
YN
j¼1

ð1þ Af
jDfj þ Az

jDzj þ Bf
jDp

f
j þ Bz

jDp
z
jÞ;

where limN fi 1 is understood and

Af
j ¼

1

2

o3F j

opbjop
c
jofj

opbj
ofj

ofj
opcj

þ 1

2

o3F j

opbjop
c
jozj

opbj
ofj

ozj
opcj

þ 1

2

o3F j

opxjofjofj

ofj
oxj

þ 1

2

o3F j

opxjozjofj

ofj
oyj

þ 1

2

o3F j

opyjofjofj

ozj
oxj

þ 1

2

o3F j

opyjozjofj

ozj
oyj

;

Az
j ¼

1

2

o
3F j

opbjop
c
jofj

opbj
ozj

ofj
opcj

þ 1

2

o
3F j

opbjop
c
jozj

opbj
ozj

ozj
opcj

þ 1

2

o3F j

opxjofjozj

ofj
oxj

þ 1

2

o3F j

opxjozjozj

ofj
oyj

þ 1

2

o3F j

opyjofjozj

ozj
oxj

þ 1

2

o3F j

opyjozjozj

ozj
oyj

;

Bf
j ¼

1

2

o
3F j

opbjop
c
jofj

opbj
opfj

ofj
oqcj

þ 1

2

o
3F j

opbjop
c
jozj

opbj
opfj

ozj
oqcj

;

Bz
j ¼

1

2

o3F j

opbopcof

opbj
opz

ofj
oqc

þ 1

2

o3F j

opbopcoz

opbj
opz

ozj
oqc

.

ð66Þ
j j j j j j j j j j
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Here, Fj represents the classical generating function of the third kind F(px,py,f,z) at the
sliced time tj. The new variables are determined by solving the system of equations

x ¼ �
oF ðpx; py ; f; zÞ

opx
; y ¼ �

oF ðpx; py ; f; zÞ
opy

; pf ¼ �
oF ðpx; py ; f; zÞ

of
;

pz ¼ �
oF ðpx; py ; f; zÞ

oz
. ð67Þ

Indices b,c in (66) run from 1 to 2 and summation convention is assumed. It should be
stressed that the higher order contributions to the inverse Jacobian involve third and high-
er order derivatives of F (px,py,f,z).

Straightforward but tedious calculations reveal that for the canonical transformation
(51) and (53) we obtain

Az
j ¼

o
3F j

opxjozjozj

ofj
oyj

þ o
3F j

opyjozjozj

ozj
oyj

¼� ð1þ 2a1zpfÞ cos zþ pzp
�1
f � a1pf

� �
sin z

� �sin z
2

����
t¼tj

; Af
j ¼ Bf

j ¼ Bz
j ¼ 0. ð68Þ

The non-trivial contribution from Az
j is however zero at the physical subspace because of

the presence of d [z] functional in the path integral measure of (41).
To complete the proof we must show that the leading-order form for J�1 is sufficient

and that there is no need to go to higher orders. This can be seen, for instance, from
the exponentiated form of the Jacobian

J�1 ¼ exp
XN
j¼1

lnð1þ Af
jDfj þ Az

jDzj þ Bf
jDp

f
j þ Bz

jDp
z
jÞ

( )

� exp
XN
j¼1

ðAf
jDfj þ Az

jDzj þ Bf
jDp

f
j þ Bz

jDp
z
jÞ

( )
. ð69Þ

From the d-functionals in the measure we immediately have that Dzj ¼ Dpzj ¼ 0. On the
other hand, from the cyclicity of the Hamiltonian in f follows [31] that Dpfj ¼ 0 and
Dfj = O(�), i.e., the Hölder continuity index is 1 rather than 1/2. So, although there exists
a contribution that can potentially bestow a finite quantity on the action, namely

exp
XN
j¼1

Af
jDfj

" #
! exp

Z tf

ti

dt Af _f

� �
;

this term is trivial because Af
j ¼ 0 for all j.

Similar analysis can be done for the canonical transformation (61) and (65). Since the
transformation is linear, F (px,py,f,z) must be quadratic and hence (66) implies that

Af
j ¼ Az

j ¼ Bf
j ¼ Bz

j ¼ 0. ð70Þ

In this case the Hölder continuity index is 1/2 as usual. So by taking into account the con-
straints we have Dpzj ¼ Dzj ¼ 0 and Dpfj ¼ Dfj ¼ Oð

ffiffi
�

p
Þ. In general case we would need to

consider also terms of order O(�) since the original Hamiltonian also carries a factor of �
in the action (for our system are higher orders in � clearly irrelevant and can be omitted).
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Fortunately, as already mentioned, higher order terms in J�1 come from third (and higher)
derivatives of F (px,py,f,z) and hence are identically zero for any linear canonical transfor-
mation. Inasmuch the transformation (61) and (65) does not produce any Liouville
anomaly.

As for (b), the situation is simpler in the case of a transformation (51) and (53). This is
because the transformation yields the Hamiltonian that is cyclic in f and z which by itself
ensures [31] that any potential pieces generated in the canonical transformation due to a
finite time slicing are of order O(�2) and hence disappear in the path integral in the con-
tinuous limit.

In the case of transformation (61) and (65) the generating function reads

F ðpx; py ; f; zÞ ¼
1

2ða21a2 � 1Þ p2xaþ p2yaþ 2a1pxa 2a1za� pyaþ
ffiffiffi
2

p
f

� h
� 2a1pya 2zþ

ffiffiffi
2

p
a1af

� 
þ 2a1

ffiffiffi
2

p
zfþ

ffiffiffi
2

p
a21za

2fþ a1a 2z2 þ f2
� ��� i

.

The new momenta and coordinates then fulfil symmetrized equations [31]:

pzj ¼
a1

ð1� a21a2Þ

h
2a1a2px � 2apy þ 4a1azþ 1þ a21a

2
� � ffiffiffi

2
p

f
i

� a1
2ð1� a21a2Þ

4a1aDzþ
ffiffiffi
2

p
1þ a21a

2
� �

Df
h i

;

pfj ¼
ffiffiffi
2

p
a1

ð1� a21a2Þ

h
apx � a1a2py þ 1þ a21a

2
� �

zþ
ffiffiffi
2

p
a1af

i
� a1ffiffiffi

2
p

ð1� a21a2Þ
1þ a21a

2
� �

Dzþ
ffiffiffi
2

p
a1aDf

h i
;

xj ¼
a

ð1� a21a2Þ
px þ a1 2a1az� apy þ

ffiffiffi
2

p
f

� h i
þ a
2ð1� a21a2Þ

a1aDpy � Dpx
� �

;

yj ¼
a

ð1� a21a2Þ
py � a1apx � a1 2zþ

ffiffiffi
2

p
a1af

� h i
þ a
2ð1� a21a2Þ

a1aDpx � Dpy
� �

.

ð71Þ
Relations (71) yield px and py in terms of the new variables. We can now utilize the leading
order Taylor expansions

Dpx ¼� 1

2
Dpz þ 1ffiffiffi

2
p

a1a
Dpf � 1

a
Dz� a1ffiffiffi

2
p Df;

Dpy ¼� 1

2a1a
Dpz þ 1ffiffiffi

2
p Dpf þ a1Dzþ

1ffiffiffi
2

p
a
Df;

and substitute (71) into the old Hamiltonian. After imposing the constraints
zj ¼ Dzj ¼ pzj ¼ Dpzj ¼ 0 we obtain

ðxpy � ypxÞj !
1

2a1
ðpfjÞ

2 þ a1
2
f2j �

1

4a1a
ðapfj þ fjÞDpfj

þ a1
4
fj �

1

4a1a
ð1þ 7a21a

2Þ
ða21a2 � 1Þ pfj

� �
Dfj þOð�Þ. ð72Þ
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Because Dpfj ¼ Dfj ¼ Oð
ffiffi
�

p
Þ, the contribution of the correction terms to the action is of

order O(�3/2) which means that such terms are suppressed in the continuous limit.
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