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With nonequilibrium applications in mind we present in this pafibe first in a series of three self-
contained calculation of the hydrostatic pressure of@iidl) \ ¢* theory at finite temperature. By combining
the Keldysh-Schwinger closed-time path formalism with thermal Dyson-Schwinger equations we compute in
the largeN limit the hydrostatic pressure in a fully resumed form. We also calculate the high-temperature
expansion for the pressuten D=4) using the Mellin transform technique. The result obtained extends the
results found by Drummonet al.[Nucl. Phys B524, 579(1998] and Amelino-Camelia and PPhys. Rev. D
47, 2356(1993]. The latter are reproduced in the limitg(0)— 0, T—o, andT—«, respectively. Important
issues of renormalizibility of composite operators at finite temperature are addressed and the improved energy-
momentum tensor is constructed. The utility of the hydrostatic pressure in the nonequilibrium quantum systems

is discussed.
DOI: 10.1103/PhysRevD.69.085011 PACS nuniger11.10.Wx, 11.10.Gh, 11.15.Pg
[. INTRODUCTION time approach is clearly not applicable due to its lack of the

explicit time dependence and build-in equilibriuti{ubo-
In order to give a theoretical description of the propertiesMartin-Schwingey boundary conditions. Among the real-
of matter under extreme conditiorisuch as neutron stars, time formalisms only the Schwinger-Keldysh or closed-time
the early universe or heavy-ion collisiorene is often forced ~Path formalism(CTP) [3,4,9,13,14 and thermofield dynam-

to use statistical quantum field theot@FT). The latter is ¢S (TFD) [3,15,14 has found a wider utility in nonequilib-

due to the inherent quantum nature of these processes aHM computations. The CTP formulation was conveniently

due to an overwhelming number of degrees of freedom in@PPlied, for instance, in the study of nonequilibrium gluon
atter[17], cosmological back reaction probleh8] or in

volved. In recent years, considergblg effort has been_ Qeyotetrae time evolution of a nonequilibrium chiral phase transition
to the _understandlng of both equilibrium and none_qu!llbrlum[lg]. On the other hand, the nonequilibrium TFD was re-
beha\_nor of such syste_r_n(;_see e.g.[_l,z_] af‘d citations cently used in deriving the transport equations for dense
thergw). In fact, the equilibrium description is worked qut quantum systemi@0], or in a study of transport properties of
relatively \(vell and a number of methodologies fOI‘. .domg quantum fields with continuous mass spectiu].

quantum field theory on systems at or néacal) equilib- To extract information on the underlying field dynamics
rium are available. On this level two modes of descriptiongr on nonequilibrium transport characteristics one needs to
have been formulated: the imaginary-tiee Matsubargap-  specify an appropriate set of observabfles it conductivity,
proach[3-6] and real-time approacf8-5,7. In contrast damping rates, edge temperature jumps, viscosity), €es-
with equilibrium, the theoretical understanding of nonequi-sure is often one of the key parameters used in the diagnos-
librium quantum field theories is still very rudimentary. The tics of off-equilibrium quantum media. Hydrostatic pressure
complications involved are essentially twofold. The first ismeasurements in superfluid Hé.e., in He Il phasg[21]
related to the appropriate choice of the nonequilibriumand in superconductor22] provide examples. It is thus
initial-time conditions and their implementation into a quan-clear that an extension of the pressure calculations to non-
tum descriptior2,8]. The second problem is to construct the equilibrium systems could enhance our predicative ability in
density matrix pertinent to the level of description one aimssuch areas agealistio phase transitions, early universe cos-
at. The latter requires usually some sort of coarse-grainingiology or hot fusion dynamics. However, the usual proce-
(e.g., truncation of higher point Wigner functions in the in- duré known from equilibrium QFT, i.e., calculations based
finite tower of Schwinger-Dyson equatiof8) or projecting  ©" the partition function or_ef_fecnve potent{d,23—25 can-
over irrelevant subsystenmcorporated, e.g., via projection N0t be employed here. This is because (@r@nd-canonical
operator method[10] or maximal entropy—MaXent— potential frqm which theherm_qdynamlq)ressure is derived
prescription[11]). However, when the density matrix is g?aelsggftirfi)t(iljrza\é\;a)lg:rec;rgu?gUIlét:)TumﬁgFi?]gur(l)?tegéiggrr]igegg
known one may, in principle, apply the cummulant expan- . AR T

sion to convert the calculations into those mimicking usualg%i?gt}gg?gg éﬁ?le g?]tg?ttéa]lbfélisstsd (;I;jhulf: elfj %?:mstohgag?ge cta-
equilibrium techniqued9,12]. Yet, the boundary problem

L A ; tion value of the energy-momentum tensor. It might be
prohibitsper semany of equilibrium approaches. Imaginary- ¢nown that in thermal equilibrium thelassical thermody-

namic and(classical hydrostatic pressures are identical on
account of thgclassical virial theorem[26].

*Email address: petr@cm.ph.tsukuba.ac.jp In this and two companion papers we aim at clarifying the
and p.jizba@damtp.cam.ac.uk calculation of the hydrostatic pressure away from equilib-
"Present address. rium and at studying its bearings to various nonequilibrium
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situations. Calculation of the expectation value of thekey original results obtained here is the prescription for the
energy-momentum tensor is, however, quite delicate tasknproved energy-momentum tensor of téN) ¢* theory.
even in thermal equilibrium as computations involved areThe latter is achieved by means of the Zimmerman forest
qualitatively very different from those known, for instance, formula. With the help of the improved stress tensor we are
from the effective action approach. This is because thé@ble to find the corresponding QFT extension of hydrostatic
energy-momentum tensor is a composite operator and d¥essure and hen_ce obtain the prescriptiqn. for t.he_renormal-
such it requires a different methodology of treatment inclugjzed pressure. This latter result is also original finding. As a
ing a different approach to renormalization issi@27]. It ~ byproduct we renormalize; and ¢4y, operators.

should then come as no surprise that in thermal QFT the Resumed form for the pressure in the laigdimit, to-
equivalence between hydrostatic and thermodynamic pregether with the discussion of both coupling constant and
sure(or effective actiohis more fragile than in correspond- mass renormalization is presented in Sec. IV. Calculations
ing classical statistical systems. In fact, the validity of theare substantially simplified by use of the thermal Dyson-
quantumvirial theorem is by no means established conclu-Schwinger equations. For simplicity’s sake our analysis is
sively, and it is conjectured that it could break down, forconfined to the part of the parameter space where the ground
instance, in gauge theori¢8]. Besides, there is clearly no State at largeN has theO(N) symmetry of the original La-
virial theorem away from equilibriuninot even classically —grangian and the spontaneous symmetry breakdown and
and so in such a case one must expect disparity betwedpoldstone phenomena are not possikiBardeen and
hydrostatic pressure and effective action. Moshe’s parameter spaggl]).

In order to understand the difficulties involved we con- In Sec. V we end up with the high-temperature expansion
centrate in the present paper on the calculation of the hydraf the pressure. Calculations are performe®in 4 both for
static pressure in thermal equilibrium. To this end, we utilizemassive and massless fields, and the result is expressed in
the CTP approach which both in spirit and in many technicaterms of the renormalized masg(T) and the thermal mass
details mimics the realistic nonequilibrium calculations shift Sm?(T). The expansion is done by means of the Mellin
[9,11,12,19. Presented CTP formalism in addition to its the- transform technique. In appropriate limits we recover the re-
oretical structure which is interesting in its own right, is im- sults of Drummonckt al. [39] and Amelino-Camelia and Pi
portant because it can be with minor changes directly applief40] for thermodynamic pressuxeffective action.
to translationally invariant nonequilibrium QFT systems The paper is furnished with two appendixes. In Appendix
[11]. In order to keep the discussion as simple as possible wA we clarify some mathematical manipulations needed in
illustrate our reasonings o®(N) symmetric scalann¢*  Sec. IV. For the completeness’ sake we compute in Appendix
theory. The model is sufficiently simple yet complex enoughB the high-temperature expansion of the thermal-mass shift
to serve as an illustration of basic characteristics of the preém?(T) which will prove useful in Sec. V.
sented method in contrast to other ones in use. The latter has
the undeniable merit of being exactly solvable in the laxge-
limit both at zero and finite temperatur23,28-33. It might

be shown that the leading order approximation i 1$ In thermal quantum field theory where one deals with
closely related to the Hartree-Fock mean field approximatiorsystems in thermal equilibrium there is an easy prescription
which has been much studied in nuclear, many-body, atomifor a pressure calculation. The latter is based on the obser-
and molecular chemistry applicatiof3,34. In addition, in  vation that for thermally equilibrated systems the grand ca-
the case of a pure state it corresponds to a Gaussian ansa@nical partition functior is given as

for the Schrdinger wave functional35]. We will amplify
some of these points in later papers. We should also empha-
size that although th@(N) ¢* theory frequently serves as a
useful playground for study of finite-temperature phase tran-

sitions with a scalar order parameter, this point is not objecyhere () is the grand canonical potentiati is the Hamil-
tiVe Of th|S WOI’k and hence YVe W|“ not p!Jrsue |t here. tonian’ Ni are Conserved Charge&i are Corresponding
‘The setup of the paper is the following: In Sec. Il we chemical potentials, ang is the inverse temperatures
briefly review the derivation of the thermodynamic and hy-—1/7 (kz=1). Using identity 8(3/98)=—T(JldT) to-
drostatic pressures. In Sec. Ill we lay down the mathematicajether with(2.1) one gets
framework needed for the finite-temperature renormalization
of the energy-momentum tens@or an extensive review on
renormalization of composite operators the reader may con- T(@) —O—E+uN 2.2
sult e.g., Refs[3,36,37). The latter is discussed on the aT Hil¥i '
O(N) ¢* theory. It is a common wisdom that the zero tem-
perature renormalization takes care also of the UV diver-
gences of the corresponding finite temperature theoryith E andV being the averaged energy and volume of the
[3,5,39. The situation with energy-momentum tensor is,system, respectively. A comparison (%.2) with a corre-
however, more complicated as there is no well defined exsponding thermodynamic expression for the grand canonical
pectation value of the stress tensoat 0 [3,27]. We show  potential [3,41-43  requires that entropy S
how this problem can be amended at finite temperature. The _(’m/‘ﬂ-)m v, SO that

Il. HYDROSTATIC PRESSURE

z:e*ﬁQ:Tr(e*B(H*MiNi)), (2.2

Hi vV

085011-2



HYDROSTATIC PRESSURE OF TH. .. PHYSICAL REVIEW D 69, 085011 (2004

20 p(x)] [48], which is simply the “averaged pressuredver
dQ=-SdT-pdV=Nidu; = p=—| = all directions at a given point. In the local rest frame Eq.
s T (2.5 describeg-component of the force exerted by the me-

(2.3 dium on the infinitesimal volume/®~1). [By definition
there is no contribution talP!(x)/dt caused by the particle
LWnvection throughv®~1).] Averaging the left-hand side
(LHS) of Eq. (2.5) over all directions of the normail(x), we

For large systems one can usually neglect surface effects
E and N; become extensive quantities. Equati@l) then

immediately implies thaf) is extensive quantity as well, so of
Eq. (2.3 simplifies to 9
D-1 i
1 dP!(x) .
Q Inz - ni dQ(n)
p:—v:ﬁ—v. (24) (S]E_)_Z) i=1 dt
D-1
The pressure defined by E@..4) is so called thermodynamic _ 1 f ds<®ij(xr)>f dQ(n)n'n
pressure. (SP72) =1 Javo-D)
Since InZ can be systematically calculated summing up

all connected closed diagramé.e., bubble diagrams 1 _
[3,44,45, the pressure calculated via HE.4) enjoys a con- = GED) Z © l)d:s(@i(x’)), (2.6

AV

siderable popularity{39,3,4,48. Unfortunately, the latter
procedure can not be extended to out of equilibrium as ther
is, in general, no definition of the partition functiahnor
grand-canonical potenti&) away from an equilibrium.

Yet another, alternative definition of a pressure not hing-
ing on thermodynamics can be provided; namely the hydro-
static pressure which is formulated through the energy-
momentum tenso®*”. The formal argument leading to the SD 2)-1 2 ni dQ(n)=— p(x)f
hydrostatic pressure iB space-time dimensions is based on
the observation that®®(x)) is the mean(or macroscopic 2.7
density of momenta' in the pointx*. Let P be the mean
total (D—1)-momentum of an infinitesimal volume®~1)
centered ak, then the rate of change picomponent ofP
reads

WheredQ(n) is an element of solid angle aboutandSP 2

is the surface of D —2)-sphere with unit radiusf@d€(n)
=8P 2=27(C~DT[(D-1)/2]). On the other hand, from

the def|n|t|on of the pressure at a poiit we might write

PJ( X)

(D— l)

here the minus sign reflects that the force responsible for a
compressioriconventionally assigned as a positive pressure
has reversed orientation than the surface normajsointing
outward. In order to keep track with the standard textbook
definition of a sign of a pressuféd2,48 we have used in Eq.
:J' delxri<®0j(X0,Xr)> (2.7) the normaln in a contravariant notatior{note, n'
v(b-1) ax° =—n;). Comparing Eq(2.6) with Eq. (2.7) we can write for
a sufficiently small voluma/(®~1),

dPi(x)
S dt

D-1

=2 | . ,ds(el) (2.9 1
=1 jﬁv( ) p(x)= (D 1) | z <® (X)) (2.9

In the second equality we have exploited the continuity equa-

tion for (®*)) and successively we have used GaussWe should point out that in equilibrium the thermodynamic

theoremt® The 9V(® 1) corresponds to the surface\sf®~1).  pressure is usually identified with the hydrostatic one via the
Anticipating a system out of equilibrium, we must assumevirial theorem[3,49]. In the remainder of this note we shall

a nontrivial distribution of the mean particle four-velocity deal with the hydrostatic pressure at equilibrium. We shall

U#(x) (hydrodynamic velocity Now, a pressure is by defi- denote the foregoing &B(T), whereT stands for tempera-

nition a scalar quantity. This particularly means that it shouldture. We consider the nonequilibrium case in a future paper.

not depend on the hydrodynamic velocity. We must thus go

to the local rest frame and evaluate pressure there. However, I1l. RENORMALIZATION

in the local rest frame, unlike the equilibrium, the notion of a

pressure acting equally in all directions is lost. In order to If we proceed with Eq.(2.8) to QFT this leads to the

retain the scalar character of pressure, one customarily dewotorious difficulties connected with the fact that” is a

fines thepressure at a poinfin the following denoted as

2To be precise, we should talk about averaging the normal com-
ponents of stresii8].
The macroscopic conservation law f@*") (i.e., the continuity 3The angular average is standardly defined for scdtmg A) as
equation has to be postulated. For some systems, however, the latgiA dQ(n)/fdQ(n), and for vectors (say, Al) as
can be directly derived from the corresponding microscopic (:onserEijj ni dQ(n)/fdQ(n). Similarly we might write the angular av-
vation law[47]. erages for tensors of a higher rank.
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(local) composite operator. If only a free theory would be in

guestion then the normal ordering prescription would be suf-

ficient to rendef®#") finite. In the general case, when the

interacting theory is of interest, one must work with the Zim-
mermannormal ordering prescription instead. Let us demon-

strate the latter on th©(N) ¢* theory. (In this section we D#(p"|p) =
keep N arbitrary) Such a theory is defined by the bare

Lagrange function

N N 2
1 : O BE( N
=35 2 ((9¢pa)? m0¢a)— ( Z FIG. 1. The graphical representation Df"(p"|p).
(3.0 Performing the Fourier transform in E.3) we get
and we assume tha‘ng>0. The correspondinganonical
energy-momentum tensor is given by K o K
q.
o=, %, [ I 2% | eme( -3, a)
OL'=23 o d"ba—g""L. (32 ~24 S A= (2m) =
a
X Dl (qlg,y)D(P"A), (3.6

The Feynman rules for Green’s functions with the energy-

momentum insertion can be easily explained in momentum

space. In the reasonings to follow we shall needtherma) WhereD(k)( .. ) is aFourier transformed differential opera-

composite Green’s functién tor corresponding to the quadratik=€2) and quartic K
=4) terms in®%". Denoting the new vertex corresponding

DA (XY)=(T*{r(X0) - .. ¢ (x0)OL"(Y)}). (3.3  toDYJ(...) as®, we can graphically represent Eq8.3)

through(3 6) as Fig. 1.

Here the subscript denotes the renormalized fields in the  Eqr the case at hand one can easily read off from(&®)

Heisenberg pictur¢the internal indices are supprespetid  an explicit form of the bare composite vertices, the foregoing
T* is the so-called7* product (or covariant7 producl  gre

[24,50-52. TheT* product is defined in such a way that it
is simply the7 product with all differential operator®,,

pulled out of theZ-ordering symbol, i.e., p

v 1 )
% . oRp  ~ D)= ab{z(ql p)“ay
,T*{,Dpdld)r(xl) . -Dﬂn(br(xn)} q] qz
i —g""((41=P)a1 —mo)},
=D(id,) T{$r(x1) - . . (X)), (3.4 1 PhGmmo)
where D(id;,,) is just a useful short-hand notation for
DID2 D" Inthe case of thermal Green’s functioffs, p 9""\o
Ky Hp #n _ _ B~ D) = 8N =2 BapBoat Bacdd
represents a contour ordering symipak5]. It is the mean Pt
value of theT™* ordered fields rather than tf¥ones, which b \¢ + 824000) — 58apSeddac
Sep s ad®bc ab%cd@ac
corresponds a =0 and at equilibrium to the Feynman path
integral representation of Grfyen’s functidise,53. (For the internal indices we do not adopt Einstein’s summa-
A typical contribution to®¢"(y) can be written as tion convention). The blobs in Fig. 1 comprise the sum of all
n+2- andn+4- (not necessarily connecte@reen func-
DM1¢(y)Duz¢(y) e 'Dun¢(y)’ (3.9 tions. As usual, the disjoint bubble diagrams in Green func-
] . ) tions (blobs can be divided out from the very beginning. We
so the typical term in EQ3.3) is have also implicitly assumed that the summation over inter-

nal indices is understood.
. In case when we deal with finite temperature, we choose
D(i (T { i (X1) - - - D (X)) (Y1) - - - SV Dy, =y the contour ordering in E¢3.3) to run along the time con-
_ e K tour depicted in Fig. 3. It is possible to show that for Green’s
=Dy (X"yly,=y- function calculations only horizontal paths contribute
[14,54,59. In addition, the “physical” fields occurring on
the external lines of Green’s functions have time arguments
“By ¢ we shall mean the field in the Heisenberg picture. Theon the upper horizontal patlitype-1 field3 while the
subscriptH will be introduced in cases when a possible ambiguity “ghost” fields have time arguments on the lower horizontal
could occur. path(type-2 field3. The latter modify the Feynman rules in a
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nontrivial fashion[4,5,14. From the foregoing discussion So particularly for
should be clear that in the case of thermal composite Green'’s
function, the new(compositg vertices are of type-1 as the F=D(Xy, ... X)) =(T"{¢i(X1) ... & (Xn)}),

fields from which they are deduced are all physrcal.
one reads

A. Renormalization of ¢,(X) ¢p(X) J
. . L 2
Now, if there would be n®*” insertion in Eq.(3.3), the M 2 D(X1, ... Xn)
latter would be finite, and so it is natural to define the renor- '
malized energy-momentum tensd®~”] (or Zimmermann
normal ordering in such a way that :méﬁD(xl, ceoXp)

0
D#V(Xn|y):<7*{¢r(xl) Cee ¢r(xn)[®éw]}>1

. N

: D
is finite for anyn>0. To see what is involved, we illustrate B E) Nf d Xa; f Dei(xa) - -
the mechanism of the composite operator renormalization on
d4(X) dp(X) first, the energy-momentum tensor case will be X ¢ (Xn)MaPpa(x)exp(iS[ ¢, T])
postponed to Sec. Il B. In the following we shall use the
mass-independent renormalization, and for definiteness we
chose the minimal subtraction scheidS). In MS we can
expand the bare parameters into the Laurent series which has
a simple form[24,37,53, namely Here N1 is the standard denominator of the path integral

representation of Green'’s function. We should apply the de-

. N
! 2
- 5) f degl Da(X1, ... Xp[X;mg). (3.9

4D “ a(\, ;D) rivative also on A but this would produce disconnected
No=p™ "N 1+ kzl (D—2)< )’ (8.7 graphs with bubble diagrams. The former precisely cancel
the very same disconnected graphs in the first term, so we are
*  bur. D finally left with no bubble diagrams in E¢3.9). In the Fou-
mS=mr2 1+E k(A k) . (3.9 rier space Eq(3.9) reads
k=1 (D—4) N
d i
Herea, andby, are analytic iD=4. The parametes is the M —5D(P1, - - - 1pn):( - 5) agl Da(Py, - - - PnlO;ME).
scale introduced by the renormalization in order to k&ep r (3.10
dimensionless. An important point is that batfis andb,’s '
are mass, temperature, and momentum independent. As the LHS is finite there cannot be any pole terms on the

It was Zimmermann who first realized that the forest for- right-hand sidgRHS) either, and scEamS¢§ is by itself a

r_nula known from the O“"”"?‘TY Green's function re_normal'z"f"renormalized composite operator. We see tlnétprecisely
tion [24,36 can be also utilized for the composite Green’s . . 2
compensates the singularity Bf_, ¢2 .

functions rendering them fini{86,56. That is, we start with Now, it is well known that any second-rank tengeny
Feynman diagrams expressed in terms of physical, fi- Map) can be generally decomposed into three irreducible

nite) coupling constants and masses. As we calculate diafensors an antisymmetric tensor, a symmetric traceless ten
grams to a given order, we meet UV divergences which ' y » asy

might be cancelled by adding counterterm diagrams. The for=°" andt antlnvalrlanttteni:rr. Let dus $8L,= dachy, SO the
est formula then prescribes how to systematically cancel alfyMMELNC traceless tenser,, reads
the UV loop divergences by counterterms to all orders. How- n
ever, in contrast to the coupling constant renormalization, the Kap(X) = da(X) dp(X) = (8a5/N) >, d2(x), (3.11)
composite vertex need not to be renormalized multiplica- c=1
tively. We shall illustrate this fact in the sequel. Let us also ) ) )
observe that in the lowest ordémo loop the renormalized While the invariant tensok,y, is
composite vertex equals to the bare one, and so to that order N
A=[A], for any composite operateX. _ 2
Now, from Egs.(3.7) and(3.8) follows that for any func- Iab(x)_wab/N);l de(X).
tion F=F(m, ,\,) we have
Because the renormalized composite operators have to pre-
OF  gmy oF  mj oF serve a tensorial structure of the bare ones, we immediately
om?  om? om3  m? om3 have that
Kap=A1[Kap] and Iap=A[lap], (3.12

SFor a brief introduction to the real-time formalism in thermal Where bothA; and A, must have structurél + =(poles).
QFT see, for example, Refg3,4,7]. The foregoing guarantees that to the lowest ordgp,
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=[Kap] and 1 ,,=[1,5]. As we saw in Eq(3.10, mjl, is
renormalized, and so from E@3.12 follows that mSIatJ
=C[l,p]. HereC has dimensiofim?] and is analytic inD
=4. We can uniquely setsz because only this choice
fulfills the lowest order conditioth,,=[1,,] [cf. EQ. (3.8)].
Collecting our results together we might write

2 4 (3.13

g P2=Z5 4 :quﬁg [¢2],

with Zy ,2=A,=m?/m3. In the second equality we have
used an obvious linearity36] of [ ...]. From Egs.(3.1)
and(3.13 follows that

ba(X) Pp(X) = Ayl Pa(X) Pp(X)]

S, N
- A Zs) Z [#400]. (314

where
R I
1
®_®_@ = - ; @ @ o . _i @ @ @)
@ @) @ @
(3.19
)
1
2 @2 = - Lo @ @
0] ®

Here cross-hatched blobs refer fmenormalized 1PI (n

+2)-point Green’s function, circled indices mark a type of
the field propagated on the indicated line, and uncircled

numbers refer to thermal indicéae explicitly indicate only

relevant thermal indicgesThe counterterms, symbolized by a

heavy dot, are extracted from the boxed diagrdeilemen-
tary Zimmermann forestsin MS scheme one gets the fol-
lowing results:

1 : 4-D D
iN d
@—@—@z 'L:f f a {D11(a)Dys(— )

(2pi)°
_DlZ(Q)Dlz( - Q)H MS pole term

PHYSICAL REVIEW D 69, 085011 (2004

So particularly ford;f1 one reads

1 1
B (N DA+ Zs ] 621 - (A= Z3g2) 3 [47].
(319

From the discussion above it does not seem to be possible to
obtain more information abow; without doing an explicit
perturbative calculations, however it is easy to demonstrate
that A;#Zy 42. To show this, let us consider the simplest
nontrivial case; i.eN=2, and calculaté, to order\, . For

that we need to discuss the renormalization of tihgoint
composite Green’s function with, sag? insertion. To do
that, it suffices to discuss the renormalization of the corre-
sponding 1Ph-point Green'’s function. The perturbative ex-
pansion for the composite vertex to order can be easily
generag}ed via the Dyson-Schwing@&$S) equation[57] and

it read

|1-3]
2 4-DD—2

I\ ——==A " "m
4 m D/2 r r
"\ (4m) MS

=—\ut"Pr2(D—4)(47)?

D @) 2\t PI6(D—4)(6m)>.

Here D;; and D,, are the usual thermal propagators in the
real-time formalism[3,4,7 (see also Sec. IV From Eq.
(3.16 we can directly read off that

29| 1_ Aot 2 ) 2
[43] (1 oaan O |4
_ At 2 ) 2
+( 6(D—4)(4’7T)2+O()\r) &5

5Throughout the paper we accept the usual convention: Ordinary
(not necessarily connectedN-point Green’s functions are repre-
sented with dotted blobs witN external legs, connected-point
Green’s functions are represented with hatched blobs Migxter-
nal legs and 1PN-point Green’s functions are represented with
cross hatched blobs with truncated legqrepresented by solid
circles in vertices
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9" "q, |renorm renorm

4

‘A s
4,9, 4,9 renorm renorm
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FIG. 2. Counterterm renormal-
ization of the last two diagrams in
Eqg. (3.17. (Cut legs indicate am-
putations)

/| renorm

As the coefficient before;ﬁg is not zero, we conclude that ization, i.e., they renormalize multiplicatively. It can be
A1#Zs 42. Itis not a great challenge to repeat the previousshown that composite operators mix under renormalization

calculations for thep, ¢, insertion. The latter gives

NoutD
A=1-—E _Lon?)
3(D—4)(4m)?

Equation(3.15 exhibits the so-called operator mixing4];

only with those composite operators which have dimension
less or equal24,36,54.

Unfortunately, if we apply the previous argumentsnto
=0, the result is not finite; another additional renormaliza-
tion must be performed. The fact that the expectation values
of [ ...] are generally UV divergent, in spite of being finite

the renormalization ofd)g cannot be considered indepen- for the composite Green’s functiohszan be nicely illus-

dently of the renormalization of? (c+a). The latter is

trated with the composite operatop?] in the N=1 theory.

ageneral feature of composite operator renormalizationTaking the diagrams foD(0|0) and applying successively

Note, however, tha, ¢, (a#b) do not mix by renormal-

Equation(3.17) might be rewritten as

d°q; d°q,
(2m)° (2m)°
XD¥™q%0)[,,D(a?)
6 6

1 qui ( )
+ = &P <

36f 1 (2m)P 2,9
X D™ q°l0)[,2D(q°),

1 D
D(0|0)=D(0]0)] o+ EJ 6-(d1+0z)

the (unrenormalize DS equatiorn 3,57] we get

(3.17

Green'’s function to ordex‘r‘, andD(g™) is the full m-point
Green’s function. The crucial point is that we can write
D(0|0) as a sum of terms, which, apart from the fiifsee
field) diagram, are factorized to the product of the composite
Green's function withn>0 and the full Green’s function.
[The factorization is represented in E§.17) by the dashed
lines] Note that the expansion E¢3.17) is not unique as
various other ways of pulling vertices out of Green’s func-
tion may be utilized but this particular form will prove to be
important in the next sectiofsee Eq.(3.26)].

Now, utilizing the counterterm renormalization to the last
two diagrams in Eq(3.17) we get situation depicted in Fig.
2. Terms inside of the parentheses are finite, this is because

where Damp(qm|0)|x|r< is the mpoint amputated composite  “Also called the matrix elements 6f. . . ].
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both the composite Green’s functions=2!) and the full  during renormalization. The latter must add up@d"” in
Green'’s functions are finite after renormalization. The coun-order to rendeD**(x"|y) finite.?

terterm diagrams, which appear on the RHS of the parenthe- Now, the key ingredient exploited in E(R.5) is the con-
ses, precisely cancel the UV divergences coming from th&ervation law(continuity equatioh It is well known that one
loop integrations over momentg . . . g; which must be fi-  can “modify” ®£” in such a way that the new tenser”
na”y performed. The heaVy dots SChematica”y indicates th%reserves the convergence propertie@@f’ . Such a modi-
corresponding counterterms. In the spirit of the counterteriication (the Pauli transformatiorreads

renormalization we should finally subtract the counterter-

massociated with the overall superficial divergénasgated OH'= @~ + g, XM,

to the diagrams in question. But as we saw this is not nec-
essary; individual counterterm diagrarf@mmermann for-
estg mutually cancel their divergences leaving behind a fi-
nite result.

So the only UV divergence in E¢3.17) which cannot be  For scalar fields Eq3.22) is the only transformation which
cured by existing counterterms is that coming from the firstheither changes the divergence propertiesddf nor the
(i.e., free field or ring diagram. The foregoing divergence is generators of the Poincare group constructed ouBgf
evidently temperature independett see that, simply use an [3 24,47,51 Because the renormalizédr improved energy
explicit form of the free thermal propagatér,). Hence, if  momentum tensor must be conservémtherwise theory
we define would be anomaloysit has to mix with®%” under renor-

malization only via the Pauli transformation, i.e.,
<¢2>renorm:<[¢2]>_<0|[¢2]|0>v (3.19

XK= — XA, (3.22

vy — v Auv
or, alternatively [OE7]=0C"+ X", 323
(%) renorm={[ %1} — ([ 6*1 |tree ficlds: (3.20  In order to determin&™**, we should realize that its role is
to cancel divergences present@f”. Such a cancellation
we get finite quantities, as desired. On the other hand, wean be, however, performed only by means of composite

should emphasize that operators which are even in the number of fie{dsete that
04" is even in fields and Green’s functions with the odd
(#%)—(0]¢?0)=Z 52{([ ¢*]) —(0I[ ¢°]|0)} number of fields vanish Recalling the condition that renor-
o malization can mix only operators with dimension less or
#finite in D=4. (82D equal, we see that the dimension6#* must beD — 1, and

that X*#” must be quadratic in fields. The only possible form
An extension of the previous reasonings to ady-1 is  which is compatible with tensorial structure E®.22 is
straightforward, only difference is that we must deal withthen
operator mixing which makes Eq$3.19 and (3.20 less

trivial. N
The important lesson which we have learned here is that u»_ . LAV AN iV
the naive “double dotted” normal produgt.e., subtraction X a,b2:1 Can(AriD)(9"g 79") Padp- (3.29

of the vacuum expectation value from a given opejadoes
not generally give a finite result. The former is perfectly
suited for the free theoryZs 42=1) but in the interacting
case we must resort to the prescription E2j19 or (3.20
instead.

From the fact tha®4” and[®£”] are O(N) invariant[see
Eq. (3.2], &,X must be alsoO(N) invariant, soc,,
= 84pC. Thus, finally we can write

N

B. Renormalization of the energy-m.omentum tensor [©4]=0%"+c(\, ;D) 2 ((3’“8”—9“”82)¢§, (3.25
In order to calculate the hydrostatic pressure, we need to a=1
find such(@®4")| enorm Which apart from being finite is also
consistent with our derivation of the hydrostatic pressure inwith c=c,+ =(poles), here, is analytic inD. Structure of
troduced in the introductory section. In view of the previousc(\, ;D) could be further determined, similarly as in tNe
treatment, we however cannot, however, expect Bgt =1 theory, employing a renormalization group equation
will be renormalized multiplicatively. Instead, new terms [37]. We do not intend to do that as the detailed structure of

with a different structure tha®~Z” itself will be generated

%In fact it can be showii3,36] that the Noether currents corre-
8A simple power counting in the)* theory reveal§24] that fora  sponding to a given internal symmetry are renormalized, J&.,
composite operatoA with dimensionw, the superficial degree of =[J?], however, this is not the case for the Noether currents cor-
divergencew corresponding to an-point diagram isw= w,—n. responding to external symmetridike ©%" is).
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c will show totally irrelevant for the following discussion, ite Green’s functions ifn>0 but the expectation value

however, it turns out to be important in nonequilibrium ([@%"]) is divergent(for discussion of thé&\=1 theory see,

cases. e.g., Brown[37]). The unrenormalized DS equation for
Now, similarly as before[ ®%"] gives the finite compos- D#*(0|0) readq 3]

|

(3.2

The structure of the composite vertices in E8.26) is that Pint(T)=P(T) — Pree fierd T)
described at the beginning of this section. Note that the am-
putated composite Green’s functions in individual parenthe-
ses are of the same orderip. Performing the counterterm
renormalization as in the case (ff¢?]), we factorize the
graphs inside of parentheses into the product of the renoth order to keep connection with calculations done by Drum-
malized 2-(and 63 point composite Green'’s function and the mondet al.in [39] we shall in the sequel deal with the ther-
renormalized full 2-(and 6) point Green’s function. The mal interaction pressure only. If instead of an equilibrium, a
latter are finite. The UV divergences arisen during the intenonequilibrium medium would be in question, translational
grations over momenta connecting both composite and fullnvariance of( ...) might be lost, in that case either pre-
Green’s functions are precisely cancelled by the remainingcription Eq.(3.27) or (3.28) is obligatory, and consequently
counterterm diagrams. Only divergence comes from the freec(A ;D) in Eq. (3.25 must be further specified.

field contribution, more precisely from th€=0 ring dia-
gram. Defining

D-1

1 . .
:_W 21 {<®::i>_<®::i>|freefielc}- (3-31)

IV. HYDROSTATIC PRESSURE CALCULATION

. T @B — . In the preceding section we have prepared ground for a
(0 renorm=([O¢ 1) —(0I[O2]|0), (327 hydrostatic pressure calculation. In this section we aim to
apply the previous results to the mass®éN) ¢* theory in
the largeN limit. Anticipating an out of equilibrium applica-
(O renorm= [ O =[O D tree et (328 tion, we shall use the real-time formalism even if the
imaginary-time one is more natural in the equilibrium con-
we get the finite expressions. Note that the conservation lawext. As we aim to evaluate the hydrostatic pressure in 4
is manifest in both cases. In equilibriuand inT=0) we  dimensions, we use here, similarly as in the preceding sec-
can, due to space-time translational invariance( of .),  tion, the usual dimensional regularization to regulate the
write theory (i.e., here and throughout we ke&pslightly away
from the physical valu® =4).
([OL])y=(@L"Y + 9\ (X V) =(@LY). (3.29 In order to actually pursue the pressure calculation we
feel it is necessary to briefly review the mass and coupling
Using Eq.(3.27) or (3.28 we get either the thermal interac- renormalization of the model at hand. This will also help to
tion pressure or the interaction pressure, respectively. Thiglarify the notation used. While we hope to provide all es-

or

can be explicitly written as sentials requisite for our task, good discussion of alternative
approaches and renormalization prescriptions may be ob-
Pint(T)=P(T)—P(0) tained for instance ifi29,30,33.

D-1

:_m 21 {<®ci>_<0|®ci|o>}1 (3.30

A. Mass renormalization

In the Dyson multiplicative renormalization the fact that
the complete propagator has a pole at the physical mass leads
or to the usual mass renormalization prescripfigd]:
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mZ=m3+3(m?), 4.2 i

()= 1f d®q
| | . 2] @emP ?-mi-s(md)+ie
where m, is renormalized mass and(m;) is the proper

self-energy evaluated at the mass shelk= m,2. In fact, Eq. 1 dPq i
(4.2 is nothing but the statement that 2-point vertex function = 5]
I'® evaluated at the mass-shell must vanish. The Dyson-

Schwinger equation corresponding to the proper self-ener
reads[Z%,38,g7,5$ P g prop g%ence we see th& is external-momentum independent. If

we had started with the renormalization prescription:

(22— ) — _ m2 ;
N O % i (ps=0)=—m;, we would have arrived at E¢4.1) as
Eaa:} 2 + well (this is not the case fok=1!).
2 p=1 e e At finite temperature the strategy is analogous. Due to a

doubling of degrees of freedom, the full propagator is a 2
X 2 matrix. The latter satisfies, similarly asTat 0, Dyson’s
equation

, 4.3
(2m)P g?—m?+ie 43

(4.2 D=De+Dg(—iZ)D. (4.4

An important point is that there exists a real, nonsingular
388 L.=0; M™M~\,/N matrix M (Bogoliubov matriy [3,4,7] having a property that

where hatched blobs represent 2-point connected Green’s 1Ap 0 . 3 O .
functions while cross-hatched blobs represent proper vertice®F=M| o _; . |M and Z=M"4 Cax M
'™ (i.e., 1Pl 4-point Green’s functionAs 3,2 are the same F T @.
for all a, we shall simplify notation and writ® instead. In

the sequel the following convention is accepted. _ Here A is the standard Feynman propagator and * denotes
. The second term in Ed4.2) actually does not contribute the complex conjugation. Consequently, the full matrix
in the largeN limit. It is easy to see that the third term does propagator may be written as

not contribute either. This is because each hatched blob be-

haves at most asl® while I' goes maximall{’ asN~?. .

Consequently, various contributions from the first graph in L 0

Eq. (4.2) contribute at mosh®, whereas in the second graph p2— mg—ETJr ie

the contributions D=M : M. (4.6
0 -

pZ—mi—S%—ie

Similarly as in many body systems, the position of (rea)
pole of D in p? fixes the temperature-dependent effective
massm,(T) [4,59. The latter is determined by the equation
contribute up to ordeN~1. So the first diagram dominates,
provided we retain only such 2-point connected Green'’s mf(T)=m§+ Re(ET(mf(T))). 4.7
functions which are proportional td° (as mentioned in the
footnote, these are comprised only of tadpole lgopdter  From the explicit form ofM it is possible to show3,4] that
neglecting the “setting sun” graph, E¢4.2) generates upon Res.,,=Re3 ;. As before, the structure of the proper self-
iterating the so-called superdaisy diagralra8,25,38. energy can be deduced from the corresponding Dyson-
Let us now defines (m?)=X\o M(m?). Because the tad- Schwinger equation. Following the usual real-time formal-
pole diagram in Eq(4.2) can be easily resumed we observeism convention (type-1 vertex-—i\o, type-2 vertex
that ~i\g), the former reads:

10n the ¢* theory there is a simple relation between the number
of loops (L), vertices(V) and external linesg); 4V=2I+E. To-
gether with the Euler relation for connected graphs;| —V+1
(herel is the number of internal lingswe havelL —V=(2—-E)/2. * 5
As each loop carries maximally a factor Mf(this is saturated only (4.9
for “tadpole” loops) and each vertex carries a factor Nf !, the
overall blob contribution behaves at mosthls™V=N@"5)2, where

1
—1; Log= 7 )

o~

—i%, =
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¥

and similarly forD,,. In Eg. (4.8 we have omitted diagrams =m,2. The former in turn implies thatZ,=(1

which are of orde®(1/N) or less. Note that the fact that no _211(p2)|p2:mr2)—1:1,] Trivial consequence of the forego-
setting sun diagrams are present implies that the off-diagonal . @) _1(2) (4) _ 1(4)
elements of% are zero. Inspection of E¢4.8) reveals that Ing fact is thatl ,==T"" andT'/*=T"".

Mo [ dPq
1 2 5P1(aT) . o
(27) B. Coupling constant renormalization
and Let us choose the coupling constant to be defined at

b =0. This will have the advantage that the high temperature

A dq . .

s =_20 Doxa:T 4.9 expansion of the pressuigee Sec. Y will become more

22 2 5D220;T). (4.9 ” . .

(2) transparent. In addition, such a choice will allow us to select

) safely the part of the parameter space in which spontaneous
It directly follows from Eq.(4.9) that bothX,; andX,, are  symmetry breakdown is not possible. An alternative renor-
external-momentum independent and réalf we define  majization procedure based on the affective action is pre-
S1(M7(T))=Xo My(Mi(T)), then Eq.(4.7) through Eq.  sented in29]
(4.9 implies that By assumption the fieldg, have nonvanishing masses,
so we can safely choose the renormalization prescription for
A\, ats=0 (s is the standard Mandelstam variablEor ex-

2 —_ 2 2
my(T)=mg+ Ao Mr(M;(T)). (4.10 ample, one may require that for the scatteraa—bb,
A resumed version db);; is easily obtainable from Ed4.6)
[3,4] and consequently Ed4.9) yields I®(s=0)=—-\,/N (b#a). (4.12
M (M(T))= }f d°q i The formula Eq.(4.12 clearly agrees with the tree level
L 2) 2mP| 2—mA(T)+ie value I'{})3aPhs=0)=—\,/N. Let us also mention that
Ward's identities corresponding to the inter@N) symme-
o o try enforcel’ (42332 tg obey the constraittt
H(4m) 8 (@ mi(T) 5

d® 1
:_f 2 ?D (Z(EO)llm 2 mA(T)+ie (92238 p) 1 py;p3ipa) =T P2 pyipyipsipa)
)° efof— q°—mi(T)+ie

(4.19) +T P - pa;ps)

+ @Ay, s, ipsips), (413

Let us remark that Eq4.11) is manifestly independent of
any particular real-time formalism version.
In passing it may be mentioned that becalisg{m?) is  for anyb+a. The structure of ® is encoded in the follow-
momentum independent, the wave function renormalizatiofing Dyson-Schwinger equatiaisee alsd24,57).
Z,=1. [The Kdlen-Lehmann representation requires the
renormalized propagator to have a pole of residue p?
pctually, Ward's identities read57] [dPx[ST[¢]/8da(X)]
X p(x) = [d°X[ ST[ $1/ 6p(X) 1 ¢pa(X) [here,=(SW/ 83,); Wis
HReality of 3;; can be most easily seen from the largest-timethe generating functional of connected Green’s funcioRerform-
equation[58]. The LTE states thak,;+3,+31,+3,,=0. Be- ing successive variations with respectgg(v), ¢.(2), ¢a(y), and
cause no setting sun graphs are presEptt2,,=0, on the other  ¢(w), taking the Fourier transform, and setting the physical con-
handX ;+3,,=2i ImX 4, [see Eq(4.5]. dition ¢.=0, we get directly Eq(4.13.
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(4.19

In the latter the surrE?Zl schematically represents a sum- Assuming that bott (=0 and\,=0 (note\,<0 would be
mation overs, t andu scattering channels. For clarity’s sake incompatible with =0 andm?>0), we can infer from Eq.
the internal indices are suppressed. Similarly as before, wet.17) that
can argue that both the third and fourth graphs contribute at

D/2 4-D
mostN~?, while the second“fish” ) graph may contribute 0<\.< 2(4m) "= (my) ’ 4.18
up to orderN~2. So in the largeN limit the last three dia- ' D
grams may be neglected, provided we keep in the 4-point I'\2— >

vertex function only graphs proportional d 1. However,
the former can be only fulfilled if we retain such a “fish” and so forD=4 we inevitably get that,=0. The latter
graph where summation over internal index on the loop idndicates that the theory is trivid39,23,31, or, in other
allowed. Remaining two graphs in the sm‘:fgl (i,e.,tandu  words, theO(N)#* theory is a renormalized free theory in
scattering channelsre suppressed by the factér ! as the the largeN limit. This conclusion is also consistent with the
internal index on the loop is fixed. In this way we are left observation that the theory does not possess any nontrivial
with the relation UV fixed point in the largeN limit [23,31,32,60
On the other hand, if we were assuming thgt 0, we
dP would get indeed a nontrivial renormalized field theory in
f _qr(4)bbc0(s) D=4 [actually, from Eq.(4.17) we see thath,—0_, pro-
(2m)P vided that\, is fixed and positive an® —4 _]. However, as
it was pointed out in Refd.39,23,31,33 such a theory is
intrinsically unstable as the ground-state energy is un-
bounded from below. This is reflected, for instance, in the
s=0 existence of tachyons in the thedr§9,31,33,6], therefore
the case with negativi is clearly inconsistent.

[ (#aabhg— 0y = — % _ '2)‘_|\(|’
c#b
i i
X
(g—m?+ie) (q—Q)2—m’+ie)

No Aoh(N—1) (1 d°q The straightforward remedy for this situation was sug-
=——= —zf de 5 gested by Bardeen and Mosh&l]. They showed that the
N 2N 0 (2m) only meaningfulstable O(N) ¢* theory in the largeN limit

is that withA, ,\o=0. This is provided that we view it as an
4.15 effective field theory at momenta scale small compared to a
' ' fixed UV cutoff A. The cutoff itself is further determined by

[
X
(%= m?+x(1—x)s+i€)?

s=0 Eq. (4.16 because in that cagassumingm,<A)
with Q=p;+p, and s=Q?, p,,p, are the external mo- A
menta. To leading order in N/we may equivalently write No= ey (4.19
1- ——In| —
Ar=Ng+NoA M (M?), (4.16 3272 (mf)

_ . o _ .. which implies that for A\, ,A\¢=0 we have A?
the prime means differentiation with respectnd; M(m?) <m2exp(32r%/\,). The case\?=m? exp(3272/),) corre-

get from Eq.(4.16), reasonably smalk,, A is truly huge® and so it does not
represent any significant restriction.

)\ —_—
No= : . (417 BFor example, if \,=1 and m,~100 MeV, we get A
1-\.T| 2— b (my)P~4/2(477)P"2 <10**! MeV or equivalentlyA <10 K (this is far beyond the
r 2 ' Planck temperature- 10%? K).
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Im s As explained in Sec. lll, we can use for a pressure calcula-
f e Re t G f ot tion the canonical energy-momentum tenéljf”. Employ-
. i ing for ®£7(x) its explicit form Eq.(3.2) together with Eq.
G, peie (3.6), one may write
t -iP nv N qu ~AV nv( 2 2 .
' e 0 (O =75 (2w)D(2q q"=g""(q*~mg))D1y(; T)
FIG. 3. The Keldysh-Schwinger time path. \ )
i v g | 2 ¢%0) (4.22
In passing we may observe that from Edd4.1) and 8N = " ' ’
(4.19,
where D;; is the Dyson-resumed thermal propagdtd],
mz m2 1 i.e.,
r 0
—=— AZ, 4.2
A No o 2377 (420 i

Do 6:T) Q>-mA(T)+ie
and so the fractiom?/\, is renormalization invariant. It was
argued in[31] that for the part of the parameter space where
Ao>0 and mf/)\r>0 the ground state i©(N) symmetric,
Goldstone phenomena cannot materialize and hence the ex-
pectation value of the field is zero. The latter fact has beeiNote that we have exploited in E¢4.22 the fact that the
implicitly used, for instance, in the derivation our Dyson- expectation value 00%”(x) is x independent. On the other
Schwinger equations. To avoid a delicate discussion of th@and, in Eq.(4.23 we have used the fact tth,Z is g inde-
phase structure of th®(N) ¢* theory and to emphasize our pendent. In order to calculate the expectation value of the
primary objective, i.e., hydrostatic pressure calculation, Weyuartic term in Eq(4.22), let us observéct. Eq. (4.21)] that
confine ourselves to the parameter space defined above. Sugfe derivative of® with respect to the bare coupling,

an effective theory will provide a suitable playground to ex-(taken at fixedm,) gives

plore all the basic salient points involved in the hydrostatic

pressure calculation. Furthermore, because the mass-shift ID[T] i N ) 2

equation(gap equationhas a particularly simple form in this N~ BN d®x Z $2(0) | ), (429
case the high analysis of the hydrostatic pressure will be 0 c a1

easy to perform.

+(2m) 8(g?—mA(T)) (4.23

e|C|0|5_ 1 ’

which implies that

= . (4.2

C. Resumed hydrostatic pressure " ) ? N8 JP[T]
2P0 | ) =— o
a=1 BV d\g

The partition functionZ has a well-known path-integral

representation at finite temperature, namely, . . )
The key point now is that we can calculatg T] in a non-

_ perturbative form. The latter is based on the fact that we
Z[T]=exp(<I>[T]):fD¢ expiS[#;T]), know the Dyson-resumed propagatbr,(q;T) [see Eq.
(4.23)]. Indeed, taking derivative o with respect tomg
(keepingX  fixed) we obtain

S[qS;T]:f dPx £(x). (4.21)
c
IP[T] iN

. . . > =——f d®x(¢*(0))
Here ®=—-p8Q is a Massieu function(the Legendre amg 2 Jc
transform of the entropy [3,41-43 and [.dPx
= [cdxofvdP~Ix with the subscripiC suggesting that the __BVN d°q Doo(aq:T
time runs along some contour in the complex plane. In the - 2 (2m)P (A T)
real-time formalism, which we adopt throughout, the most
natural version is the so-called Keldysh-Schwinger [@4], = — BVNM(MA(T)), (4.206

which is represented by the contour in Fig. 3. Let us mention
that the fields within the path-integral E@t.21) are further s
restricted by the periodic boundary conditid)kMS condi-
tion) [3,4,7] which in our case reads

q)[T;"O;mé]:ﬁVNJmzdﬁ%MT(rﬁ?(T))Jr O[T;Ng;%].
ba(ti—iB,X) = a(t; ,X). o o
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Let us note that®d[T;\q;>] is actually zerd® because
CIJ[T;)\O;mS] has the standard loop expansif®57] de-

picted in Fig. 4. It is worth mentioning that in the latter
expansion one must always have at least one type-1 vertex

[39]. The RHS of Fig. 4 clearly tends to zero fop—« as
all the (free) thermal propagators from which the individual

PHYSICAL REVIEW D 69, 085011 (2004

o oRN'eS OREe 8'®
8 1 16 7 f 16 7 f)

",ng +£
1 1 1 2

diagrams are constructed tend to zero in this limit. The
former result can be also deduced from the CJT effective FIG. 4. First few bubble diagrams in thie expansion.

action formalism[25] or from a heuristic argumentation
based on a thermodynamic press{88]. Note that in the
largeN limit the fourth and fifth diagrams in Fig. 4 must be
omitted.

The expectation value Edq4.25 can be now explicitly
written as

N
2 g &(go)
“;¢ﬁﬁ>8NJ e .
I3 r(MX(T))
\o
X Im (4.29

(P—m’+ie)?

In fact, the differentiation of the proper self-energy in Eg.

(4.28 can be carried out easily. Using E¢..10, we get

Sy Sp
My Ao

27
No(1—NoM5)

0%t

a2t
_:> frd
ToNg

AN
From Eq.(4.10 it directly follows that

dnf(T)__ 1
dmg  (1-AeMp)’

which, together with the definition of1+, gives

N 2
2 —aN? "2
<(a§=:1 (Z)a(O)) >_8N jmf(T)dmrJ

Me(m?)

d®q  &(go)
(2)P glof—1

XIm———
(>~ m?+ie)?
5MT(m )
— —8N? f dm? M —
mrz( T( ﬂmrz
=AN>ME(MA(T)), (4.29

where we have exploited in the last line the fact that
M23(m?—)=0. Let us mention that the crucial point in the

previous manipulations was thit, is both real and momen-

P(T)=P(0)=— (<® |> <0|®CI|0>

(D—1)N

€(do)
GQOB_ 1

1 dPq
" Ef (2’7T)D1<

X 8(g?—mZ(T))
1 dPq 292
et

(2mP~t1(D-1)
1
+ o (BHMET)~Z2mE(0))).
0

207 )
(D-1)

) 5+ (q2—mZ(0))
(4.30

Applying Green’s theorem to the last two integrals and elimi-
nating the surface term$or details see Appendix Awe find

1 d®
P(T)—P<0>=§f( 1 o) g

27)P 1 gdoh—1

1[ d®q
2 (27T)D71

1
+ o (SHMET)—22(mE(0))
0

m7(T))

6(do) 6(q*>—m?*(0))

= N7(mZ(T)) — MmZ(0))

1
+ 5 (SHMAT) - £2mE(0)), (4.3)
0

where we have introduced new functioyf\ér(mrz(T)) and
Mmp);

tum independent. Collecting our results together, we can

write for the hydrostatic pressure per partitté. Eq. (3.30

To be precise, we should also include in Fig. 4 (@finite)
circle diagram corresponding to the free pres$88:39. However,
the latter is\ independentalthoughm, dependentand so it is
irrelevant for the successive discuss[af Eq. (4.25].

1 d°q  &(go)
NaE (=5 | = o o)
Mm?) = lim Nr(m2(T)). (4.32

T—0

Equation(4.31) can be rephrased into a form which exhibits
an explicit independence of bar quantities. Using the trivial
identity:

085011-14



HYDROSTATIC PRESSURE OF TH. .. PHYSICAL REVIEW D 69, 085011 (2004

1 0 5 ) Taking the limitD=4—2¢—4 and using expansions
ane (SHET) = 22(m,(0))) n
(—1)" 1

1 I'— n+8)——n (;4'2 E_7+O(8)>'
> (S(ME(T))—Z(mF(0))) ' -
2\o

*te=aX(1+elna+0O(e?)),

X (3 1(MA(T))+ 3 (P(0))) ¥ omatremaron)
(v is the Euler-Mascheroni constante are finally left with

5m2< )
(Mr(MF(T))+ M(MZ(0))),  (4.33 o )
_ mAOMAT) [ mT)
we get (5-Blo--a= 64m? mf(O))
P(T) = P(0) = Nr(MZ(T)) = MmF(0)) 1
2( ) +46m o (5.3

(M(mZ(T))+ M(mF(0))),

The fact that we get the finite result should not be surprising
(4.39 as the entire analysis of Sec. Ill was made to show that
where Sm?(T)=m?(T) —m?2(0). Let usfinally mention that P(T)—P(0) defined via®%” is finite in D=4.
the finding Eq.(4.30 is an original result of this paper. The =~ We may now concentrate on the remaining terms in Eq.
result Eq.(4.34 has been previously obtained by authors(4.30), the latter readwe might, and we shall, from now on

[39] in the purely thermodynamic pressure framework. work in D=4)
V. HIGH-TEMPERATURE EXPANSION 1 d4q 2 1 2 2
OF THE HYDROSTATIC PRESSURE IN D=4 —f q o(q° = m;(T))
3 (27)3  elwlB_1
In order to obtain the high-temperature expansion of the ) 4
pressure irD=4, it is presumably the easiest to go back to " om=(T) d’q 5q2—ma(T)). (5.4
Eqg. (4.30 and employ identity Eq(4.33. Let us split this 4 (273 eltolB_ 1 q°=m:(T)). '

task into two parts. We first evaluate the integrals with po-
tentially UV divergent parts using the dimensional regular-
ization. The remaining integrals, with the Bose-Einstein dis-
tribution insertion, are safe of UV singularities and can be
computed by means of the Mellin transform technique.

Our following strategy is based on the observation that the
previous integrals have generic form:

Inspecting Eqgs(4.30 and (4.33, we observe that the dq 5, 1 5> 2
only UV divergent contributions come from the integrals: 2,(Mr) f 54 o(q°—my)
(21) eldolB 1
1 dPq
+ 2 5+ 2_m2 T 2+2V 1
(D—l)J’ (27T)D_1q ( (q (7)) _ f dx(x 1)(1+2y)/2 (5.5)
22 eV—1

m2(T
( )

+

—5' (@’ -m (0)))+ f (2w )D with »=0,1 andy=m,8. Unfortunately, the integral Eq.

(5.5 cannot be evaluated exactly, however, its smydile.,

i i high-temperatunebehavior can be successfully analyzed by

X + ; (5D means of the Mellin transform techniq{i@,38 -
22 ) 22 . ql@,38]. Before go
g —m(T)+ie g°—m(0)+ie ing further, let us briefly outline the basic steps needed for
which, if integrated over, give such a smaly expansion.
The Mellin transformf(s) is done by the prescription
F(i)r(2+ 1) [3,38,63-66
2 2 2
(5.)=+ — R *
(D—l)F(—>(47T)D’2 f(S)=J0 dx % (%), (5.6
Sm(T)T _E with s being a complex number. One can easily check that
) b2 2 D2 2 the inverse Mellin transform reads
X ((ME(T))P2= (ME(0))P2)
4(4m) 1 (ix+a
_ _ f ds x 5f(s), 5.
X (AT (m2(0) 2, (5.2 = 2m ) 89T &7
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where the real constaatis chosen in such a way thfa(ts) is
convergent in the neighborhood of a straight linei¢
+a, io+a). So particularly if f(x)=1/[e*¥—1] one can X F[—3—vid+v—L—v+si],
find ([65]; formula 1.3.19 that

1
=22""B(3 +v;—2-2v+s)

where ,F, is the (Gaus$ hypergeometric functiof66]. Us-

f(s)=T(s){(s)y”® (Res>1), (5.8 ing identity
2x—1
where ¢ is the Riemann zeta function(s)==,_,n ). I'(2x)= 2 r(x)r X+E ,
Now we insert the Mellin transform df(x)=1[e*Y—1] to N 2
Eqg. (5.5 and interchange integralthis is legitimate only if it
the integrals are convergent before the interchange a we can write
result we have 3
1 imta ds (5.9 ' 27 Jlﬂ*a ds F(l )
9=— ——1I'| =s
f dx g0 —— f_lw+a,(2 ST (9)4(s)yg(1-s), afm Jorai2m (2
(5.9 1\ 1
xX¢s)|zy| T'l—v—1+zs|. (511
with g(x) = 6(x—1)(x?— 1)1 272 Using the tabulated re- 2 2

sult ([66]; formula 6.2.32 we find

The integrand of Eq(5.11) has simple poles is=—2n(n
- N N =12,...), s=1, s=—-2n+2v+2 (n=0,1,...») and
9(1-9)=3B(—v—1+3s5+tv) (Res>2+2v), double pole ins=0. An important point in the former pole
(5.10  analysis was the fact thal(s) has simple zeros ir-2m
m>0) and only one simple pole is=1. The former to-

with B(;) being the beta function. Because the integrand o ether with identity

the RHS of Eq.(5.9) is analytic for Res>2+2» and the
LHS is finite, we must choose suehthat the integration is

defined. The foregoing is achieved choosiag-2+2v. r ;) XL (x)= 1“( 12 ) =D (1—x),
Other useful expressions fay(1—s) are ([66]; formula
1.2.34 or 1.2.37 shows that no double pole except o+ 0 is present in Eq.
R (5.12). Now, we can close the contour to the left as the value
g(1—s)=B(2 +v;—2—2v+s) of the contour integral around the large arc is zero in the
limit of infinite radius (cf. [65] and[67]; formula 8.328.1
XoFi[—3—v;—2—2v+s,— 5 —v+s;—1] Using successively the Cauchy theorem we obtain

4\7(5.9 E a2 ™ AN (DB eyl 7~ 2(2n)1 {(1+2n)(—1)"
r( +V) =0 nl(—2n+2p+2)124n—4v-4 A1 nl(n+1+p)1240-1
2

+y

71_(_:I_)VJrl(V_l_1)!22v+3 2(_1)V+1 y
' 20+ 2)! MY {'“(E T3 &k

(5.12

whereB,’s are the Bernoulli numbers. Let us mention that {¢2n+ 1) only numerical values are available.
Inserting Eq.(5.12 back to Eq.(5.4), we get forP(T)—P(0),

Sm?(T)
4

1
P =P0)=(5.3+ zl(m(T))+ lo(m;(T))

T4m?  T? 5m2(T)) Tm,(T)(mE(T) SMA(T)

" 90 24( mi(T) =~ 4 3 4 2

) m?Z(T)m?(0) <| (mr(0)> . 1) m7(0)
n —_—— [—
3272 Tam 12872
mZM A (T) w2 2(2n) (1 +2n) (= 1)
T2'nl(n+2)1240*4 '

-~ Zl ( m3(T)— _(ngrz) 5m2(T)) (5.13
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Note that Eq.(5.3) cancelled against the same term inp(T)—P(0)
21,(m,(T))+[ m3(T)/4]1o(m,(T)). One can see that Eq.

(5.13 rapidly converges for largd, so that only first four _Tha? TAm(T))? N T(6m(T))®
terms dominate at sufficiently high temperature. The afore- 90 48 A48
mentioned terms come from the poles nearby the straight line
(—iw+a, ie+a) (the more dominant contribution the o (OM(T))2M A2 2(2n) 1 (1+2n) (— 1)
closer pole. It i_s a typical feature of the Mellin transform = T2'(n—1)!(n+2)!124+5 '
technique that integrals of type
(5.19
This result is identical to that found by Drummord al.
dex o(x) 1 in [39].
0 ev—_1’ A noteworthy observation is that when the energy of a

thermal motion is much higher then the mass of particles in
the rest, then the massive theory approaches the massless
can be expressed as an expansion which rapidly convergese. This is justified in the firghigh-temperature dominant
for small y (high-temperature expansipwor largey (low-  term of Eqs(5.13 and(5.15. This term is nothing but a half
temperature expansipit of the black-body radiation pressure for photdml,42]
Expansion(5.13 is the sought result. To check its consis- (photons have two degrees of freedom connected with two
tency we will apply it to two important cases: highcase transverse polarizationsOne could also obtain the tempera-
andm,(0)=0 case. Concerning the first case, note that for aure dominant contributions directly from the Stefan-
sufficiently largeT we can use the high-temperature expan-Boltzmann law[3,41,43 for the density energgi.e.,(®°)).
sion of 5m?(T) found in Appendix B. Inserting EqB6) to  The formal argument leading to this statement is based on
Eq. (5.13 we obtain the noticing that at high enerdyemperaturgthe scalar field
theory is approximately conformally invariant, which in turn
4“2 T2RT 3 imp!ies'that the energy—mqmgntum tensor is tra;:e[5§$
P(T)—P(0)= T me(T) n T°m,(T) Taking into account the definition of the hydrostatic pressure
90 24 127 Eqg. (2.8, we can with a little effort recover the leading high-
temperature contributions for the massive case.

)\r( T T3m/(T) N T2m¥(T)

+ R —_—
81144  24mw 1672 VI. CONCLUSIONS
4 m,(T) In the present paper we have clarified the status of hydro-
+0O| m (M| —,—/ |. (5.14  static pressure ifiequilibrium) thermal QFT. The former is

explained in terms of the thermal expectation value of the
“weighted” space-like trace of the energy-momentum tensor
Up to a sign, the result Eq5.14) coincides with that found ©#”. In classical field theory there is a clear microscopic
by Amelino-Camelia and Hi0] for the effective potential®  picture of the hydrostatic pressure which is further enhanced
Actually, they used instead of tHd— o limit the Hartree- by a mathematical connectidthrough the virial theorein
Fock approximation which is supposed to give the sage  with the thermodynamic pressure. In addition, it is the hy-
as the leading N approximation 62]. drostatic pressure which can be naturally extended to a non-
As for the second case, we may observe that our discugquilibrium medium. Quantum theoretic treatment of the hy-
sion of the mass renormalization in Sec. Il A can be directlydrostatic pressure is however pretty delicate. In order to get a
extended to the case whem(0)=0 (this does not apply to sensible, finite answer we must give up the idea of total
our discussion of,!). Latter can be also seen from the fact hydrostatic pressure. Instead, thermal interaction pressure or/
that Eq.(5.13 is continuous irm,(0)=0 (however not ana- and interaction pressure must be ugede Eqs(3.30 and
lytic). The foregoing implies that the original massless scalaf3-3D]. We have established this result for a special case
particles acquire the thermal magg(T):5m2(T)_ From When the theory in question is the scalaf theory with
Eq. (5.13 one then may immediately deduce the pressure foP(N) internal symmetry; but it can be easily extended to

massless fieldg, in terms of Sm(T). The latter reads more complex situations. Moreover, due to a lucky interplay
between the conservation &*” and the space-time transla-

tional invariance of an equilibriunfand T=0) expectation

1By the same token we get the low-temperature expansion if th¥2lueé we can use the simple canonita., unrenormalized
integral contour must be closed to the right. energy-momentum tensor. In the course of our treatment in

18 et us remind[40,25,29 that from the definition oV the S_ec. 1l we heavily relied on the counterterm renorr_naliza-
thermodynamic pressure is V. In order to obtain Eq(5.14  tion, which seems to be the most natural when one discusses
from Vg in [40], one must subtract the zero temperature value offeénormalization of composite Green’s functions. To be spe-
Vi and restrict oneself to vanishing field expectation value anccific, we have resorted to the minimal subtraction scheme
positive bare mass squared. which has proved useful in several technical points.
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We have applied the prescriptions obtained for the QFTApplying Green’s theoren.e., integrating by parts with re-

hydrostatic pressure tg* theory in the largeN limit. The
former has the undeniable advantage of being exactly
soluble. This is because of the fact that the laxgdimit
eliminates “nasty” classes of diagrams in the thermal
Dyson-Schwinger expansion. The survived class of diagrams
(superdaisy diagramsan be exactly resumed, because the
(therma) proper self-energy,, as well as the renormalized
coupling constank, are momentum independent. We have
also stressed that tt@(N) ¢* theory in the largeN limit is
consistent only if we view it as an effective field theory.
Fortunately, the upper bound on the UV cutoff is truly huge,
and it does not represent any significant restriction. For the
model at hand the resumed form of the pressure with
m,(0)=0 was first derived(in the purely thermodynamic
pressure contextby Drummondet al. in [39]. We have
checked, using the prescription E@.30 for the thermal

interaction pressure, that their results are in agreement withg usual,ab=3!

spect toq) on Eq.(Al) one finds

(A1)=N7(mZ(T))— Mm?(0))

J

X 9(q2_mr2(T))9(QO)<
— lim

R—o J’

X 0(g°—m?(0))8(do)-

1
2(D-1)

ddo
(2’7T)D71

+ lim

R— o0

eﬁqO— 1

1
2(D-1)

dgo
(27T)D_1

Lsg

d
LSB >4
=

2

,dsq

(A2)

Yab; andSR % is a (D —2)-sphere with

ours. The former is a nice vindication of the validity of the e radiusR. The expressions fok; and A are done by Eq.
virial theorem for the QFT system at hand. In this connectiort4_32,_

we should perhaps mention that the latter is by no means \wjih the relation Eq(A3) we can show that the surface
obvious. For example, for quantized gauge fields the conforierms cancel in the large limit. Let us first observe that

mal (trace anomaly may even invalidate the virial theorem
[3]. The fact that this point is indeed nontrivial is illustrated
on the QCD case if68|.

The expression for the pressure obtained was in a suitable r—«

form which allowed us to take advantage of the Mellin trans-
form technique. We were then able to write down the high-
temperature expansion for the pressureDirr4 (both for
massive and massless figldsterms of renormalized masses
m,(T) andm,(0). We have explicitly checked that all UV
divergences present in the individual thermal diagrams “mi-
raculously” cancel in accordance with our analysis of the
composite operators in Sec. Il
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|'mf 1 f ds (@R~ m2(T))
, _ _
(2m)P~t)isg BT a1
27T(D_1/2)RD_1 qu
= [im f
Roe 1 D—l) (27r)P1
2
260(qo)
X 6(q5—R?—m¥(T))
quO—l
4(1-DI2)RD-1 2
= lim J dgo———=0.
Resoo (D—l) VRZ+mA(T) qOquo_l
2D—21’* .
2

(A3)
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the last line we have used L'ipdal’s rule as the expression

is in the indeterminate form 0/0. The remaining surface terms

APPENDIX A

In this appendix we give some details of the derivation of
Eq. (4.31). We particularly show that the surface integrals
arisen during the transition from Eg4.30 to Eq. (4.3)
mutually cancel among themselves. As usual, the integrals
will be evaluated for integer values &f and corresponding
results then analytically continued to a desir@generally
complex D.

The key quantity in question is

qu ( 2q2 )
(2m)P~11(D-1)

;

|
3

1 dPq

2 (27T)D_1

e(do)
eIBCIO_

. 8(9?—m?(T))

2

2q
D—1)

)5+<q2—m3<0>). (A1)
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in Eqg. (A3) read

lim f
R—o

dao
(27T)Dfl

Lsg_zdsq

X{6(q%—mA(T))— 6(q>— mZ(0))} 6(qo)

F(1-D)2|pD -1
= lim

R% 020 D-1
2

{ J'\/R2+mr2(T)— j\/RZerf(O)]

(Ad)

The last identity follows either by applying L'Hmpital’s rule
or by a simple transformation of variables which renders
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both integrals inside of . . .} equal. Expressions on the last  Now, bothA; and M are divergent iD=4. If we reex-
lines in Egs.(A3) and(A4) can be clearlysingle-valuedly  press\ in terms of\,, divergences must cancel, &%2(T)
continued to the region R2>1 as they are analytic there. is finite in D=4. The latter can be easily seen if we Taylor
We thus end up with the statement that expandM, i.e.,

(AL) =M (i (T)) =M (O). MTE(T))= M(WZ(0))+ Sm(T) M (m(0))

APPENDIX B + M(mZ(0); 6m3(T)). (B2)

In this appendix we shall derive the high-temperature ex- R
pansion of the mass shi#m?(T) in the case when fieldg,  Obviously, M is finite inD=4 asM is quadratically diver-
are massivéi.e., m*(0)#0]. gent. Inserting Eq(B2) to Eqg. (B1) and employing Eg.
Consider Egs(4.1) and (4.10. If we combine them to- (4.16 we get
gether, we easily obtain the following transcendental equa-
tion for Sm?(T): ) - X
om(T) =) M(m;(0);6m=(T))
SM2(T) = No| M(ME(T))— M(m7(0)) 1
+5l o(M2(0) + 6m3(T)) . (B3)

1
+ E|0(m,2(0) +6mA(T)) ;. (B1)
This is sometimes referred to as the renormalized gap equa-

Here M and |, are done by Egs(4.3) and (5.5), respec- tion. In order to determiné we must go back to EqB2).
tively. From the former we read off that

MME(T); 6mP(T))= M(MZ(T)) = M(mZ(0)) — Sm*(T) M’ (m7(0))

r(l_g) )
_ 2 (DI2)~=1_ (2 (D2)~1_ g2 - _ 2 (D2)—2
—2(47T)D,2[(mr(T)) (m7(0)) om (T)(2 1)(mr(0)) ]
D—4 1 20T
- 32772[m“2(T)|n(—2r2§03) —5m2(T)]. (B4)
So
2
(m?(0)+ 5m2(T))|n( 1+ (Smr';(g)) —omA(T)
SM3(T)=\, — ' +5lo] - (B5)

Analogous relation was also derived [iB0] where authors used finite temperature renormalization group. In the latter the
zero-momentum renormalization prescription was utilized. EquadBan was first obtained and numerically solved 89]. It

was shown that the solution is double valued. The former behavior was also observed in the effective action approach. Namely
by Abbottet al.[33] atT=0, and by Bardeen and Mosh#l] at bothT=0 andT+ 0. The relevant solution is only that which

fulfills the consistency conditio®m?(T)—0 when T—0. For such a solution it can be showaf. [39], Fig. 3 that
5m2(T)/m,2(0)<1 for a sufficiently highT. So the high-temperature expansion of B85) reads

(dm*(T)?  (sm*(T)°* (sm*(T))*

2m?(0) 6m*0)  12mf0) T 1
2 _ r r r -
SmM*(T)=X\, = +35lo
A AT2 A my(T m, (T
= lo=—0g fS: ‘40 mE(T)ln( T‘iw))). (B6)
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