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Hydrostatic pressure of theO„N… f4 theory in the large N limit

Petr Jizba*
DAMTP, University of Cambridge, Silver Street, Cambridge, CB3 9EW, United Kingdom
and Institute for Theoretical Physics, University of Tsukuba, Ibaraki 305-8571, Japan†

~Received 18 November 2002; revised manuscript received 8 September 2003; published 27 April 2004!

With nonequilibrium applications in mind we present in this paper~the first in a series of three! a self-
contained calculation of the hydrostatic pressure of theO(N) lf4 theory at finite temperature. By combining
the Keldysh-Schwinger closed-time path formalism with thermal Dyson-Schwinger equations we compute in
the largeN limit the hydrostatic pressure in a fully resumed form. We also calculate the high-temperature
expansion for the pressure~in D54) using the Mellin transform technique. The result obtained extends the
results found by Drummondet al. @Nucl. Phys.B524, 579~1998!# and Amelino-Camelia and Pi@Phys. Rev. D
47, 2356~1993!#. The latter are reproduced in the limitsmr(0)→0, T→`, andT→`, respectively. Important
issues of renormalizibility of composite operators at finite temperature are addressed and the improved energy-
momentum tensor is constructed. The utility of the hydrostatic pressure in the nonequilibrium quantum systems
is discussed.
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I. INTRODUCTION

In order to give a theoretical description of the propert
of matter under extreme conditions~such as neutron stars
the early universe or heavy-ion collisions! one is often forced
to use statistical quantum field theory~QFT!. The latter is
due to the inherent quantum nature of these processes
due to an overwhelming number of degrees of freedom
volved. In recent years, considerable effort has been dev
to the understanding of both equilibrium and nonequilibriu
behavior of such systems~see e.g. @1,2# and citations
therein!. In fact, the equilibrium description is worked ou
relatively well and a number of methodologies for doi
quantum field theory on systems at or near~local! equilib-
rium are available. On this level two modes of descripti
have been formulated: the imaginary-time~or Matsubara! ap-
proach @3–6# and real-time approach@3–5,7#. In contrast
with equilibrium, the theoretical understanding of noneq
librium quantum field theories is still very rudimentary. Th
complications involved are essentially twofold. The first
related to the appropriate choice of the nonequilibriu
initial-time conditions and their implementation into a qua
tum description@2,8#. The second problem is to construct th
density matrix pertinent to the level of description one ai
at. The latter requires usually some sort of coarse-grain
~e.g., truncation of higher point Wigner functions in the i
finite tower of Schwinger-Dyson equations@9#! or projecting
over irrelevant subsystems~incorporated, e.g., via projectio
operator method@10# or maximal entropy—MaXent—
prescription @11#!. However, when the density matrix i
known one may, in principle, apply the cummulant expa
sion to convert the calculations into those mimicking us
equilibrium techniques@9,12#. Yet, the boundary problem
prohibitsper semany of equilibrium approaches. Imaginar
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time approach is clearly not applicable due to its lack of
explicit time dependence and build-in equilibrium~Kubo-
Martin-Schwinger! boundary conditions. Among the rea
time formalisms only the Schwinger-Keldysh or closed-tim
path formalism~CTP! @3,4,9,13,14# and thermofield dynam-
ics ~TFD! @3,15,16# has found a wider utility in nonequilib-
rium computations. The CTP formulation was convenien
applied, for instance, in the study of nonequilibrium glu
matter @17#, cosmological back reaction problem@18# or in
the time evolution of a nonequilibrium chiral phase transiti
@19#. On the other hand, the nonequilibrium TFD was r
cently used in deriving the transport equations for de
quantum systems@20#, or in a study of transport properties o
quantum fields with continuous mass spectrum@16#.

To extract information on the underlying field dynami
or on nonequilibrium transport characteristics one need
specify an appropriate set of observables~be it conductivity,
damping rates, edge temperature jumps, viscosity, etc.!. Pres-
sure is often one of the key parameters used in the diag
tics of off-equilibrium quantum media. Hydrostatic pressu
measurements in superfluid He4 ~i.e., in He II phase! @21#
and in superconductors@22# provide examples. It is thus
clear that an extension of the pressure calculations to n
equilibrium systems could enhance our predicative ability
such areas as~realistic! phase transitions, early universe co
mology or hot fusion dynamics. However, the usual pro
dure known from equilibrium QFT, i.e., calculations bas
on the partition function or effective potential@5,23–25# can-
not be employed here. This is because the~grand!-canonical
potential from which thethermodynamicpressure is derived
does not exist away from equilibrium. Fortunately, more ge
eral definition of pressure, not hinging on existence
~grand!-canonical potential, exists. This is the so calledhy-
drostaticpressure and its form is deduced from the expec
tion value of the energy-momentum tensor. It might
shown that in thermal equilibrium the~classical! thermody-
namic and~classical! hydrostatic pressures are identical o
account of the~classical! virial theorem@26#.

In this and two companion papers we aim at clarifying t
calculation of the hydrostatic pressure away from equil
rium and at studying its bearings to various nonequilibriu
©2004 The American Physical Society11-1
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PETR JIZBA PHYSICAL REVIEW D 69, 085011 ~2004!
situations. Calculation of the expectation value of t
energy-momentum tensor is, however, quite delicate t
even in thermal equilibrium as computations involved a
qualitatively very different from those known, for instanc
from the effective action approach. This is because
energy-momentum tensor is a composite operator and
such it requires a different methodology of treatment inclu
ing a different approach to renormalization issues@3,27#. It
should then come as no surprise that in thermal QFT
equivalence between hydrostatic and thermodynamic p
sure~or effective action! is more fragile than in correspond
ing classical statistical systems. In fact, the validity of t
quantumvirial theorem is by no means established conc
sively, and it is conjectured that it could break down, f
instance, in gauge theories@3#. Besides, there is clearly n
virial theorem away from equilibrium~not even classically!
and so in such a case one must expect disparity betw
hydrostatic pressure and effective action.

In order to understand the difficulties involved we co
centrate in the present paper on the calculation of the hy
static pressure in thermal equilibrium. To this end, we util
the CTP approach which both in spirit and in many techni
details mimics the realistic nonequilibrium calculatio
@9,11,12,19#. Presented CTP formalism in addition to its th
oretical structure which is interesting in its own right, is im
portant because it can be with minor changes directly app
to translationally invariant nonequilibrium QFT system
@11#. In order to keep the discussion as simple as possible
illustrate our reasonings onO(N) symmetric scalarlf4

theory. The model is sufficiently simple yet complex enou
to serve as an illustration of basic characteristics of the p
sented method in contrast to other ones in use. The latter
the undeniable merit of being exactly solvable in the largeN
limit both at zero and finite temperature@23,28–33#. It might
be shown that the leading order approximation in 1/N is
closely related to the Hartree-Fock mean field approxima
which has been much studied in nuclear, many-body, ato
and molecular chemistry applications@23,34#. In addition, in
the case of a pure state it corresponds to a Gaussian a
for the Schro¨dinger wave functional@35#. We will amplify
some of these points in later papers. We should also em
size that although theO(N) f4 theory frequently serves as
useful playground for study of finite-temperature phase tr
sitions with a scalar order parameter, this point is not obj
tive of this work and hence we will not pursue it here.

The setup of the paper is the following: In Sec. II w
briefly review the derivation of the thermodynamic and h
drostatic pressures. In Sec. III we lay down the mathemat
framework needed for the finite-temperature renormaliza
of the energy-momentum tensor~for an extensive review on
renormalization of composite operators the reader may c
sult e.g., Refs.@3,36,37#!. The latter is discussed on th
O(N) f4 theory. It is a common wisdom that the zero tem
perature renormalization takes care also of the UV div
gences of the corresponding finite temperature the
@3,5,38#. The situation with energy-momentum tensor
however, more complicated as there is no well defined
pectation value of the stress tensor atT50 @3,27#. We show
how this problem can be amended at finite temperature.
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key original results obtained here is the prescription for
improved energy-momentum tensor of theO(N) f4 theory.
The latter is achieved by means of the Zimmerman for
formula. With the help of the improved stress tensor we
able to find the corresponding QFT extension of hydrosta
pressure and hence obtain the prescription for the renorm
ized pressure. This latter result is also original finding. A
byproduct we renormalizefa

2 andfafb operators.
Resumed form for the pressure in the large-N limit, to-

gether with the discussion of both coupling constant a
mass renormalization is presented in Sec. IV. Calculati
are substantially simplified by use of the thermal Dyso
Schwinger equations. For simplicity’s sake our analysis
confined to the part of the parameter space where the gro
state at largeN has theO(N) symmetry of the original La-
grangian and the spontaneous symmetry breakdown
Goldstone phenomena are not possible~Bardeen and
Moshe’s parameter space@31#!.

In Sec. V we end up with the high-temperature expans
of the pressure. Calculations are performed inD54 both for
massive and massless fields, and the result is express
terms of the renormalized massmr(T) and the thermal mas
shift dm2(T). The expansion is done by means of the Mel
transform technique. In appropriate limits we recover the
sults of Drummondet al. @39# and Amelino-Camelia and P
@40# for thermodynamic pressure~effective action!.

The paper is furnished with two appendixes. In Append
A we clarify some mathematical manipulations needed
Sec. IV. For the completeness’ sake we compute in Appen
B the high-temperature expansion of the thermal-mass s
dm2(T) which will prove useful in Sec. V.

II. HYDROSTATIC PRESSURE

In thermal quantum field theory where one deals w
systems in thermal equilibrium there is an easy prescrip
for a pressure calculation. The latter is based on the ob
vation that for thermally equilibrated systems the grand
nonical partition functionZ is given as

Z5e2bV5Tr~e2b(H2m iNi )!, ~2.1!

whereV is the grand canonical potential,H is the Hamil-
tonian, Ni are conserved charges,m i are corresponding
chemical potentials, andb is the inverse temperature:b
51/T (kB51). Using identity b(]/]b)52T(]/]T) to-
gether with~2.1! one gets

TS ]V

]T D
m i ,V

5V2E1m iNi , ~2.2!

with E andV being the averaged energy and volume of t
system, respectively. A comparison of~2.2! with a corre-
sponding thermodynamic expression for the grand canon
potential @3,41–43# requires that entropy S
52(]V/]T)m i ,V , so that
1-2



ts

o

c

up

e

g
ro
gy
e
on

u
ss

ty
-
ul
g
v

f a
to
d

q.
e-

r a
re

ok
.

ic
the
ll
all

-
per.

la
se

om-

-

HYDROSTATIC PRESSURE OF THE . . . PHYSICAL REVIEW D 69, 085011 ~2004!
dV52S dT2p dV2Ni dm i ⇒ p52S ]V

]V D
m i ,T

.

~2.3!

For large systems one can usually neglect surface effec
E and Ni become extensive quantities. Equation~2.1! then
immediately implies thatV is extensive quantity as well, s
Eq. ~2.3! simplifies to

p52
V

V
5

ln Z

bV
. ~2.4!

The pressure defined by Eq.~2.4! is so called thermodynami
pressure.

Since lnZ can be systematically calculated summing
all connected closed diagrams~i.e., bubble diagrams!
@3,44,45#, the pressure calculated via Eq.~2.4! enjoys a con-
siderable popularity@39,3,4,46#. Unfortunately, the latter
procedure can not be extended to out of equilibrium as th
is, in general, no definition of the partition functionZ nor
grand-canonical potentialV away from an equilibrium.

Yet another, alternative definition of a pressure not hin
ing on thermodynamics can be provided; namely the hyd
static pressure which is formulated through the ener
momentum tensorQmn. The formal argument leading to th
hydrostatic pressure inD space-time dimensions is based
the observation that̂Q0 j (x)& is the mean~or macroscopic!
density of momentapj in the pointxm. Let P be the mean
total (D21)-momentum of an infinitesimal volumeV(D21)

centered atx, then the rate of change ofj-component ofP
reads

2
dPj~x!

dt
5E

V(D21)
dD21x8

]

]x0
^Q0 j~x0,x8!&

5 (
i 51

D21 E
]V(D21)

dsi^Q i j &. ~2.5!

In the second equality we have exploited the continuity eq
tion for ^Qm j& and successively we have used Gau
theorem.1 The]V(D21) corresponds to the surface ofV(D21).

Anticipating a system out of equilibrium, we must assum
a nontrivial distribution of the mean particle four-veloci
Um(x) ~hydrodynamic velocity!. Now, a pressure is by defi
nition a scalar quantity. This particularly means that it sho
not depend on the hydrodynamic velocity. We must thus
to the local rest frame and evaluate pressure there. Howe
in the local rest frame, unlike the equilibrium, the notion o
pressure acting equally in all directions is lost. In order
retain the scalar character of pressure, one customarily
fines thepressure at a point@in the following denoted as

1The macroscopic conservation law for^Qmn& ~i.e., the continuity
equation! has to be postulated. For some systems, however, the
can be directly derived from the corresponding microscopic con
vation law @47#.
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p(x)] @48#, which is simply the ‘‘averaged pressure’’2 over
all directions at a given point. In the local rest frame E
~2.5! describesj-component of the force exerted by the m
dium on the infinitesimal volumeV(D21). @By definition
there is no contribution todPj (x)/dt caused by the particle
convection throughV(D21).# Averaging the left-hand side
~LHS! of Eq. ~2.5! over all directions of the normaln(x), we
get3

1

~S1
D22!

(
j 51

D21 E dPj~x!

dt
nj dV~n!

5
1

~S1
D22!

(
j ,i 51

D21 E
]V(D21)

dŝ Q i j ~x8!&E dV~n!ninj

52
1

~D21! (
i 51

D21 E
]V(D21)

dŝ Q i
i~x8!&, ~2.6!

wheredV(n) is an element of solid angle aboutn andS1
D22

is the surface of (D22)-sphere with unit radius (*dV(n)
5S1

D2252p (D21)/2/G@(D21)/2#). On the other hand, from
the definition of the pressure at a pointxm we might write

~S1
D22!21 (

j 51

D21 E dPj~x!

dt
nj dV~n!52p~x!E

]V(D21)
ds,

~2.7!

here the minus sign reflects that the force responsible fo
compression~conventionally assigned as a positive pressu!
has reversed orientation than the surface normalsn ~pointing
outward!. In order to keep track with the standard textbo
definition of a sign of a pressure@42,48# we have used in Eq
~2.7! the normal n in a contravariant notation~note, ni

52ni). Comparing Eq.~2.6! with Eq. ~2.7! we can write for
a sufficiently small volumeV(D21),

p~x!52
1

~D21! (
i 51

D21

^Q i
i ~x!&. ~2.8!

We should point out that in equilibrium the thermodynam
pressure is usually identified with the hydrostatic one via
virial theorem@3,49#. In the remainder of this note we sha
deal with the hydrostatic pressure at equilibrium. We sh
denote the foregoing asP(T), whereT stands for tempera
ture. We consider the nonequilibrium case in a future pa

III. RENORMALIZATION

If we proceed with Eq.~2.8! to QFT this leads to the
notorious difficulties connected with the fact thatQmn is a

ter
r-

2To be precise, we should talk about averaging the normal c
ponents of stress@48#.

3The angular average is standardly defined for scalars~say,A) as
*A dV(n)/*dV(n), and for vectors ~say, A i) as
( j*A jnj dV(n)/*dV(n). Similarly we might write the angular av
erages for tensors of a higher rank.
1-3
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PETR JIZBA PHYSICAL REVIEW D 69, 085011 ~2004!
~local! composite operator. If only a free theory would be
question then the normal ordering prescription would be s
ficient to render̂ Qmn& finite. In the general case, when th
interacting theory is of interest, one must work with the Zim
mermannormalordering prescription instead. Let us demo
strate the latter on theO(N) f4 theory. ~In this section we
keep N arbitrary.! Such a theory is defined by the ba
Lagrange function

L5
1

2 (
a51

N

„~]fa!22m0
2fa

2
…2

l0

8N S (
a51

N

~fa!2D 2

,

~3.1!

and we assume thatm0
2.0. The correspondingcanonical

energy-momentum tensor is given by

Qc
mn5(

a
]mfa ]nfa2gmnL. ~3.2!

The Feynman rules for Green’s functions with the ener
momentum insertion can be easily explained in momen
space. In the reasonings to follow we shall need the~thermal!
composite Green’s function4

Dmn~xnuy!5^T * $f r~x1! . . . f r~xn!Qc
mn~y!%&. ~3.3!

Here the subscriptr denotes the renormalized fields in th
Heisenberg picture~the internal indices are suppressed! and
T * is the so-calledT * product ~or covariantT product!
@24,50–52#. TheT * product is defined in such a way that
is simply theT product with all differential operatorsDm i

pulled out of theT-ordering symbol, i.e.,

T * $Dm1

x1 f r~x1! . . . Dmn

xn f r~xn!%

5D~ i ]$m%!T $f r~x1! . . . f r~xn!%, ~3.4!

where D( i ]$m%) is just a useful short-hand notation fo
Dm1

x1 Dm2

x2 . . . Dmn

xn . In the case of thermal Green’s functions,T
represents a contour ordering symbol@3–5#. It is the mean
value of theT * ordered fields rather than theT ones, which
corresponds atT50 and at equilibrium to the Feynman pa
integral representation of Green’s functions@52,53#.

A typical contribution toQc
mn(y) can be written as

Dm1
f~y!Dm2

f~y! . . . Dmn
f~y!, ~3.5!

so the typical term in Eq.~3.3! is

D~ i ]$m%!^T * $f r~x1! . . . f r~xn!f~y1! . . . f~yk!%&uyi5y

[D $m%~xnuyk!uyi5y .

4By f we shall mean the field in the Heisenberg picture. T
subscriptH will be introduced in cases when a possible ambigu
could occur.
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Performing the Fourier transform in Eq.~3.3! we get

Dmn~pnup!5 (
k5$2,4%

E S )
i 51

k
dDqi

~2p!DD ~2p!DdDS p2(
j 51

k

qj D
3D(k)

mn~q$m%!D~pnuqk!, ~3.6!

whereD(k)
mn( . . . ) is aFourier transformed differential opera

tor corresponding to the quadratic (k52) and quartic (k
54) terms inQc

mn . Denoting the new vertex correspondin
to D(k)

mn( . . . ) as^ , we can graphically represent Eqs.~3.3!
through~3.6! as Fig. 1.

For the case at hand one can easily read off from Eq.~3.2!
an explicit form of the bare composite vertices, the forego
are

; D(2)
mn~q$m%!5

1

2
dab$2~q12p!mq1

n

2gmn
„~q12p!lq1

l2m0
2
…%,

; D(4)
mn~q$m%!5

gmnl0

8N
$2~dabdcd1dacdbd

1daddbc!25dabdcddac%.

~For the internal indices we do not adopt Einstein’s summ
tion convention.! The blobs in Fig. 1 comprise the sum of a
n12- and n14- ~not necessarily connected! Green func-
tions. As usual, the disjoint bubble diagrams in Green fu
tions ~blobs! can be divided out from the very beginning. W
have also implicitly assumed that the summation over in
nal indices is understood.

In case when we deal with finite temperature, we cho
the contour ordering in Eq.~3.3! to run along the time con-
tour depicted in Fig. 3. It is possible to show that for Gree
function calculations only horizontal paths contribu
@14,54,55#. In addition, the ‘‘physical’’ fields occurring on
the external lines of Green’s functions have time argume
on the upper horizontal path~type-1 fields! while the
‘‘ghost’’ fields have time arguments on the lower horizon
path~type-2 fields!. The latter modify the Feynman rules in

FIG. 1. The graphical representation ofDmn(pnup).
1-4
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nontrivial fashion@4,5,14#. From the foregoing discussio
should be clear that in the case of thermal composite Gre
function, the new~composite! vertices are of type-1 as th
fields from which they are deduced are all physical.5

A. Renormalization of fa„x…fb„x…

Now, if there would be noQc
mn insertion in Eq.~3.3!, the

latter would be finite, and so it is natural to define the ren
malized energy-momentum tensor@Qc

mn# ~or Zimmermann
normal ordering! in such a way that

Dr
mn~xnuy!5^T * $f r~x1! . . . f r~xn!@Qc

mn#%&,

is finite for anyn.0. To see what is involved, we illustrat
the mechanism of the composite operator renormalization
fa(x)fb(x) first, the energy-momentum tensor case will
postponed to Sec. III B. In the following we shall use t
mass-independent renormalization, and for definiteness
chose the minimal subtraction scheme~MS!. In MS we can
expand the bare parameters into the Laurent series which
a simple form@24,37,53#, namely

l05m42Dl rS 11 (
k51

`
ak~l r ;D !

~D24!k D , ~3.7!

m0
25mr

2S 11 (
k51

`
bk~l r ;D !

~D24!k D . ~3.8!

Herea0 andb0 are analytic inD54. The parameterm is the
scale introduced by the renormalization in order to keepl r
dimensionless. An important point is that bothak’s andbk’s
are mass, temperature, and momentum independent.

It was Zimmermann who first realized that the forest fo
mula known from the ordinary Green’s function renormaliz
tion @24,36# can be also utilized for the composite Green
functions rendering them finite@36,56#. That is, we start with
Feynman diagrams expressed in terms of physical~i.e., fi-
nite! coupling constants and masses. As we calculate
grams to a given order, we meet UV divergences wh
might be cancelled by adding counterterm diagrams. The
est formula then prescribes how to systematically cance
the UV loop divergences by counterterms to all orders. Ho
ever, in contrast to the coupling constant renormalization,
composite vertex need not to be renormalized multipli
tively. We shall illustrate this fact in the sequel. Let us a
observe that in the lowest order~no loop! the renormalized
composite vertex equals to the bare one, and so to that o
A5@A#, for any composite operatorA.

Now, from Eqs.~3.7! and~3.8! follows that for any func-
tion F5F(mr ,l r) we have

]F

]mr
2

5
]m0

2

]mr
2

]F

]m0
2

5
m0

2

mr
2

]F

]m0
2

.

5For a brief introduction to the real-time formalism in therm
QFT see, for example, Refs.@3,4,7#.
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F5D~x1 , . . . ,xn!5^T * $f r~x1! . . . f r~xn!%&,

one reads

mr
2 ]

]mr
2

D~x1 , . . . ,xn!

5m0
2 ]

]m0
2

D~x1 , . . . ,xn!

5S 2
i

2DNE dDx(
a51

N E Dff r~x1! . . .

3f r~xn!m0
2fa

2~x!exp~ iS@f,T# !

5S 2
i

2D E dDx(
a51

N

Da~x1 , . . . ,xnux;m0
2!. ~3.9!

Here N21 is the standard denominator of the path integ
representation of Green’s function. We should apply the
rivative also onN but this would produce disconnecte
graphs with bubble diagrams. The former precisely can
the very same disconnected graphs in the first term, so we
finally left with no bubble diagrams in Eq.~3.9!. In the Fou-
rier space Eq.~3.9! reads

mr
2 ]

]mr
2

D~p1 , . . . ,pn!5S 2
i

2D (
a51

N

Da~p1 , . . . ,pnu0;m0
2!.

~3.10!

As the LHS is finite there cannot be any pole terms on
right-hand side~RHS! either, and so(am0

2fa
2 is by itself a

renormalized composite operator. We see thatm0
2 precisely

compensates the singularity of(a51
N fa

2 .
Now, it is well known that any second-rank tensor~say

Mab) can be generally decomposed into three irreduci
tensors; an antisymmetric tensor, a symmetric traceless
sor and an invariant tensor. Let us setMab5fafb , so the
symmetric traceless tensorKab reads

Kab~x!5fa~x!fb~x!2~dab /N!(
c51

n

fc
2~x!, ~3.11!

while the invariant tensorI ab is

I ab~x!5~dab /N!(
c51

N

fc
2~x!.

Because the renormalized composite operators have to
serve a tensorial structure of the bare ones, we immedia
have that

Kab5A1@Kab# and I ab5A2@ I ab#, ~3.12!

where bothA1 and A2 must have structure„11((poles)….
The foregoing guarantees that to the lowest orderKab
1-5
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5@Kab# and I ab5@ I ab#. As we saw in Eq.~3.10!, m0
2I ab is

renormalized, and so from Eq.~3.12! follows that m0
2I ab

5C@ I ab#. HereC has dimension@m2# and is analytic inD
54. We can uniquely setC5mr

2 because only this choic
fulfills the lowest order conditionI ab5@ I ab# @cf. Eq. ~3.8!#.
Collecting our results together we might write

(
c

fc
25ZSf2F(

c
fc

2G5ZSf2(
c

@fc
2#, ~3.13!

with ZSf25A25mr
2/m0

2. In the second equality we hav
used an obvious linearity@36# of @ . . . #. From Eqs.~3.11!
and ~3.13! follows that

fa~x!fb~x!5A1@fa~x!fb~x!#

2
dab

N
~A12ZSf2!(

c51

N

@fc
2~x!#. ~3.14!
o
le

a

l-

08501
So particularly forfa
2 one reads

fa
25

1

N
„~N21!A11ZSf2…@fa

2#2
1

N
~A12ZSf2!(

cÞa
@fc

2#.

~3.15!

From the discussion above it does not seem to be possib
obtain more information aboutA1 without doing an explicit
perturbative calculations, however it is easy to demonst
that A15” ZSf2. To show this, let us consider the simple
nontrivial case; i.e.,N52, and calculateA1 to orderl r . For
that we need to discuss the renormalization of then-point
composite Green’s function with, say,f1

2 insertion. To do
that, it suffices to discuss the renormalization of the cor
sponding 1PIn-point Green’s function. The perturbative ex
pansion for the composite vertex to orderl r can be easily
generated via the Dyson-Schwinger~DS! equation@57# and
it reads6
he

ary
-

ith
where

~3.16!

Here cross-hatched blobs refer to~renormalized! 1PI (n
12)-point Green’s function, circled indices mark a type
the field propagated on the indicated line, and uncirc
numbers refer to thermal indices~we explicitly indicate only
relevant thermal indices!. The counterterms, symbolized by
heavy dot, are extracted from the boxed diagrams~elemen-
tary Zimmermann forests!. In MS scheme one gets the fo
lowing results:

5
il rm

42D

4 E dDq

~2pi !D
$D11~q!D11~2q!

2D12~q!D12~2q!%uMS pole term
f
d

52
1

4
]m

r
2S GS 12

D

2 D
~4p!D/2

l rm
42Dmr

D22D U
MS

52l rm
42D/2~D24!~4p!2

52l rm
42D/6~D24!~6p!2.

Here D11 and D12 are the usual thermal propagators in t
real-time formalism@3,4,7# ~see also Sec. IV!. From Eq.
~3.16! we can directly read off that

@f1
2#5S 12

l rm
42D

2~D24!~4p!2
1O~l r

2!D f1
2

1S 2
l rm

42D

6~D24!~4p!2
1O~l r

2!D f2
2 .

6Throughout the paper we accept the usual convention: Ordin
~not necessarily connected! N-point Green’s functions are repre
sented with dotted blobs withN external legs, connectedN-point
Green’s functions are represented with hatched blobs withN exter-
nal legs and 1PIN-point Green’s functions are represented w
cross hatched blobs withN truncated legs~represented by solid
circles in vertices!.
1-6
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FIG. 2. Counterterm renormal
ization of the last two diagrams in
Eq. ~3.17!. ~Cut legs indicate am-
putations.!
t
u
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As the coefficient beforef2
2 is not zero, we conclude tha

A15” ZSf2. It is not a great challenge to repeat the previo
calculations for thef1f2 insertion. The latter gives

A1512
l rm

42D

3~D24!~4p!2
1O~l r

2!.

Equation~3.15! exhibits the so-called operator mixing@24#;
the renormalization offa

2 cannot be considered indepe
dently of the renormalization offc

2 (c5” a). The latter is
ageneral feature of composite operator renormalizat
Note, however, thatfafb (a5” b) do not mix by renormal-
e

08501
s

n.

ization, i.e., they renormalize multiplicatively. It can b
shown that composite operators mix under renormaliza
only with those composite operators which have dimens
less or equal@24,36,56#.

Unfortunately, if we apply the previous arguments tonn
50, the result is not finite; another additional renormaliz
tion must be performed. The fact that the expectation val
of @ . . . # are generally UV divergent, in spite of being finit
for the composite Green’s functions,7 can be nicely illus-
trated with the composite operator@f2# in the N51 theory.
Taking the diagrams forD(0u0) and applying successivel
the ~unrenormalized! DS equation@3,57# we get
. ~3.17!
te

ite
.

c-
e

st
.
use
Equation~3.17! might be rewritten as

D~0u0!5D~0u0!ul
r
01

1

2E dDq1

~2p!D

dDq2

~2p!D
dD~q11q2!

3Damp~q2u0!ulr
D~q2!

1
1

36E )
i 51

6
dDqi

~2p!D
dDS (

j 51

6

qj D
3Damp~q6u0!ul

r
2D~q6!, ~3.18!

where Damp(qmu0)ul
r
k is the m-point amputated composit
Green’s function to orderl r
k , andD(qm) is the full m-point

Green’s function. The crucial point is that we can wri
D(0u0) as a sum of terms, which, apart from the first~free
field! diagram, are factorized to the product of the compos
Green’s function withn.0 and the full Green’s function
@The factorization is represented in Eq.~3.17! by the dashed
lines.# Note that the expansion Eq.~3.17! is not unique as
various other ways of pulling vertices out of Green’s fun
tion may be utilized but this particular form will prove to b
important in the next section@see Eq.~3.26!#.

Now, utilizing the counterterm renormalization to the la
two diagrams in Eq.~3.17! we get situation depicted in Fig
2. Terms inside of the parentheses are finite, this is beca

7Also called the matrix elements of@ . . . #.
1-7
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both the composite Green’s functions (n>2!) and the full
Green’s functions are finite after renormalization. The co
terterm diagrams, which appear on the RHS of the paren
ses, precisely cancel the UV divergences coming from
loop integrations over momentaq1 . . . qi which must be fi-
nally performed. The heavy dots schematically indicates
corresponding counterterms. In the spirit of the counterte
renormalization we should finally subtract the countert
massociated with the overall superficial divergence8 related
to the diagrams in question. But as we saw this is not n
essary; individual counterterm diagrams~Zimmermann for-
ests! mutually cancel their divergences leaving behind a
nite result.

So the only UV divergence in Eq.~3.17! which cannot be
cured by existing counterterms is that coming from the fi
~i.e., free field or ring! diagram. The foregoing divergence
evidently temperature independent~to see that, simply use a
explicit form of the free thermal propagatorD11). Hence, if
we define

^f2& renorm5^@f2#&2^0u@f2#u0&, ~3.19!

or, alternatively

^f2& renorm5^@f2#&2^@f2#&u free fields, ~3.20!

we get finite quantities, as desired. On the other hand,
should emphasize that

^f2&2^0uf2u0&5Zf2$^@f2#&2^0u@f2#u0&%

Þfinite in D54. ~3.21!

An extension of the previous reasonings to anyN.1 is
straightforward, only difference is that we must deal w
operator mixing which makes Eqs.~3.19! and ~3.20! less
trivial.

The important lesson which we have learned here is
the naive ‘‘double dotted’’ normal product~i.e., subtraction
of the vacuum expectation value from a given operator! does
not generally give a finite result. The former is perfec
suited for the free theory (ZSf251) but in the interacting
case we must resort to the prescription Eq.~3.19! or ~3.20!
instead.

B. Renormalization of the energy-momentum tensor

In order to calculate the hydrostatic pressure, we nee
find such^Qc

mn&urenorm which apart from being finite is also
consistent with our derivation of the hydrostatic pressure
troduced in the introductory section. In view of the previo
treatment, we however cannot, however, expect thatQc

mn

will be renormalized multiplicatively. Instead, new term
with a different structure thanQc

mn itself will be generated

8A simple power counting in thef4 theory reveals@24# that for a
composite operatorA with dimensionvA the superficial degree o
divergencev corresponding to ann-point diagram isv5vA2n.
08501
-
e-
e

e
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e
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during renormalization. The latter must add up toQc
mn in

order to renderDmn(xnuy) finite.9

Now, the key ingredient exploited in Eq.~2.5! is the con-
servation law~continuity equation!. It is well known that one
can ‘‘modify’’ QC

mn in such a way that the new tensorQmn

preserves the convergence properties ofQc
mn . Such a modi-

fication ~the Pauli transformation! reads

Qmn5Qc
mn1]lXlmn,

Xlmn52Xmln. ~3.22!

For scalar fields Eq.~3.22! is the only transformation which
neither changes the divergence properties ofQc

mn nor the
generators of the Poincare group constructed out ofQc

mn

@3,24,47,51#. Because the renormalized~or improved! energy
momentum tensor must be conserved~otherwise theory
would be anomalous!, it has to mix withQc

mn under renor-
malization only via the Pauli transformation, i.e.,

@Qc
mn#5Qc

mn1]lXlmn. ~3.23!

In order to determineXlmn, we should realize that its role i
to cancel divergences present inQc

mn . Such a cancellation
can be, however, performed only by means of compo
operators which are even in the number of fields~note that
Qc

mn is even in fields and Green’s functions with the o
number of fields vanish!. Recalling the condition that renor
malization can mix only operators with dimension less
equal, we see that the dimension ofXlmn must beD21, and
thatXlmn must be quadratic in fields. The only possible for
which is compatible with tensorial structure Eq.~3.22! is
then

Xlmn5 (
a,b51

N

cab~l r ;D !~]mgln2]lgmn!fafb . ~3.24!

From the fact thatQc
mn and @Qc

mn# areO(N) invariant @see
Eq. ~3.2!#, ]lXlmn must be alsoO(N) invariant, socab
5dabc. Thus, finally we can write

@Qc
mn#5Qc

mn1c~l r ;D ! (
a51

N

~]m]n2gmn]2!fa
2 , ~3.25!

with c5c01((poles), herec0 is analytic inD. Structure of
c(l r ;D) could be further determined, similarly as in theN
51 theory, employing a renormalization group equati
@37#. We do not intend to do that as the detailed structure

9In fact it can be shown@3,36# that the Noether currents corre
sponding to a given internal symmetry are renormalized, i.e.,Ja

5@Ja#, however, this is not the case for the Noether currents c
responding to external symmetries~like Qc

mn is!.
1-8
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c will show totally irrelevant for the following discussion
however, it turns out to be important in nonequilibriu
cases.

Now, similarly as before,@Qc
mn# gives the finite compos
am
he

no
e

te
fu
in

re

la

-
h

08501
ite Green’s functions ifn.0 but the expectation value
^@Qc

mn#& is divergent~for discussion of theN51 theory see,
e.g., Brown @37#!. The unrenormalized DS equation fo
Dmn(0u0) reads@3#
~3.26!
m-
r-
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al
-

y
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to

e
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eads
The structure of the composite vertices in Eq.~3.26! is that
described at the beginning of this section. Note that the
putated composite Green’s functions in individual parent
ses are of the same order inl r . Performing the counterterm
renormalization as in the case of^@f2#&, we factorize the
graphs inside of parentheses into the product of the re
malized 2-~and 6-! point composite Green’s function and th
renormalized full 2-~and 6-! point Green’s function. The
latter are finite. The UV divergences arisen during the in
grations over momenta connecting both composite and
Green’s functions are precisely cancelled by the remain
counterterm diagrams. Only divergence comes from the f
field contribution, more precisely from theT50 ring dia-
gram. Defining

^Qc
mn&urenorm5^@Qc

mn#&2^0u@Qc
mn#u0&, ~3.27!

or

^Qc
mn&urenorm5^@Qc

mn#&2^@Qc
mn#&u free field, ~3.28!

we get the finite expressions. Note that the conservation
is manifest in both cases. In equilibrium~and in T50) we
can, due to space-time translational invariance of^ . . . &,
write

^@Qc
mn#&5^Qc

mn&1]l^Xlmn&5^Qc
mn&. ~3.29!

Using Eq.~3.27! or ~3.28! we get either the thermal interac
tion pressure or the interaction pressure, respectively. T
can be explicitly written as

Pth.int.~T!5P~T!2P~0!

52
1

~D21! (
i 51

D21

$^Qci
i &2^0uQci

i u0&%, ~3.30!

or
-
-

r-

-
ll
g
e-

w

is

Pint.~T!5P~T!2Pfree field~T!

52
1

~D21! (
i 51

D21

$^Qci
i &2^Qci

i &u free field%. ~3.31!

In order to keep connection with calculations done by Dru
mondet al. in @39# we shall in the sequel deal with the the
mal interaction pressure only. If instead of an equilibrium
nonequilibrium medium would be in question, translation
invariance of^ . . . & might be lost, in that case either pre
scription Eq.~3.27! or ~3.28! is obligatory, and consequentl
c(l r ;D) in Eq. ~3.25! must be further specified.

IV. HYDROSTATIC PRESSURE CALCULATION

In the preceding section we have prepared ground fo
hydrostatic pressure calculation. In this section we aim
apply the previous results to the massiveO(N)f4 theory in
the large-N limit. Anticipating an out of equilibrium applica-
tion, we shall use the real-time formalism even if th
imaginary-time one is more natural in the equilibrium co
text. As we aim to evaluate the hydrostatic pressure in
dimensions, we use here, similarly as in the preceding s
tion, the usual dimensional regularization to regulate
theory ~i.e., here and throughout we keepD slightly away
from the physical valueD54).

In order to actually pursue the pressure calculation
feel it is necessary to briefly review the mass and coupl
renormalization of the model at hand. This will also help
clarify the notation used. While we hope to provide all e
sentials requisite for our task, good discussion of alterna
approaches and renormalization prescriptions may be
tained for instance in@29,30,33#.

A. Mass renormalization

In the Dyson multiplicative renormalization the fact th
the complete propagator has a pole at the physical mass l
to the usual mass renormalization prescription@24#:
1-9
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mr
25m0

21S~mr
2!, ~4.1!

where mr is renormalized mass andS(mr
2) is the proper

self-energy evaluated at the mass shell;p25mr
2 . In fact, Eq.

~4.1! is nothing but the statement that 2-point vertex funct
G r

(2) evaluated at the mass-shell must vanish. The Dys
Schwinger equation corresponding to the proper self-ene
reads@29,38,57,58#:

(aa5
1

2 (
b51

N

1
i

2 (
b51

N

~4.2!

(aauaÞc50; O3;lo /N

where hatched blobs represent 2-point connected Gre
functions while cross-hatched blobs represent proper vert
G r

(4) ~i.e., 1PI 4-point Green’s function!. As Saa are the same
for all a, we shall simplify notation and writeS instead. In
the sequel the following convention is accepted.

The second term in Eq.~4.2! actually does not contribute
in the large-N limit. It is easy to see that the third term doe
not contribute either. This is because each hatched blob
haves at most asN0 while G (4) goes maximally10 as N21.
Consequently, various contributions from the first graph
Eq. ~4.2! contribute at mostN0, whereas in the second grap
the contributions

contribute up to orderN21. So the first diagram dominate
provided we retain only such 2-point connected Gree
functions which are proportional toN0 ~as mentioned in the
footnote, these are comprised only of tadpole loops!. After
neglecting the ‘‘setting sun’’ graph, Eq.~4.2! generates upon
iterating the so-called superdaisy diagrams@39,25,38#.

Let us now defineS(mr
2)5l0 M(mr

2). Because the tad
pole diagram in Eq.~4.2! can be easily resumed we obser
that

10In the f4 theory there is a simple relation between the num
of loops (L), vertices~V! and external lines (E); 4V52I 1E. To-
gether with the Euler relation for connected graphs;L5I 2V11
~hereI is the number of internal lines!, we haveL2V5(22E)/2.
As each loop carries maximally a factor ofN ~this is saturated only
for ‘‘tadpole’’ loops! and each vertex carries a factor ofN21, the
overall blob contribution behaves at most asNL2V5N(22E)/2.
08501
n-
y

n’s
es

e-

n

’s

M~mr
2!5

1

2E dDq

~2p!D

i

q22m0
22S~mr

2!1 i e

5
1

2E dDq

~2p!D

i

q22mr
21 i e

, ~4.3!

hence we see thatS is external-momentum independent.
we had started with the renormalization prescriptio
iG r

(2)(p250)52mr
2 , we would have arrived at Eq.~4.1! as

well ~this is not the case forN51!).
At finite temperature the strategy is analogous. Due t

doubling of degrees of freedom, the full propagator is a
32 matrix. The latter satisfies, similarly as atT50, Dyson’s
equation

D5DF1DF~2 iS!D. ~4.4!

An important point is that there exists a real, nonsingu
matrix M ~Bogoliubov matrix! @3,4,7# having a property that

DF5MS iDF 0

0 2 iDF*
DM and S5M21S ST 0

0 2ST*
DM21.

~4.5!

HereDF is the standard Feynman propagator and * deno
the complex conjugation. Consequently, the full mat
propagator may be written as

D5MS i

p22m0
22ST1 i e

0

0
2 i

p22m0
22ST* 2 i e

D M. ~4.6!

Similarly as in many body systems, the position of the~real!
pole of D in p2 fixes the temperature-dependent effecti
massmr(T) @4,59#. The latter is determined by the equatio

mr
2~T!5m0

21Re~ST„mr
2~T!…!. ~4.7!

From the explicit form ofM it is possible to show@3,4# that
ReS115ReST . As before, the structure of the proper se
energy can be deduced from the corresponding Dys
Schwinger equation. Following the usual real-time form
ism convention ~type-1 vertex;2 il0, type-2 vertex
; il0), the former reads:

,

~4.8!

where

r

1-10
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and similarly forD22. In Eq. ~4.8! we have omitted diagram
which are of orderO(1/N) or less. Note that the fact that n
setting sun diagrams are present implies that the off-diag
elements ofS are zero. Inspection of Eq.~4.8! reveals that

(
11

5
l0

2 E dDq

~2p!D
D11~q;T!

and

(
22

52
l0

2 E dDq

~2p!D
D22~q;T!. ~4.9!

It directly follows from Eq.~4.9! that bothS11 andS22 are
external-momentum independent and real.11 If we define
ST„mr

2(T)…5l0 MT„mr
2(T)…, then Eq. ~4.7! through Eq.

~4.9! implies that

mr
2~T!5m0

21l0 MT„mr
2~T!…. ~4.10!

A resumed version ofD11 is easily obtainable from Eq.~4.6!
@3,4# and consequently Eq.~4.9! yields

MT„mr
2~T!…5

1

2E dDq

~2p!D H i

q22mr
2~T!1 i e

1~4p!d1
„q22mr

2~T!…
1

eq0b21
J

52E dDq

~2p!D

«~q0!

eq0b21
Im

1

q22mr
2~T!1 i e

.

~4.11!

Let us remark that Eq.~4.11! is manifestly independent o
any particular real-time formalism version.

In passing it may be mentioned that becauseS11(mr
2) is

momentum independent, the wave function renormaliza
Zf51. @The Källen-Lehmann representation requires t
renormalized propagator to have a pole of residuei at p2

11Reality of S11 can be most easily seen from the largest-tim
equation@58#. The LTE states thatS111S221S121S2150. Be-
cause no setting sun graphs are present,S121S2150, on the other
handS111S2252i Im S11 @see Eq.~4.5!#.
08501
al

n

5mr
2 . The former in turn implies that Zf5(1

2S118 (p2)up25m
r
2)2151.# Trivial consequence of the forego

ing fact is thatG r
(2)5G (2) andG r

(4)5G (4).

B. Coupling constant renormalization

Let us choose the coupling constant to be defined aT
50. This will have the advantage that the high temperat
expansion of the pressure~see Sec. V! will become more
transparent. In addition, such a choice will allow us to sel
safely the part of the parameter space in which spontane
symmetry breakdown is not possible. An alternative ren
malization procedure based on the affective action is p
sented in@29#.

By assumption the fieldsfa have nonvanishing masse
so we can safely choose the renormalization prescription
l r at s50 (s is the standard Mandelstam variable!. For ex-
ample, one may require that for the scatteringaa→bb,

G (4)~s50!52l r /N ~b5” a!. ~4.12!

The formula Eq.~4.12! clearly agrees with the tree leve
value G tree

(4)aabb(s50)52l0 /N. Let us also mention tha
Ward’s identities corresponding to the internalO(N) symme-
try enforceG (4)aaaa to obey the constraint12

G (4)aaaa~p1 ;p2 ;p3 ;p4!5G (4)bbaa~p1 ;p2 ;p3 ;p4!

1G (4)baba~p1 ;p2 ;p3 ;p4!

1G (4)baab~p1 ;p2 ;p3 ;p4!, ~4.13!

for anyb5” a. The structure ofG (4) is encoded in the follow-
ing Dyson-Schwinger equation~see also@24,57#!.

12Actually, Ward’s identities read@57# *dDx@dG@f#/dfa(x)#
3fb(x)5*dDx@dG@f#/dfb(x)#fa(x) @herefa5(dW/dJa); W is
the generating functional of connected Green’s functions#. Perform-
ing successive variations with respect tofa(v),fa(z),fa(y), and
fb(w), taking the Fourier transform, and setting the physical c
dition fc50, we get directly Eq.~4.13!.
1-11
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In the latter the sum( i 51
3 schematically represents a sum

mation overs, t andu scattering channels. For clarity’s sak
the internal indices are suppressed. Similarly as before,
can argue that both the third and fourth graphs contribut
most N22, while the second~‘‘fish’’ ! graph may contribute
up to orderN21. So in the large-N limit the last three dia-
grams may be neglected, provided we keep in the 4-p
vertex function only graphs proportional toN21. However,
the former can be only fulfilled if we retain such a ‘‘fish
graph where summation over internal index on the loop
allowed. Remaining two graphs in the sum( i 51

3 ~i.e., t andu
scattering channels! are suppressed by the factorN21 as the
internal index on the loop is fixed. In this way we are le
with the relation

G (4)aabb~s50!52
l0

N
2

il0

2N (
cÞb

E dDq

~2p!D
G (4)bbcc~s!

3
i

~q22mr
21 i e!

i

„~q2Q!22mr
21 i e…

U
s50

52
l0

N
2

l0l r~N21!

2N2 E
0

1

dxE dDq

~2p!D

3
i

„q22mr
21x~12x!s1 i e…2

U
s50

, ~4.15!

with Q5p11p2 and s5Q2, p1 ,p2 are the external mo
menta. To leading order in 1/N we may equivalently write

l r5l01l0l rM8~mr
2!, ~4.16!

the prime means differentiation with respect tomr
2 ; M(mr

2)
is defined by Eq.~4.3!. Evaluating explicitlyM8(mr

2), we
get from Eq.~4.16!,

l05
l r

12l rGS 22
D

2 D ~mr !
D24/2~4p!D/2

. ~4.17!
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Assuming that bothl0>0 andl r>0 ~notel r,0 would be
incompatible withl0>0 andmr

2.0), we can infer from Eq.
~4.17! that

0<l r<
2~4p!D/2~mr !

42D

GS 22
D

2
D , ~4.18!

and so forD54 we inevitably get thatl r50. The latter
indicates that the theory is trivial@39,23,31#, or, in other
words, theO(N)f4 theory is a renormalized free theory i
the large-N limit. This conclusion is also consistent with th
observation that the theory does not possess any nontr
UV fixed point in the large-N limit @23,31,32,60#.

On the other hand, if we were assuming thatl0,0, we
would get indeed a nontrivial renormalized field theory
D54 @actually, from Eq.~4.17! we see thatl0→02 , pro-
vided thatl r is fixed and positive andD→42]. However, as
it was pointed out in Refs.@39,23,31,33#, such a theory is
intrinsically unstable as the ground-state energy is
bounded from below. This is reflected, for instance, in t
existence of tachyons in the theory@39,31,33,61#, therefore
the case with negativel0 is clearly inconsistent.

The straightforward remedy for this situation was su
gested by Bardeen and Moshe@31#. They showed that the
only meaningful~stable! O(N)f4 theory in the large-N limit
is that withl r ,l0>0. This is provided that we view it as a
effective field theory at momenta scale small compared t
fixed UV cutoff L. The cutoff itself is further determined b
Eq. ~4.16! because in that case~assumingmr!L)

l05
l r

12
l r

32p2
lnS L2

mr
2D , ~4.19!

which implies that for l r ,l0>0 we have L2

,mr
2 exp(32p2/l r). The caseL25mr

2 exp(32p2/l r) corre-
sponds to the Landau ghost@62# ~tachyon pole@39,31#!. For
reasonably smalll r , L is truly huge13 and so it does not
represent any significant restriction.

13For example, if l r51 and mr'100 MeV, we get L
,10141 MeV or equivalentlyL,10131 K ~this is far beyond the
Planck temperature21032 K).
1-12
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In passing we may observe that from Eqs.~4.1! and
~4.19!,

mr
2

l r
5

m0
2

l0
1

1

23p2
L2, ~4.20!

and so the fractionmr
2/l r is renormalization invariant. It was

argued in@31# that for the part of the parameter space wh
l0.0 andmr

2/l r.0 the ground state isO(N) symmetric,
Goldstone phenomena cannot materialize and hence the
pectation value of the field is zero. The latter fact has b
implicitly used, for instance, in the derivation our Dyso
Schwinger equations. To avoid a delicate discussion of
phase structure of theO(N) f4 theory and to emphasize ou
primary objective, i.e., hydrostatic pressure calculation,
confine ourselves to the parameter space defined above.
an effective theory will provide a suitable playground to e
plore all the basic salient points involved in the hydrosta
pressure calculation. Furthermore, because the mass
equation~gap equation! has a particularly simple form in thi
case the high-T analysis of the hydrostatic pressure will b
easy to perform.

C. Resumed hydrostatic pressure

The partition functionZ has a well-known path-integra
representation at finite temperature, namely,

Z@T#5exp~F@T# !5E Df exp~ iS@f;T# !,

S@f;T#5E
C
dDx L~x!. ~4.21!

Here F52bV is a Massieu function~the Legendre
transform of the entropy! @3,41–43# and *CdDx
5*C dx0*V dD21x with the subscriptC suggesting that the
time runs along some contour in the complex plane. In
real-time formalism, which we adopt throughout, the m
natural version is the so-called Keldysh-Schwinger one@3,4#,
which is represented by the contour in Fig. 3. Let us ment
that the fields within the path-integral Eq.~4.21! are further
restricted by the periodic boundary condition~KMS condi-
tion! @3,4,7# which in our case reads

fa~ t i2 ib,x!5fa~ t i ,x!.

FIG. 3. The Keldysh-Schwinger time path.
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As explained in Sec. III, we can use for a pressure calcu
tion the canonical energy-momentum tensorQc

mn . Employ-
ing for Qc

mn(x) its explicit form Eq.~3.2! together with Eq.
~3.6!, one may write

^Qc
mn&5

N

2E dDq

~2p!D
„2qmqn2gmn~q22m0

2!…D11~q;T!

1
l0

8N
gmnK S (

a51

N

fa
2~0!D 2L , ~4.22!

whereD11 is the Dyson-resumed thermal propagator@3,4#,
i.e.,

D11~q;T!5
i

q22mr
2~T!1 i e

1~2p!d„q22mr
2~T!…

1

euq0ub21
. ~4.23!

Note that we have exploited in Eq.~4.22! the fact that the
expectation value ofQc

mn(x) is x independent. On the othe
hand, in Eq.~4.23! we have used the fact thatmr

2 is q inde-
pendent. In order to calculate the expectation value of
quartic term in Eq.~4.22!, let us observe@cf. Eq. ~4.21!# that
the derivative ofF with respect to the bare couplingl0
~taken at fixedm0) gives

]F@T#

]l0
52

i

8NEC
dDxK S (

a51

N

fa
2~0!D 2L , ~4.24!

which implies that

K S (
a51

N

fa
2~0!D 2L 52

N8

bV

]F@T#

]l0
. ~4.25!

The key point now is that we can calculateF@T# in a non-
perturbative form. The latter is based on the fact that
know the Dyson-resumed propagatorD11(q;T) @see Eq.
~4.23!#. Indeed, taking derivative ofF with respect tom0

2

~keepingl0 fixed! we obtain

]F@T#

]m0
2

52
iN

2 E
C
dDx^f2~0!&

52
bVN

2 E dDq

~2p!D
D11~q;T!

52bVNMT„mr
2~T!…, ~4.26!

thus

F@T;l0 ;m0
2#5bVNE

m0
2

`

dm̂0
2 MT„m̂r

2~T!…1F@T;l0 ;`#.

~4.27!
1-13



r
rt

al
h
tiv
n

e

q

a
e
-
ca

i-

its
ial

PETR JIZBA PHYSICAL REVIEW D 69, 085011 ~2004!
Let us note thatF@T;l0 ;`# is actually zero14 because
F@T;l0 ;m0

2# has the standard loop expansion@3,57# de-
picted in Fig. 4. It is worth mentioning that in the latte
expansion one must always have at least one type-1 ve
@39#. The RHS of Fig. 4 clearly tends to zero form0→` as
all the ~free! thermal propagators from which the individu
diagrams are constructed tend to zero in this limit. T
former result can be also deduced from the CJT effec
action formalism @25# or from a heuristic argumentatio
based on a thermodynamic pressure@39#. Note that in the
large-N limit the fourth and fifth diagrams in Fig. 4 must b
omitted.

The expectation value Eq.~4.25! can be now explicitly
written as

K S (
a51

N

fa
2~0!D 2L 58N2E

m0
2

`

dm̂0
2E dDq

~2p!D

«~q0!

eq0b21

3ImS ]ST„m̂r
2~T!…

]l0

~q22m̂r
21 i e!2

D . ~4.28!

In fact, the differentiation of the proper self-energy in E
~4.28! can be carried out easily. Using Eq.~4.10!, we get

]ST

]l0
5

ST

l0
1l0MT8

]ST

]l0
⇒ ]ST

]l0
5

ST

l0~12l0MT8 !
.

From Eq.~4.10! it directly follows that

dmr
2~T!

dm0
2

5
1

~12l0MT8 !
,

which, together with the definition ofMT , gives

K S (
a51

N

fa
2~0!D 2L 58N2E

mr
2(T)

`

dm̂r
2E dDq

~2p!D

«~q0!

eq0b21

3Im
MT~m̂r

2!

~q22m̂r
21 i e!2

528N2E
mr

2(T)

`

dm̂r
2MT~m̂r

2!
]MT~m̂r

2!

]m̂r
2

54N2MT
2
„mr

2~T!…, ~4.29!

where we have exploited in the last line the fact th
MT

2(mr
2→`)50. Let us mention that the crucial point in th

previous manipulations was thatmr is both real and momen
tum independent. Collecting our results together, we
write for the hydrostatic pressure per particle@cf. Eq. ~3.30!

14To be precise, we should also include in Fig. 4 an~infinite!
circle diagram corresponding to the free pressure@38,39#. However,
the latter isl0 independent~althoughm0 dependent! and so it is
irrelevant for the successive discussion@cf. Eq. ~4.25!#.
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P~T!2P~0!52
1

~D21!N
~^Qci

i &2^0uQci
i u0&!

51
1

2E dDq

~2p!D21 S 2q2

~D21! D «~q0!

eq0b21

3d„q22mr
2~T!…

2
1

2E dDq

~2p!D21 S 2q2

~D21! D d1
„q22mr

2~0!…

1
1

2l0
~ST

2
„mr

2~T!…2S2
„mr

2~0!…!. ~4.30!

Applying Green’s theorem to the last two integrals and elim
nating the surface terms~for details see Appendix A! we find

P~T!2P~0!5
1

2E dDq

~2p!D21

«~q0!

eq0b21
u~q22mr

2~T!!

2
1

2E dDq

~2p!D21
u~q0!u~q22mr

2~0!!

1
1

2l0
~ST

2
„mr

2~T!…2S2
„mr

2~0!…!

5NT~mr
2~T!!2N~mr

2~0!!

1
1

2l0
~ST

2
„mr

2~T!…2S2
„mr

2~0!…!, ~4.31!

where we have introduced new functionsNT(mr
2(T)) and

N(mr
2);

NT„mr
2~T!…5

1

2E dDq

~2p!D21

«~q0!

eq0b21
u„q22mr

2~T!…

N~mr
2!5 lim

T→0
NT„mr

2~T!…. ~4.32!

Equation~4.31! can be rephrased into a form which exhib
an explicit independence of bar quantities. Using the triv
identity:

FIG. 4. First few bubble diagrams in theF expansion.
1-14
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1

2l0
~ST

2
„mr

2~T!…2S2
„mr~0!…!

5
1

2l0
~ST„mr

2~T!…2S„mr
2~0!…!

3~ST„mr
2~T!…1S„mr

2~0!…!

5
dm2~T!

2
~MT„mr

2~T!…1M„mr
2~0!…!, ~4.33!

we get

P~T!2P~0!5NT„mr
2~T!…2N„mr

2~0!…

1
dm2~T!

2
„MT~mr

2~T!…1M„mr
2~0!…!,

~4.34!

wheredm2(T)5mr
2(T)2mr

2(0). Let usfinally mention that
the finding Eq.~4.30! is an original result of this paper. Th
result Eq. ~4.34! has been previously obtained by autho
@39# in the purely thermodynamic pressure framework.

V. HIGH-TEMPERATURE EXPANSION
OF THE HYDROSTATIC PRESSURE IN DÄ4

In order to obtain the high-temperature expansion of
pressure inD54, it is presumably the easiest to go back
Eq. ~4.30! and employ identity Eq.~4.33!. Let us split this
task into two parts. We first evaluate the integrals with p
tentially UV divergent parts using the dimensional regul
ization. The remaining integrals, with the Bose-Einstein d
tribution insertion, are safe of UV singularities and can
computed by means of the Mellin transform technique.

Inspecting Eqs.~4.30! and ~4.33!, we observe that the
only UV divergent contributions come from the integrals:

1
1

~D21!
E dDq

~2p!D21
q2(d1

„q22mr
2~T!…

2d1
„q22mr

2~0!…)1
dm2~T!

4 E dDq

~2p!D

3S i

q22mr
2~T!1 i e

1
i

q22mr
2~0!1 i e

D , ~5.1!

which, if integrated over, give

~5.1!51

GS 2D

2 DGS D

2
1

1

2D
~D21!GS D21

2 D ~4p!D/2

3~„mr
2~T!…D/22„mr

2~0!…D/2!1

dm2~T!GS12
D

2 D
4~4p!D/2

3~„mr
2~T!…(D/2)211„mr

2~0!…(D/2)21!. ~5.2!
08501
e
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-
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Taking the limitD5422«→4 and using expansions

G~2n1«!5
~21!n

n! S 1

«
1 (

k51

n
1

k
2g1O~«!D ,

ax1«5ax~11« ln a1O~«2!!,

(g is the Euler-Mascheroni constant! we are finally left with

~5.1!uD→452
mr

2~0!mr
2~T!

64p2
lnS mr

2~T!

mr
2~0!

D
1dm2~T!„mr

2~T!1mr
2~0!…

1

128p2
. ~5.3!

The fact that we get the finite result should not be surpris
as the entire analysis of Sec. III was made to show t
P(T)2P(0) defined viaQc

mn is finite in D54.
We may now concentrate on the remaining terms in E

~4.30!, the latter read~we might, and we shall, from now on
work in D54)

1

3
E d4q

~2p!3
q2

1

euq0ub21
d„q22mr

2~T!…

1
dm2~T!

4
E d4q

~2p!3

1

euq0ub21
d„q22mr

2~T!…. ~5.4!

Our following strategy is based on the observation that
previous integrals have generic form:

I 2n~mr !5E d4q

~2p!3
q2n

1

euq0ub21
d~q22mr

2!

5
mr

212n

2p2
E

1

`

dx~x221!(112n)/2
1

exy21
, ~5.5!

with n50,1 and y5mrb. Unfortunately, the integral Eq
~5.5! cannot be evaluated exactly, however, its smally ~i.e.,
high-temperature! behavior can be successfully analyzed
means of the Mellin transform technique@3,38#. Before go-
ing further, let us briefly outline the basic steps needed
such a smally expansion.

The Mellin transform f̂ (s) is done by the prescription
@3,38,63–66#:

f̂ ~s!5E
0

`

dx xs21f ~x!, ~5.6!

with s being a complex number. One can easily check t
the inverse Mellin transform reads

f ~x!5
1

i ~2p!
E

2 i`1a

i`1a

ds x2sf̂ ~s!, ~5.7!
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where the real constanta is chosen in such a way thatf̂ (s) is
convergent in the neighborhood of a straight line (2 i`
1a, i`1a). So particularly if f (x)51/@exy21# one can
find ~@65#; formula I.3.19! that

f̂ ~s!5G~s!z~s!y2s ~Res.1!, ~5.8!

where z is the Riemann zeta function (z(s)5(n51
` n2s).

Now we insert the Mellin transform off (x)51/@exy21# to
Eq. ~5.5! and interchange integrals~this is legitimate only if
the integrals are convergent before the interchange!. As a
result we have

E
0

`

dx g~x!
1

exy21
5E

2 i`1a

i`1a ds

i ~2p!
G~s!z~s!y2sĝ~12s!,

~5.9!

with g(x)5u(x21)(x221)(112n)/2. Using the tabulated re
sult ~@66#; formula 6.2.32! we find

ĝ~12s!5 1
2 B~2n211 1

2 s; 3
2 1n! ~Res.212n!,

~5.10!

with B(;) being the beta function. Because the integrand
the RHS of Eq.~5.9! is analytic for Res.212n and the
LHS is finite, we must choose sucha that the integration is
defined. The foregoing is achieved choosinga.212n.
Other useful expressions forĝ(12s) are ~@66#; formula
I.2.34 or I.2.37!

ĝ~12s!5B~ 3
2 1n;2222n1s!

3 2F1@2 1
2 2n;2222n1s;2 1

2 2n1s;21#
08501
n

52
1
2 1nB~ 3

2 1n;2222n1s!

3 2F1@2 1
2 2n; 3

2 1n;2 1
2 2n1s; 1

2 #,

where 2F1 is the~Gauss! hypergeometric function@66#. Us-
ing identity

G~2x!5
22x21

Ap
G~x!GS x1

1

2D ,

we can write

~5.9!5

GS 3

2
1n D

4Ap
E

2 i`1a

i`1a ds

i ~2p!
GS 1

2
sD

3z~s!S 1

2
yD 2s

GS 2n211
1

2
sD . ~5.11!

The integrand of Eq.~5.11! has simple poles ins522n(n
51,2, . . . ), s51, s522n12n12 (n50,1, . . . ,n) and
double pole ins50. An important point in the former pole
analysis was the fact thatz(s) has simple zeros in22m
(m.0) and only one simple pole ins51. The former to-
gether with identity

GS x

2Dp2x/2z~x!5GS 12x

2 Dp (x21)/2z~12x!,

shows that no double pole except fors50 is present in Eq.
~5.11!. Now, we can close the contour to the left as the va
of the contour integral around the large arc is zero in
limit of infinite radius ~cf. @65# and @67#; formula 8.328.1!.
Using successively the Cauchy theorem we obtain
4Ap~5.9!

GS 3

2
1n D 5 (

n50

n

y2n22n22
p22n12n12~2n1n!! ~21!nuB22n12n12u

n! ~22n12n12!!24n24n24
1 (

n51

`

y2n
p22n~2n!! z~112n!~21!n1n11

n! ~n111n!!24n21

1y21
p~21!n11~n11!!22n13

~2n12!!
1

2~21!n11

~n11!! H lnS y

4p D1g2
1

2 (
k51

n11
1

kJ , ~5.12!

whereBa’s are the Bernoulli numbers. Let us mention that forz(2n11) only numerical values are available.
Inserting Eq.~5.12! back to Eq.~5.4!, we get forP(T)2P(0),

P~T!2P~0!5~5.3!1
1

3
I 2„mr~T!…1

dm2~T!

4
I 0„mr~T!…

5
T4p2

90
2

T2

24S mr
2~T!2

dm2~T!

2 D1
Tmr~T!

4p S mr
2~T!

3
2

dm2~T!

4 D 1
mr

2~T!mr
2~0!

32p2 S lnS mr~0!

T4p D1g2
1

2D2
mr

4~0!

128p2

2 (
n51

` S mr
2~T!2

~n12!

2
dm2~T! Dmr

2n12~T!p22n22~2n!! z~112n!~21!11n

T2nn! ~n12!!24n14
. ~5.13!
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Note that Eq. ~5.3! cancelled against the same term
1
3 I 2„mr(T)…1@dm2(T)/4#I 0„mr(T)…. One can see that Eq
~5.13! rapidly converges for largeT, so that only first four
terms dominate at sufficiently high temperature. The afo
mentioned terms come from the poles nearby the straight
(2 i`1a, i`1a) ~the more dominant contribution th
closer pole!. It is a typical feature of the Mellin transform
technique that integrals of type

E
0

`

dx g~x!
1

exy21
,

can be expressed as an expansion which rapidly conve
for small y ~high-temperature expansion! or large y ~low-
temperature expansion!.15

Expansion~5.13! is the sought result. To check its consi
tency we will apply it to two important cases: highT case
andmr(0)50 case. Concerning the first case, note that fo
sufficiently largeT we can use the high-temperature expa
sion of dm2(T) found in Appendix B. Inserting Eq.~B6! to
Eq. ~5.13! we obtain

P~T!2P~0!5
T4p2

90
2

T2mr
2~T!

24
1

T3mr~T!

12p

1
l r

8 S T4

144
2

T3mr~T!

24p
1

T2mr
2~T!

16p2 D
1OS mr

4~T!lnS mr~T!

T4p D D . ~5.14!

Up to a sign, the result Eq.~5.14! coincides with that found
by Amelino-Camelia and Pi@40# for the effective potential.16

Actually, they used instead of theN→` limit the Hartree-
Fock approximation which is supposed to give the sameVeff
as the leading 1/N approximation@62#.

As for the second case, we may observe that our dis
sion of the mass renormalization in Sec. III A can be direc
extended to the case whenmr(0)50 ~this does not apply to
our discussion ofl r !). Latter can be also seen from the fa
that Eq.~5.13! is continuous inmr(0)50 ~however not ana-
lytic!. The foregoing implies that the original massless sca
particles acquire the thermal massmr

2(T)5dm2(T). From
Eq. ~5.13! one then may immediately deduce the pressure
massless fieldsfa in terms ofdm(T). The latter reads

15By the same token we get the low-temperature expansion if
integral contour must be closed to the right.

16Let us remind@40,25,29# that from the definition ofVeff the
thermodynamic pressure is2Veff . In order to obtain Eq.~5.14!
from Veff in @40#, one must subtract the zero temperature value
Veff and restrict oneself to vanishing field expectation value a
positive bare mass squared.
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P~T!2P~0!

5
T4p2

90
2

T2
„dm~T!…2

48
1

T„dm~T!…3

48p

1 (
n51

`
„dm~T!…2n14p22n22~2n!! z~112n!~21!n11

T2n~n21!! ~n12!!24n15
.

~5.15!

This result is identical to that found by Drummondet al.
in @39#.

A noteworthy observation is that when the energy o
thermal motion is much higher then the mass of particles
the rest, then the massive theory approaches the mas
one. This is justified in the first~high-temperature dominant!
term of Eqs.~5.13! and~5.15!. This term is nothing but a hal
of the black-body radiation pressure for photons@41,42#
~photons have two degrees of freedom connected with
transverse polarizations!. One could also obtain the temper
ture dominant contributions directly from the Stefa
Boltzmann law@3,41,42# for the density energy~i.e., ^Q00&).
The formal argument leading to this statement is based
the noticing that at high energy~temperature! the scalar field
theory is approximately conformally invariant, which in tur
implies that the energy-momentum tensor is traceless@52#.
Taking into account the definition of the hydrostatic press
Eq. ~2.8!, we can with a little effort recover the leading high
temperature contributions for the massive case.

VI. CONCLUSIONS

In the present paper we have clarified the status of hyd
static pressure in~equilibrium! thermal QFT. The former is
explained in terms of the thermal expectation value of
‘‘weighted’’ space-like trace of the energy-momentum tens
Qmn. In classical field theory there is a clear microscop
picture of the hydrostatic pressure which is further enhan
by a mathematical connection~through the virial theorem!
with the thermodynamic pressure. In addition, it is the h
drostatic pressure which can be naturally extended to a n
equilibrium medium. Quantum theoretic treatment of the h
drostatic pressure is however pretty delicate. In order to g
sensible, finite answer we must give up the idea of to
hydrostatic pressure. Instead, thermal interaction pressur
and interaction pressure must be used@see Eqs.~3.30! and
~3.31!#. We have established this result for a special c
when the theory in question is the scalarf4 theory with
O(N) internal symmetry; but it can be easily extended
more complex situations. Moreover, due to a lucky interp
between the conservation ofQmn and the space-time transla
tional invariance of an equilibrium~and T50) expectation
value we can use the simple canonical~i.e., unrenormalized!
energy-momentum tensor. In the course of our treatmen
Sec. III we heavily relied on the counterterm renormaliz
tion, which seems to be the most natural when one discu
renormalization of composite Green’s functions. To be s
cific, we have resorted to the minimal subtraction sche
which has proved useful in several technical points.
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We have applied the prescriptions obtained for the Q
hydrostatic pressure tof4 theory in the large-N limit. The
former has the undeniable advantage of being exa
soluble. This is because of the fact that the large-N limit
eliminates ‘‘nasty’’ classes of diagrams in the therm
Dyson-Schwinger expansion. The survived class of diagra
~superdaisy diagrams! can be exactly resumed, because
~thermal! proper self-energyS, as well as the renormalize
coupling constantl r are momentum independent. We ha
also stressed that theO(N)f4 theory in the large-N limit is
consistent only if we view it as an effective field theor
Fortunately, the upper bound on the UV cutoff is truly hug
and it does not represent any significant restriction. For
model at hand the resumed form of the pressure w
mr(0)50 was first derived~in the purely thermodynamic
pressure context! by Drummond et al. in @39#. We have
checked, using the prescription Eq.~3.30! for the thermal
interaction pressure, that their results are in agreement
ours. The former is a nice vindication of the validity of th
virial theorem for the QFT system at hand. In this connect
we should perhaps mention that the latter is by no me
obvious. For example, for quantized gauge fields the con
mal ~trace! anomaly may even invalidate the virial theore
@3#. The fact that this point is indeed nontrivial is illustrate
on the QCD case in@68#.

The expression for the pressure obtained was in a suit
form which allowed us to take advantage of the Mellin tran
form technique. We were then able to write down the hig
temperature expansion for the pressure inD54 ~both for
massive and massless fields! in terms of renormalized masse
mr(T) and mr(0). We have explicitly checked that all UV
divergences present in the individual thermal diagrams ‘‘m
raculously’’ cancel in accordance with our analysis of t
composite operators in Sec. III.
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APPENDIX A

In this appendix we give some details of the derivation
Eq. ~4.31!. We particularly show that the surface integra
arisen during the transition from Eq.~4.30! to Eq. ~4.31!
mutually cancel among themselves. As usual, the integ
will be evaluated for integer values ofD and corresponding
results then analytically continued to a desired~generally
complex! D.

The key quantity in question is

1
1

2E dDq

~2p!D21 S 2q2

~D21! D «~q0!

ebq021
d„q22mr

2~T!…

2
1

2E dDq

~2p!D21 S 2q2

~D21! D d1
„q22mr

2~0!…. ~A1!
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Applying Green’s theorem~i.e., integrating by parts with re
spect toq) on Eq.~A1! one finds

~A1!5NT„mr
2~T!…2N„mr

2~0!…

1 lim
R→`

1

2~D21!
E dq0

~2p!D21E]SR
D22

ds q

3u„q22mr
2~T!…u~q0!S 2

ebq021
11D

2 lim
R→`

1

2~D21!
E dq0

~2p!D21E]SR
D22

ds q

3u„q22mr
2~0!…u~q0!. ~A2!

As usual,ab5( i 51
D21aibi andSR

D22 is a (D22)-sphere with
the radiusR. The expressions forNT andN are done by Eq.
~4.32!.

With the relation Eq.~A3! we can show that the surfac
terms cancel in the largeR limit. Let us first observe that

lim
R→`

E dq0

~2p!D21
E

]SR
D22

ds qu„q22mr
2~T!…

2u~q0!

ebq021

5 lim
R→`

2p~D21/2!RD21

GS D21

2
D E dq0

~2p!D21

3u„q0
22R22mr

2~T!…
2u~q0!

ebq021

5 lim
R→`

p~12D/2!RD21

2D22GS D21

2
D EAR21mr

2(T)

`

dq0

2

ebq021
50.

~A3!

In the second line we have exploited Gauss’ theorem an
the last line we have used L’Hoˆpital’s rule as the expressio
is in the indeterminate form 0/0. The remaining surface ter
in Eq. ~A3! read

lim
R→`

E dq0

~2p!D21
E

]SR
D22

ds q

3$u„q22mr
2~T!…2u„q22mr

2~0!…%u~q0!

5 lim
R→`

p [(12D)/2]RD21

2D22GS D21

2
D H EAR21mr

2(T)

`

2EAR21mr
2(0)

` J
3dq050. ~A4!

The last identity follows either by applying L’Hoˆspital’s rule
or by a simple transformation of variables which rende
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both integrals inside of$ . . . % equal. Expressions on the la
lines in Eqs.~A3! and ~A4! can be clearly~single-valuedly!
continued to the region ReD.1 as they are analytic there
We thus end up with the statement that

~A1!5NT~mr
2~T!…2N~mr

2~0!….

APPENDIX B

In this appendix we shall derive the high-temperature
pansion of the mass shiftdm2(T) in the case when fieldsfa

are massive@i.e., mr
2(0)5” 0].

Consider Eqs.~4.1! and ~4.10!. If we combine them to-
gether, we easily obtain the following transcendental eq
tion for dm2(T):

dm2~T!5l0HM„mr
2~T!…2M„mr

2~0!…

1
1

2
I 0„mr

2~0!1dm2~T!…J . ~B1!

Here M and I 0 are done by Eqs.~4.3! and ~5.5!, respec-
tively.
08501
-

a-

Now, bothl0 andM are divergent inD54. If we reex-
pressl0 in terms ofl r , divergences must cancel, asdm2(T)
is finite in D54. The latter can be easily seen if we Tayl
expandM, i.e.,

M~mr
2~T!…5M~mr

2~0!…1dm2~T!M8~mr
2~0!…

1M̂~mr
2~0!;dm2~T!…. ~B2!

Obviously,M̂ is finite in D54 asM is quadratically diver-
gent. Inserting Eq.~B2! to Eq. ~B1! and employing Eq.
~4.16! we get

dm2~T!5l r HM̂„mr
2~0!;dm2~T!…

1
1

2
I 0„mr

2~0!1dm2~T!…J . ~B3!

This is sometimes referred to as the renormalized gap e
tion. In order to determineM̂ we must go back to Eq.~B2!.
From the former we read off that
r the

. Namely
h

M̂„mr
2~T!;dm2~T!…5M„mr

2~T!…2M(mr
2~0!…2dm2~T!M8„mr

2~0!…

5

GS 12
D

2 D
2~4p!D/2 H „mr

2~T!…(D/2)212„mr
2~0!…(D/2)212dm2~T!S D

2
21D „mr

2~0!…(D/2)22J
5

D→4 1

32p2 H mr
2~T!lnS mr

2~T!

mr
2~0!

D 2dm2~T!J . ~B4!

So

dm2~T!5l r
H „m2~0!1dm2~T!…lnS 11

dm2~T!

mr
2~0!

D 2dm2~T!

32p2
1

1

2
I 0
J . ~B5!

Analogous relation was also derived in@30# where authors used finite temperature renormalization group. In the latte
zero-momentum renormalization prescription was utilized. Equation~B5! was first obtained and numerically solved in@39#. It
was shown that the solution is double valued. The former behavior was also observed in the effective action approach
by Abbottet al. @33# at T50, and by Bardeen and Moshe@31# at bothT50 andT5” 0. The relevant solution is only that whic
fulfills the consistency conditiondm2(T)→0 when T→0. For such a solution it can be shown~cf. @39#, Fig. 3! that
dm2(T)/mr

2(0)!1 for a sufficiently highT. So the high-temperature expansion of Eq.~B5! reads

dm2~T!5l r
H „dm2~T!…2

2mr
2~0!

2
„dm2~T!…3

6mr
4~0!

1
„dm2~T!…4

12mr
6~0!

1 . . .

32p2
1

1

2
I 0
J

8
l r

2
I 05

l rT
2

24
2

l rmr~T!

8p
T1OS mr

2~T!lnS mr~T!

T4p D D . ~B6!
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