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Probability distributions which can be obtained from superpositions of Gaussian distributions of different
variances v=�2 play a favored role in quantum theory and financial markets. Such superpositions need not
necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may
introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy
the semigroup property. The smearing technique has two immediate applications. It permits simplifying the
system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conve-
niently implemented in the path integral calculus. In many cases, the superposition of path integrals can be
evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how
the technique is extended to quantum mechanics.
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I. INTRODUCTION

Path integrals are a powerful tool in diverse areas of phys-
ics, both computationally and conceptually. They often pro-
vide the easiest route to derivation of perturbative expan-
sions as well as an excellent framework for nonperturbative
analysis �1�. One of the key properties of path integrals in
statistical physics is that the related time evolution of the
conditional probabilities P�xb , tb �xa , ta� fulfills the Chapman-
Kolmogorov �CK� equation for continuous Markovian pro-
cesses,

P�xb,tb�xa,ta� =� dxP�xb,tb�x,t�P�x,t�xa,ta� . �1�

Conversely, any probability satisfying this equation pos-
sesses a path integral representation, as shown by Kac and
Feynman �2–4�. Equation �1� also serves as a basis for de-
riving a Fokker-Planck time evolution equation �1,5,6� for
P�xb , tb �xa , ta� from either the stochastic differential equation
obeyed by the variable x or the Hamiltonian driving the time
evolution of P�xb , tb �xa , ta�. Such equations are used to ex-
plain many different physical phenomena, for example tur-
bulence �7� or epitaxial growth �8�. In information theory
they serve as a tool for modeling various queueing processes
�9�, while in mathematical finance they are conveniently ap-
plied in theory of option pricing for efficient markets
�1,10–12�.

A trivial property of P�xb , tb �xa , ta� satisfying the CK
equation �1� is the initial condition

P�xb,ta�xa,ta� = ��xb − xa� . �2�

The right-hand side can be written as a scalar product of
Dirac’s bra and ket states �xb� and �xa� as

P�xb,ta�xa,ta� = �xb�xa� . �3�

In many practical applications one encounters conditional
probabilities formulated as a superposition of path integrals
in which the Hamiltonians H are rescaled by a factor v, i.e.,

P̄�xb,tb�xa,ta� = �
0

�

dv��v,tba��
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−vH�p,x��,

�4�

where ��v , tba� is some positive, continuous and normaliz-
able smearing function of v�0 and tba
 tb− ta�0. For in-
stance, probability distributions which can be obtained from
superpositions of Gaussian distributions of different volatili-
ties v=�2 play an important role in financial markets �1,10�.
Such smearing distributions show up also in nonperturbative
approximations to quantum statistical partition functions
�13�, in systems with time reparametrization invariance
�1,14�, in polymer physics �1,15�, in superstatistics �16�, etc.
Whenever smeared path integrals fulfill the CK equation, the
Feynman-Kac formula ensures that such superpositions can
themselves be written as a path integral without smearing,

P̄�xb,tb�xa,ta� = �
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−H̄�p,x��, �5�

with a new Hamiltonian H̄�p ,x� given by

e−	ta

tbd�H̄�p,x� = �
0

�

dv��v,tba�e−	ta

tbd�vH�p,x�. �6�

In general, the smeared path integral �4� does not conserve
the CK equation. Physically this implies that the superposi-
tion �4� introduces memory into the system. The aim of this
paper is to find conditions for the smearing distributions
where this is avoided. Various physical consequences will be
derived from this.

The paper is organized as follows. Section II starts with a
warm up example of smearing distributions for a Gaussian
conditional probability. In Sec. III we derive the most gen-
eral class of continuous smearing distributions fulfilling the
CK equation. Section IV is devoted to a construction of the

Hamiltonian H̄ and to a discussion of related issues. In Sec.
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V we show how the outlined path integral representation can
be physically interpreted in terms of two coupled stochastic
processes. Section VI discusses three specific smeared sys-
tems without memory. In particular we show how the explicit

knowledge of H̄�p ,x� can streamline practical calculations of
numerous path integrals. Various remarks and generaliza-
tions are proposed in the concluding Sec. VII. For the read-
er’s convenience, we include two appendices where we per-
form some finer mathematical manipulations needed in Sec.
V.

II. SMEARING OF A GAUSSIAN DISTRIBUTION

Our goal is to find the most general form of ��v , t� ful-
filling the CK relation �1�. Let us first illustrate what we want
to achieve by smearing out a simple Gaussian system whose
Hamiltonian is H=vp2 /2 leading to a conditional probability

Pv�xb,tb�xa,ta� = �
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−vp2/2�

=
1

�2�vtba

e−�xb − xa�2/�2vtba�, �7�

where tba
 tb− ta. This obeys the Fokker-Planck equation

�tb
Pv�xb,tb�xa,ta� =

v
2

�xb

2 Pv�xb,tb�xa,ta� , �8�

which can be solved explicitly, including the initial condition
�2� with the help of the differential operator for the momen-
tum p̂
−i�x as

Pv�xb,tb�xa,ta� = e−tbavp̂2/2��xb − xa� , �9�

or, using the Dirac bra and ket states in �3�, as

Pv�xb,tb�xa,ta� = �xb�e−tbavp̂2/2�xa� . �10�

Due to the completeness relation 	dx�x��x�=1, this expres-
sion obviously satisfies the CK equation �1�.

Let us now assume that ��v , t� can be written as a Fourier
transform of the form �compare also Ref. �17��:

��v,tba� = �
−i�

i� d	

2�i
e	v−H��	/tba�tba, �11�

where H��	� can be viewed as the Hamiltonian affiliated
with distribution �. Then the smeared transition probability
has the integral representation

P̄�xb,tb�xa,ta� = �
−i�

i� d	

2�i�xb
 e−H��	/tba�tba

	 − tbap̂2/2

xa� . �12�

Assuming that H��	� is a regular function which becomes
infinite on a large semicircle in the upper half plane we can
use the residue theorem to evaluate this as

P̄�xb,tb�xa,ta� = �xb�e−H��ip̂2/2�tba�xa� . �13�

This can be written as a path integral

P̄�xb,tb�xa,ta� = �
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−H��p2/2��. �14�

Thus the Hamiltonian H̄�p ,x� of the smeared system in Eq.
�5� is simply equal to H��p2 /2�.

In the following we shall generalize this treatment to non-
Gaussian Hamiltonians in Eq. �7�.

III. SMEARING OF A GENERAL DISTRIBUTION

We now embark on finding the most general smearing
function ��v , tab� to guarantee the CK relation for the
smeared expression �4�. Replacing the probabilities in �1� by
�4�, we bring the right-hand side to the explicit form

�
0

�

dv���v�,t���
0

�

dv���v�,t���
−�

�

dx�
x�tc�=x

x�tb�=xb

DxDp


e	tc

tbd��ipẋ−v�H��
x�ta�=xa

x�tc�=x

DxDpe	ta

tcd��ipẋ−v�H�

=
t

2t�t�
�

0

�

dv�
−tv

tv

d��� �tv − ��
2t�

,t���� �tv + ��
2t�

,t��

�

x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−vH�, �15�

where t�
 tca= tc− ta and t�
 tbc= tb− tc. In the second line
we have used the substitution t�v�+ t�v�= tv and t�v�− t�v�
=�. Comparing the right-hand side of �15� with the left-hand
side of �4� expressed in the smeared form �4�, we obtain an
integral equation for the smearing function ��v , t�:

�
−tv

tv

d��� �tv − ��
2t�

,t���� �tv + ��
2t�

,t�� =
2t�t���v,t�

t
.

�16�

Setting z
 tv / t� and going over to an integration variable
z�= �tv+�� /2t�, this becomes

�
0

z

dz���z�,t���� t�

t�
�z − z��,t�� =

t�

t
�� t�

t
z,t� , �17�

or equivalently

�
0

z

dz���z�,t�a��a�z − z��,
t

a
� = b��bz,

t

b
� , �18�

with positive real a ,b satisfying 1+1 /a=1 /b. Since the left-
hand side is a convolution integral, the solution of this equa-
tion is found by a Laplace transformation. Defining

�̃�	,t� = �
0

�

dze−	z��z,t�, Re 	 � 0, �19�

we may reduce Eq. �18� to the functional equation

�̃�	,t��̃� 	

a
,

t

a
� = �̃� 	

b
,

t

b
� . �20�

It should be stressed that due to assumed normalizability and
positivity of ��v , t�, the smearing distribution is always
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Laplace transformable. The substitution 
=1 /a transforms
�20� to

�̃�	,t��̃�
	,
t� = �̃�	 + 
	,t + 
t� . �21�

By considering only real 	, Eq. �21� can be solved by method
of iterations familiar from the theory of functional equations
�18�. Assume for a moment that 
 is a positive integer, say n,
then successive iterations of Eq. �21� give

�̃�n	,nt� = ��̃�	,t��n. �22�

Now let r=m /n be a positive rational number �m and n posi-
tive integers� and � and � arbitrary positive real numbers.
Then, for 	=r�= �m /n�� and t=r�= �m /n��, we have n	
=m� and nt=m�, so that Eq. �22� yields

�̃�	,t� = �̃�r�,r�� = ��̃��,���r, �23�

for all positive � and � and all positive rationals r. Assuming
that �̃ is continuous, we may extend the Eq. �23� to all posi-
tive real r. It is then solved by

�̃�	,t� = �̃�t	/t,t1� = ��̃�	/t,1��t 
 �G�	/t��t, t � 0,

�24�

where G�x� is any continuous function of x. The above deri-
vation is meaningless for t=0. In this case we must instead
of �24� consider

�̃�	,0� = �̃�	1,	0� = ��̃�1,0��	 
 �	. �25�

The constant � is determined by the initial value of the
smearing distribution ��v , t�. Thus Eq. �25� implies that

lim
t→+0

��v,t� = ��v + log ����v + log �� = �+�v + log �� .

�26�

Note that Eq. �24� implies positivity of �̃�	 , t� for all t and 	,
hence G�x� must also be positive for all x. This allows us to
write

�G�	/t��t = e−F�	/t�t, �27�

where F�x� is some continuous function of x. The associated
inverse Laplace transform gives then the complete solution
for ��v , t�. Usually, the inverse Laplace transform is ex-
pressed as as a complex Bromwich integral �19� �compare
�11��:

��v,t� =
1

2�i
�

�−i�

�+i�

d	e	v�̃�	,t� , �28�

where the real constant � is such that it exceeds the real part
of all the singularities of �̃�	 , t�. For our purpose it will be
preferable to use, instead of �28�, the inversion formula due
to Post �20�:

��v,t� = lim
k→�

�− 1�k

k!
� k

v
�k+1

��	
k�̃�	,t��	=k/v. �29�

For practical calculations this formula is rarely used due to
the need to evaluate derivatives of arbitrary high orders. For
our purpose, however, it has the advantage that it shows that
a real Laplace transform �̃�	 , t� leads to a real smearing

function ��v , tab�. Moreover, one does not need to know the
pole structure of �̃�	 , t� in the complex 	 plane, which is in
general not known.

The result �24� can be mildly generalized to the smearing
of composite Hamiltonians vH�p ,x�=vH1�p ,x�+H2�p ,x� as

long as �Ĥ1 , Ĥ2�=0. At the same time it should be stressed
that the entire approach fails for time-dependent Hamilto-
nians.

To end this section we note that if the smearing distribu-
tion ��v , t� would have included negative v values, the inte-
gral in Eq. �18� would have been replaced with 	0

z �	�
−�.

Then a two-sided Laplace transformation would have
brought us to the same equations �23� and �24� as before, and
the associated general ��v , t� would been recovered via the
inverse of the two-sided Laplace transform. By restricting
ourselves to v�0, all calculations become simpler.

IV. EXPLICIT REPRESENTATION OF H̄(p ,x)

We now determine the Hamiltonian H̄�p ,x� explicitly in
the general case. For this we must first make sure that the
path integral for the initial distribution in �4�,

Pv�xb,tb�xa,ta� = �
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−vH�p,x��, �30�

is properly defined. The classical Hamiltonian H�p ,x� must
be set up in such a way that the Hamiltonian operator driving
the time evolution

�tPv�x,t�xa,ta� = − vĤ�p̂,x�Pv�x,t�xa,ta� , �31�

has all momentum operators p̂=−i�x to the left of the x vari-
ables. Only then can one guarantee the probability conserva-
tion law for P�xb , tb �xa , ta�:

� dx�tPv�x,t�xa,ta� = −� dxvĤ�p̂,x�Pv�x,t�xa,ta� . �32�

The right-hand side vanishes after a partial integration. The

relation between Ĥ�p̂ ,x� and H�p ,x� is explained in Ref. �1�.
With the help of Post’s inversion formula �29� we now

rewrite the smeared conditional probability �4� in the form

P̄�xb,tb;xa,ta� = lim
k→�

�− 1�k−1

�k − 1�!�0

�

d		k−1�	
k�̃�	,tba�


 �
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−kH/	�. �33�

Inserting here Eq. �19�, the integration over 	 turns into

�
0

�

dvvk��v,tba��
0

�

d		k−1e−v	�
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−kH/	�.

�34�

The path integral can be written in Dirac operator form �10�
as

�xb�e−ktbaĤ/	�xa� , �35�

so that �34� becomes
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�
0

�

dvvk��v,tba��xb
�
0

�

d		k−1e−v	e−ktbaĤ/	
xa� .

�36�

The 	 integral yields a Bessel function of the second type

2�ktbaĤ/y�k/2Kk�2�kytbaĤ� . �37�

Applying the limiting form of the Bessel function for large
index �21�

Kk��kx� �
1

2
k−k/2��k�� x

2
�−k

e−x2/4, �38�

we can cast �33� to

P̄�xb,tb�xa,ta� =�xb
�
0

�

dv��v,tba�e−vtbaĤ
xa� . �39�

We now use Eqs. �19� and �24� to rewrite this as

�xb��̃�tbaĤ,tba��xa� = �xb��̃�Ĥ,1�tba�xa� . �40�

With Eq. �27�, this becomes

P̄�xb,tb�xa,ta� = �xb�e−tbaF�Ĥ��xa� , �41�

which can be expressed as a path integral

P̄�xb,tb�xa,ta� = �
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbdt�ipẋ−Fcl�H��. �42�

Here Fcl�H� denotes the classical function of the energy
which makes the path integral �42� equal to the operator

expression F�Ĥ� in �41�. The construction of �42� is highly
nontrivial since one must ensure that the path integral leads

to the correct operator order in �̃�Ĥ ,1�tba. The task is simple

only if Ĥ depends only on p̂. Then the ordering problem
disappears and Fcl�H�p��=F�H�p��. In general, the ordering
problem has a unique solution �22� in the perturbative defi-
nition of path integrals �see Sec. 10.6 in Ref. �1��, in which
they are expanded around harmonic path integrals with the
help of Feynman diagrams and a specific extension of the
theory of distribution. The result is equivalent to performing
the expansion in 1�� time dimensions and taking the limit
�→0 at the end.

There are other instances in which the operator ordering
can be uniquely assigned. In Appendix B we discuss one
such example.

A few observations are useful concerning he nature of
F�H�. First, the normalization condition

1 = �
0

�

dv��v,t� = �̃�0,t� , �43�

implies that F�0�=0. Second, the necessary positivity of
��v , t� implies, via Post’s formula, that all derivatives
�−1�k�k�̃�	 , t� /�	k are positive for large 	 and k. Taking into
account that �̃�x , t��0 we conclude that �̃�	 , t� must be de-
creasing and convex for large 	 and any t. Asymptotic de-

crease and convexity of e−F�x/t�t ensure that F�Ĥ� must be a

monotonically increasing function of Ĥ for large spectral

values of Ĥ. Third, the real nature of �̃�x , t� makes F�Ĥ� a

real function of Ĥ. This is in contrast to quantum-mechanical
path integrals where the smearing function ��v , t� is not nec-
essarily real.

V. KRAMERS-MOYAL EXPANSIONS

Let us study the implications of the above smearing pro-
cedure upon the time evolution equations for the conditional

probabilities Pv�xb , tb �xa , ta� and P̄�xb , tb �xa , ta� which have
the general form �31�. In statistical physics these are called
Kramers-Moyal �KM� equations �1,6,23�. The negative time

evolution operator −vĤ�p̂ ,x� is called Kramers-Moyal op-
erators Lv�−�x ,x�. Thus Eq. �31� for Pv�xb , tb �xa , ta� and an

analogous equation for P̄�xb , tb �xa , ta� are written as

�tb
Pv�xb,tb�xa,ta� = LvPv�xb,tb�xa,ta� , �44�

�tb
P̄�xb,tb�xa,ta� = L P̄�xb,tb�xa,ta� . �45�

The Kramers-Moyal operator Lv has the expansion

Lv�− �xb
,xb� = �

n=1

�

�− �xb
�nDv

�n��xb,tb� , �46�

whose coefficients Dv
�n��x , t� are equal to the moments of the

short-time transition probabilities:

Dv
�n��x,t� =

1

n!
lim
�→0

1

�
�

−�

�

dy�y − x�nPv�y,t + ��x,t� . �47�

Inserting Eq. �31�, these can also be calculated from the for-
mula

Dv
�n��x,t� =

1

n!
lim
�→0

1

�
�

−�

�

dy�y − x�n�y�e−vĤ��x� . �48�

The same equation holds for P̄�xb , tb �xa , ta� with the re-

placement vĤ→ Ĥ̄, Lv→L, and Dv
�n��x , t�→ D̄�n��x , t�.

Our smearing procedure can be recast in the language of
KM equations. We show that the two equations �44� and �45�
can be replaced by an equivalent pair of KM equations. First
we observe that Eq. �17� can be rewritten as

��z,t� = �
0

�

dz�P��z,t�z�,t����z�,t�� , �49�

with the conditional probability

P��z,t�z�,t�� =
t

t − t�
��tz − t�z���� tz − t�z�

t − t�
,t − t�� ,

�50�

which satisfies the initial condition

lim
�→0

P��z,t + ��z�,t� = �+�z − z�� . �51�
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Moreover, expressing ��z , t� in Eq. �49� in terms of
P��xb , tb �xa , ta� via �50�, we find that P��xb , tb �xa , ta� satisfies
a CK equation

P��xb,tb�xa,ta� =� dxP��xb,tb�x,t�P��x,t�xa,ta� . �52�

This implies that P��xb , tb �xa , ta� obeys a KM time evolution
equation

�tba
P��vb,tb�va,ta� = L�P��vb,tb�va,ta� , �53�

with the KM operator

L� = �
n=1

�

�− �v�nK�n��v,tba� . �54�

The expansion coefficients are obtained by analogy with �47�
from the short-time limits

K�n��v,t� = lim
�→0

1

n!�
�

−�

�

dv��v� − v�nP��v�,t + ��v,t�

= lim
�→0

1

n!�
� �

tba + �
�n�

0

�

dv��v� − v�n��v�,�� .

�55�

A crucial observation for the further development is that
due to the equality of the Kernel in the time evolution equa-
tions �53� and �49�, the same KM operator governs the time
evolution of ��v , tba�:

�tba
��v,tba� = L���v,tba� , �56�

In Appendix A we show that this equation can also be de-
rived directly from the KM equations �44� and �45�.

The smearing procedure of the path integral is equivalent
to replacing the pair of KM equations �44� and �45� by the
pair �44� and �56�. This separates the dynamics of the smear-
ing distribution from the dynamics of the transition ampli-
tude. This may serve as a convenient starting point, for in-
stance in quantum optics �24�, in superstatistics �16�, or in
numerous option pricing models �see, e.g., Ref. �1� and cita-
tions therein�.

For applications it is useful to remember Pawula’s theo-
rem �25�, according to which the coefficients of the expan-
sions of KM operators are either all nonzero or, if there is a
finite number of them, they can be nonzero only up to n=2.
This follows from the necessary positivity of the probabili-
ties. If one artificially truncates Dv

�n��x , t� in �46� or K�n��x , t�
at some n�3, then the ensuing transition probabilities al-
ways develop negative values, at least for sufficiently short
times. This is the basic reason why phenomenological mod-
els for KM operators go usually only up to n=2.

Consider such a truncated model. Then the KM equations
�44� and �56� reduce to the Fokker-Planck equations

�t��v,t� = L�
FP��v,t� , �57�

�tb
Pv�xb,tb�xa,ta� = Lv

FPPv�xb,tb�xa,ta� , �58�

with

L�
FP = − �vK�1��v,t� + �v

2K�2��v,t� , �59�

Lv
FP = − �xb

Dv
�1��xb,tb� + �xb

2 Dv
�2��xb,tb� . �60�

Furthermore, Eqs. �57� and �58� allow us to find two coupled
stochastic processes described by the two coupled Itō sto-
chastic differential equations

dxb = Dv
�1��xb,tb�dtb + �2Dv

�2��xb,tb�dW1, �61�

dv = K�1��v,tba�dtba + �2K�2��v,tba�dW2. �62�

Here W1�tb� and W2�tba� are Wiener processes, i.e., Gaussian
random walks.

VI. SIMPLE EXAMPLES

To demonstrate the usefulness of the superposition proce-
dure we now discuss some important classes of G�x� func-
tions in Eq. �24�.

�i� We start with the trivial choice

G�x� = e−ax+b, b � R; a � R0
+, �63�

which gives

�̃��,t� = e−a�+bt, �64�

and consequently

��v,t� = ebt��v − a� . �65�

By requiring that � is normalized to 1 for any t we have
b=0, i.e., no smearing distribution. In this case the Hamil-

tonian H̄�p ,x�=aH�p ,x�. Note that a is basically the aver-
aged value of v over the � function distribution.

�ii� A less trivial choice of G�x� is

G�x� = � a

x + b
�c

, a � R+; b,c � R0
+, �66�

which gives

�̃��,t� = � at

� + bt
�ct

, �67�

leading thus to

��v,t� =
1

��ct�
�at�cte−btvvct−1. �68�

Further restriction on the coefficients is obtained by requir-
ing normalizability of ��v , t�. The normalization condition
F�0�=0 can be fulfilled in two ways. Either we set c=0, in

which case ��v , t�=��v� and H̄�p ,x�=0, or we assume that
a=b. In the latter case

��v,t� =
�bt�ctvct−1

��ct�
e−btv, �69�

i.e., it corresponds to the Gamma distribution �4,10� fbt,ct�v�
which is of a particular importance in financial data analysis
�1,10,26� and superstatistics �27,28�. In the special case
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when c=db=da and b→� we obtain that ��v , t�=��v−d�.
The Hamiltonian H̄ associated with the distribution �69�
reads

H̄�p,x� = v̄b�log�H�p,x�
b

+ 1��
cl

, �70�

where v̄=c /b is the mean of ��v , t�. In particular, for H
= p2 /2 we obtain the smearing relation between path inte-
grals

�
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−v̄b log�p2/2b+1��

= �
0

�

dv��v,tba��
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−vp2/2�. �71�

Inserting for the path integral on the right-hand side the re-
sult �15�, the integral over v reads explicitly

�
0

�

dv
�btba�ctbavctba−1

��ctba�
� 1

2�tbav
e−btbave−xba

2 /2vtba, �72�

and yields

K1/2−ctba
�2�2b�xba��

tba
−3/2

����ctba�
�2�2btba

�xba�
�1/2−ctba

. �73�

In Fourier space, the superposition �71� leads to a Tsallis
distribution �10,16,27�.

Another interesting consequence arises when we consider
the ensuing Itō stochastic equations. To this end we use the
Hamiltonian from Refs. �1,10� which has the form p2 /2
+ ip�r /v−1 /2�, with r being a constant. The corresponding
drift and diffusion coefficients Dv

�1� and Dv
�2� are easily calcu-

lable giving

Dv
�1��x,tb� = �r −

v
2
�, Dv

�2��x,tb� =
v
2

. �74�

The coefficients K�n� are

K�1��v,tba� =
1

tba
� c

b
− v� =

1

tba
�v̄ − v� ,

K�n��v,tba� =
1

tba
n

c

nbn , n � 2. �75�

Hence we find the two coupled Itō equations �61� and �62� in
the form

dxb = �r −
v
2
�dtb + �vdW1,

dv =
1

tba
�v̄ − v�dtba +

1

tba

� v̄
b

dW2. �76�

One may now view xb as a logarithm of a stock price S, and
v and r as the corresponding variance and drift. If, in addi-

tion, we replace for large tab the quantity �v̄ with �v, the
systems �76� reduces to

dS = rSdtb + �vSdW1,

dv = ��v̄ − v�dtba + ��vdW2, �77�

where �=1 / tba and �=1 / �btba�. The system of equations
�77� constitute Heston’s stochastic volatility model �26�. The
parameters v̄, �, and � can be then interpreted as the long-
time average, the drift of the variance and the volatility of
the variance, respectively. Heston’s model may be used in
quantitative finance to evaluate, for instance, the price of
options �for further reference on this model see, e.g., Ref. �1�
and citations therein�.

�iii� As a third example we consider

G�x� = e−a�x, a � R+. �78�

This implies

�̃��,t� = e−a�t�, �79�

and

��v,t� =
ae−a2t/4v

2���v3

t

. �80�

Image function �̃�� , t� already fulfils the normalized condi-
tion F�0�=0. In the literature, �80� is known as the Weibull
distribution of order 1 �e.g., Refs. �4,32�� ��v , t�
=w�v ;1 ,a2t /2�. The smearing distribution �80� has also im-
portant applications in the so-called inverse �2 superstatistics
�27�. Because integral over v
��v , t� does not exist for 

�1 /2, the distribution �80� does not have moments. The

Hamiltonian H̄�p ,x�=a��H�p ,x��cl. In particular, this im-
plies an identity �29�

�
0

�

dvw�v;1,
t

2
��

x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−v�p2c2+m2c4��

= �
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−c�p2+m2c2�. �81�

The right-hand side represents the path integral for the free
relativistic particle in the Newton-Wigner representation
�30,31�. Previously, this has been evaluated by group path
integration �33�. With our smearing method, we can obtain
the same result much faster by a direct calculation of the
left-hand side of �81�. Due the the quadratic nature of the
Hamiltonian we obtain immediately in D space dimensions:

�
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−c�p2+m2c2�,

=�
0

�

dv
e−tba/4v

2��� v3

tba

e−vm2c4tba−xba
2 /4vc2tba� 1

4vc2�tba
�D/2

,

=2ctba� m�

2�tba
�D+1/2

KD+1/2�mc2tba

�
� , �82�
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with �= �1+xba
2 /c2tba

2 �−1/2, xba
xb−xa. The result in Eq.
�82� agrees, of course, with those of earlier authors �33�.

If Eq. �82� is taken to the limit m=0, it reads

�
x�ta�=xa

x�tb�=xb

DxDpe	ta

tbd��ipẋ−c�p�� = ct��D + 1

2
�� �2

�t2c2��D+1�/2
.

�83�

This is of a particular importance in econophysics as it can
be directly related to a Lévy noise distribution of order 1,
see, e.g. Ref. �1�.

VII. CONCLUSIONS AND OUTLOOKS

In this paper we have identified the most general class
of continuous smearing distributions ��v , t� defined on
R+
R+ for which superpositions of Marcovian processes
remain Markovian. This insight was used to rephrase the
original problem of computing a complicated conditional
probability P�xb , tb �xa , ta� as a problem solving two coupled
Kramers-Moyal equations, one for a simple basic distribu-
tion, and the other for the smearing distribution ��v , t�. If the
associated Kramers-Moyal expansions are truncated after n
=2, they become Fokker-Planck equations whose respective
sample paths follow two coupled stochastic equations à la
Itō. As an application of this decomposition procedure we
have demonstrated how the log-normal fluctuations of a
stock price with a Gamma smearing distribution of the vari-
ances lead to the celebrated Heston model of stochastic vola-
tility.

As a second application we have shown that the ensuing
relation between smeared path integrals and nonsmeared
ones permits one to solve exactly �and often quite fast� rela-
tively large classes of path integrals. In this connection we
have discussed in some detail two important situations: path
integrals arising in the framework of generalized statistics of
Tsallis �28� and a world-line representation of the euclidean
Newton-Wigner propagator. The latter situation can easily
accommodate relativistic systems with gauge potentials via
minimal coupling. Useful applications are expected in the
field of world-line representations of effective actions
�14,34,35�.

For simplicity we have considered smearing distributions
for path integrals with only bosonic degrees of freedom.
There is no problem in extending our procedure to path in-
tegrals with Grassmann �i.e., fermionic� variables, and to
more general initial functional integrals. Such extensions
may be useful in polymer physics, in particular in the theory
of self-avoiding chains, and in their field-theoretic treatments
�1,36�.

Our procedure can also be applied to quantum mechanics
with only small modifications. There the CK relation is the
composition law for time translation amplitudes reflecting
the semigroup property of the evolution operator e−i	dtH. The
smearing functions acts then upon probability amplitudes
rather than conditional probabilities, in which case they may
be complex rather than positive.

Note added. We recently became aware of Refs. �17,27�,
devoted to superstatistics. There exists a conceptual overlap
between the present paper and the above mentioned ones. In
fact, practitioners in superstatistics can quickly benefit from
our paper by substituting for our v their intensive parameter
� and for our smearing distribution ��v , t� their probability
density f���. In superstatistical setting one could also call
our smearing procedure as “the superstatistical average�
�though our distributions are generally time dependent�. In
any case, it seems to us that important things are worth re-
peating several times using different framework and different
words. For a more detailed discussion of the superstatistics
paradigm, the reader is referred to Refs. �16,17,27�.
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APPENDIX A

It is instructive to check that Eq. �58� can be derived
directly from the original KM equations �44� and �45� for

Pv�xb , tb �xa , ta� and P̄�xb , tb �xa , ta�. This provides an impor-
tant cross check for the complete equivalence between both
systems of KM equations. To this end, we multiply �44� by
��v , tba� and integrate over v. This leads to

�tb
P̄�xb,tb�xa,ta� − �

0

�

dvPv�xb,tb�xa,ta��tba
��v,tba�

= �
0

�

dv��v,tba�LvPv�xb,tb�xa,ta� . �A1�

The first line has been rewritten using the chain rule for
derivatives, while in the second line we have used the fact
that Pv�xb , tb �xa , ta� fulfills the KM equation �44�. We now
insert in the second line a trivial unit integral
	0

�dv���v� ,��=1, where � is a positive infinitesimal time.

Then we subtract and add a term L P̄�xb , tb �xa , ta�, i.e., the
right-hand side of the KM equation �45�. Thus the second
line in �A1� becomes

�
0

�

dv�
0

�

dv���v,tba���v�,���Lv − Lv��Pv�xb,tb�xa,ta�

+ L P̄�xb,tb�xa,ta� . �A2�

Equation �A2� is a convenient short-hand version of more
involved form where the �→0 limit acts both on ��v ,�� and
Lv. For instance,

. . .�
0

�

dv���v�,��Lv� . . . , �A3�

actually means
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. . .�
k=1

�
1

�k!
�

0

�

dv���v�,���− �xb
�k


�
−�

�

dy�y − xb�kPv��y,tb + �,xb,tb� . . . , �A4�

and similarly for the Lv term. With this in mind we now
Taylor expand Lv� around v and obtain

− �
n=1

�
1

n!
�

0

�

dv�
0

�

dv���v,tba���v�,��


�v� − v�n��v
nLv�Pv�xb,tb�xa,ta� + L P̄�xb,tb�xa,ta� .

�A5�

To compute the derivatives �v
nLv we use the representation

�9� for a more general unsmeared Hamiltonian operator
H�p̂ ,x�:

Pv�xb,tb�xa,ta� = e−vtbaĤ�p̂b,xb���xb − xa�

= e−vtba�Ĥ†�p̂a,xa��*��xb − xa� , �A6�

from which directly follows that

�v
nPv�y,tb + ��xb,tb� = �− ��nĤn�p̂,y�e−v�Ĥ�p̂,y���y − xb�

= �− ��n��Ĥ†�n�p̂b,xb��*


e−v��Ĥ†�p̂b,xb��*��y − xb� . �A7�

Appearance of the term �Ĥ†�p̂ ,x��* in the second lines is a

consequence of the identity �xb�Â�p̂ , x̂��xa�= �xa�Â†�p̂ , x̂��xb�*

which is valid for any operator Â. We can now simplify �A5�
with some algebra involving product rules of derivatives and

� functions. Abbreviating Ĥ�p̂ ,x� by Ĥx, this gives

− �
n=1

�
1

n!�
� �

tba + �
�n�

0

�

dv�
0

�

dv���v,tba���v�,��


�v� − v�n�v
nPv�xb,tb + ��xa,ta� + L P̄�xb,tb�xa,ta� .

�A8�

In deriving the latter we have utilized the identity

� dy�y − xb�k��Ĥy
†�n�*e−v��Ĥy

†�*��y − xb�

=� dy��y − xb�Ĥy
ne−v�Ĥy�y − xb�k, �A9�

and the fact that

Ĥy
ne−�vĤy = �− ��

v
�n

e−�vĤy . �A10�

Extending for a moment the sum over n in �A5� to start from
n=0, the relevant terms entering the calculation of
��v

nLv�Pv�xb , tb �xa , ta� in Eq. �A8� have the form

�
k=0

� �− �xb
�k

k!
��y − xb�e−�vHy�y − xb�ke−tbavHxb��xb − xa�

= �
k=0

� �− �xb
�k

k!
��y − xb��y�− i�� − y�ke−tbavHy��y − xa�

= e�y−y�−i����xb��y − xb�e−tbavHy��y − xa� . �A11�

We now apply the shift operator e�y−y�−i����xb to the xb variable
in the � function and cast the resulting ��xb−y�−i��� into
Dirac’s bra-ket form

��xb − y�− i��� = �xb�y�− i��� = �xb�e−�vĤ�y� . �A12�

If we now perform the integral over y in �A9� and use the
fact that

�− ��

v
�n

�xb�e−v��+tba�Ĥ�xa� = � − �v

tba + �
�n

�xb�e−v��+tba�Ĥ�xa� ,

we obtain the announced result �A8�. We now use the defi-
nition of the moments in the second line of Eq. �55�, and the
fact that the surface terms in the partial integrations over v�
vanish due to the positivity of the real part of the Hamil-
tonian spectrum, to rewrite the first term in �A8� as

− �
n=1

� �
0

�

dv�− �v�n�K�n��v,tba���v,tba��Pv�xb,tb�xa,ta� .

Remembering Eq. �54�, this can be written as

−� dvPv�xb,tb�xa,ta�L���v,tba� . �A13�

If we now take into account the evolution equation �44�, we
obtain from Eq. �A1� the equation

�
0

�

dvPv�xb,tb�xa,ta��tba
��v,tba�

=� dvPv�xb,tb�xa,ta�L���v,tba� . �A14�

This result must hold for any distribution Pv�xb , tb �xa , ta�,
thus proving the KM equation �56� for ��v , t�.

APPENDIX B

Here we show how to define uniquely the classical Hamil-
tonian Fcl�H�p ,x�� if the initial Hamiltonian H�p ,x� depends
not only on p but also on x, This will be done with the help
of the KM equations.

We start with an observation that when the unsmeared
KM operator has no explicit time dependence, i.e., when

Lv�− �x,x� = �
n=1

�

�− �x�nDv
�n��x� , �B1�

then the unsmeared classical Hamiltonian Hcl�p ,x� has the
form
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Hcl�p,x� = − �
n=1

�

�− ip�nDv
�n��x� , �B2�

provided we define the path integral by time slicing in
the post-point form. This is done by rewriting the short-

time matrix elements �xn�exp�−Ĥ���xn−1� as integrals

	�dpn /2���xn � pn��pn �exp�−Ĥ�� �xn−1� and defining the clas-
sical Hamiltonian via the identity

�pn�exp�− Ĥ���xn−1� 
 e−�Hcl�pn,xn−1�e−ipnxn−1. �B3�

Then to order O��2� the Hamiltonian Hcl�p ,x� coincides
with �B2�. Full discussion of this relation can be found in
Ref. �1�. The KM equation is basically a Schrödinger-type

equation with the non-hermitian Hamiltonian Ĥ�p ,x�
=�n�−ip̂�nDv

�n��x̂�=−Lv�−�x ,x�.
Let us now see how the KM equation looks for the

smeared distribution. This will allow us to identify the
smeared classical Hamiltonian Fcl�H�. To this end we note
that from the definition �47� the smeared KM coefficients can
be written as

D�n��x� =
1

n!
lim
�→0

1

�
�

0

�

dv��v,���
−�

�

dy�y − x�n�y�e−vĤ��x�

=
1

n!
lim
�→0

1

�
�

−�

�

dy�y − x�n�y�e−F�Ĥ���x� . �B4�

Furthermore, we can insert in front of e−F�Ĥ�� a completeness
relation 	dp�p��p�=1̂, and make use of the fact that only
terms up to order O��� are relevant in e−F�Ĥ��. This leads
directly to

1

n!
lim
�→0

1

�
�

−�

�

dpdy�y − x�n�y�p��p�e−F�Ĥ���x�

=
1

n!
lim
�→0

1

�
�

−�

� dpdy

2�
yneipye−Fcl�H��. �B5�

Here Fcl�H� is obtained from F�Ĥ� by using the commutator
�p̂ ,x�=−i to move all p̂’s to the left of all x’s and dropping
the hats. Equation �B5� can be further simplified if we write
Fcl�H�=�npnfn�x� and the y integral as the nth derivative of
� function, i.e.

D�n��x� =
�− i�n

n!
lim
�→0

1

�
�

−�

�

dpe−�Fcl�H��p
n��p�

=
in

n!
lim
�→0

1

�
��p

n�e−�Fcl�H���p=0 = �− i�nfn�x� . �B6�
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