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Abstract

We study the properties of the function R(m)(n) defined as the number of representations

of an integer n as a sum of distinct m-Bonacci numbers F
(m)
k , given by F

(m)
i = 2i−1, for

i ∈ {1, 2, . . . , m}, F
(m)
k+m = F

(m)
k+m−1 + F

(m)
k+m−2 + · · · + F

(m)
k , for k ≥ 1. We give a matrix

formula for calculating R(m)(n) from the greedy expansion of n. We determine the maximum

of R(n) for n with greedy expansion of fixed length k, i.e. for F
(m)
k ≤ n < F

(m)
k+1. Unlike the

Fibonacci case m = 2, the values of the maxima are not related to the sequence (F
(m)
k )k≥1. We

describe the palindromic structure of the sequence (R(m)(n))n∈N, which is more complicated
than in the case of Fibonacci numeration system.

1 Introduction

Some increasing sequences (Gk)k∈N of integers have the following property: Every positive integer
can be expressed as a sum of distinct elements of the sequence (Gk)k∈N. The necessary and sufficient
condition so that it is possible is that the sequence satisfies G1 = 1 and Gn − 1 ≤ ∑n−1

i=1 Gi for all
n ∈ N. Example of such a sequence is (2k−1)k≥1 or (Fk)k≥1, the sequence of Fibonacci numbers.
The expression of n in the form

n = Gis + Gis−1 + · · ·+ Gi1 , where is > is−1 > · · · > i1 ≥ 1 ,

is called a representation of n in the numeration system (Gk)k∈N. This representation can be
written using a sequence of coefficients (ak)k∈N ∈ {0, 1}N as n =

∑∞
i=1 aiGi, where only a finite

number of elements of the sequence (ak)k∈N are non-zero. The maximal index k such that ak 6= 0 are
called the length of the representation. The representation can be coded by the word akak−1 · · · a1

in the alphabet {0, 1}. In the writing of number representations we adopt the usual convention
that the concatenation of l copies of a finite word is written wl, for l = 0, 1, 2, . . . . For example,
the representation of the number n = Gk+2 + Gk is coded by the word 1010k−1.

If (Gk)k∈N = (2k−1)k≥1, then representation of every integer n in the system (Gk)k∈N is unique,
and the word akak−1 · · · a1 is the binary expansion of n. If we choose for (Gk)k∈N the Fibonacci
sequence Gk = Fk, given by the recurrence Fk+2 = Fk+1 + Fk, F0 = F1 = 1, then most integers
have several representations. Their number, denoted by R(n), is a function studied by many
authors [1, 2, 5, 9].
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On the set of representations of a given integer n in the system (Gk)k∈N one can introduce
the lexicographic order in the following way: We say that the representation vlvl−1 · · · v1 of the
number n is greater than the representation ukuk−1 · · ·u1 of n if l > k or l = k and the first non
zero element in the sequence vk −uk, vk−1−uk−1, · · · , v1−u1 is positive. This order is sometimes
called the radix order. The lexicographically greatest representation of a given number n is called
the greedy expansion of n.

In this paper we study the measure of ambiguity of the representation of integers in the gen-
eralized Fibonacci numeration systems, the so-called m-Bonacci systems defined for m ≥ 2 by
recurrence

F
(m)
1 = 1, F

(m)
2 = 2, . . . , F

(m)
m = 2m−1,

F
(m)
k+m = F

(m)
k+m−1 + F

(m)
k+m−2 + · · ·+ F

(m)
k , for k ≥ 1 .

(1)

The 2-Bonacci sequence is thus the ordinary Fibonacci sequence; 3-Bonacci sequence is usually
called the Tribonacci sequence. Combinatorial properties of the m-Bonacci numeration system
have been discussed in [7], in order to study the Garsia entropy connected with Pisot numbers β
fulfilling βm = βm−1 + · · ·+ β + 1.

The m-Bonacci numeration systems are studied in [6] from the point of view of automata
theory. It is proven that addition of integers written in the m-Bonacci numeration system can be
performed by means of a finite state automaton, whereas it is impossible to convert an m-Bonacci
representation of an integer into its standard binary expansion by a finite state automaton.

It has been shown already in [8] that every non-negative integer n can be represented as a sum
of distinct elements of the m-Bonacci sequence. Such representation of n may not be unique. We
denote by R(m)(n) the number of different representations of n. The recurrence relation for m-
Bonacci numbers ensures that starting from an arbitrary representation of n we can get any other
representation of n by interchanging 10m ↔ 01m or vice versa in the word coding the representation
of n.

Obviously, the lexicographically greatest (greedy) representation of n does not contain the block
1m. Let us denote the greedy expansion of n in the numeration system (F (m)

k )k≥1 by 〈n〉m. It can
be written in the form

〈n〉m = 10rs10rs−110rs−2 · · · 10r210r1 , where ri ∈ N0 ,

and for every i such that m − 1 ≤ i ≤ s we have ri−m+2 + ri−m+3 + · · · + ri ≥ 1. The length
of the greedy expansion 〈n〉m is s + rs + rs−1 + · · · + r1. If the lengths of 〈n〉m is k, then every
other representation of n has the length either k or k − 1. Representations of length k are called
‘long’ representations and their number is denoted by R

(m)
1 (n); the other representations are called

‘short’ and their number is denoted by R
(m)
0 (n). Obviously, we have

R(m)(n) = R
(m)
0 (n) + R

(m)
1 (n) .

The aim of the paper is to study the properties of the function R(m)(n). First we show that the
Berstel matrix formula [1] for calculation of the value R(2)(n) from the greedy expansion 〈n〉m can
be generalized for m ≥ 3. In the next section we focus on the study of the segment of the sequence
R(m)(n) for F

(m)
k ≤ n < F

(m)
k+1, i.e. for such integers n whose greedy expansion has constant length

k. For the Fibonacci numeration system it is known [2, 5] that among numbers with a fixed length
k of the greedy expansion only n = F

(2)
k+1 − 1 satisfies R(2)(n) = 1, and moreover, the segments

of the sequence R(2)(n) between two unit values are palindromes. For the m-Bonacci numeration
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system with m ≥ 3 we show that the number of integers n in the segment [F (m)
k , F

(m)
k+1) with a

unique representation R(m)(n) = 1 is equal to the (m − 1)-Bonacci number F
(m−1)
k . Thus the

number of 1’s in the corresponding segment of the sequence (R(m)(n))n∈N increases, however, we
show that the palindromic structure of the sequence (R(m)(n))n∈N remains preserved.

In the rest of the paper we determine the maximum of the function (R(m)(n))n∈N in the
mentioned segment. For m = 2, i.e. the Fibonacci numeration system, the maxima have been
determined in [9],

max
{
R(2)(n)

∣∣ F
(2)
k ≤ n < F

(2)
k+1

}
=





F
(2)
k+1
2

for k odd ,

2F
(2)
k−2
2

for k even .

We shall thus concentrate on determining the values of the maxima for m ≥ 3. Unlike the Fibonacci
case, the values of the maxima are not related to the sequence (F (m)

k )k≥1.

2 The number of representations of n in the m-Bonacci sys-
tem

The number of representations of a given integer n is related to the possible interchanges 10m ↔
01m in the greedy expansion of n. For example, if 〈n〉m is of length k ≤ m, then no interchange is
possible and we have R(m)(n) = 1. If the length of 〈n〉m is m + 1, then only 〈n〉m = 10m admits
such an interchange. It follows that

R(m)(n) = 1 , for 1 ≤ n ≤ F
(m)
m+2 − 1, n 6= F

(m)
m+1 ,

R(m)(F (m)
m+1) = 2 .

(2)

The aim of this section is to derive a compact formula for calculating the values of the function
R(m)(n). Both the formula and its proof are slight generalizations of the result of [1, 5] for the
case m = 2. Consider therefore m ≥ 3.

First we state several simple observations, which transpose the calculation of the value R
(m)
0 (n)

and R
(m)
1 (n) for an integer n with s 1’s in its greedy expansion to calculation of R

(m)
0 (n) and

R
(m)
1 (n) for some ñ whose greedy expansion has strictly smaller number s̃ < s of 1’s. In the

following, we shall identify the writing R(m)(n) with R(m)(w), where w is the word in the alphabet
{0, 1} coding the greedy expansion of n, i.e. a word starting with 1.

Fact 2.1. If 0 ≤ l ≤ m − 2, then R
(m)
0 (10lw) = 0, therefore R

(m)
1 (10lw) = R(m)(w). In a matrix

form, (
R

(m)
0 (10lw)

R
(m)
1 (10lw)

)
=

(
0 0
1 1

)(
R

(m)
0 (w)

R
(m)
1 (w)

)
.

Remark 2.2.

(i) Note that R
(m)
0 (10lw) = 0 does not imply l ≤ m−2. It is not difficult to see that R

(m)
0 (w) = 0

implies that the word w is of the form w = (10m−1)sw̃, where s ≥ 0 and w̃ is either the empty
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word, of a word of the form w̃ = 10l ˜̃w for l ≤ m − 2. Therefore the smallest n1 such that
〈n1〉m = k and for which R

(m)
0 (n1) = 0 is the number with greedy expansion

〈n1〉m =





(10m−1)s , if s := k
m ∈ N ,

(10m−1)s10k−ms−1 , if s := [ k
m ] 6= k

m .
(3)

In the same time, for every n such that n1 ≤ n < F
(m)
k+1 we have R

(m)
0 (n) = 0.

(ii) In the word 〈n1〉m of the form (3) one cannot perform any interchange 10m ↔ 01m, and
therefore R(m)(n1) = 1. We have thus found the smallest number n such that F

(m)
k ≤ n <

F
(m)
k+1 and R(m)(n) = 1. Note that in the Fibonacci numeration system R

(2)
0 (n) = 0 already

implies R(2)(n) = 1. For m ≥ 3 this is not valid. As an example, consider 〈n〉m = 110k−2 for
k ≥ m + 2. Such n satisfies R

(m)
0 (n) = 0 and R(m)(n) ≥ 2.

(iii) Let us express explicitly the value of n1. Every 1 in the word 〈n1〉m at the position i > m
represents the number

F
(m)
i = F

(m)
i−1 + F

(m)
i−2 + · · ·+ F

(m)
i−m .

The 1 at a position i ≤ m represents

F
(m)
i = 2i−1 = 1 + F

(m)
i−1 + F

(m)
i−2 + · · ·+ F

(m)
1 .

The number n1 with greedy expansion of the form (3) is therefore equal to

n1 = 1 +
k−1∑

i=1

F
(m)
i .

Fact 2.3. R
(m)
0 (10m−1w) = R

(m)
0 (w) and R

(m)
1 (10m−1w) = R(m)(w). In a matrix form,

(
R

(m)
0 (10m−1w)

R
(m)
1 (10m−1w)

)
=

(
1 0
1 1

)(
R

(m)
0 (w)

R
(m)
1 (w)

)
.

Fact 2.4. If l ≥ m, then R
(m)
0 (10lw) = R(m)(10l−mw) and R

(m)
1 (10lw) = R

(m)
1 (10l−mw). In a

matrix form, (
R

(m)
0 (10lw)

R
(m)
1 (10lw)

)
=

(
1 1
0 1

)(
R

(m)
0 (10l−mw)

R
(m)
1 (10l−mw)

)
.

Lemma 2.5. Let 〈n〉m = 10lw, where w = 〈ñ〉m for some integer ñ. Then

(
R

(m)
0 (10lw)

R
(m)
1 (10lw)

)
=

([
l+1
m

] [
l
m

]

1 1

)(
R

(m)
0 (w)

R
(m)
1 (w)

)
.

Proof. Let us write l = am + b, where b ∈ {0, 1, . . . , m− 1}. If b ≤ m− 2, then for the calculation
of the values R

(m)
0 (10lw), R

(m)
1 (10lw) one uses a times Fact 2.4 and then Fact 2.1. Since

(
1 1
0 1

)a(
0 0
1 1

)
=

(
1 a

0 1

)(
0 0
1 1

)
=

(
a a

1 1

)
=

([
l+1
m

] [
l
m

]

1 1

)
,
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the statement is proved.
If b = m− 1, we use a times Fact 2.4 and then Fact 2.3. The matrix identity

(
1 1
0 1

)a(
1 0
1 1

)
=

(
a + 1 a

1 1

)
=

([
l+1
m

] [
l
m

]

1 1

)
,

completes the proof.

In order to derive the formula for calculation of R(m)(n), we need to derive the values R
(m)
0 (n),

R
(m)
1 (n) for integers n with only one 1 in their greedy expansion. It is easy to see that R

(m)
1 (10l) = 1

and R
(m)
0 (10l) =

[
l
m

]
, which can be written by

(
R

(m)
0 (10l)

R
(m)
1 (10l)

)
=

([
l+1
m

] [
l
m

]

1 1

)(
0
1

)
.

Since R(m)(n) = R
(m)
0 (n) + R

(m)
1 (n), we can formulate the result. For that we introduce the

following notation,

M(l) = Mm(l) :=
([

l+1
m

] [
l
m

]

1 1

)
. (4)

Theorem 2.6. Let 〈n〉m = 10rs10rs−1 · · · 10r1 be the greedy expansion of the integer n in the
m-Bonacci numeration system. Then

R(m)(n) = (1 1)M(rs)M(rs−1) · · ·M(r1)
(

0
1

)
. (5)

3 Integers with a unique representation in the m-Bonacci
numeration system

In order that an integer n has only one representation in the m-Bonacci numeration system, the lex-
icographically greatest and the lexicographically smallest representation must coincide. Consider
n in the interval [F (m)

k , F
(m)
k+1). The word coding the greedy expansion of n has the form

ukuk−1 · · ·u1 , where u1, . . . , uk−1 ∈ {0, 1} and uk = 1 . (6)

If k < m, then an arbitrary word of the above form is a greedy expansion of some integer n. In
the same time it is obvious that in such a word one cannot perform any interchange 10m ↔ 01m

and therefore this integer n has only one m-Bonacci representation. Let

U
(m)
k = #

{
n

∣∣ F
(m)
k ≤ n < F

(m)
k+1 , R(m)(n) = 1

}
.

We have derived that
U

(m)
k = 2k−1 , for k = 1, 2, . . . , m− 1 . (7)

Consider now k ≥ m. A word of length k satisfying (6) is a greedy expansion of some integer
n, if and only if it does not contain the string 1m. In order that no interchange 10m ↔ 01m is
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possible in this word, so that R(m)(n) = 1, the word cannot contain the string 0m. Therefore U
(m)
k

is equal to the number of words ukuk−1 · · ·u1 such that

u1, . . . , uk−1 ∈ {0, 1}, uk = 1, and

ukuk−1 · · ·u1 does not contain the strings 0m, 1m.
(8)

In order to determine U
(m)
k , we divide words satisfying (8) into 2(m− 1) disjoint groups according

to their suffix
v ∈ S := {10, 102, 103 . . . , 10m−1, 01, 012, 013, . . . , 01m−1} .

The number of words satisfying (8) with suffix v will be denoted by Av
k. Obviously,

U
(m)
k =

∑

v∈S

Av
k .

Since every word w of length k satisfying (8) is of the form w = w̃0 or w = w̃1, where w̃ is a word
of length k − 1 satisfying (8), we obtain recurrence relations

A10
k = A01

k−1 + A012

k−1 + · · ·+ A01m−1

k−1 , (9)

A10l

k = A10l−1

k−1 , for l = 2, 3, . . . ,m− 1 , (10)

A01
k = A10

k−1 + A102

k−1 + · · ·+ A10m−1

k−1 , (11)

A01l

k = A01l−1

k−1 , for l = 2, 3, . . . ,m− 1 . (12)

Equations (9) and (11) imply that U
(m)
k = A10

k+1 + A01
k+1. From (10) we obtain A10l

k = A10
k−l+1

for l = 2, 3, . . . , m − 1. Similarly, from (12) we obtain A01l

k = A01
k−l+1 for l = 2, 3, . . . ,m − 1.

Substituting this into (9) and (11) and taking sum, we obtain

U
(m)
k = A10

k+1 + A01
k+1 = (A10

k + A01
k ) + (A10

k−1 + A01
k−1) + · · ·+ (A10

k−m+2 + A01
k−m+2) .

The sequence (A10
k+1 + A01

k+1)k∈N = (U (m)
k )k∈N thus satisfies the same recurrence relation as the

(m − 1)-Bonacci sequence F
(m−1)
k . It has even the same initial conditions (cf. (1) and (7)). We

have thus derived the following statement.

Proposition 3.1. For m ≥ 3 the number of integers n with greedy expansion of length k having
unique representation in the m-Bonacci numeration system is equal to the k-th element of the
(m− 1)-Bonacci system. Formally,

#{n | F (m)
k ≤ n < F

(m)
k+1 and R(m)(n) = 1} = F

(m−1)
k .

4 Palindromic structure of R(m)(n)

Let us recall that transition between different representations of the same integer n is allowed by
the interchange 10m ↔ 01m. Note that the block 10m is the complement of the block 01m, in
the sense that every 1 is substituted by 0 and every 0 is substituted by 1. Taking complement of
the word 〈n〉m = 1uk−1 · · ·u1, we obtain the word 0(1− uk−1)(1− uk−2) · · · (1− u1), which is an
m-Bonacci representation of an integer, which we denote by n̄. It is obvious that

R(m)(n) = R(m)(n̄) .
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Since

n + n̄ =
k∑

i=1

F
(m)
i (13)

the center of the symmetry of the function R(m)(n) is in the value c = 1
2

∑k
i=1 F

(m)
i . Thus the

sequence
(
R(m)(n)

)
n∈N contains a palindrome, which ends with the value R(m)(F (m)

k+1 − 1) and

starts with the value R(m)(
∑k

i=1 F
(m)
i −F

(m)
k+1 +1). Note that the center of the symmetry c satisfies

F
(m)
k < c < F

(m)
k+1 for k ≥ m + 2. According to (2), the values R(m)(1), . . . R(m)(F (m)

m+2 − 1) are all

equal to 1 except R(m)(F (m)
m+1) = 2, thus only k ≥ m + 2 is interesting.

Remark 4.1. For m = 2, i.e. for the Fibonacci sequence, we have
∑k

i=1 F
(2)
i = F

(2)
k+2 − 2. Thus

the beginning of the palindrome is at F
(2)
k − 1 and the end at F

(2)
k+1 − 1.

Remark 4.2. For m ≥ 3, we have for the starting index of the palindrome

k∑

i=1

F
(m)
i − F

(m)
k+1 + 1 < F

(m)
k−1 .

Therefore having calculated the values of the function R(m)(n) for n ≤ F
(m)
k −1, most of the values

R(m)(n) for F
(m)
k ≤ n < F

(m)
k+1 can be obtained from the palindromic structure.

Let us determine the smallest number n0 ∈ [F (m)
k , F

(m)
k+1), whose complement n̄0 lies in the range

[1, F (m)
k ), where we assume having the knowledge of the values of R(m). Obviously n̄0 = F

(m)
k − 1

and from (13) we have n0 =
∑k−1

i=1 F
(m)
i + 1. For k ≥ m + 2 we have n0 > Fk. Note that n0 is the

same as the number n1 from Remark 2.2. Thus the values R(m)(n) for n̄0 +1 = F
(m)
k ≤ n ≤ n0−1

are not equal to 1. The sequence R(m)(n̄0 + 1), R(m)(n̄0 + 2), . . . , R(m)(n0 − 1) is a palindrome
which does not contain the number 1.

Example 4.3. For the Tribonacci numeration system, i.e. for m = 3, the values of the function
R

(m)
3 between F

(3)
7 = 44 and F

(3)
8 − 1 = 80 are the following.

3 2 2 2 2 2 2 3 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 2 2 2 2 1 1 1 2 1 1 1 1 1
↓

R(3)(44)

↑
center of the palindrome

↓
n0 = 52

↓
R(3)(80)

Note that the value 1 appears in the line 21 times, where 21 = F
(2)
7 as corresponds to Propo-

sition 3.1. The line does not show the entire palindrome; the missing values are R(3)(15), . . . ,
R(3)(43).

We end this section with a theorem whose proof for m = 2 can be found in [2, 5]. The proof
for m ≥ 3 follows by induction on the length of the greedy expansion of n from Remark 4.2.

Theorem 4.4. Segment of the sequence R(m)(n) between two consecutive 1’s form a palindrome,
i.e. if R(m)(p) = R(m)(q) = 1 and R(m)(n) > 1 for all n, p < n < q, then the sequence R(m)(p),
R(m)(p + 1), . . . , R(m)(q − 1), R(m)(q) is invariant under mirror image.
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5 Maxima of the function R(m)(n)

The aim of this section is to determine the maximal value of the function R(m) on integers with a
fixed length of the greedy expansion. Denote

Max(k) := max{R(m)(n) | F (m)
k ≤ n < F

(m)
k+1}.

The values Max(k) for small k can be determined easily. We will use them as the initial step for
the proof of the main theorem, which will be done by induction.

• If k ≤ m, then in the expansion of the length k one cannot perform any interchange 10m ↔
01m. Thus

Max(k) = 1 , for 1 ≤ k ≤ m.

• For m < k ≤ 2m one can perform at most one interchange 10m ↔ 01m and therefore

Max(k) = 2 , for m + 1 ≤ k ≤ 2m.

• For k = 2m + 1 one can perform in the strings 10m−110m and 102m two interchanges in a
given order. Therefore

Max(2m + 1) = 3 .

• For 2m+1 < k ≤ 3m one can perform on suitable chosen words two independent interchanges.
Therefore

Max(k) = 4 , for 2m + 2 ≤ k ≤ 3m.

• For k = 3m + 1 we can see by similar arguments that

Max(3m + 1) = 5 .

In order to obtain a lower bound on Max(k), we determine the value R(m)(n) on the integers
represented by the following words: for k = a(m + 1), a(m + 1) + 1, . . . , a(m + 1) + m− 2 consider
n with the greedy expansion of the form

〈n〉m = (10m)a, 1(10m)a, 10(10m)a, . . . , 10m−2(10m)a .

Using the matrix formula we obtain

Max
(
a(m + 1) + b

) ≥ R(m)(n) = (1 1)
(

1 1
1 1

)a(
0
1

)
= 2a , for b ∈ {0, 1, . . . , m− 2} .

For k = a(m+1)+m−1 the value of R(m)(n) at n with the greedy expansion 〈n〉m = 102m−1(10m)a−1

is equal to

Max
(
a(m + 1) + m− 1

) ≥ R(m)(n) = (1 1)
(

2 1
1 1

)(
1 1
1 1

)a−1(0
1

)
= 2a + 2a−2 .

For k = a(m + 1) + m the value of R(m)(n) at n with the greedy expansion 〈n〉m = 10m−1(10m)a

is equal to

Max
(
a(m + 1) + m

) ≥ R(m)(n) = (1 1)
(

1 0
1 1

)(
1 1
1 1

)a(
0
1

)
= 2a + 2a−1 .
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In the remaining part of the section we show that the above values are equal to Max(k).
Let us describe what form of the greedy expansion an argument of the maxima may have. For

that we introduce the following notions.

Definition 5.1. Let X =
(
a b
c d

)
and X̃ =

(
ã b̃
c̃ d̃

)
be integer matrices with non-negative components.

We say that X̃ majores X (written X̃ Â X) if

ã ≥ a, b̃ ≥ b, ã + c̃ ≥ a + c and b̃ + d̃ > b + d . (14)

Definition 5.2. We say that the string 10ti10ti−1 · · · 10t1 is forbidden for maximality, if there
exists a word 10uj 10uj−1 · · · 10u1 such that

t1 + t2 + · · ·+ ti + i = u1 + u2 + · · ·+ uj + j , u1, uj > 0 ,

M(ti)M(ti−1) · · ·M(t1) ≺ M(uj)M(uj−1) · · ·M(u1) .
(15)

Proposition 5.3. Let n be an integer such that 〈n〉m = 10rs10rs−1 · · · 10r1 and

Max(k) = R(m)(n) and F
(m)
k ≤ n < F

(m)
k+1 .

Then 10rl10rl−1 · · · 10rl−i+1 is not a string forbidden for maximality for any integers l, i, such that
1 ≤ l − i + 1 ≤ l ≤ s.

Proof. We shall prove the proposition by contradiction. Let 〈n〉m = 10rs10rs−1 · · · 10r1 contain
a string 10ti10ti−1 · · · 10t1 forbidden for maximality, i.e. there exist an l ≤ s such that rl = ti,
rl−1 = ti−1, . . . , rl−i+1 = t1, then the word

10rs · · · 10rl+110uj 10uj−1 · · · 10u110rl−i · · · 10r1

has the same length as the greedy expansion 〈n〉m. The condition u1, uj > 0 ensures that the new
word is a greedy expansion of some integer ñ. Put

A =

{
I2 , if l = s ,

M(rs) · · ·M(rl+1) , if l < s ,
B =

{
I2 , if l−i = 0 ,

M(rl−i) · · ·M(r1) , if l−i > 0 .

and

X =
(

a b

c d

)
= M(ti) · · ·M(t1) and X̃ =

(
ã b̃

c̃ d̃

)
= M(uj) · · ·M(u1) .

In this notation R(m)(n) = (1 1)AXB
(
0
1

)
and R(m)(ñ) = (1 1)AX̃B

(
0
1

)
. Denote (x y) = (1 1)A and(

z
u

)
= B

(
0
1

)
. From the form of the matrices A, B it can be easily seen that x ≥ y ≥ 1 and z ≥ 0,

u ≥ 1. Since X ≺ X̃, their components satisfy (14). We have

R(m)(ñ)−R(m)(n) = (x y)
(

ã b̃

c̃ d̃

)(
z

u

)
− (x y)

(
a b

c d

)(
z

u

)
=

=
(

(ã− a)x + (c̃− c)y , (b̃− b)x + (d̃− d)y
)(

z

u

)
≥

≥
(

(ã + c̃− a− c)y , (b̃ + d̃− b− d)y
)(

z

u

)
≥ (0 1)

(
0
1

)
= 1 .

Therefore R(m)(ñ) > R(m)(n), and n was not the argument of the maxima.
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The above proposition enables us to restrict the set of candidates for the arguments of the
maxima. Let us recall that we consider m ≥ 3, if not stated otherwise.

Claim 5.4. Let n have the greedy expansion 〈n〉m = 10rs · · · 10r1 of length k and let Max(k) =
R(m)(n). Then for every i it holds that ri ≤ 2m or ri = 3m− 1.

Proof. It is sufficient to show that the string 10t where t > 2m and t 6= 3m − 1 is forbidden for
maximality. Consider the string 10u210u1 = 10t−m−110m. Both strings 10t and 10u210u1 have the
same length, and u1, u2 > 0. In order to verify

M(t) =
([

t+1
m

] [
t
m

]

1 1

)
≺ M(u2)M(u1) =

([
t
m

]
+

[
t−1
m

]−2
[

t
m

]
+

[
t−1
m

]−2
2 2

)

it suffices to show that the inequality
[
t + 1
m

]
≤

[
t

m

]
+

[
t− 1
m

]
− 2

is satisfied for t > 2m and t 6= 3m− 1.

The above claim excluded for argument of the maximum the string 10t, t > 2m, t 6= 3m − 1,
i.e. a string with only one 1. Following claims exclude for maximality some other types of strings.

Claim 5.5. The string 10m−1103m−1 is forbidden for maximality.

Proof. The string (10m)2102m−3 has the same length as 10m−1103m−1 and the corresponding
matrix, M2(m)M(2m−3) =

(
4 4
4 4

)
, majores the matrix M(m−1)M(3m−1) =

(
3 2
4 3

)
corresponding

to the string 10m−1103m−1.

Claim 5.6. The string 10m−110m−1 is forbidden for maximality.

Proof. The string 102m−1 has the same length as 10m−110m−1 and the corresponding matrix
M(2m−1) =

(
2 1
1 1

)
majores the matrix M2(m−1) =

(
1 0
2 1

)
corresponding to the string 10m−110m−1.

Claim 5.7. The string 10m−1102m−110m−1 is forbidden for maximality.

Proof. The string (10m)2102m−3 has the same length and the corresponding matrix M2(m)M(2m−
3) =

(
4 4
4 4

)
majores the matrix M(m− 1)M(2m− 1)M(m− 1) =

(
3 1
5 2

)
corresponding to the string

10m−1102m−110m−1.

Claim 5.8. The string 10m−1102m−1102m−1 is forbidden for maximality for m ≥ 4.

Proof. The string 10m−1102m−1102m−1 has the length 5m and the corresponding matrix is M(m−
1)M(2m−1)M(2m−1) =

(
5 3
8 5

)
. Such matrix is majored by the matrix M2(m)M(2m−4) =

(
8 8
8 8

)
corresponding to the string (10m)3102m−4, which has the same length 5m.

Claim 5.9. The string 10m−1102m−1103m−1 is forbidden for maximality.

Proof. The string 10m−1102m−1103m−1 with the corresponding matrix is M(m−1)M(2m−1)M(3m−
1) =

(
7 5
11 8

)
has the length as the string 102m102m102m−3 whose matrix is M2(2m)M(2m − 3) =(

12 12
6 6

)
.
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Remark 5.10. In searching the maximal values Max(k) for k ≥ m + 1 one can restrict the
consideration to integers n such that in their greedy expansion 〈n〉m = 10rs · · · 10r1 the coefficient
r1 satisfies r1 = m or r1 = 2m. For, r1 ≤ m− 1 implies that R(m)(10rs10rs−1 · · · 10r310r2+r1+1) ≥
R(m)(n), as follows from the matrix formula. Similarly, r1 = am+b with a ≥ 1, b ∈ {1, . . . , m−1},
implies that R(m)(10rs10rs−1 · · · 10r2+b10am) ≥ R(m)(n). Claim 5.4 moreover implies that r1 ∈
{m, 2m}.
Theorem 5.11. Let m, a be integers m ≥ 3, a ≥ 1. Then

Max
(
a(m + 1) + b

)
= 2a for b ∈ {0, 1, . . . , m− 2} ,

Max
(
a(m + 1) + m− 1

)
= 2a + 2a−2 if a ≥ 2 ,

Max
(
a(m + 1) + m

)
= 2a + 2a−1 .

Proof. The proof is done by induction on the length k = a(m + 1) + b of the greedy expansion.
The veracity of the statement for the initial values has been established at the beginning of this
section. We have also proved that the maxima are greater or equal to the mentioned values. It is
therefore sufficient to show that these values are also upper bounds on the maxima.

Assume that n is the argument of the maximum Max(k). We show that the structure of strings
of 0’s in the greedy expansion 〈n〉m = 10rs10rs−1 · · · 10r1 is only of certain form. First suppose
that R

(m)
0 (n) = 0. Then

Max(k) = R(m)(10rs10rs−1 · · · 10r1) = R(m)(10rs−1 · · · 10r1) ≤ Max(k − rs − 1) ,

and the statement follows from the induction hypothesis. It is therefore sufficient to consider n such
that R

(m)
0 (n) ≥ 1. According to Remark 2.2, the greedy expansion 〈n〉m of n is lexicographically

smaller than 〈n1〉m. Together with Claim 5.6 it implies that

〈n〉m = (10m−1)x10yw , where x ∈ {0, 1} , y ≥ m ,

and w is the empty word or the greedy expansion of an integer.
(16)

We show that the coefficients ri (and in particular the exponent y) can take only several values.
If there exists an index i such that 0 ≤ ri ≤ m−2, then (16) implies i < s. Since M(ri) =

(
0 0
1 1

)
,

we have M(ri+1)M(ri) =
([ ri+1

m ] [ ri+1
m ]

1 1

)
. This implies

Max(k) = R(m)(10rs · · · 10r1) ≤ R(m)(10rs · · · 10ri+110ri−1 · · · 10r1) ≤ Max(k − ri − 1) ,

and the statement follows from the induction hypothesis.
Similarly, if there exists i such that m + 1 ≤ ri ≤ 2m − 2, then M(ri) = M(m), and there-

fore Max(k) ≤ Max(k − ri + m), and again the statement follows from the induction hypothe-
sis. Therefore using Claim 5.4 and Remark 5.10 we can restrict our consideration to coefficients
rs, rs−1, . . . , r2 ∈ {m− 1,m, 2m− 1, 2m, 3m− 1} and r1 ∈ {m, 2m}.

It follows that y in (16) takes only values y ∈ {m, 2m − 1, 2m, 3m − 1}. We shall now discuss
the possibilities according to the values of x and y.

x = 1: Let us discuss the case x = 1. The condition y ≥ m and Claim 5.5 say that y ∈ {m, 2m, 2m−
1}.
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• Let 〈n〉m = 10m−110mw, where the length of the word w is k − (2m + 1). Since

(1 1)M(rs)M(rs−1) = (1 1)
(

1 0
1 1

)(
1 1
1 1

)
= 3(1 1) ,

we have Max(k) = 3R(m)(w) ≤ 3Max(k − 2m − 1). We express k = a(m + 1) + b, where
b ∈ {0, 1, . . . , m}. Therefore

Max
(
a(m + 1) + b

) ≤ 3Max
(
(a− 2)(m + 1) + b + 1

)
.

We distinguish:

– If b ∈ {0, 1, . . . , m− 2}, then using the induction hypothesis

Max(a(m + 1) + b) ≤ 3(2a−2 + 2a−4) < 2a ,

what was to be proved.

– If b = m− 1, then similarly Max(a(m + 1) + m− 1) ≤ 3(2a−2 + 2a−3) < 2a + 2a−2.

– If b = m, then Max(a(m + 1) + m) ≤ 3 · 2a−1 = 2a + 2a−1.

• Let 〈n〉m = 10m−1102mw, where the length of the word w is k − (3m + 1). Since

(1 1)M(rs)M(rs−1) = (1 1)
(

1 0
1 1

)(
2 2
1 1

)
= 5(1 1) ,

we have Max(k) = 5R(m)(w) ≤ 5Max(k−3m−1). We again express k = a(m+1)+ b, where
b ∈ {0, 1, . . . , m}. We have therefore

Max
(
a(m + 1) + b

) ≤ 5Max
(
(a− 3)(m + 1) + b + 2

)
.

We distinguish

– If b ∈ {0, 1, . . . , m− 2}, then using the induction hypothesis

Max(a(m + 1) + b) ≤ 5(2a−3 + 2a−4) < 2a ,

what was to be proved.

– If b = m− 1, then Max(a(m + 1) + m− 1) ≤ 5(2a−2) = 2a + 2a−2.

– If b = m, then Max(a(m + 1) + m) ≤ 5 · 2a−2 < 2a + 2a−1.

• Let now 〈n〉m = 10m−1102m−1w. Claims 5.7, 5.8 and 5.9 imply that the word w is of the
form w = 10mw̃ or w = 102mw̃. Thus we distinguish:

– Let 〈n〉m = 10m−1102m−110mw̃. Since (1 1)M(m − 1)M(2m − 1)M(m) = 8(1 1) and
the length of the word w̃ is k − 4m− 1, we have

Max(k) ≤ 8Max(k − 4m− 1) ≤ 23Max(k − 3(m + 1)) ,

which implies the desired result.
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– Let 〈n〉m = 10m−1102m−1102mw̃. Since (1 1)M(m−1)M(2m−1)M(2m) = 13(1 1) and
the length of the word w̃ is k − 5m− 1, we have

Max(k) ≤ 13Max(k − 5m− 1) ≤ 24Max(k − 4(m + 1)) ,

which implies the desired result.

Note that Claim 5.8 is valid only for m ≥ 4.

x = 0: Let us now study the case x = 0. We have to consider y ∈ {m, 2m− 1, 2m, 3m− 1}.
• Let 〈n〉m = 10mw. Since (1 1)M(m) = 2(1 1), we have Max(k) = 2Max(k − (m + 1)), what

was to be proved.

• Let 〈n〉m = 10yw, where y ∈ {2m − 1, 2m, 3m − 1}. In this case the complement of n has
the greedy expansion 〈n̄〉m = 10m−1w̃ or 10mw̃, where w̃ is a greedy expansion of an integer.
Such cases were already discussed before. Since R(m)(n) = R(m)(n̄), the case is solved.

This completes the proof for m ≥ 4. Recall that the assumption m ≥ 4 was used at one point
of the discussion. For m = 3 we have to consider 〈n〉m = 10m−1102m−1102m−1w̃. The discussion
splits into cases according to the prefix of w̃. The methods that lead to the desired result are
analogous to that used for m ≥ 4.

6 Comments and open problems

Although the numeration systems related to m-Bonacci numbers have been extensively studied
from many different points of view, there remains a number of problems to be explored, even in
the most simple Fibonacci case m = 2.

One of these problems is to find a closed formula for the sequence A(n) giving the least integer
having n representations as sums of distinct Fibonacci numbers, which is a sort of inverse to the
function R(2)(n). Some results about A(n) are given in [3, 4]. However, according to our knowledge,
analogous function for m-Bonacci numeration system has never been studied.

Another interesting question related to R(2) is the function rk(n) defined in [5], counting the
number of occurrences of a value n among numbers R(2)(Fk), R(2)(Fk + 1), . . . , R(2)(Fk+1 − 1)
for sufficiently large k. The authors of [5] show that the function is well defined, give a recurrent
formula using the Euler function and exact value for n prime. The function rk(n) illustrate the
exceptionality of the Fibonacci case m = 2. For, similar function cannot be defined if m ≥ 3.
We have already seen that the number of occurrences of the value R(m)(n) = 1 among R(m)(Fk),
R(m)(Fk +1), . . . , R(m)(Fk+1− 1) increases with k to infinity. Similarly, it can be shown for other
values R(m)(n).

The literature often concentrates on the study of ambiguity in generalized Fibonacci numer-
ation systems, where one allows coefficients only in {0, 1}. When omitting the limitation on the
coefficients, the problem becomes much more difficult. Even in case of the usual Fibonacci sys-
tem, no compact formula is known for the so-called Fibagonacci sequence (B(n))n∈N counting the
number of representations of n as sum of (possibly repeating) Fibonacci numbers.

One can also ask the question about numeration systems which allow coefficients ≥ 2 even in
the greedy expansion of an integer. An example of these is the Ostrowski numeration system based
on sequences defined by linear recurrences of second order with non-constant coefficients. Such
numeration systems have been considered by Berstel [1] who shows that a formula similar to (5)
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is valid for counting the number of representations of n. Other properties of these numeration
systems are to be explored.
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