Critical Exponent of Balanced Sequences

Ľubomíra Dvořáková a Daniela Opočenská

Seminář současné matematiky

22. dubna 2022

Program

- Combinatorics on Words
- 2 Critical exponent of balanced sequences
- Results

Program

- Combinatorics on Words
- 2 Critical exponent of balanced sequences
- Results

Combinatorics on Words

- a general tool applicable in many fields
- examples of studied problems:
 - Random number generators (shuffling of generators using Sturmian sequences)
 - Hash functions (dithering method)
 - Quasicrystal models
 - Non-standard numeration systems
 - Discrete Schrödinger operators $(H\psi)(n) := \psi(n+1) + \psi(n-1) + u_n\psi(n)$ for $\psi \in \ell^2(\mathbb{Z})$
 - Formalization of CoW (a generic proof assistant Isabelle)

Birth of CoW

Axel Thue (1863 - 1922) answered in 1906 the following questions:

- Question 1: Is there a binary sequence without cubes?
- Question 2: Is there a ternary sequence without squares?

Example

ababbabab abbabbbabbb abababba . . .
$$(abbb)^{3}$$
a bb a cabcab b abbabb cccabababa . . .
$$(abb)^{2}$$

$$(abb)^{2}$$

$$(abb)^{2}$$

No binary sequence without squares:

No binary sequence without squares:

а

No binary sequence without squares:

aa

No binary sequence without squares:

ab

No binary sequence without squares:

abb

No binary sequence without squares:

aba

No binary sequence without squares:

abaa

No binary sequence without squares:

abab

Thue-Morse sequence

Definition

The Thue-Morse sequence $\mathbf{u}_{TM} = u_0 u_1 u_2 \dots$ is defined recursively

$$u_0 = 0$$
; $u_{2n} = u_n$; $u_{2n+1} = 1 - u_n$ for all $n \ge 0$.

Theorem

Define a morphism φ_{TM} on $\{0,1\}$ by $\varphi_{TM}(0) = 01$; $\varphi_{TM}(1) = 10$. Then $\varphi_{TM}(\mathbf{u}_{TM}) = \mathbf{u}_{TM}$.

$$\underbrace{\mathbf{u}_{\mathit{TM}}}_{\mathbf{v}} = 0\underbrace{11}_{2}\underbrace{0}_{1}\underbrace{1}_{1}\underbrace{0}_{0}\underbrace{0}\underbrace{11}_{2}\underbrace{0}_{0}\underbrace{0}_{1}\underbrace{1}_{1}\underbrace{0}\underbrace{11}_{2}\underbrace{0}\underbrace{1}_{1}\underbrace{0}_{0}\underbrace{0}_{1}...$$

Define a morphism
$$\varphi_{TM}$$
 on $\{0,1\}$ by $\varphi_{TM}(0)=01$; $\varphi_{TM}(1)=10$. Then $\varphi_{TM}(\mathbf{u}_{TM})=\mathbf{u}_{TM}$.

$$\varphi_{TM}(0) = 01$$

 $\varphi_{TM}^{2}(0) = 0110$

Define a morphism φ_{TM} on $\{0,1\}$ by $\varphi_{TM}(0)=01$; $\varphi_{TM}(1)=10$. Then $\varphi_{TM}(\mathbf{u}_{TM})=\mathbf{u}_{TM}$.

$$\varphi_{TM}(0) = 01
\varphi_{TM}^{2}(0) = 0110
\varphi_{TM}^{3}(0) = 01101001$$

Define a morphism φ_{TM} on $\{0,1\}$ by $\varphi_{TM}(0)=01$; $\varphi_{TM}(1)=10$. Then $\varphi_{TM}(\mathbf{u}_{TM})=\mathbf{u}_{TM}$.

$$\varphi_{TM}(0) = 01$$
 $\varphi_{TM}^{2}(0) = 0110$
 $\varphi_{TM}^{3}(0) = 01101001$
 $\varphi_{TM}^{4}(0) = 0110100110010110$

Define a morphism φ_{TM} on $\{0,1\}$ by $\varphi_{TM}(0)=01$; $\varphi_{TM}(1)=10$. Then $\varphi_{TM}(\mathbf{u}_{TM})=\mathbf{u}_{TM}$.

$$\varphi_{TM}(0) = 01$$
 $\varphi_{TM}^{2}(0) = 0110$
 $\varphi_{TM}^{3}(0) = 01101001$
 $\varphi_{TM}^{4}(0) = 0110100110010110$

Rational powers

Definition

Let $e \in \mathbb{Q}$. A word z is an e-th power of a word u if z is a prefix of $u^{\omega} = uuuuu \dots$ and $e = \frac{|z|}{|u|}$. We write $z = u^{e}$.

Example

abbabb =
$$(abb)^2$$

abbcabbcabbc = $(abbc)^3$
abbabbab = $(abb)^{8/3}$ = $(abbabb)^{4/3}$
starosta = $(staro)^{8/5}$

Critical exponent

Definition

Let **u** be a sequence. The critical exponent of **u** $E(\mathbf{u}) = \sup\{e \in \mathbb{Q} : u^e \text{ is a non-empty factor of } \mathbf{u}\}.$

Example

Not only \mathbf{u}_{TM} does not contain cubes, but \mathbf{u}_{TM} does not contain overlaps: awawa, where w is a factor and a is a letter. Therefore $E(\mathbf{u}_{TM}) = 2$.

Program

- Combinatorics on Words
- 2 Critical exponent of balanced sequences
- Results

Introduction & Motivation

Dejean's theorem (conjecture), 1972 – 2011: (proven by Currie, Rampersad; Rao) the least critical exponent of sequences over an alphabet of size *d*:

- 2 for d = 2;
- 7/4 for d = 3;
- 7/5 for d = 4;
- $\frac{d}{d-1}$ for $d \ge 5$.

- Rampersad, Shallit, Vandomme, 2019: the least critical exponent of balanced sequences over an alphabet of size d equals $\frac{d-2}{d-3}$ for $d \ge 5$
- proven for $5 \le d \le 8$
- Dolce, Dvořáková, Pelantová, 2021:
- proven for $9 \le d \le 10$
- disproven: new bound $\frac{d-1}{d-2}$ for $11 \le d \le 12$

- Rampersad, Shallit, Vandomme, 2019: the least critical exponent of balanced sequences over an alphabet of size d equals $\frac{d-2}{d-3}$ for $d \ge 5$
- proven for $5 \le d \le 8$
- Dolce, Dvořáková, Pelantová, 2021:
- proven for $9 \le d \le 10$
- disproven: new bound $\frac{d-1}{d-2}$ for $11 \le d \le 12$
- Dvořáková, Opočenská, Pelantová, Shur, 2021:
- new bound $\frac{d-1}{d-2}$ for $d \ge 12$, d even
- new conjecture: $\frac{d-1}{d-2}$ for $d \ge 11$

- Rampersad, Shallit, Vandomme, 2019: the least critical exponent of balanced sequences over an alphabet of size d equals $\frac{d-2}{d-3}$ for $d \ge 5$
- proven for $5 \le d \le 8$
- Dolce, Dvořáková, Pelantová, 2021:
- proven for $9 \le d \le 10$
- disproven: new bound $\frac{d-1}{d-2}$ for $11 \le d \le 12$
- Dvořáková, Opočenská, Pelantová, Shur, 2021:
- new bound $\frac{d-1}{d-2}$ for $d \ge 12$, d even
- new conjecture: $\frac{d-1}{d-2}$ for $d \ge 11$

$$\frac{d}{d-1} < \frac{d-1}{d-2} < \frac{d-2}{d-3}$$

- Rampersad, Shallit, Vandomme, 2019: the least critical exponent of balanced sequences over an alphabet of size d equals $\frac{d-2}{d-3}$ for $d \ge 5$
- proven for $5 \le d \le 8$
- Dolce, Dvořáková, Pelantová, 2021:
- proven for $9 \le d \le 10$
- disproven: new bound $\frac{d-1}{d-2}$ for $11 \le d \le 12$
- Dvořáková, Opočenská, Pelantová, Shur, 2021:
- new bound $\frac{d-1}{d-2}$ for $d \ge 12$, d even
- new conjecture: $\frac{d-1}{d-2}$ for $d \ge 11$

$$\frac{d}{d-1} < \frac{d-1}{d-2} < \frac{d-2}{d-3}$$

One World Combinatorics on Words Seminar

- Arseny Shur: Abelian repetition threshold revisited
- Pascal Ochem: Avoiding large squares in trees and planar graphs
- Szymon Stankiewicz: Square-free reducts of words
- Robert Mercas: (Trying to do a) Counting of distinct repetitions in words
- Eric Rowland: Avoiding fractional powers on an infinite alphabet
- Matthieu Rosenfeld: A simple proof technique to study avoidability of repetitions
- Jarkko Peltomäki: Avoiding abelian powers cyclically
- Lucas Mol: Extremal square-free words and variations

Definitions CoW

- sequence $\mathbf{u} = u_0 u_1 u_2 \dots$ over \mathcal{A}
- bispecial factor of u
- return word v to a factor u of u

Example

```
\mathbf{u}_F = \mathrm{ab}_{\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\dots, \mathcal{A} = \{\mathrm{a},\mathrm{b}\}

\mathbf{u}_F = \varphi(\mathbf{u}_F), where \varphi: \mathrm{a} \to \mathrm{ab}, \mathrm{b} \to \mathrm{a}

aba is a bispecial factor since \mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}, \mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a} and \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}, abaa are factors of \mathbf{u}_F

\mathbf{v} = \mathrm{aabab} is a return word to \mathbf{u} = \mathrm{aaba}
```

(Asymptotic) critical exponent

- critical exponent of \mathbf{u} $E(\mathbf{u}) = \sup\{e \in \mathbb{Q} : u^e \text{ is a non-empty factor of } \mathbf{u}\}$
- asymptotic critical exponent of \mathbf{u} $E^*(\mathbf{u}) = \lim_{n \to \infty} \sup\{e \in \mathbb{Q} : u^e \text{ is a factor of } \mathbf{u} \text{ and } |u| \ge n\}$ Evidently, $E^*(\mathbf{u}) \le E(\mathbf{u})$.

Proposition (Dvořáková, Pelantová)

Let \mathbf{u} be a uniformly recurrent aperiodic sequence. Let w_n be the n-th bispecial of \mathbf{u} and v_n a shortest return word to w_n . Then $E(\mathbf{u}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$ and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|w_n|}{|v_n|}$.

(Asymptotic) critical exponent

- critical exponent of \mathbf{u} $E(\mathbf{u}) = \sup\{e \in \mathbb{Q} : u^e \text{ is a non-empty factor of } \mathbf{u}\}$
- asymptotic critical exponent of \mathbf{u} $E^*(\mathbf{u}) = \lim_{n \to \infty} \sup\{e \in \mathbb{Q} : u^e \text{ is a factor of } \mathbf{u} \text{ and } |u| \ge n\}$ Evidently, $E^*(\mathbf{u}) \le E(\mathbf{u})$.

Proposition (Dvořáková, Pelantová)

Let ${\bf u}$ be a uniformly recurrent aperiodic sequence. Let w_n be the n-th bispecial of ${\bf u}$ and v_n a shortest return word to w_n . Then $E({\bf u})=1+\sup\{\frac{|w_n|}{|v_n|}:n\in\mathbb{N}\}$ and $E^*({\bf u})=1+\limsup_{n\to\infty}\frac{|w_n|}{|v_n|}$

Example

$$|w_n| = F_{n+2} + F_{n+1} - 2$$
 and $|v_n| = F_{n+1}$ with $F_0 = 0, F_1 = 1$ $E(\mathbf{u}_F) = 2 + \tau = 2 + \frac{1+\sqrt{5}}{2} = E^*(\mathbf{u}_F)$ – minimal for Sturmian

(Asymptotic) critical exponent

- critical exponent of \mathbf{u} $E(\mathbf{u}) = \sup\{e \in \mathbb{Q} : u^e \text{ is a non-empty factor of } \mathbf{u}\}$
- asymptotic critical exponent of \mathbf{u} $E^*(\mathbf{u}) = \lim_{n \to \infty} \sup\{e \in \mathbb{Q} : u^e \text{ is a factor of } \mathbf{u} \text{ and } |u| \ge n\}$ Evidently, $E^*(\mathbf{u}) \le E(\mathbf{u})$.

Proposition (Dvořáková, Pelantová)

Let \mathbf{u} be a uniformly recurrent aperiodic sequence. Let w_n be the n-th bispecial of \mathbf{u} and v_n a shortest return word to w_n . Then $E(\mathbf{u}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$ and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|w_n|}{|v_n|}$.

Example

$$|w_n| = F_{n+2} + F_{n+1} - 2$$
 and $|v_n| = F_{n+1}$ with $F_0 = 0, F_1 = 1$ $E(\mathbf{u}_F) = 2 + \tau = 2 + \frac{1+\sqrt{5}}{2} = E^*(\mathbf{u}_F)$ – minimal for Sturmian

Balanced sequences

Definition

u over \mathcal{A} balanced if $|u| = |v| \Rightarrow |u|_a - |v|_a \leq 1$ for all $a \in \mathcal{A}$

Theorem (Graham 1973, Hubert 2000

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over $\{a,b\}$ by replacing

- a with a constant gap sequence y over A,
- ullet b with a constant gap sequence $oldsymbol{y}'$ over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Balanced sequences

Definition

u over \mathcal{A} balanced if $|u| = |v| \Rightarrow |u|_a - |v|_a \leq 1$ for all $a \in \mathcal{A}$

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over $\{a,b\}$ by replacing

- a with a constant gap sequence y over A,
- ullet b with a constant gap sequence $oldsymbol{y}'$ over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Example

```
\mathbf{v} = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}, \mathbf{y}'), where \mathbf{y} = (0102)^{\omega} and \mathbf{y}' = (34)^{\omega} \mathbf{u}_F = \text{abaabaabaabaaba}... \mathbf{v} = 031042301402304...
```

Balanced sequences

Definition

u over \mathcal{A} balanced if $|u| = |v| \Rightarrow |u|_a - |v|_a \leq 1$ for all $a \in \mathcal{A}$

Theorem (Graham 1973, Hubert 2000)

- v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over $\{a,b\}$ by replacing
 - a with a constant gap sequence y over A,
 - ullet b with a constant gap sequence $oldsymbol{y}'$ over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Example

$$\mathbf{v} = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}, \mathbf{y}')$$
, where $\mathbf{y} = (0102)^{\omega}$ and $\mathbf{y}' = (34)^{\omega}$
 $\mathbf{u}_F = \text{abaabaabaabaaba}...$
 $\mathbf{v} = 031042301402304...$

Computation of asymptotic critical exponent

Program implemented by Daniela Opočenská

Recall
$$E^*(\mathbf{v}) = 1 + \limsup_{n \to \infty} \frac{|w_n|}{|v_n|}$$

Program:

```
Input: slope \theta quadratic irrational, Per(y), Per(y')
```

Output:
$$E^*(\mathbf{v})$$
, where $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$

Computation of asymptotic critical exponent

Program implemented by Daniela Opočenská Recall $E^*(\mathbf{v}) = 1 + \limsup_{n \to \infty} \frac{|\mathbf{w}_n|}{|\mathbf{v}_n|}$

Program:

Input: slope θ quadratic irrational, $Per(\mathbf{y})$, $Per(\mathbf{y}')$

Output: $E^*(\mathbf{v})$, where $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$

Computation of critical exponent

Program implemented by Daniela Opočenská

Recall
$$E(\mathbf{v}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$$

Our result: $E(\mathbf{v}) = \max\{E^*(\mathbf{v}), 1 + \frac{|w_i|}{|v_i|}\}$ for finitely many i

Computation of critical exponent

Program implemented by Daniela Opočenská

Recall
$$E(\mathbf{v}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$$

Our result: $E(\mathbf{v}) = \max\{E^*(\mathbf{v}), 1 + \frac{|w_i|}{|v_i|}\}$ for finitely many i

```
Input: slope \theta quadratic irrational, \mathbf{y}, \mathbf{y}'
Output: E(\mathbf{v}), where \mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{v}, \mathbf{v}')
```

Computation of critical exponent

Program implemented by Daniela Opočenská

Recall
$$E(\mathbf{v}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$$

Our result: $E(\mathbf{v}) = \max\{E^*(\mathbf{v}), 1 + \frac{|w_i|}{|v_i|}\}$ for finitely many i

Program:

```
Input: slope \theta quadratic irrational, \mathbf{y}, \mathbf{y}'
Output: E(\mathbf{v}), where \mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')
```

Program

- Combinatorics on Words
- 2 Critical exponent of balanced sequences
- Results

Minimal critical exponent

d	θ	у	y'	E(v)	E*(v)
3	$[0, 1, \overline{2}]$	(01) ^ω	2^{ω}	$2 + \frac{1}{\sqrt{2}}$	$2 + \frac{1}{\sqrt{2}}$
4	$[0, \overline{1}]$	(01) ^ω	(23) ^ω	$1 + \frac{1+\sqrt{5}}{4}$	$1 + \frac{1+\sqrt{5}}{4}$
5	$[0, 1, \overline{2}]$	(0102) ^ω	(34) ^ω	$\frac{3}{2}$	$\frac{3}{2}$
6	$[0,2,1,1,\overline{1,1,1,2}]$	0ω	(123415321435) ^ω	4/3	4/3
7	$[0, 1, 3, \overline{1, 2, 1}]$	(01) ^ω	(234526432546) ^ω	5 4	5 4
8	$[0, 3, 1, \overline{2}]$	(01) ^ω	$(234526732546237526432576)^{\omega}$	$\frac{6}{5} = 1.2$	$\frac{12+3\sqrt{2}}{14} \doteq 1.16$
9	$[0, 2, 3, \overline{2}]$	(01) ^ω	(234567284365274863254768) ^ω	$\frac{7}{6} \doteq 1.167$	$1 + \frac{2\sqrt{2}-1}{14} \doteq 1.13$
10	[0, 4, 2, 3]	(01) ^ω	$(234567284963254768294365274869)^{\omega}$	$\frac{8}{7} \doteq 1.14$	$1 + \frac{\sqrt{13}}{26} \doteq 1.139$
11	$[0,6,3,1,\overline{2}]$	$(01)^{\omega}$	$(234567892 \text{A}436587294 \text{A}638527496 \text{A}832547698 \text{A})^{\omega}$	$\frac{10}{9} \doteq 1.11$	$\frac{32-\sqrt{2}}{28} \doteq 1.092$
12	$[0, 1, 3, \overline{2}]$	$(012345)^{\omega}$	(6789AB) ^ω	$\frac{11}{10} = 1.1$	$\frac{8-\sqrt{2}}{6} \doteq 1.098$
$d \geq 14$ even	$[0,1,\lfloor d/4 \rfloor,\overline{1}]$	$(12 \dots d/2)^{\omega}$	$(1'2'\ldots d/2')^{\omega}$	$\frac{d-1}{d-2}$	$1 + \frac{2}{d\tau^{N-1}}$,
					where $ au^{N+1} < d/2 < au^{N+2}$

Table: Baranwal, Rampersad, Shallit, Vandomme, Dolce, Dvořáková, Opočenská, Pelantová: balanced sequences with the least critical exponent with alphabet size d.

$$\frac{d}{d-1} < \frac{d-1}{d-2} < \frac{d-2}{d-3}$$

Minimal asymptotic critical exponent

d	θ	Per(y)	$Per(\mathbf{y}')$	$E^*(\mathbf{v})$
3	$[0,1,\overline{2}]$	1	2	$2 + \frac{1}{\sqrt{2}}$
4	$[0,\overline{1}]$	2	2	$1+\frac{\tau}{2}$
5	$[0,1,\overline{2}]$	2	4	$\frac{3}{2}$
6	$[0,\overline{1}]$	4	4	$\frac{5}{4} < \frac{4}{3} = \min E$
7	$[0,5,1,\overline{1,1,1,5,2}]$	1	32	$1.14095 < \frac{5}{4} = \min E$
8	$[0,\overline{1}]$	8	8	$1 + \frac{1}{8\tau^2} < \frac{6}{5} = \min E$
9	$[0,1,\overline{4}]$	8	16	$1.03299 < \frac{7}{6} = \min E$

Table: Balanced sequences with the least asymptotic critical exponent over alphabets of size d.

Summary and open problems

Minimal critical exponent of balanced sequences

- program for computation of critical exponent
- conjecture by Rampersad, Shallit, Vandomme refuted
- new bound $\frac{d-1}{d-2}$ proven for $d \ge 12$, d even and also for d = 11, 13, 15, 17, 19, 21, 23
- working on its proof for $d \ge 11$

Minimal asymptotic critical exponent of balanced sequences

- program for computation of asymptotic critical exponent
- open problem: minimality

References

- N. Rampersad, J. Shallit, and É. Vandomme, Critical exponents of infinite balanced words, Theoretical Computer Science, 777 (2019), 454–463.
- F. Dolce, L'. Dvořáková, and E. Pelantová, On balanced sequences and their asymptotic critical exponent, Proceedings LATA 2021, LNCS, 12638 (2021), 293–304.
- F. Dolce, L'. Dvořáková, and E. Pelantová, Computation of critical exponent in balanced sequences, Proceedings WORDS 2021, LNCS, 12847 (2021), 78–90.
- F. Dolce, L'. Dvořáková, and E. Pelantová, On balanced sequences and their critical exponent, arXiv:2108.07503 (2021)
- L'. Dvořáková, D. Opočenská, E. Pelantová, A. Shur, Minimal critical exponent of balanced sequences, accepted in TCS

Thank you for attention