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Abraham Neyman2 Miroslav Zelený3
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Introduction

Repeated games

Consider that a general game

G

= (N, (Ai )i∈N , (ui )i∈N) .

is (infinitely) repeated. Suppose that the stage game is deterministic with

a finite set of actions.

Formally, by a supergame of G (in notation G∞) we mean an infinite

sequence of repetitions of G .

At each period t = 1, 2, 3, . . . players 1, 2,... make simultaneous and

independent moves ait ∈ Ai , i = 1, 2, ...
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Initial history h0 = ∅.

The symbol A<N denotes all finite sequences of elements of A including

the empty one.

The set of histories H := A<N.

A strategy for player i in G∞ is a mapping σ : H → Ai .
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Bounded strategies of player 1

Suppose that player 1 is not able to recall the full history of the game

played.

Her action in the current stage game relies only on k previous signals she

observed.
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Introduction

Example: SBR strategies

Suppose that player 1 is capable to “remember” only last k action profiles

in the repeated game and this “depth of recall” k as well as the strategy

itself, are time independent.

Formally: Let k ∈ N.

By a k-SBR strategy for player i in G∞ we mean a pair (e, ω), where

e = (e1, e2, . . . , ek) ∈ Ak and

ω : Ak → Ai is a mapping.

Player i following the strategy (e, ω) plays as follows. If moves

a1, . . . , a` ∈ A have been played, then player i takes the sequence s, which

is formed by the last k elements of the sequence (e1, .., ek , a1, .., a`),

and her (`+ 1)-th move is ω(s).
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Introduction

Example: Automata

An automaton (for player 1 in the supergame G∞) is a quadruple

〈M,m∗, α, τ〉, where

M is a nonempty set (the state space),

m∗ ∈ M is the initial state,

α : M → A1 is an action function, and

τ : M × A→ M is a transition function.

A k-state automaton is an automaton where the set M has k elements.
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τ(m∗, d) = τ(m, d) = m.
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Motivation

Axelrod’s tournaments

1. Tournament: TFT, Tideman and Chieruzzi, Nydegger, Grofman,

Shubik, Stein and Rapoport, Friedman, Davis, Graaskamp, Downing, Feld,

Joss, Tullock, Random

Each strategy was paired with each other strategy for 200 iterations of a

Prisoner’s Dilemma game, and scored on the total points accumulated

through the tournament. The winner was a tit-for-tat (TFT) strategy

submitted by Anatol Rapoport.
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Axelrod’s tournaments revisited

Which strategy we will submit?

A 2-SBR strategy!

t-2 ∅ ∅ ∅ ∅ ∅ cc dc cd dd cc dc cd dd cc dc cd dd cc dc cd dd

t-1 ∅ cc dc cd dd cc dc cd dd

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Which one?

We have consequently submited all 2-SBR strategies. So, we have played

2 × 24 × 216 = 2 097.152 tournaments.



Motivation

Axelrod’s tournaments revisited

Which strategy we will submit?

A 2-SBR strategy!

t-2 ∅ ∅ ∅ ∅ ∅ cc dc cd dd cc dc cd dd cc dc cd dd cc dc cd dd

t-1 ∅ cc dc cd dd cc dc cd dd

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Which one?

We have consequently submited all 2-SBR strategies. So, we have played

2 × 24 × 216 = 2 097.152 tournaments.



Motivation

Axelrod’s tournaments revisited

Which strategy we will submit?

A 2-SBR strategy!

t-2 ∅ ∅ ∅ ∅ ∅ cc dc cd dd cc dc cd dd cc dc cd dd cc dc cd dd

t-1 ∅ cc dc cd dd cc dc cd dd

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Which one?

We have consequently submited all 2-SBR strategies. So, we have played

2 × 24 × 216 = 2 097.152 tournaments.



Motivation

Axelrod’s tournaments revisited

Which strategy we will submit?

A 2-SBR strategy!

t-2 ∅ ∅ ∅ ∅ ∅ cc dc cd dd cc dc cd dd cc dc cd dd cc dc cd dd

t-1 ∅ cc dc cd dd cc dc cd dd

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Which one?

We have consequently submited all 2-SBR strategies. So, we have played

2 × 24 × 216 = 2 097.152 tournaments.



Motivation

Axelrod’s tournaments revisited

Which strategy we will submit?

A 2-SBR strategy!

t-2 ∅ ∅ ∅ ∅ ∅ cc dc cd dd cc dc cd dd cc dc cd dd cc dc cd dd

t-1 ∅ cc dc cd dd cc dc cd dd

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Which one?

We have consequently submited all 2-SBR strategies.

So, we have played

2 × 24 × 216 = 2 097.152 tournaments.



Motivation

Axelrod’s tournaments revisited

Which strategy we will submit?

A 2-SBR strategy!

t-2 ∅ ∅ ∅ ∅ ∅ cc dc cd dd cc dc cd dd cc dc cd dd cc dc cd dd

t-1 ∅ cc dc cd dd cc dc cd dd

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Which one?

We have consequently submited all 2-SBR strategies. So, we have played

2 × 24 × 216 = 2 097.152 tournaments.



Motivation

Axelrod’s tournaments revisited

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ∅
1 Davis 300 231 300 299 300 111 300 288 300 300 17 300 300 297 300 263

2 Feld 346 111 113 175 330 109 346 228 114 169 111 205 346 114 245 204

3 Friedman 300 113 300 154 300 108 300 296 300 300 111 300 300 298 300 252

4 Graaskamp 301 170 151 294 301 109 301 276 153 299 111 300 301 157 301 235

5 Grofman 300 223 300 299 300 276 300 165 300 300 38 300 300 297 300 266

6 Joss 111 111 108 111 306 106 312 227 109 111 112 197 312 111 312 177

7 Nydegger 300 231 300 299 300 282 300 149 300 300 17 300 300 297 300 265

8 Random 68 208 53 99 360 212 399 198 83 223 121 59 58 69 64 151

9 Shubik 300 114 300 155 300 109 300 283 300 300 111 300 300 298 300 251

10 T-f-T 300 166 300 299 300 109 300 223 300 300 111 300 300 298 300 260

11 Tullock 489 111 113 113 405 110 489 266 113 113 111 173 169 113 115 200

12 T-CH 300 182 300 298 300 187 300 294 300 300 96 300 300 298 300 270

13 Downing 300 231 300 299 300 282 300 293 300 300 97 300 300 297 300 280

14 Stein Rap 302 114 300 160 302 109 302 289 300 300 111 300 302 298 302 253

15 s517572 300 205 300 299 300 282 300 276 300 300 110 300 300 297 300 278



Motivation
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The results are not robust w.r.t. realisation of the random variables. TFT

is not winning all the tournaments...



Motivation

TFT is too harsh

The Joss strategy from the 1. Tournament is a five-line program by Johann

JOSS of the TH Zurich. This rule cooperates 90% of the time after a

cooperation by the other.

It always defects after a defection by the other.

So, what is the run of the game? It starts with (C ,C ), (C ,C ) . . . (C ,C )

and after first (random) defection of Joss switch to

(C ,D), (D,C ), (C ,D) . . . Already after second (random) defection it will

result in neverending mutual defection!
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Axelrod’s tournaments revisited

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ∅
1 Davis 300 231 300 299 300 111 300 288 300 300 17 300 300 297 300 263

2 Feld 346 111 113 175 330 109 346 228 114 169 111 205 346 114 245 204

3 Friedman 300 113 300 154 300 108 300 296 300 300 111 300 300 298 300 252
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Motivation

TF2T and hell

t-2 ∅ ∅ ∅ cc dc cd dd cc dc cd dd cc dc cd dd cc dc cd dd

t-1 ∅ cc cd cc dc cd dd
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Tournament 2

The results of the first tournament were analyzed and published, and a

second tournament held to see if anyone could find a better strategy.

TFT

won again.

2. Tournament (representatives) Adams R., Pinkley, Gladstein, Feathers,

Graaskamp
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Gladstein

Defects on the very first move in order to test the other’s response.

If the other player ever defects, it apologizes by cooperating and playing

tit-for-tat for the rest of the game.

Otherwise, it defects as much as possible subject to the constraint that the

ratio of its defections to moves remains under .5, not counting the first

defection.

This means that until the other player defects, Gladstein defects on the

first move, the fourth move, and every second move after that.
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Gladstein vs. TF2T

Gladstein never does defect twice in a row.

So TF2T always cooperates with Gladstein, and gets badly exploited for its

generosity.
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Tournament 2

1 2 3 4 5 6 ∅

1 Pinkley 300 252 263 300 300 300 286

2 Gladstein 249 299 296 300 105 300 258

3 Feathers 228 296 298 297 173 334 271

4 Graaskamp and Katzen 300 300 297 300 300 300 299

5 Adams, R. 300 105 238 300 300 300 257

6 Tf2T&hell 300 300 249 300 300 300 291

6a T-F-T 300 300 297 300 300 300 299

6b Magic circles 300 298 319 300 300 300 303

Magic circles in T1 – 270 (T-F-T 260, TF2T&hell 278)
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Problem

Research question

Kalai (1990): “What information system (size and structure) should a

player maintain when playing a strategic game?”

Here, we try to answer the question of Kalai in the context of strategies of

bounded complexity.

In detail, we study the complexity of the strategy that is the best response

to a strategy with a given complexity.
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Factor-based strategies

Factor-based strategy

Let H denote the set of all finite histories in a supergame G∞, i.e.,

H = A<N.

Let X be a set and ϕ be a mapping from H to X .

We say that a strategy σ is a factor-based strategy with factor ϕ (ϕ-based

strategy for short) for player i in the supergame G∞

if there is a factor-action function ω : X → Ai

such that σ = ω ◦ ϕ.
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Recursive factor

The factor ϕ is called recursive

if there is a function g : X × A→ X such

that ϕ(a1, . . . , at) = g(

ϕ(a1, . . . , at−1)

,

at

).

Recursivity captures the fact that what was forgotten can’t be learnt

once more.
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Examples of recursive factor based strategies

Automata

SBR strategies

Imperfect monitoring (red-green blindness)
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Stochastic games

A two-person stochastic game with finite action sets is 5-tuple

Γ = 〈S ,A, u, p, µ〉 such that

a state space S is a nonempty set,

A(z) = A1(z)× A2(z) is an action set: for every state z ∈ S , Ai (z) is

a nonempty finite set of actions for player i (i = 1, 2) at the state z ,

u = (u1, u2) is a payoff function, where ui (z , a) is the payoff function

of player i , (z ∈ S , a ∈ A(z)),

p is a transition function: for each state z ∈ S and each action profile

a ∈ A(z), p(z , a) ∈ ∆(S) is the probability of the next state, and

µ ∈ ∆(S) is a distribution of the initial state.



Factor-based strategies

Stochastic games

A two-person stochastic game with finite action sets is 5-tuple

Γ = 〈S ,A, u, p, µ〉 such that

a state space S is a nonempty set,

A(z) = A1(z)× A2(z) is an action set: for every state z ∈ S , Ai (z) is

a nonempty finite set of actions for player i (i = 1, 2) at the state z ,

u = (u1, u2) is a payoff function, where ui (z , a) is the payoff function

of player i , (z ∈ S , a ∈ A(z)),

p is a transition function: for each state z ∈ S and each action profile

a ∈ A(z), p(z , a) ∈ ∆(S) is the probability of the next state, and

µ ∈ ∆(S) is a distribution of the initial state.



Factor-based strategies

Stochastic games

A two-person stochastic game with finite action sets is 5-tuple

Γ = 〈S ,A, u, p, µ〉 such that

a state space S is a nonempty set,

A(z) = A1(z)× A2(z) is an action set: for every state z ∈ S , Ai (z) is

a nonempty finite set of actions for player i (i = 1, 2) at the state z ,

u = (u1, u2) is a payoff function, where ui (z , a) is the payoff function

of player i , (z ∈ S , a ∈ A(z)),

p is a transition function: for each state z ∈ S and each action profile

a ∈ A(z), p(z , a) ∈ ∆(S) is the probability of the next state, and

µ ∈ ∆(S) is a distribution of the initial state.



Factor-based strategies

Stochastic games

A two-person stochastic game with finite action sets is 5-tuple

Γ = 〈S ,A, u, p, µ〉 such that

a state space S is a nonempty set,

A(z) = A1(z)× A2(z) is an action set: for every state z ∈ S , Ai (z) is

a nonempty finite set of actions for player i (i = 1, 2) at the state z ,

u = (u1, u2) is a payoff function, where ui (z , a) is the payoff function

of player i , (z ∈ S , a ∈ A(z)),

p is a transition function: for each state z ∈ S and each action profile

a ∈ A(z), p(z , a) ∈ ∆(S) is the probability of the next state, and

µ ∈ ∆(S) is a distribution of the initial state.



Factor-based strategies

Stochastic games

A two-person stochastic game with finite action sets is 5-tuple

Γ = 〈S ,A, u, p, µ〉 such that

a state space S is a nonempty set,

A(z) = A1(z)× A2(z) is an action set: for every state z ∈ S , Ai (z) is

a nonempty finite set of actions for player i (i = 1, 2) at the state z ,

u = (u1, u2) is a payoff function, where ui (z , a) is the payoff function

of player i , (z ∈ S , a ∈ A(z)),

p is a transition function: for each state z ∈ S and each action profile

a ∈ A(z), p(z , a) ∈ ∆(S) is the probability of the next state, and

µ ∈ ∆(S) is a distribution of the initial state.



Factor-based strategies

Strategy in stochastic games

A play of the stochastic game Γ∞ is a sequence of states and actions

(z1, a1, . . . , zt , at , zt+1, at+1, . . .) with at ∈ A(zt).

A pure strategy of player i in the stochastic game with perfect monitoring

specifies her action ait ∈ Ai (zt) as a function of the past state zt and

action profiles (z1, a1, . . . , at−1).

Similarly, a behavioral strategy of player i is a function of the past state zt

and action profiles (z1, a1, . . . , at−1) and specifies the probability that an

action ait ∈ Ai (zt) is played.
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Factor-based strategies in stochastic games

The choice of distribution of action ait depends on ϕ(z1, a1, . . . , zt−1, at−1)

and on the actual state zt .

This means that ω : S × X → ∆(Ai ) and

σ(z1, a1, . . . , zt) = ω(zt , ϕ(z1, a1, . . . , zt−1, at−1)).

The factor ϕ in the case of a stochastic game is called recursive if there is

a function g : X × S × A→ X such that

ϕ(z1, a1, . . . , zt , at) = g(ϕ(z1, a1, . . . , zt−1, at−1), zt , at).
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Payoff in Stochastic games

A pair of strategies σ1 and σ2 of players 1 and 2 defines a probability

distribution Pσ1,σ2 on the space of plays of the stochastic game.

The

expectation w.r.t. this probability distribution is denoted by Eσ1,σ2 . Given

a discount factor 0 < β < 1 the (unnormalized) β-discounted payoff to

player i is defined by

V i
β(σ1, σ2) = Eσ1,σ2

( ∞∑
t=1

βt−1ui (zt , at)

)

and the normalized β-discounted payoff to player i is defined by

v iβ(σ1, σ2) = (1− β)V i
β(σ1, σ2).
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Main Result

Let Γ = 〈S ,A, u, p, µ〉 be a two-person stochastic game with countably

many states, finitely many actions at each state, and a bounded payoff

function u2.

Let σ1 be a ϕ-based behavioral strategy of player 1 in Γ∞. If

ϕ is recursive, then the following hold.

(i) For every β ∈ (0, 1) there exists a ϕ-based pure strategy σ2 such that

for every behavioral strategy ρ of player 2 in Γ∞ we have

v2β(σ1, σ2) ≥ v2β(σ1, ρ).
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(ii) If S and the range of ϕ are, in addition, finite,

then there is a ϕ-based

pure strategy σ2 and a discount factor β0 ∈ (0, 1) such that

for every behavioral strategy ρ (of player 2 in Γ∞) and every

β ∈ [β0, 1), we have v2
β(σ1, σ2) ≥ v2

β(σ1, ρ);
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Conclusion

A new approach to modeling strategies of bounded complexity is

offered: factor-based strategies.

The player’s perception of the set of histories H is represented by a

factor ϕ : H → X , where X reflects the “cognitive complexity” of the

player. The factor-based strategy is defined just on the elements of

the set X .

Various strategies (as strategies played by finite automata, strategies

with bounded recall as well as strategies based on imperfect

monitoring) can be now jointly analysed in the same framework.
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If the factor ϕ satisfies a natural additional condition (recursivity),

then for every profile of factor-based strategies there is a best reply

that is a pure factor-based strategy.

Besides other consequences we get that, in general, private strategies

does not fare better than the public strategies against public

strategies.
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