Should I remember more than you?

- On the best response to factor-based strategies -

René Levínský¹ Abraham Neyman² Miroslav Zelený³

¹Max Planck Institute of Economics, Jena

²Hebrew University, Jerusalem

³Charles University, Praha

June 23, 2015

A B > A E > A E >

Consider that a general game

G

Consider that a general game

G = (N,

Consider that a general game

 $G = (N, (A_i)_{i \in N},$

Consider that a general game

 $G = (N, (A_i)_{i \in N}, (u_i)_{i \in N}).$

is (infinitely) repeated. Suppose that the stage game is deterministic with a finite set of actions.

Consider that a general game

$$G = (N, (A_i)_{i \in \mathbb{N}}, (u_i)_{i \in \mathbb{N}}).$$

is (infinitely) repeated. Suppose that the stage game is deterministic with a finite set of actions.

Formally, by a *supergame of* G (in notation G^{∞}) we mean an infinite sequence of repetitions of G.

Consider that a general game

$$G = (N, (A_i)_{i \in \mathbb{N}}, (u_i)_{i \in \mathbb{N}}).$$

is (infinitely) repeated. Suppose that the stage game is deterministic with a finite set of actions.

Formally, by a *supergame of* G (in notation G^{∞}) we mean an infinite sequence of repetitions of G.

At each period t = 1, 2, 3, ... players 1, 2,... make simultaneous and independent moves $a_t^i \in A_i$, i = 1, 2, ...

Initial history $h_0 = \emptyset$.

Initial history $h_0 = \emptyset$.

The symbol $A^{<N}$ denotes all finite sequences of elements of A including the empty one.

Initial history $h_0 = \emptyset$.

The symbol $A^{<N}$ denotes all finite sequences of elements of A including the empty one.

The set of histories $H := A^{< N}$.

Initial history $h_0 = \emptyset$.

The symbol $A^{<N}$ denotes all finite sequences of elements of A including the empty one.

The set of histories $H := A^{< N}$.

A strategy for player *i* in G^{∞} is a mapping $\sigma : H \to A_i$.

A B > A E > A E >

Initial history $h_0 = \emptyset$.

The symbol $A^{<N}$ denotes all finite sequences of elements of A including the empty one.

The set of histories $H := A^{< N}$.

A strategy for player *i* in G^{∞} is a mapping $\sigma : H \to A_i$.

A B > A E > A E >

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ヘロト ヘロト ヘビト ヘビト

Bounded strategies of player 1

Suppose that player 1 is not able to recall the full history of the game played.

Bounded strategies of player 1

Suppose that player 1 is not able to recall the full history of the game played.

Her action in the current stage game relies only on k previous signals she observed.

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent.

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent. Formally: Let $k \in \mathbf{N}$.

ヘロト ヘロト ヘビト ヘビン

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent. Formally: Let $k \in \mathbf{N}$.

By a *k-SBR strategy for player i* in G^{∞} we mean a pair (e, ω) , where

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent. Formally: Let $k \in \mathbf{N}$.

By a *k-SBR strategy for player i* in G^{∞} we mean a pair (e, ω) , where

•
$$e = (e_1, e_2, \dots, e_k) \in A^k$$
 and

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent. Formally: Let $k \in \mathbf{N}$.

By a *k-SBR strategy for player i* in G^{∞} we mean a pair (e, ω) , where

•
$$e = (e_1, e_2, \dots, e_k) \in A^k$$
 and

• $\omega: A^k \to A_i$ is a mapping.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent. Formally: Let $k \in \mathbf{N}$.

By a *k-SBR strategy for player i* in G^{∞} we mean a pair (e, ω) , where

•
$$e = (e_1, e_2, \dots, e_k) \in A^k$$
 and

• $\omega: A^k \to A_i$ is a mapping.

Player *i* following the strategy (e, ω) plays as follows.

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent. Formally: Let $k \in \mathbf{N}$.

By a *k-SBR strategy for player i* in G^{∞} we mean a pair (e, ω) , where

•
$$e = (e_1, e_2, \dots, e_k) \in A^k$$
 and

• $\omega: A^k \to A_i$ is a mapping.

Player *i* following the strategy (e, ω) plays as follows. If moves $a_1, \ldots, a_\ell \in A$ have been played,

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent. Formally: Let $k \in \mathbf{N}$.

By a *k-SBR strategy for player i* in G^{∞} we mean a pair (e, ω) , where

•
$$e = (e_1, e_2, \dots, e_k) \in \mathcal{A}^k$$
 and

• $\omega: A^k \to A_i$ is a mapping.

Player i following the strategy (e,ω) plays as follows. If moves

 $a_1, \ldots, a_\ell \in A$ have been played, then player *i* takes the sequence *s*, which is formed by the last *k* elements of the sequence $(e_1, .., e_k, a_1, .., a_\ell)$,

200

Э

< □ > < 同 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

Suppose that player 1 is capable to "remember" only last k action profiles in the repeated game and this "depth of recall" k as well as the strategy itself, are time independent. Formally: Let $k \in \mathbf{N}$.

By a *k-SBR strategy for player i* in G^{∞} we mean a pair (e, ω) , where

•
$$e = (e_1, e_2, \dots, e_k) \in \mathcal{A}^k$$
 and

• $\omega: A^k \to A_i$ is a mapping.

Player *i* following the strategy (e, ω) plays as follows. If moves $a_1, \ldots, a_\ell \in A$ have been played, then player *i* takes the sequence *s*, which

is formed by the last k elements of the sequence $(e_1, ..., e_k, a_1, ..., a_\ell)$, and her $(\ell + 1)$ -th move is $\omega(s)$.

200

Э

< □ > < 同 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

Player 1

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

cooperate defect

cooperate defect

Tit for tat as SBR strategy

Tit-for-tat is 1-SBR strategy, with

Tit for tat as SBR strategy

Tit-for-tat is 1-SBR strategy, with

•
$$\omega(c,c) = \omega(d,c) = c$$

Tit for tat as SBR strategy

Tit-for-tat is 1-SBR strategy, with

•
$$\omega(c,c) = \omega(d,c) = c$$

•
$$\omega(d,d) = \omega(c,d) = d$$

Tit for tat as SBR strategy

Tit-for-tat is 1-SBR strategy, with

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 -

◆□▶ ◆□▶ ◆臣▶ ◆臣♪

< ロ > < 団 > < 臣 > < 臣 > 三臣 -

◆□▶ ◆□▶ ◆臣▶ ◆臣♪

An *automaton* (for player 1 in the supergame G^{∞}) is a quadruple $\langle M, m^*, \alpha, \tau \rangle$, where

(日) (四) (三) (三) (三)

- An *automaton* (for player 1 in the supergame G^{∞}) is a quadruple $\langle M, m^*, \alpha, \tau \rangle$, where
 - *M* is a nonempty set (the state space),

An *automaton* (for player 1 in the supergame G^{∞}) is a quadruple $\langle M, m^*, \alpha, \tau \rangle$, where

- *M* is a nonempty set (the state space),
- $m^* \in M$ is the initial state,

An *automaton* (for player 1 in the supergame G^{∞}) is a quadruple $\langle M, m^*, \alpha, \tau \rangle$, where

- *M* is a nonempty set (the state space),
- $m^* \in M$ is the initial state,
- $\alpha: M \rightarrow A_1$ is an action function, and

An *automaton* (for player 1 in the supergame G^{∞}) is a quadruple $\langle M, m^*, \alpha, \tau \rangle$, where

- *M* is a nonempty set (the state space),
- $m^* \in M$ is the initial state,
- $\alpha: M \rightarrow A_1$ is an action function, and
- $\tau: M \times A \rightarrow M$ is a transition function.

An *automaton* (for player 1 in the supergame G^{∞}) is a quadruple $\langle M, m^*, \alpha, \tau \rangle$, where

- *M* is a nonempty set (the state space),
- $m^* \in M$ is the initial state,
- $\alpha: M \rightarrow A_1$ is an action function, and
- $\tau: M \times A \rightarrow M$ is a transition function.

A k-state automaton is an automaton where the set M has k elements.

•
$$M = \{m^*, m\}$$

•
$$M = \{m^*, m\}$$

•
$$\alpha(m^*) = c, \alpha(m) = d$$

•
$$M = \{m^*, m\}$$

•
$$\alpha(m^*) = c, \alpha(m) = d$$

•
$$\tau(m^*,c) = \tau(m,c) = m^*$$

<ロ> <0</p>

<ロ> <0</p>

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ・ つへぐ

Axelrod's tournaments

 Tournament: TFT, Tideman and Chieruzzi, Nydegger, Grofman, Shubik, Stein and Rapoport, Friedman, Davis, Graaskamp, Downing, Feld, Joss, Tullock, Random

A B > A E > A E >

Axelrod's tournaments

 Tournament: TFT, Tideman and Chieruzzi, Nydegger, Grofman, Shubik, Stein and Rapoport, Friedman, Davis, Graaskamp, Downing, Feld, Joss, Tullock, Random

Each strategy was paired with each other strategy for 200 iterations of a Prisoner's Dilemma game, and scored on the total points accumulated through the tournament.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Axelrod's tournaments

 Tournament: TFT, Tideman and Chieruzzi, Nydegger, Grofman, Shubik, Stein and Rapoport, Friedman, Davis, Graaskamp, Downing, Feld, Joss, Tullock, Random

Each strategy was paired with each other strategy for 200 iterations of a Prisoner's Dilemma game, and scored on the total points accumulated through the tournament. The winner was a tit-for-tat (TFT) strategy submitted by Anatol Rapoport.

Axelrod's tournaments revisited

Which strategy we will submit?

Axelrod's tournaments revisited

Which strategy we will submit? A 2-SBR strategy!

Axelrod's tournaments revisited

Which strategy we will submit?

A 2-SBR strategy!

t-2	Ø	Ø	Ø	Ø	Ø	сс	dc	cd	dd													
t-1	Ø	сс	dc	cd	dd		сс				dc				cd				dd			
	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	

Which strategy we will submit?

A 2-SBR strategy!

t-2	2 (Ø	Ø	Ø	Ø	Ø	сс	dc	cd	dd														
t-2	1 (Ø	сс	dc	cd	dd		c	c			d	lc		cd					dd				
	1	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		

Which one?

Which strategy we will submit?

A 2-SBR strategy!

t-2	Ø	Ø	Ø	Ø	Ø	сс	dc	cd	dd														
t-1	Ø	сс	dc	cd	dd		c	c			c	lc		cd					dd				
	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		

Which one?

We have consequently submited all 2-SBR strategies.

Which strategy we will submit?

A 2-SBR strategy!

-	t-2	Ø	Ø	Ø	Ø	Ø	сс	dc	cd	dd														
_	t-1	Ø	сс	dc	cd	dd		c	c			d	lc		cd					dd				
		?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		

Which one?

We have consequently submited all 2-SBR strategies. So, we have played $2 \times 2^4 \times 2^{16} = 2.097.152$ tournaments.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ø
1 Davis	300	231	300	299	300	111	300	288	300	300	17	300	300	297	300	263
2 Feld	346	111	113	175	330	109	346	228	114	169	111	205	346	114	245	204
3 Friedman	300	113	300	154	300	108	300	296	300	300	111	300	300	298	300	252
4 Graaskamp	301	170	151	294	301	109	301	276	153	299	111	300	301	157	301	235
5 Grofman	300	223	300	299	300	276	300	165	300	300	38	300	300	297	300	266
6 Joss	111	111	108	111	306	106	312	227	109	111	112	197	312	111	312	177
7 Nydegger	300	231	300	299	300	282	300	149	300	300	17	300	300	297	300	265
8 Random	68	208	53	99	360	212	399	198	83	223	121	59	58	69	64	151
9 Shubik	300	114	300	155	300	109	300	283	300	300	111	300	300	298	300	251
10 T-f-T	300	166	300	299	300	109	300	223	300	300	111	300	300	298	300	260
11 Tullock	489	111	113	113	405	110	489	266	113	113	111	173	169	113	115	200
12 T-CH	300	182	300	298	300	187	300	294	300	300	96	300	300	298	300	270
13 Downing	300	231	300	299	300	282	300	293	300	300	97	300	300	297	300	280
14 Stein Rap	302	114	300	160	302	109	302	289	300	300	111	300	302	298	302	253
15 s517572	300	205	300	299	300	282	300	276	300	300	110	300	300	297	300	278

The results are not robust w.r.t. realisation of the random variables. TFT is not winning all the tournaments...

The Joss strategy from the 1. Tournament is a five-line program by Johann JOSS of the TH Zurich. This rule cooperates 90% of the time after a cooperation by the other.

The Joss strategy from the 1. Tournament is a five-line program by Johann JOSS of the TH Zurich. This rule cooperates 90% of the time after a cooperation by the other. It always defects after a defection by the other.

The Joss strategy from the 1. Tournament is a five-line program by Johann JOSS of the TH Zurich. This rule cooperates 90% of the time after a cooperation by the other. It always defects after a defection by the other. So, what is the run of the game?

The Joss strategy from the 1. Tournament is a five-line program by Johann JOSS of the TH Zurich. This rule cooperates 90% of the time after a cooperation by the other. It always defects after a defection by the other. So, what is the run of the game? It starts with (C, C), (C, C)... (C, C)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Joss strategy from the 1. Tournament is a five-line program by Johann JOSS of the TH Zurich. This rule cooperates 90% of the time after a cooperation by the other. It always defects after a defection by the other. So, what is the run of the game? It starts with (C, C), (C, C)...(C, C) and after first (random) defection of Joss switch to (C, D), (D, C), (C, D)...

The Joss strategy from the 1. Tournament is a five-line program by Johann JOSS of the TH Zurich. This rule cooperates 90% of the time after a cooperation by the other. It always defects after a defection by the other. So, what is the run of the game? It starts with (C, C), (C, C)...(C, C) and after first (random) defection of Joss switch to (C, D), (D, C), (C, D)... Already after second (random) defection it will result in neverending mutual defection!

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ø
1 Davis	300	231	300	299	300	111	300	288	300	300	17	300	300	297	300	263
2 Feld	346	111	113	175	330	109	346	228	114	169	111	205	346	114	245	204
3 Friedman	300	113	300	154	300	108	300	296	300	300	111	300	300	298	300	252
4 Graaskamp	301	170	151	294	301	109	301	276	153	299	111	300	301	157	301	235
5 Grofman	300	223	300	299	300	276	300	165	300	300	38	300	300	297	300	266
6 Joss	111	111	108	111	306	106	312	227	109	111	112	197	312	111	312	177
7 Nydegger	300	231	300	299	300	282	300	149	300	300	17	300	300	297	300	265
8 Random	68	208	53	99	360	212	399	198	83	223	121	59	58	69	64	151
9 Shubik	300	114	300	155	300	109	300	283	300	300	111	300	300	298	300	251
10 T-f-T	300	166	300	299	300	109	300	223	300	300	111	300	300	298	300	260
11 Tullock	489	111	113	113	405	110	489	266	113	113	111	173	169	113	115	200
12 T-CH	300	182	300	298	300	187	300	294	300	300	96	300	300	298	300	270
13 Downing	300	231	300	299	300	282	300	293	300	300	97	300	300	297	300	280
14 Stein Rap	302	114	300	160	302	109	302	289	300	300	111	300	302	298	302	253
15 s517572	300	205	300	299	300	282	300	276	300	300	110	300	300	297	300	278

t-2	2	Ø	Ø	Ø	сс	dc	cd	dd															
t-1	1	Ø	сс	cd		c	c			d	lc			c	:d			dd					
s517	572	с	с	d	с	с	с	d	d	d	с	d	с	с	d	d	d	d	d	d			

→C

・ロト 《四下 《日下 《日下 《日下

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The results of the first tournament were analyzed and published, and a second tournament held to see if anyone could find a better strategy.

Tournament 2

The results of the first tournament were analyzed and published, and a second tournament held to see if anyone could find a better strategy. TFT won again.

2. Tournament (representatives) Adams R., Pinkley, Gladstein, Feathers, Graaskamp

Defects on the very first move in order to test the other's response.

Defects on the very first move in order to test the other's response. If the other player ever defects, it apologizes by cooperating and playing tit-for-tat for the rest of the game.

ヘロト ヘロト ヘビト ヘビン

Defects on the very first move in order to test the other's response. If the other player ever defects, it apologizes by cooperating and playing tit-for-tat for the rest of the game.

Otherwise, it defects as much as possible subject to the constraint that the ratio of its defections to moves remains under .5, not counting the first defection.

ヘロト ヘ行 ト ヘビト ヘビン

- Defects on the very first move in order to test the other's response. If the other player ever defects, it apologizes by cooperating and playing tit-for-tat for the rest of the game.
- Otherwise, it defects as much as possible subject to the constraint that the ratio of its defections to moves remains under .5, not counting the first defection.
- This means that until the other player defects, Gladstein defects on the first move, the fourth move, and every second move after that.

Gladstein never does defect twice in a row.

(□) (四) (三) (三) (三)

Gladstein never does defect twice in a row.

So TF2T always cooperates with Gladstein, and gets badly exploited for its generosity.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - ����

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - ����

	1	2	3	4	5	6	Ø
1 Pinkley	300	252	263	300	300	300	286
2 Gladstein	249	299	296	300	105	300	258
3 Feathers	228	296	298	297	173	334	271
4 Graaskamp and Katzen	300	300	297	300	300	300	299
5 Adams, R.	300	105	238	300	300	300	257
6 Tf2T&hell	300	300	249	300	300	300	291

A B > A E > A E >

	1	2	3	4	5	6	Ø
1 Pinkley	300	252	263	300	300	300	286
2 Gladstein	249	299	296	300	105	300	258
3 Feathers	228	296	298	297	173	334	271
4 Graaskamp and Katzen	300	300	297	300	300	300	299
5 Adams, R.	300	105	238	300	300	300	257
6 Tf2T&hell	300	300	249	300	300	300	291
6a T-F-T	300	300	297	300	300	300	299

	1	2	3	4	5	6	Ø
1 Pinkley	300	252	263	300	300	300	286
2 Gladstein	249	299	296	300	105	300	258
3 Feathers	228	296	298	297	173	334	271
4 Graaskamp and Katzen	300	300	297	300	300	300	299
5 Adams, R.	300	105	238	300	300	300	257
6 Tf2T&hell	300	300	249	300	300	300	291
6a T-F-T	300	300	297	300	300	300	299
6b Magic circles	300	298	319	300	300	300	303

	1	2	3	4	5	6	Ø
1 Pinkley	300	252	263	300	300	300	286
2 Gladstein	249	299	296	300	105	300	258
3 Feathers	228	296	298	297	173	334	271
4 Graaskamp and Katzen	300	300	297	300	300	300	299
5 Adams, R.	300	105	238	300	300	300	257
6 Tf2T&hell	300	300	249	300	300	300	291
6a T-F-T	300	300	297	300	300	300	299
6b Magic circles	300	298	319	300	300	300	303

Magic circles in T1 - 270 (T-F-T 260, TF2T&hell 278)

・ロット (四)・ (田)・ (日)・ (日)

・ロット 4回ット 4回ット 4回ット 4日ッ

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

Magic circles and Joss

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ●

Magic circles and Joss

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ●

Magic circles and Joss

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ●

$(d,c)(d,c) \rightarrow d$

$$(d,c)(d,c) \to d$$

 $(d,c)(c,c)
ightarrow d \ (c,c)(d,c)
ightarrow c$

$$(d,c)(d,c) \rightarrow d$$

 $(d,c)(c,c)
ightarrow d \ (c,c)(d,c)
ightarrow c$

$$(d,c)(d,c) \rightarrow d$$

 $(d,c)(c,c)
ightarrow d \ (c,c)(d,c)
ightarrow c$

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

$$(d,c)(d,c) \rightarrow d$$

 $(d,c)(c,c)
ightarrow d \ (c,c)(d,c)
ightarrow c$

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

 $(d,c)(d,c) \rightarrow d$

 $(d,c)(c,c)
ightarrow d \ (c,c)(d,c)
ightarrow c$

◆ロト ◆聞ト ◆注ト ◆注ト

990

 $(d,c)(d,c) \rightarrow d$

 $(d,c)(c,c)
ightarrow d \ (c,c)(d,c)
ightarrow c$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $(d,c)(d,c) \rightarrow d$

 $(d,c)(c,c)
ightarrow d \ (c,c)(d,c)
ightarrow c$

Research question

Kalai (1990): "What information system (size and structure) should a player maintain when playing a strategic game?"

(日) (四) (三) (三) (三)

Research question

Kalai (1990): "What information system (size and structure) should a player maintain when playing a strategic game?" Here, we try to answer the question of Kalai in the context of strategies of bounded complexity.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Research question

Kalai (1990): "What information system (size and structure) should a player maintain when playing a strategic game?"

Here, we try to answer the question of Kalai in the context of strategies of bounded complexity.

In detail, we study the complexity of the strategy that is the best response to a strategy with a given complexity.

A B > A E > A E >

ヘロト 人間 ト 人 田 ト 人 田 ト

ヘロト 人間 ト 人 田 ト 人 田 ト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let H denote the set of all finite histories in a supergame $G^\infty,$ i.e., $H=A^{<{\bf N}}.$

- Let H denote the set of all finite histories in a supergame G^{∞} , i.e., $H = A^{<\mathbf{N}}$.
- Let X be a set and φ be a mapping from H to X.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Let H denote the set of all finite histories in a supergame G^{∞} , i.e., $H = A^{<\mathbf{N}}$.

Let X be a set and φ be a mapping from H to X.

We say that a strategy σ is a *factor-based strategy with factor* φ (φ -based strategy for short) for player *i* in the supergame G^{∞}

- Let H denote the set of all finite histories in a supergame G^{∞} , i.e., $H = A^{<\mathbf{N}}$.
- Let X be a set and φ be a mapping from H to X.
- We say that a strategy σ is a factor-based strategy with factor φ (φ -based strategy for short) for player *i* in the supergame G^{∞} if there is a factor-action function $\omega : X \to A_i$

Let H denote the set of all finite histories in a supergame G^{∞} , i.e., $H = A^{<\mathbf{N}}$.

Let X be a set and φ be a mapping from H to X.

We say that a strategy σ is a factor-based strategy with factor φ (φ -based strategy for short) for player *i* in the supergame G^{∞} if there is a factor-action function $\omega : X \to A_i$

such that $\sigma = \omega \circ \varphi$.

< ロ ト < 回 ト < 三 ト < 三 ト - 三</p>

ヘロト 人間 ト 人 田 ト 人 田 ト

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

The factor φ is called $\mathit{recursive}$

The factor φ is called *recursive* if there is a function $g:X\times A\to X$ such that

The factor φ is called *recursive* if there is a function $g: X \times A \rightarrow X$ such that $\varphi(a_1, \ldots, a_t) =$

The factor φ is called *recursive* if there is a function $g: X \times A \to X$ such that $\varphi(a_1, \ldots, a_t) = g($,).

The factor φ is called *recursive* if there is a function $g: X \times A \to X$ such that $\varphi(a_1, \ldots, a_t) = g(\varphi(a_1, \ldots, a_{t-1}), \cdot)$.

The factor φ is called *recursive* if there is a function $g: X \times A \rightarrow X$ such that $\varphi(a_1, \ldots, a_t) = g(\varphi(a_1, \ldots, a_{t-1}), a_t)$.

The factor φ is called *recursive* if there is a function $g: X \times A \to X$ such that $\varphi(a_1, \ldots, a_t) = g(\varphi(a_1, \ldots, a_{t-1}), a_t)$.

Recursivity captures the fact that what was forgotten can't be learnt once more.

Examples of recursive factor based strategies

- Automata
- SBR strategies
- Imperfect monitoring (red-green blindness)

ヘロト ヘロト ヘビト ヘビト

A two-person stochastic game with finite action sets is 5-tuple

- $\mathsf{\Gamma} = \langle {\it S}, {\it A}, {\it u}, {\it p}, \mu
 angle$ such that
 - a state space S is a nonempty set,

A two-person stochastic game with finite action sets is 5-tuple

- $\mathsf{\Gamma} = \langle {\it S}, {\it A}, {\it u}, {\it p}, \mu
 angle$ such that
 - a state space S is a nonempty set,
 - A(z) = A₁(z) × A₂(z) is an action set: for every state z ∈ S, A_i(z) is a nonempty finite set of actions for player i (i = 1, 2) at the state z,

A two-person stochastic game with finite action sets is 5-tuple

- $\mathsf{\Gamma} = \langle {\it S}, {\it A}, {\it u}, {\it p}, \mu
 angle$ such that
 - a state space S is a nonempty set,
 - A(z) = A₁(z) × A₂(z) is an action set: for every state z ∈ S, A_i(z) is a nonempty finite set of actions for player i (i = 1, 2) at the state z,
 u = (u₁, u₂) is a payoff function, where u_i(z, a) is the payoff function
 - of player i, $(z \in S, a \in A(z))$,

A two-person stochastic game with finite action sets is 5-tuple

- $\mathsf{\Gamma} = \langle {\it S}, {\it A}, {\it u}, {\it p}, \mu
 angle$ such that
 - a state space S is a nonempty set,
 - A(z) = A₁(z) × A₂(z) is an action set: for every state z ∈ S, A_i(z) is a nonempty finite set of actions for player i (i = 1, 2) at the state z,
 u = (u₁, u₂) is a payoff function, where u_i(z, a) is the payoff function of player i, (z ∈ S, a ∈ A(z)).
 - p is a *transition function*: for each state $z \in S$ and each action profile $a \in A(z), \ p(z, a) \in \Delta(S)$ is the probability of the next state, and

3

Sac

A two-person stochastic game with finite action sets is 5-tuple

- $\mathsf{\Gamma} = \langle {\it S}, {\it A}, {\it u}, {\it p}, \mu
 angle$ such that
 - a state space S is a nonempty set,
 - A(z) = A₁(z) × A₂(z) is an action set: for every state z ∈ S, A_i(z) is a nonempty finite set of actions for player i (i = 1, 2) at the state z,
 u = (u₁, u₂) is a payoff function, where u_i(z, a) is the payoff function of player i, (z ∈ S, a ∈ A(z)).
 - *p* is a *transition function*: for each state *z* ∈ *S* and each action profile *a* ∈ *A*(*z*), *p*(*z*, *a*) ∈ Δ(*S*) is the probability of the next state, and *μ* ∈ Δ(*S*) is a distribution of the initial state.

Sac

A play of the stochastic game Γ^{∞} is a sequence of states and actions $(z_1, a_1, \ldots, z_t, a_t, z_{t+1}, a_{t+1}, \ldots)$ with $a_t \in A(z_t)$.

A play of the stochastic game Γ^{∞} is a sequence of states and actions $(z_1, a_1, \ldots, z_t, a_t, z_{t+1}, a_{t+1}, \ldots)$ with $a_t \in A(z_t)$. A pure strategy of player *i* in the stochastic game with perfect monitoring specifies her action $a_t^i \in A_i(z_t)$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A play of the stochastic game Γ^{∞} is a sequence of states and actions $(z_1, a_1, \ldots, z_t, a_t, z_{t+1}, a_{t+1}, \ldots)$ with $a_t \in A(z_t)$. A pure strategy of player *i* in the stochastic game with perfect monitoring specifies her action $a_t^i \in A_i(z_t)$ as a function of the past state z_t and action profiles $(z_1, a_1, \ldots, a_{t-1})$.

A play of the stochastic game Γ^{∞} is a sequence of states and actions $(z_1, a_1, \ldots, z_t, a_t, z_{t+1}, a_{t+1}, \ldots)$ with $a_t \in A(z_t)$. A pure strategy of player *i* in the stochastic game with perfect monitoring specifies her action $a_t^i \in A_i(z_t)$ as a function of the past state z_t and action profiles $(z_1, a_1, \ldots, a_{t-1})$.

Similarly, a behavioral strategy of player *i* is a function of the past state z_t and action profiles $(z_1, a_1, \ldots, a_{t-1})$

Strategy in stochastic games

A play of the stochastic game Γ^{∞} is a sequence of states and actions $(z_1, a_1, \ldots, z_t, a_t, z_{t+1}, a_{t+1}, \ldots)$ with $a_t \in A(z_t)$. A pure strategy of player *i* in the stochastic game with perfect monitoring

specifies her action $a_t^i \in A_i(z_t)$ as a function of the past state z_t and action profiles $(z_1, a_1, \ldots, a_{t-1})$.

Similarly, a behavioral strategy of player *i* is a function of the past state z_t and action profiles $(z_1, a_1, \ldots, a_{t-1})$ and specifies the probability that an action $a_t^i \in A_i(z_t)$ is played.

< □ > < 同 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

The choice of distribution of action a_t^i depends on $\varphi(z_1, a_1, \ldots, z_{t-1}, a_{t-1})$ and on the actual state z_t .

A B > A E > A E >

The choice of distribution of action a_t^i depends on $\varphi(z_1, a_1, \ldots, z_{t-1}, a_{t-1})$ and on the actual state z_t . This means that $\omega : S \times X \to \Delta(A_i)$ and

The choice of distribution of action a_t^i depends on $\varphi(z_1, a_1, \ldots, z_{t-1}, a_{t-1})$ and on the actual state z_t . This means that $\omega : S \times X \to \Delta(A_i)$ and

$$\sigma(z_1,a_1,\ldots,z_t)=\omega(z_t,\varphi(z_1,a_1,\ldots,z_{t-1},a_{t-1}))$$

The choice of distribution of action a_t^i depends on $\varphi(z_1, a_1, \dots, z_{t-1}, a_{t-1})$ and on the actual state z_t . This means that $\omega : S \times X \to \Delta(A_i)$ and

$$\sigma(z_1,a_1,\ldots,z_t)=\omega(z_t,\varphi(z_1,a_1,\ldots,z_{t-1},a_{t-1})).$$

The factor φ in the case of a stochastic game is called *recursive*

The choice of distribution of action a_t^i depends on $\varphi(z_1, a_1, \ldots, z_{t-1}, a_{t-1})$ and on the actual state z_t . This means that $\omega : S \times X \to \Delta(A_i)$ and

$$\sigma(z_1,a_1,\ldots,z_t)=\omega(z_t,\varphi(z_1,a_1,\ldots,z_{t-1},a_{t-1})).$$

The factor φ in the case of a stochastic game is called *recursive* if there is a function $g: X \times S \times A \to X$ such that

The choice of distribution of action a_t^i depends on $\varphi(z_1, a_1, \ldots, z_{t-1}, a_{t-1})$ and on the actual state z_t . This means that $\omega : S \times X \to \Delta(A_i)$ and

$$\sigma(z_1,a_1,\ldots,z_t)=\omega(z_t,\varphi(z_1,a_1,\ldots,z_{t-1},a_{t-1})).$$

The factor φ in the case of a stochastic game is called *recursive* if there is a function $g: X \times S \times A \to X$ such that

$$\varphi(z_1,a_1,\ldots,z_t,a_t)=g(\varphi(z_1,a_1,\ldots,z_{t-1},a_{t-1}),z_t,a_t).$$

A pair of strategies σ^1 and σ^2 of players 1 and 2 defines a probability distribution P_{σ^1,σ^2} on the space of plays of the stochastic game.

A pair of strategies σ^1 and σ^2 of players 1 and 2 defines a probability distribution P_{σ^1,σ^2} on the space of plays of the stochastic game. The expectation w.r.t. this probability distribution is denoted by E_{σ^1,σ^2} .

<□> <@> < ≥> < ≥>

A pair of strategies σ^1 and σ^2 of players 1 and 2 defines a probability distribution P_{σ^1,σ^2} on the space of plays of the stochastic game. The expectation w.r.t. this probability distribution is denoted by E_{σ^1,σ^2} . Given a discount factor $0 < \beta < 1$ the (unnormalized) β -discounted payoff to player *i* is defined by

A pair of strategies σ^1 and σ^2 of players 1 and 2 defines a probability distribution P_{σ^1,σ^2} on the space of plays of the stochastic game. The expectation w.r.t. this probability distribution is denoted by E_{σ^1,σ^2} . Given a discount factor $0 < \beta < 1$ the (unnormalized) β -discounted payoff to player *i* is defined by

$$V_{\beta}^{i}(\sigma^{1},\sigma^{2}) = E_{\sigma^{1},\sigma^{2}}\left(\sum_{t=1}^{\infty}\beta^{t-1}u_{i}(z_{t},a_{t})\right)$$

A pair of strategies σ^1 and σ^2 of players 1 and 2 defines a probability distribution P_{σ^1,σ^2} on the space of plays of the stochastic game. The expectation w.r.t. this probability distribution is denoted by E_{σ^1,σ^2} . Given a discount factor $0 < \beta < 1$ the (unnormalized) β -discounted payoff to player *i* is defined by

$$V_{\beta}^{i}(\sigma^{1},\sigma^{2}) = E_{\sigma^{1},\sigma^{2}}\left(\sum_{t=1}^{\infty}\beta^{t-1}u_{i}(z_{t},a_{t})\right)$$

and the normalized β -discounted payoff to player i is defined by

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A pair of strategies σ^1 and σ^2 of players 1 and 2 defines a probability distribution P_{σ^1,σ^2} on the space of plays of the stochastic game. The expectation w.r.t. this probability distribution is denoted by E_{σ^1,σ^2} . Given a discount factor $0 < \beta < 1$ the (unnormalized) β -discounted payoff to player *i* is defined by

$$V_{\beta}^{i}(\sigma^{1},\sigma^{2}) = E_{\sigma^{1},\sigma^{2}}\left(\sum_{t=1}^{\infty}\beta^{t-1}u_{i}(z_{t},a_{t})\right)$$

and the normalized β -discounted payoff to player i is defined by

$$v^i_{eta}(\sigma^1,\sigma^2) = (1-eta)V^i_{eta}(\sigma^1,\sigma^2).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\Gamma = \langle S, A, u, p, \mu \rangle$ be a two-person stochastic game with countably many states, finitely many actions at each state, and a bounded payoff function u_2 .

<□> <@> < ≥> < ≥>

Let $\Gamma = \langle S, A, u, p, \mu \rangle$ be a two-person stochastic game with countably many states, finitely many actions at each state, and a bounded payoff function u_2 . Let σ^1 be a φ -based behavioral strategy of player 1 in Γ^{∞} .

<□> <@> < ≥> < ≥>

Let $\Gamma = \langle S, A, u, p, \mu \rangle$ be a two-person stochastic game with countably many states, finitely many actions at each state, and a bounded payoff function u_2 . Let σ^1 be a φ -based behavioral strategy of player 1 in Γ^{∞} . If φ is recursive, then the following hold.

Let $\Gamma = \langle S, A, u, p, \mu \rangle$ be a two-person stochastic game with countably many states, finitely many actions at each state, and a bounded payoff function u_2 . Let σ^1 be a φ -based behavioral strategy of player 1 in Γ^{∞} . If φ is recursive, then the following hold.

(i) For every $eta \in (0,1)$ there exists a arphi-based pure strategy σ^2

Let $\Gamma = \langle S, A, u, p, \mu \rangle$ be a two-person stochastic game with countably many states, finitely many actions at each state, and a bounded payoff function u_2 . Let σ^1 be a φ -based behavioral strategy of player 1 in Γ^{∞} . If φ is recursive, then the following hold.

 (i) For every β ∈ (0,1) there exists a φ-based pure strategy σ² such that for every behavioral strategy ρ of player 2 in Γ[∞]

Let $\Gamma = \langle S, A, u, p, \mu \rangle$ be a two-person stochastic game with countably many states, finitely many actions at each state, and a bounded payoff function u_2 . Let σ^1 be a φ -based behavioral strategy of player 1 in Γ^{∞} . If φ is recursive, then the following hold.

 (i) For every β ∈ (0, 1) there exists a φ-based pure strategy σ² such that for every behavioral strategy ρ of player 2 in Γ[∞] we have v²_β(σ¹, σ²) ≥ v²_β(σ¹, ρ).

(ii) If S and the range of φ are, in addition, finite,

(ii) If S and the range of φ are, in addition, finite, then there is a φ -based pure strategy σ^2 and a discount factor $\beta_0 \in (0, 1)$ such that

- (ii) If S and the range of φ are, in addition, finite, then there is a φ -based pure strategy σ^2 and a discount factor $\beta_0 \in (0, 1)$ such that
 - for every behavioral strategy ρ (of player 2 in Γ^{∞})

A B > A E > A E >

- (ii) If S and the range of φ are, in addition, finite, then there is a φ -based pure strategy σ^2 and a discount factor $\beta_0 \in (0, 1)$ such that
 - for every behavioral strategy ρ (of player 2 in Γ^{∞}) and every $\beta \in [\beta_0, 1)$,

< □ > < @ > < E > < E >

- (ii) If S and the range of φ are, in addition, finite, then there is a φ -based pure strategy σ^2 and a discount factor $\beta_0 \in (0, 1)$ such that
 - for every behavioral strategy ρ (of player 2 in Γ^{∞}) and every $\beta \in [\beta_0, 1)$, we have $v_{\beta}^2(\sigma^1, \sigma^2) \ge v_{\beta}^2(\sigma^1, \rho)$;

- (ii) If S and the range of φ are, in addition, finite, then there is a φ -based pure strategy σ^2 and a discount factor $\beta_0 \in (0, 1)$ such that
 - for every behavioral strategy ρ (of player 2 in Γ^{∞}) and every $\beta \in [\beta_0, 1)$, we have $v_{\beta}^2(\sigma^1, \sigma^2) \ge v_{\beta}^2(\sigma^1, \rho)$;
 - $\, \bullet \,$ for every behavioral strategy ρ we have

- (ii) If S and the range of φ are, in addition, finite, then there is a φ -based pure strategy σ^2 and a discount factor $\beta_0 \in (0, 1)$ such that
 - for every behavioral strategy ρ (of player 2 in Γ^{∞}) and every $\beta \in [\beta_0, 1)$, we have $v_{\beta}^2(\sigma^1, \sigma^2) \ge v_{\beta}^2(\sigma^1, \rho)$;
 - $\, \bullet \,$ for every behavioral strategy ρ we have

$$E_{\sigma^1,\sigma^2}\left(\liminf_{n\to\infty}\frac{1}{n}\sum_{t=1}^n u_2(z_t,a_t)\right)\geq E_{\sigma^1,\rho}\left(\limsup_{n\to\infty}\frac{1}{n}\sum_{t=1}^n u_2(z_t,a_t)\right).$$

• A new approach to modeling strategies of bounded complexity is offered: factor-based strategies.

- A new approach to modeling strategies of bounded complexity is offered: factor-based strategies.
- The player's perception of the set of histories H is represented by a factor φ : H → X, where X reflects the "cognitive complexity" of the player. The factor-based strategy is defined just on the elements of the set X.

- A new approach to modeling strategies of bounded complexity is offered: factor-based strategies.
- The player's perception of the set of histories H is represented by a factor φ : H → X, where X reflects the "cognitive complexity" of the player. The factor-based strategy is defined just on the elements of the set X.
- Various strategies (as strategies played by finite automata, strategies with bounded recall as well as strategies based on imperfect monitoring) can be now jointly analysed in the same framework.

Sac

Э

 If the factor φ satisfies a natural additional condition (recursivity), then for every profile of factor-based strategies there is a best reply that is a pure factor-based strategy.

ヘロト ヘロト ヘビト ヘビト

- If the factor φ satisfies a natural additional condition (recursivity), then for every profile of factor-based strategies there is a best reply that is a pure factor-based strategy.
- Besides other consequences we get that, in general, private strategies does not fare better than the public strategies against public strategies.

Should you remember more than me?

Result

Should you remember more than me?

No, you do not have to!!!

(a) < (b) < (b)

Result

Should you remember more than me?

No, you do not have to!!! Thank you for your attention!

