Measurements and data processing

Ivan Prochazka

Consultations on request TN314

Czech Technical University, Prague

Course Goals

- correct interpretation of results
- marginal effect identification
low signal extraction from the noise background / data mining

Course Concept

"open concept"

- questions / comments related to the subject welcome
- language is no limitation
based on local tradition and experience:
- photon counting,
- high precision \& accuracy laser ranging,
- Lidar,
- precise timing etc.

Measurement, data processing and laboratory demo
contributions from students to the course appreciated (see next)

Requirements

3 tests within the semester, announced in advance (~ 10 questions / test, language is no limitation)

- minimum 50% of correct answers in each test
- one spare term for the three tests
!! WARNING just one single spare term / test !!
final note will be an average of the three test results (improvement possible by active contribution ..)

Course Structure / Schedule

1. Definition of terms (measurements, observations, errors characterization, precision, accuracy, bias)

Types of measurements and related error sources (direct, indirect, substitution, event counting, ...)

Normal errors distribution (histogram, r.m.s., r.s.s., averaging, ...)

Normal errors distribution consequences (examples, demo, test\#1)

Data fitting and smoothing I. (interpolation, fitting, least square algorithm, mini-max methods, weighting methods)

Data fitting and smoothing II (parameters estimate, fitting strategy, solution stability)

Course Structure / Schedule II

Data fitting and smoothing III (polynomial fitting, "best fitting" polynomial, splines, demo)

Data editing (normal data distribution, k^{*} sigma, relation to data fitting, deviations from normal distribution, tight editing criteria, test \#2)

Signal mining (noise properties, correlation, lock-in measurements)

Signal mining methods
(Correlation estimator, Fourier transform application)
Signal mining methods - examples
(Time correlated photon counting, laser ranging, relation to data editing and data fitting)

Review, test \#3

References

- 13. Photon Counting using Photomultiplier tubes, [online] [cit. 2009-Feb-010],
< hitp://sales.hamamatsu.com/assets/applications/ETD/PhotonCounting TPHO9001E04.pdf >

14. University of Michigan - Error Analysis Tutorials, [online] [cit. 2009-Feb-10],
< http://instructor.physics.Isa.umich.edu/ip-labs/tutorials/errors/vocab.html >

- 15. Data Fitting Manual, [online] [cit. 2009-Feb-10],
< hitp://bima.astro.umd.edu/wip/manual/node11.html >
- 16. Wikipedia - The Free Encyklopedia, Accuracy and precision, [online] [cit. 2009-Feb-10], < http://en.wikipedia.org/wiki/Accuracy >
- 17. Matëjka K. a kol., Vybrané analytické metody pro životní prostředí, 1998, Vydavatelství ČVUT - Chapter: Statistika a chyby měrení (pp. 57-63)

Measurements 1

Units SI
fundamental (kg, m, s, A, mol, candela, K)
derived ($\mathrm{m} / \mathrm{s}, \ldots$)
standards SI , national, local,..

Measurements 2

- type of measurement

direct X	indirect absolute
	x substative sumpensation \ldots
(examples)	

- Event counting (examples)

Measurement errors

■ measurement errors

systematic

random errors

Precision and accuracy

- !!! WARNING - language dependent !!! přesnost Cz genauigkeit ge točnost
ru
PRECISION
Relative, internal, consistency, data spread
ACCURACY
"absolute", related to standards

RANDOM ERRORS - Precision

- measurement errors caused by random influences
- various influences randomly combined
- random behaviour $=>$ statistical treatment
- increasing the number of measurements, the random error influence can be decreased

SYTEMATIC ERRORS - Accuracy

A measure of the closeness of a measurement /its average/ to the true value.

Includes a combination of random error (precision) and systematic error (bias) components.

It is recommended to use the terms "precision" and "bias", rather than "accuracy," to convey the information usually associated with accuracy.
definition according to USC Information Sciences Institute, Marina del Rey, CA

SYTEMATIC ERRORS - Accuracy 2

- errors of references, scales, ...
- measurement linearity
- external effects dependency
- in general - very difficult to estimate !!
- increasing the number of measurements, the systematic error influence cannot be decreased

RANDOM and SYTEMATIC ERRORS How to estimate them?

- It is recommended to use the terms "precision" and "bias", rather than "accuracy",
- precision may be estimated by statistical data treatment,
- bias may be determined as a result of individual contributors,
- To estimate the bias, all the individual contributors must be identified and determined.

Type of measurements versus errors comments

comparative, compensation measurements are reducing the systematic errors,
more direct measurement is reducing both the error types,
event counting ("clean measurement") is drastically reducing the systematic errors,

- the random errors can be predicted and effectively reduced
- biases may be reduced by quantum level counting

Random errors distribution - measured values

Histogram - statistical graph showing the frequency of occurrence, probability or Number of events

Random errors distribution - Gauss formula

3 KEY PRESUMPTIONS

Large number of errors ('elementary') Equal size of all these errors Random signs of errors
= > normal / Gauss distribution of errors

where $p(x) \ldots$ is a probability, that we will measure the value x $x_{0} \ldots$ is a real value
o parameter - standard deviation is a measure of precision

Random errors distribution - Gauss 2

$p(x) \approx e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}}$

- PROPERTIES
- Full Width Half Maximum ... FWHM $\sim 2.4{ }^{*} \sigma$ is a measure of precision
- symetrical x_{0}
- approaches fast zero for $\left(\operatorname{ABS}\left(x-x_{0}\right)\right)$-> σ

Random errors distribution - Gauss 3 Random errors distribution - measured values

Random errors distribution - DEMO

large number and equal size of elementary errors, random sign of errors

Consequences of normal distribution - 1

- the most probable value x_{0} is an arithmetic average

$$
x_{0}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

1. the precision of the mean \underline{s} is increasing with

$$
S \approx \frac{1}{\sqrt{n}}
$$

where
x_{0}
n
are the measured values is a mean value
is a total No. of measurements

Consequences of normal distribution - 2

Example

Repeating the measurement 100 times, the random error of the resulting mean value will be 10 times lower.

The standard deviation σ may be estimated from the Root Mean Squares of the individual deviations,

$$
R M S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-x_{0}\right)^{2}}{n}}
$$

where
are the measured values
is a mean value
$n \quad$ is a total No. of measurements

Consequences of normal distribution - 3

By definition of probability :

$$
\int_{-\infty}^{\infty} p(x)=1
$$

Assuming the $p(x)$ for the normal distribution, one can evaluate, that

$$
3 \sigma
$$

$$
\text { for a mean value }=0 \quad \int_{-3 \sigma} p(x)>0.99
$$

It means, that almost all the measured values ($>99 \%$) are within the limits $+/-3 \quad \sigma$.

Consequences :

1. the criterion $+/-3 \sigma$ may be used to separate the measurements from the raw errors/noise

Consequences of normal distribution - 4

- Let's define probability $P(k)=\int_{-k \cdot \sigma}^{k \cdot \sigma} p(x) d x$

- The graph of $P(k)$ for $k \in\langle 0,3\rangle$
- $P(k)$ means probability, that measured value will be in the range $x_{0} \pm k \sigma$
- The graph of $p(x)$ - Gauss distribution of errors
- x_{0} is mean value
- σ is precision (rms)

RANDOM ERRORS Example Car manufacturing production - precision / accuracy

Question
how precise / accurate (?) must be each component to guarantee that only <1/1000 car will be not acceptable due to parts miss-match ?

Problem high precision / accuracy $=>$ high manufacturing costs low precision / accuracy $=>$ high repairs costs

Solution probability of off-tolerance component must be ~ $1^{* 1} 10^{-6}$
= > probability of good comp. $\mathrm{p}(\mathrm{x})>=0.999999$
=> solve for integration limits k * sigma
= > precision / accuracy of manufacturing must be about 6 times better than a limit, for which the parts fit

Consequences of normal distribution \#5 Random Errors Averaging limits

The precision of the mean value is increasing with $\operatorname{SQR}(\mathrm{N})$ BUT - How long? What is the limit?
Answer - as long as the entire experiment is stable / reproducible

EXAMPLE Ocean level increase ($\sim 1 \mathrm{~mm} /$ year ??)

- Let's consider ocean waves ~ 1 m peak-peak, 10 seconds To get 1 mm precision, we have to average 1 million level readings, this would take 10 millions of seconds =\gg 100 days
This will not work, ocean tides ($6 \mathrm{hr}, 12 \mathrm{hr}$, month,....), wind, ocean currents etc... would limit the final precision
- In addition - the ACCURACY issue !

Continental drift ~ 10 mm / year Invariant coordinates?

Consequences of normal distribution \#6 Random Errors Averaging limits

Allan variation - definition

$\sigma_{y}=\frac{1}{2(M-1)} \sum_{i=1}^{M-1}\left[y_{i+1}-y_{i}\right]^{2}$

- where y_{i} is i-th measurement, M is number of measured data

- log / log scale graph
- $1 / \operatorname{SQR}(\mathrm{N})$ displayed as a line limitations clearly visible
time and frequency measurements

Consequences of normal distribution \#7 Allan variance example - time interval measurements

Consequences of normal distribution \#7a Allan variance example - time interval measurements

NPET1 selftest stability, heat transport optimalisation

Consequences of normal distribution \# 8 Precision of event counting

- Precision σ of the result of event counting may be estimated as

$$
\sigma=\operatorname{SQRT}(\mathrm{n})
$$

where n is a count No.

- Consequence - accumulating more counts, higher precision of the result is obtained
- The counts outside the range

$$
n+/-3 \sigma
$$

indicate a new effect and vice versa

Consequences of normal distribution \# 9 Precision of event counting - examples

- Referendum pools statistical sample, ~ 1800 respondents only 2 possibilities YES / NO , both ~ equal probability $\sigma=\operatorname{SQRT}(900)=30 \ldots=>\sigma=3.3 \%$
- Consequence - the confidence of a pool with 1800 respondents is ~ 3\% (one sigma). To predict as "almost sure (>99\%)" the difference must be >= 10%

Example - UK Wales "independence" referendum totally ~ 1.2 million voters results was 49.8 versus 50.2% was it predictable?

Consequences of normal distribution \# 10 Precision of event counting - examples

Mean $=225$
Histogram of event counting
$\sigma=15$ (6\%)

Mean = 11
$\sigma=3.3$ (30\%)
3 * $\sigma=10$
Range $(1,21)$

Mean = 16
$\sigma=4$ (25\%)
$3^{*} \sigma=12$
Range $(4,28)$

Consequences of normal distribution \# 11 Precision of event counting - examples

The following vector is the result of the event counting measurements with random errors.
Identify numbers outside the range of 95% correctly identificated data.

1) X_{0}, mean estimation:

$$
x_{0}=\frac{\sum x_{i}}{n} \quad x_{0}=\frac{1493}{30} \cong 49,8
$$

2) σ estimation:

$$
\text { event counting } \Rightarrow \sigma \approx \sqrt{x_{0}} \quad \sigma=7,05
$$

51	29	50	50	56
52	42	51	49	48
65	48	56	52	47
49	49	70	36	50
49	51	51	46	49
50	48	46	51	52

3)range estimation: $95 \% \approx 2 \bullet \sigma=14,1$ range is from $x_{0}-2 \bullet \sigma$ to $x_{0}+2 \bullet \sigma$ range: 35,7-63,9
4)data identification: numbers to throw away: 65, 29, 70

Precision of a combined measurement

- Presumption
- the result is a function of several independently measured quantities, each having normal distribution

$$
y=y\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- Standard deviation of the final distribution is then given by

$$
\sigma(y)=\sqrt{\sum_{j=1}^{n}\left[\left(\frac{\partial y}{\partial x_{j}}\right)_{\left\langle x_{j}\right\rangle}^{2} \cdot \sigma^{2}\left(x_{j}\right)\right]}
$$

where $\sigma\left(x_{j}\right)$ are standard deviations (RMS) of the particular quantities

Combined measurement 2 - Examples

1. Sum of difference (i.e. height of a chimney):

$$
y=x_{1} \pm x_{2} \Rightarrow \sigma(y)=\sqrt{\sigma^{2}\left(x_{1}\right)+\sigma^{2}\left(x_{2}\right)}
$$

2. Product of ratio (i.e. surface of a rectangle):

$$
y=x_{1} \cdot x_{2} \text { or } y=\frac{x_{1}}{x_{2}} \Rightarrow \sigma(y)=\langle y\rangle \cdot \sqrt{\left(\frac{\sigma\left(x_{1}\right)}{x_{1}}\right)^{2}+\left(\frac{\sigma\left(x_{2}\right)}{x_{2}}\right)^{2}}
$$

(the angle brackets 〈 > symbolize an average value)
3. Multiplication by constant C

$$
y=x \cdot C \Rightarrow \sigma(y)=|C| \cdot \sigma(x)
$$

4. Variable to the power of k

$$
y=x^{k} \Rightarrow \sigma(y)=|k| \cdot\langle y\rangle \cdot \frac{\sigma(x)}{|x|}
$$

Photon counting \# 1

Intensity
time

1 -

"strong signal"
"single photon"

Photon counting detectors

- GENERAL LIMITATION - the dark count rate increases with area
- VACUUM / PHOTOCATHODE based apertures 3 mm up to ~ 1 meter
- dark count rate may be reduced by cooling

Hamamatsu 10 inch tube

- SEMICONDUCTING detectors apertures $5 \mu \mathrm{~m}$ up to $500 \mu \mathrm{~m}$ room / TE temp. up to $5 \mathrm{~mm} \quad 77 \mathrm{~K}$
- However, cooling impairs some detector parameters

Si SPAD 100um, TE cooled

- SUPERCONDUCTING detectors apertures max. $10 \mu \mathrm{~m}$

Superconducting detector $2 \times 2 \mu \mathrm{~m}$

Single Photon Detectors

Several examples of SPAD structures made by CTU

Si ,200 um,TE3 cooled

GaAs messa

GaAsP, 350 um

Active quenching and gating circuit

60 mm

Complete detector packages

WHY Single photon detection

 Not just „ .. higher sensitivity .. »- quantum nature of light $=>\quad$ two states detected $0 / 1$
- NO analog signal processing, inherently digital
$=>$ minimizing systematic errors
- Extremely low signals ($\ll 0.001$ photon/pulse) detectable High dynamical range without degrading timing performance
- Measurement by-products
- picosecond resolution, sub-ps stability optical signal intensity \& shape precision
. ps accuracy achievable
- Space qualified devices available

Photon counting data processing \#1

1. converting the probability of registration a photoelectron to a signal strength,
2. extracting the echo signal of interest from the backgound noise, $\left(10^{20}\right)$
3. estimating the probability, that the extracted "signal" is a real, useful signal and not a result of a statistical nature of the noise.
probability of detection
p intensity

$$
p \approx I
$$

Photon counting data processing \# 2

$$
p \approx I
$$

photoelectrons registered number of all measurements, when the detection might occur total number of measurements
$\mathbf{N i}$
Na
$\mathbf{N}_{\text {w }}$

$$
\begin{gathered}
p_{i}=\frac{N_{i}}{N_{a}} \\
N_{a}=N_{t o t}-\sum_{k=1}^{i-1} N_{k} \\
I_{i} \approx \frac{N_{i}}{N_{t o t}-\sum_{k=1}^{i-1} N_{k}}
\end{gathered}
$$

Photon counting data processing \# 3

ELT space data model, high background, signal 0,1 PE per shot

Photon counting data processing \# 4

Application \# 6 Photon counting LIDAR

Photon counting LIDAR

- for metrology and ecology
- laser diode transmitter
- photon counting detector Si

Cloud height monitoring air traffic control

Air pollution propagation monitoring ecology

Photon counting LIDAR data processing \# 1

Laseb pul ses: 1024000 \$PAl) pulses: 236319(N), 2362t2(N+\$), Gate 4mks

dayl ight 3mm aperture Imsample treetatmosphere

Photon

 count No vers. range

Photon counting LIDAR data processing \# 2

daylight 3 mn aperture Imsample treetatmosphere

Photon counting LIDAR data processing \# 3

 daylight 3mm aperture Imsample treetatmosphere

Photon Counting Lidar for planetary missions Demo unit, CTU in Prague

Photon Counting Lidar for planetary missions Demo unit, CTU in Prague

Data fitting and smoothing

- APPLICATION
- Repeated measurements of slowly varying effects (optionally) investigation of their dependence on unknown parameters
- GOALS
- Data smoothing : random errors reduction / precision increase / precision estimate
Indirect measurement : determination of unknown parameters on the basis of a single variable measurements

Data fitting and smoothing \#2

- least square fit (> 90% of cases) minimum of sum of squares
- mini-max fit
minimum of maximal deviation
Chebychev polynom solution
and many other weighted average...

Data fitting and smoothing \#2a

least square fit (> 90% of cases) minimum of sum of squares of ($\mathrm{O}-\mathrm{c}$) residuals

Data fitting and smoothing \#2b

 mini-max fit : minimum of maximal deviationChebychev polynom solution

Data fitting and smoothing \# 3

TYPE of SOLUTION

1. known type of dependence F(a,b,c..., t)
where $F()$ is a known function
a,b,c... are known with a limited precision
Example motion equation, heat transport, electric circuit, ...

- 2. un-known type of dependence

Data fitting and smoothing \# 4

- STABILITY ROUGH ESTIMATE create two (interleaved) sub-sets of data compare the solutions

Data fitting and smoothing \# 5

MARGINAL EFFECTS IDENTIFICATION

If the residuals after fitting with a function F indicate significant dependence, it indicates the presence of an effect, which is not described by the function F .

Example
F ... dependence of a height of a snow man as a function of temperature and sunshine.
... It is not predicting the heights increase :-)

Data fiting and smoothing Least squares fit - Normal Equations

Least square fit definition

$$
\Sigma_{\mathrm{i}}\left[F\left(\mathrm{a}_{1}+\Delta \mathrm{a}_{1}, \mathrm{a}_{2}+\Delta \mathrm{a}_{2}, \ldots \ldots ., \mathrm{a}_{\mathrm{n}}+\Delta \mathrm{a}_{\mathrm{n}}, \mathrm{t}\right)-\mathrm{M}_{\mathrm{i}}\right]^{2}->\text { minimum }
$$

$$
(\mathrm{A})(\mathrm{B})=(\mathrm{C})
$$

(A) ... square matrix of the $n \times n$ dimension
(B) ... vector of desired elements corrections
(C) ... n dimension vector

$$
\begin{gathered}
A_{j k}=\Sigma_{1} N\left(\delta F / \delta a_{j}\right)_{i}\left(\delta F / \delta a_{k}\right)_{i} \\
C_{j}=\Sigma_{1}^{N}\left[M_{i}-F\left(a_{1}, \ldots, t\right)_{]}\right]\left(\delta F / \delta a_{j}\right)_{i} \\
\left(\delta F / \delta a_{j}\right)_{i}=\left[F\left(a_{1}, a_{2}, \ldots, a_{j}+d_{j}, \ldots, a_{n}, t\right)_{i}-F\left(a_{1}, \ldots, a_{n}, t\right)_{i} / d_{j}\right.
\end{gathered}
$$

Results are correction of parameters

Data fitting and smoothing Root Mean Square - datả scatter

- Where
- $\quad F_{i}$ is the fitting function value in the i-th point
$\square \quad x_{i}$ is the i-th data point
$\square \quad n$ is the total number of data points
- k is the number of (solved for) parameter

Data fitting and smoothing SLR - raw data

Data fitting and smoothing
SLR data - Least square fit improved orbit
$0-\mathrm{C}$ (ns) SATbLLITE 7603901 $91 / 12 / 11$, UT 21: 33

Data fitting and smoothing
SLR data - Least square fit orbit + polynom

Data fitting and smoothing Histogram of final data fit

Range residuals 911211 7603901, at 21:33 UT

Data fitting and smoothing SLR - fitted data averaging

Empiric rules for the best filtting polynom

- General

The polynom degree should be as low as it fits the data
"good"
(It fits the data with the lowest possible RMS ...)

- Strict limitation
$\mathrm{M}<10$ unless special procedures are applied
- Number of points
$\mathrm{M} \ll \mathrm{N}$ and / or $\mathrm{M}^{2}<\mathrm{N}$
M is the degree of the polynom and N is the number of points
- wide gaps in the data series:

A is the width of gasp, B is the width of all range of data
If A : B is high then $M \leq B / A$

- Serial Correlation Coefficient SCC ≤ 0.5

Data fitting and smoothing Example \# 1

Experimental data - telescope pointing error in elevation „y" [arc min]

Measured for various azimuth „x 0 - 358 degrees

1. What is a good type of fitting function?
2. Find the parameters of this fitting function

Data fitting and smoothing Example \# 1

Average Curves
Digitize Edit File Graph Help
Input Key
Lines Options
Print
Quit
Regression Startover Transform View write

Average multiple Y replicates and calculate error bars.
Generate, fit, smooth, integrate or take derivative of a curve.
Enter data or curve from an existing graph by digitizing.
Edit data by changing, adding, or deleting numbers.
Save, retrieve, merge or erase disk files containing data.
Graph data and/or curve on the plotter.
Display brief instructions on how to use GraphPAD.
Enter new data from the keyboard.
Define function keys F3-F10 to recall words or phrases.
Plot a line, arrow, box, circle, or grid.
Change optional settings to customize GraphPAD.
List the data on the printer.
Exit GraphPAD and return to DOS.
Fit linear regression line and find new points on that line. Delete the data and/or curve and then restart GraphPAD. Mathematically alter X or Y values using a selected function. Preview the data and/or curve on the computer screen. Use the plotter to write labels on the graph.

Select by pressing \uparrow or \downarrow, then press RETURN. (Or type a highlighted letter.)

Data fitting and smoothing Example \# 1

Equation Menu: (Press ESC for Main Menu.)
A: Exponential decay

$$
Y=A^{*} \exp \left(-B^{*} X\right)+C^{*} \exp \left(-D^{*} X\right)+E
$$

B: Exponential association

$$
\mathrm{Y}=\mathrm{A}^{*}\left[1-\exp \left(-\mathrm{B}^{*} \mathrm{X}\right)\right]+\mathrm{C}^{*}\left[1-\exp \left(-\mathrm{D}^{*} \mathrm{X}\right)\right]+E
$$

C: Exponential growth

$$
Y=A^{*} \exp \left(B^{*} X\right)+C^{*} \exp \left(D^{*} X\right)
$$

D: Rectangular hyperbola (binding isotherm)

$$
Y=A^{*} X /(B+X)
$$

E: Double rectangular hyperbola

$$
Y=A^{*} X /(B+X)+C^{*} X /(D+X)+E^{*} X
$$

F: Sigmoid curve (log scale)

$$
A=\text { bottom, } B=\text { top, } C=\log (E C 50), D=H i 11^{\prime} \text { slope }
$$

G: Competition curve (log scale)

$$
\mathrm{A}=\text { bottom }, \mathrm{B}=\text { top }, \mathrm{C}=\log (E C 50)
$$

H: Competition curve, 2 components (log scale)

```
                        A=bottom, B=top, C=% site 1, D&E=1og(EC50s)
```

I: Sine wave

```
            Y=A + B * sin(C*X + D)
```

J: Polynomial
(1)

$$
\mathrm{Y}=\mathrm{A}^{*} \mathrm{X} \wedge \mathrm{~B}+\mathrm{C}^{*} \mathrm{X} \wedge \mathrm{D}+\mathrm{E}
$$

K: Polynomial (2) [This polynomial equation creates a generic' curve.]

$$
Y=A+B^{*} X+C^{*} \times \wedge 2+D^{*} \times \wedge 3+E^{*} X \wedge 4
$$

L: Mixed exponential

$$
\mathrm{Y}=\mathrm{A}^{*} \exp \left(-\mathrm{B}^{*} \mathrm{X}\right)+\mathrm{C}^{*}\left[1-\exp \left(-\mathrm{D}^{*} \mathrm{X}\right)\right]+\mathrm{E}^{*} \mathrm{X}
$$

Data fitting and smoothing Example \# 1

```
Sine wave
    Y=A + B * sin(C*X + D)
-Enter estimates; the values wil1 be changed later.
```

Enter A:	$3.856051]$	3.856051
Enter B:	[-3.275097]	-3.275097
Enter C:	$1.00096]$	1.00096
Enter D:	[-0.348034]	-0.348034

Enter the range of X values over which the curve is to be plotted.:
(The x values of the data range from 1 to 358 .)
Minimum X : $[0$] 0
Maximum X: [358] 358

Do you want to view the curve generated by your estimates (Yes/No)? [No]

Press RETURN to continue,
I. Prochazka et al., 12ZMDT, Prague 2023

Data fitting and smoothing Example \# 1

Where was the mistake?

The data seemed to be periodical, but the fit output is total nonsense

We forgot to input information of the period we expect !

USE EVERY SINGLE BIT OF INFORMATION YOU HAVE

Let's try once more including this information... (period coefficient estimate is ~ 0.017 deg/rad)

Data fitting and smoothing Example \# 1

> Sine wave
> $Y=A+B * \sin (C * X+D)$

Final Results. Sum of Squares $=0.511746$ ($\mathrm{df}=9$)
Goodness-of-fit assessed using actual distances; r squared=0.994.

Parameter	Value	*Std. Error	\%Error
A	4.51084	.0745794	1.7%
B	-3.610954	.0934589	2.6%
C	.017	(Constant)	1.8%

* The std. error values are estimates. Don't use for calculating statistics.

Press RETURN to continue
I. Prochazka et al., 12ZMDT, Prague 2023

Data fitting and smoothing Example \# 1

SERIOUS CONCLUSIONs

USE EVERY SINGLE BIT OF INFORMATION YOU HAVE

The initial parameter estimate is critical for correct solution
with only one exception - which type of fitting function?

Ordinary polynom - the polynom parameters are direct solution of normal equations

Data fitting and smoothing Moving average

simple method to smooth / fit a series of equidistant data
moving average in the i-th interval = mean of the values in the interval <i-k, i+k>, where k is an positive integer
spread inside the window is $1 / \mathrm{SQR}(\mathrm{n})$ smaller than original one
various definitions of moving average value on both the ends of the interval

Data fitting and smoothing Moving average \#2

a windows moving by one point

- data from the beginning and the end are uncertain...
- spread inside the window is 1/SQR(n)
smaller than original one
the result is smoothed curve sequence of points,
- number of points is (almost) equal to original one

Data fitting and smoothing Moving average example \# 1

NPET epoch Ta stability 3 Hz average 100 readings

Moving average example \# 2

Moving average data spread (RMS) is much bigger than in normal distribution = >
New physical effect was discovered, (L.Kral et al, 2005)

Data fitting and smoothing Normal points

- normal point is an arithmetic average of the data in a window

windows are not overlapping
spread of normal points is 1 / SQR(n) lower than the original one where n is number of points in the window

Both ends are well defined

■
Number of Normal points is substantially lower than original data points

Data fitting and smoothing
Normal points example \# 1

- deviation from ideal > 100 echoes / NPT 2.5 psec
- saturation: > 2000 echos / NPT 1.0 psec

Data fitting and smoothing Splines

in the node /point of change from one polynomial to the other one / the value and the first derivative of both the polynomials must be equal

- most often used scheme - the sequence of 3rd degree polynomials
used to fit data, which can not be fitted by classical polynomials / for example : pulse shapes,.../

Data fitting and smoothing
Spline fitting - typical problem example \#1

No single polynom will fit correctly the lower trace

Data fitting and smoothing
Spline fitting - typical problem example \#1

in the node - point of change from one polynomial to the other one the value and the first derivative of both the polynomials must be equal

Data editing

normal distribution and deviations from it
relation to data fitting
probability of deviations > 3 * sigma and bigger
proper selection of the editing criteria
k * sigma ... for $\mathrm{k}=2.0$... 3.0
applicable for $S / N>\sim 0.3$
non-symetrical distribution
normal distribution + DC offset
= > convergence problem
may be solved by tight editing criteria

Too high No of raw errors - simple "3*sigma" editing does not work Space debris tracking, G.Kirchner, Graz August 2013

In a large amount of noise we have to locate desired correct value exactly (select narrow "data window" and tight editing criteria)
Standard editing procedure "3*sigma" does not make any sense, see graph..
I. Prochazka et al., 12ZMDT, Prague 2023

Data edifing Data fiting and smoothing TCPC demo 2

- Even if we choose the right range of the data, the result still doesn't have to make sense

After setting the proper value of SIGMA...

... we get the proper mean value, at least (correct data window and 2.5^{*} sigma)

Data mining GOALS

(1) Identification of useful signal within a "noise"
(2) estimation of probability of correct signal identification
< = > Eliminating the raw errors
in a case, when number of raw errors is much larger than a number of useful signal

In this chapter the term "noise" has a meaning of raw error

In a previous example we have demonstrated that simple criteria like k * sigma will not work for very noisy data sets

Data mining \# 2

- GENERAL RULE

The signal is correlated
noise is random

STRATEGY

The key problem - identification of effects, with which the signal is correlated

EXAPLES impulse effects periodic effects period other effects time known effect etc..

Data mining
 EXAMPLEs of data mining / correlation

- direct TV broadcasting
direction
frequency
polarization
modulation (timing)
Satellite Laser Ranging
direction
wavelength
epoch

Data mining Lock-in measurements

used in experiments, in which there is a low degree of correlation
additional "modulation" is applied to the experiment
the signal ix extracted from the $\mathrm{S}+\mathrm{N}$ on the basis of its correlation to the (known) external effect
"lock-in amplifier" for low voltage / current measurements

Data mining Lock-in measurements \#2

light source

Data mining
 "Correlation Estimator"

Enables to identify the known pattern in the noisy background

Used in experiments, in which we can compare the original (for example transmitted) signal with the noisy (received) signal

The problem is solved on the principle of maximizing the (auto)-correlation function

The (fast) Fourier transformation approach (effective especially in 2D solutions, image processing,..)
application in

- radio-location
- precise / impulse / timing
- image processing (robotics)
- etc.

Data mining
 "Correlation Estimator" \# 2

For continuous functions f and g, the cross-correlation is defined as:

$$
(f \star g)(\tau) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f^{*}(t) g(t+\tau) d t
$$

where f^{*} denotes the complex conjugate_of f and τ is the time lag.
Similarly, for discrete functions, the cross-correlation is defined as:

$$
(f \star g)[n] \stackrel{\text { def }}{=} \sum_{m=-\infty}^{\infty} f^{*}[m] g[m+n] .
$$

Data mining
 "Correlation Estimator" \#3

- The cross-correlation of functions $f(t)$ and $g(t)$ is equivalent to the convolution of $f^{*}(-t)$ and $g(t)$. I.e.:

$$
f \star g=f^{*}(-t) * g
$$

- If f is Hermitian, then $f \star g=f * g$.
- $(f \star g) \star(f \star g)=(f \star f) \star(g \star g)$
- Analogous to the convolution theorem, the cross-correlation satisfies:

$$
\mathcal{F}\{f \star g\}=(\mathcal{F}\{f\})^{*} \cdot \mathcal{F}\{g\}
$$

where \mathcal{F} denotes the Fourier transform, and an asterisk again indicates the complex conjugate. Coupled with fast Fourier transform algorithms, this property is often exploited for the efficient numerical computation of cross-correlations. (see circular cross-correlation)

