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high precision / accuracy   (1)

correct interpretation of results  (2)

marginal effect identification (3)

low signal extraction from the noise 
background / data mining   (4)

Course Goals 
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“open concept”
- questions / comments related to the subject welcome
- language is no limitation

based on local tradition and experience:
- photon counting,
- high precision & accuracy laser ranging,
- Lidar,
- precise timing etc.

Measurement, data processing and laboratory demo

contributions from students to the course appreciated
(see next)

Course Concept  
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3 tests within the semester, announced in advance 
( ~ 10 questions / test, language is no limitation)

minimum 50 % of correct answers in each test

one spare term for the three tests 

!!  WARNING just one single spare term / test !!

final note will be an average of the three test results
(improvement possible by active contribution ..)

Requirements  
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1. Definition of terms
(measurements, observations, errors characterization, precision, 
accuracy, bias)

2. Types of measurements and related error sources
(direct, indirect, substitution, event counting, ...)

3. Normal errors distribution 
(histogram, r.m.s., r.s.s., averaging, ...)

4. Normal errors distribution consequences
(examples, demo, test#1)

5. Data fitting and smoothing I.
(interpolation, fitting, least square algorithm, mini-max methods, 
weighting methods) 

6. Data fitting and smoothing II
(parameters estimate, fitting strategy, solution stability)

Course Structure / Schedule   
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1. Data fitting and smoothing III
(polynomial fitting, “best fitting”  polynomial, splines, demo)

2. Data editing
(normal data distribution, k * sigma, relation to data fitting, 
deviations from normal distribution, tight editing criteria, test #2)

3. Signal mining 
(noise properties, correlation, lock-in measurements) 

4. Signal mining methods
(Correlation estimator, Fourier transform application)

5. Signal mining methods – examples
(Time correlated photon counting, laser ranging, relation to data 
editing and data fitting)

6. Review,  test #3

Course Structure / Schedule II   
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Units SI

fundamental  (kg, m, s, A, mol, candela, K)

derived (m/s, …)

standards   SI , national, local,..

Measurements  1    
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type of measurement

direct   x  indirect
absolute  x  relative

substitute
compensation …

(examples)

Event counting
(examples)

Measurements  2    
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Raw errors

measurement errors

systematic

random errors

Measurement errors     
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!!! WARNING - language dependent !!!
přesnost cz
genauigkeit   ge
točnosť  ru

PRECISION
Relative, internal, consistency, data spread

ACCURACY
“absolute”, related to standards

Precision and accuracy     
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• measurement errors caused by random 
influences

• various influences randomly combined

• random behaviour  = > statistical treatment

• increasing the number of measurements, the 
random error influence can be decreased

RANDOM ERRORS - Precision
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A measure of the closeness of a measurement /its  
average/  to the true value.

Includes a combination of random error (precision) and 
systematic error (bias) components.

It is recommended to use the terms "precision" and "bias", 
rather than "accuracy," to convey the information usually 
associated with accuracy. 

definition according to USC Information Sciences Institute, Marina del Rey, CA 

SYTEMATIC ERRORS - Accuracy
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• errors of references, scales, …

• measurement  linearity

• external effects dependency

• in general – very difficult to estimate !!

• increasing the number of measurements, the 
systematic error influence cannot be decreased

SYTEMATIC ERRORS – Accuracy 2
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• It is recommended to use the terms "precision" 
and "bias", rather than "accuracy”,

• precision may be estimated by statistical data 
treatment,

• bias may be determined as a result of individual 
contributors, 

• To estimate the bias, all the individual 
contributors must be identified and determined.

RANDOM and SYTEMATIC ERRORS 
How to estimate them ?
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comparative, compensation measurements are 
reducing the systematic errors,

more direct measurement is reducing both the error 
types,

event counting (“clean measurement”) is drastically 
reducing the systematic errors,
- the random errors can be predicted and effectively 
reduced
- biases may be reduced by quantum level counting

Type of measurements versus errors
comments
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Random errors distribution – measured values

Histogram – statistical graph showing the frequency of 

occurrence, probability or Number of events
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Random errors distribution – Gauss formula

3 KEY PRESUMPTIONS
1. Large number of errors (‘elementary’)
2. Equal size of all these errors
3. Random signs of errors

= > normal / Gauss distribution of errors

where p(x) … is a probability, that we will measure the value x

x0 …. is a real value

σ  ….. parameter – standard deviation

is a measure of precision
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Random errors distribution – Gauss 2
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Random errors distribution – Gauss 3
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Random errors distribution – DEMO
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Consequences of normal distribution - 1

where xi are the measured values

x0 is a mean value

n is a total No. of measurements
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Consequences of normal distribution - 2

where xi are the measured values

x0 is a mean value

n is a total No. of measurements
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Consequences of normal distribution - 3
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Consequences of normal distribution - 4
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RANDOM ERRORS Example
Car manufacturing production – precision / accuracy 

Question how precise / accurate (?)  must be each component 
to guarantee  that only  < 1 / 1000 car
will be not acceptable due to parts miss-match ?

Problem high precision / accuracy  = > high manufacturing costs
low   precision / accuracy = > high repairs costs

Solution probability of off-tolerance component must be ~ 1 *10-6

= >    probability of good comp. p(x) >= 0.999 999
= >    solve for integration limits k * sigma

= >    precision / accuracy  of manufacturing must be about
6 times better than a limit, for which the parts fit
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Consequences of normal distribution #5
Random Errors Averaging limits

The precision of the mean value is increasing with SQR(N) 

BUT  - How long ?   What is the limit ?

Answer - as long as the entire experiment is stable / reproducible

EXAMPLE Ocean level increase ( ~ 1 mm / year ??  )

Let’s consider ocean waves ~ 1 m peak-peak, 10 seconds 

To get 1 mm precision, we have to average 1 million level readings, 

this would take 10 millions of seconds   =>  > 100 days

This will not work, ocean tides ( 6 hr, 12 hr, month,….), wind, ocean 

currents etc… would limit the final precision

In addition – the ACCURACY issue !

Continental drift ~ 10 mm / year

Invariant coordinates ?
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Consequences of normal distribution #6
Random Errors Averaging limits

log / log scale graph

1 / SQR(N) displayed as a line 

limitations clearly visible

time and frequency measurements
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Consequences of normal distribution #7
Allan variance example – time interval measurements

1/SQR(N)

External effects

Precision limit
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Consequences of normal distribution #7a
Allan variance example – time interval measurements
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Consequences of normal distribution # 8
Precision of event counting

Precision σ of the result of event counting

may be estimated as 

σ = SQRT(n)

where n is a count No. 

Consequence – accumulating more counts, higher 

precision of the result is obtained

The counts outside the range

n +/- 3 σ

indicate a new effect and vice versa
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Consequences of normal distribution # 9
Precision of event counting - examples

Referendum pools
statistical sample, ~ 1800 respondents
only 2 possibilities  YES / NO , both ~ equal probability
σ = SQRT(900)  =  30  … => σ = 3.3%

Consequence – the confidence of a pool with 1800 
respondents is ~ 3%  (one sigma).
To predict as “almost sure (>99%)”
the difference must be >= 10%

Example – UK Wales “independence” referendum
totally ~ 1.2 million voters 
results was 49.8  versus 50.2 %
was it predictable ?
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Consequences of normal distribution # 10
Precision of event counting - examples

Histogram of event counting

Mean = 11

σ = 3.3 (30%)

3 * σ = 10

Range (1,21)

Mean = 16

σ = 4 (25%)

3 * σ = 12

Range (4,28)

Mean = 225

σ = 15 (6%)
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Consequences of normal distribution # 11
Precision of event counting - examples
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Precision of a combined measurement
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Combined measurement 2 – Examples
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Photon counting # 1

Intensity

time

“strong signal”

“single photon”
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Photon counting detectors

VACUUM / PHOTOCATHODE based
apertures 3 mm up to ~ 1 meter

dark count rate may be reduced by cooling

SEMICONDUCTING  detectors
apertures  5 µm up to 500 µm room / TE temp.

up to 5 mm 77 K

However, cooling impairs some detector parameters

GENERAL LIMITATION - the dark count rate increases with area

Hamamatsu 10 inch tube

SUPERCONDUCTING detectors
apertures max. 10 µm

Si SPAD 100um, TE cooled

Superconducting detector 2 x 2 µm
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Single Photon Detectors
Several examples of SPAD  structures made by CTU

Si ,200 um,TE3 cooled GaAs  messa GaAsP, 350 um

Active quenching 

and gating circuit

Complete detector packages

60 mm
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quantum nature of light = > two states detected  0 / 1

NO analog signal processing, inherently digital
= > minimizing systematic errors 

Extremely low signals ( << 0.001 photon/pulse) detectable 
High dynamical range without degrading timing performance

Measurement by-products optical signal intensity & shape
precision 

picosecond resolution, sub-ps stability

ps accuracy achievable

Space qualified devices available

WHY Single photon detection   ?

p∝ Ip∝ II∝Nphotσ≈
1

√N

N

1


Not just „ .. higher sensitivity .. „
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Photon counting data processing #1
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Photon counting data processing # 2
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Photon counting data processing # 3

gate ON
Constant 

photon flux

Optical pulse response

L
IN

E
A

R
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Photon counting data processing # 4

L
O

G
A

R
IT

H
M

IC
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Application # 6 Photon counting LIDAR

Photon counting LIDAR

for metrology and ecology

laser diode transmitter

photon counting detector Si

Cloud height monitoring

air traffic control

Air pollution propagation monitoring

ecology
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Photon counting LIDAR data processing  # 1

Photon 

count No 

vers. range
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Photon counting LIDAR data processing # 2

Intensity 

(probability) 

versus 

range

Note higher 

fluctuations



I. Prochazka et al., 12ZMDT, Prague 2023 48

Photon counting LIDAR data processing # 3

Intensity 

(probability) 

versus 

range

3σ

signal
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Photon Counting Lidar for planetary missions
Demo unit, CTU in Prague 
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Photon Counting Lidar for planetary missions
Demo unit, CTU in Prague 
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Data fitting and smoothing

APPLICATION

Repeated measurements of slowly varying effects

(optionally) investigation of their dependence on unknown 

parameters 

GOALS

Data smoothing : random errors reduction / precision increase 

/ precision estimate 

Indirect measurement : determination of  unknown parameters 

on the  basis  of a single variable measurements
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Data fitting and smoothing #2

“Best fit”

least square fit (> 90% of cases)

minimum of sum of squares

mini-max fit 

minimum of maximal deviation

Chebychev polynom solution

and many other

weighted average...
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Data fitting and smoothing #2a
least square fit (> 90% of cases)

minimum of sum of squares of (o-c) residuals

Raw error

Only small influence on 

fitting solution
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Data fitting and smoothing #2b
mini-max fit : minimum of maximal deviation

Chebychev polynom solution

Trying to minimize 

maximum deviation
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Data fitting and smoothing # 3

TYPE of SOLUTION

1. known type of dependence 

F(a,b,c…, t)

where    F( ) is a known function 

a,b,c… are known with a limited precision

Example

motion equation, heat transport, electric circuit, …

2. un-known type of dependence
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Data fitting and smoothing # 4

SOLUTION STABILITY

Well  x   ill    defined parameters (correlated)

parameter selection

consequent increase of number of parameters

STABILITY ROUGH ESTIMATE

create two (interleaved) sub-sets of data

compare the solutions
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Data fitting and smoothing # 5

MARGINAL EFFECTS IDENTIFICATION

If the residuals after fitting with a function F indicate significant 

dependence, it indicates the presence of an effect, which is 

not described by the function F.

Example

F … dependence of a height of a snow man as a function of 

temperature and sunshine. 

… It is not predicting the heights increase  :-) 
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Data fitting and smoothing

Least squares fit – Normal Equations

• Least square fit definition

• 
i
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+ a
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n
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n
, t) – M

i
]2 -> minimum

• (A)(B) = (C) 

• (A) ... square matrix of the n x n dimension

• (B) ... vector of desired elements corrections

• (C) ... n dimension vector 

• A
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i
1
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] / d
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Results are correction of parameters 



I. Prochazka et al., 12ZMDT, Prague 2023 59

Data fitting and smoothing
Root Mean Square – data scatter

RMS= √∑i = 1

n

( x
i
− F

i
)2

n− k

Where

Fi is the fitting function value in the i-th point

xi is the i-th data point

n is the total number of data points

k is the number of (solved for) parameter
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Data fitting and smoothing
SLR – raw data

Range 6 400 … 8 220 km
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Data fitting and smoothing
SLR data – Least square fit improved orbit

+ / - 7 cm

Visible variations

Simple solution – 3 parameters only, Keplerian orbit

Range bias, time bias, Earth rotation corr.
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Data fitting and smoothing
SLR data - Least square fit orbit + polynom 

+ / - 7 cm

„FLAT „

Previous data fitted (least square fit) using

Low degree (4) polynomial fit
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Data fitting and smoothing
Histogram of final data fit 

Additional 

effects

System 

precision
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Data fitting and smoothing
SLR – fitted data averaging
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Data fitting and smoothing
Empiric rules for the best fitting polynom

General

The polynom degree should be as low as it fits the data 

“good”

(It fits the data with the lowest possible RMS …)

Strict limitation

M < 10     unless special procedures are applied

Number of points

M << N  and / or   M2 < N

M is the degree of the polynom and N is the number of points

wide gaps in the data series:

A is the width of gasp, B is the width of all range of data

If A : B is high  then     M ≤ B / A

Serial Correlation Coefficient SCC ≤ 0.5
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Data fitting and smoothing
Example # 1

•

Experimental data - telescope pointing error in elevation „y“ [arc min]

Measured for various azimuth „x“ 0 – 358 degrees

1. What is a good type of fitting function ?

2. Find the parameters of this fitting function
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Data fitting and smoothing
Example # 1

•
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Data fitting and smoothing
Example # 1

•
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Data fitting and smoothing
Example # 1

•
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Data fitting and smoothing
Example # 1

•

Where was the mistake?

The data seemed to be periodical, but the fit output is total 

nonsense 

We forgot to input information of the period we expect !

USE EVERY SINGLE BIT OF INFORMATION YOU HAVE

Let's try once more including this information...

(period coefficient estimate is ~ 0.017   deg/rad )
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Data fitting and smoothing
Example # 1

•

Where was

OK 



I. Prochazka et al., 12ZMDT, Prague 2023 72

Data fitting and smoothing
Example # 1

•

SERIOUS CONCLUSIONs

USE EVERY SINGLE BIT OF INFORMATION YOU HAVE

The initial parameter estimate is critical for correct

solution

with only one exception – which type of fitting function ? 

Ordinary polynom – the polynom parameters are direct 

solution of normal equations 



I. Prochazka et al., 12ZMDT, Prague 2023 73

Data fitting and smoothing
Moving average

simple method to smooth / fit a series of equidistant data

moving average in the i-th interval  = mean of the values

in the interval <i-k, i+k>, where k is an positive integer

spread inside the window is 1/SQR(n) smaller than 

original one

various definitions of moving average value on both

the ends of the interval
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Data fitting and smoothing
Moving average #2

windows moving by one point

data from the beginning and 

the end are uncertain...

spread inside the window is 

1/SQR(n)

smaller than original one

the result is smoothed curve

sequence of points,

number of points is (almost) 

equal to original one
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Data fitting and smoothing
Moving average example # 1
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Moving average example # 2

Moving average data spread (RMS) is much bigger than in 

normal distribution = > 

New physical effect was discovered, (L.Kral et al, 2005) 
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Data fitting and smoothing
Normal points 

normal point is an arithmetic 

average of the data in a window

windows are not overlapping

spread of normal points  is

1 / SQR(n) lower than the original 

one where n is number of points 

in the window

Both ends are well defined

Number of Normal points is 

substantially lower than original 

data points
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Data fitting and smoothing
Normal points example # 1

deviation from ideal > 100 echoes / NPT 2.5 psec

saturation : > 2000 echos / NPT 1.0 psec

1 point /

NPT
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Data fitting and smoothing
Splines

•

data fitting by the series of low degree polynomials

in the node /point of change from one polynomial to the 

other one / the value and the first derivative of both the 

polynomials must be equal

most often used scheme - the sequence of 3rd degree 

polynomials

used to fit data, which can not be fitted by classical 

polynomials / for example : pulse shapes,…/
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Data fitting and smoothing
Spline fitting - typical problem example #1

•

No single polynom will fit correctly the lower trace

Simple fit ?Simple fit ?
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Data fitting and smoothing
Spline fitting - typical problem example #1

•

in the node - point of change from one polynomial to the other one –

the value and the first derivative of both the polynomials must be equal

P1

P2 P3

P4 P5P1
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Data editing

•

normal distribution and deviations  from it

relation to data fitting

probability of deviations > 3 * sigma and bigger

proper selection of the editing criteria 

k * sigma  … for k = 2.0 …  3.0

applicable for  S / N > ~ 0.3 

non-symetrical distribution

normal distribution + DC offset

= > convergence problem

may be solved by tight editing criteria
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Too high No of raw errors – simple “3*sigma” editing does not work
Space debris tracking, G.Kirchner, Graz August 2013

o-c (us)

0.0 

- 2.0 

+ 4.0 
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Data editing

Data fitting and smoothing TCPC demo 1

•

In a large amount of noise we have to locate desired 

correct value exactly  (select narrow “data window” and 

tight editing criteria)

Standard editing procedure “3*sigma “  does not make 

any sense,  see graph..

?
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•

Even if we choose the right range of the data, 

the result still doesn't have to make sense

After setting the proper value of SIGMA...

Data editing

Data fitting and smoothing TCPC demo 2

?
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•

... we get the proper mean value, at least  

(correct data window and 2.5*sigma)

Data editing

Data fitting and smoothing TCPC demo 3
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Data mining
GOALS

•

(1) Identification of useful signal within a “noise”

(2) estimation of probability of correct signal identification

< = > Eliminating the raw errors

in a case, when number of raw errors is much larger than a 

number of useful signal 

In this chapter the term “noise” has a meaning of raw error

In a previous example we have demonstrated that simple

criteria like k * sigma will not work for very noisy data sets
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Data mining # 2

•

GENERAL RULE

The signal is correlated

noise is random

STRATEGY

The key problem – identification of effects,

with which the signal is correlated 

EXAPLES

impulse effects epoch

periodic effects period

other effects time

known effect

etc..
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Data mining

EXAMPLEs of data mining / correlation

•

direct TV broadcasting

direction

frequency

polarization 

modulation (timing)

Satellite Laser Ranging

direction

wavelength

epoch 
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Data mining

Lock-in measurements

•

used in experiments, in which there is a low degree of

correlation 

additional “modulation” is applied to the experiment 

the signal ix extracted from the S + N on the basis of

its correlation to the (known) external effect

“lock-in amplifier” for low voltage / current measurements
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Data mining

Lock-in measurements #2 

•

Weak optical signal detection
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Data mining

“Correlation Estimator”

•

Enables to identify the known pattern in the noisy  background 

Used in experiments, in which we can compare the original 

(for example transmitted) signal with the noisy (received) signal

The problem is solved on the principle of maximizing the

(auto)-correlation function

The (fast) Fourier transformation approach

(effective especially in 2D solutions, image processing,..)

application in - radio-location

- precise / impulse / timing

- image processing  (robotics)

- etc.
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Data mining

“Correlation Estimator” # 2

•

Wikipedia
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Data mining

“Correlation Estimator” # 3

•

Wikipedia


