Measurements and data processing

Ivan Prochazka

Consultations on request TN314

Czech Technical University, Prague

Course Goals

- high precision / accuracy (1)
- correct interpretation of results (2)
- marginal effect identification (3)
- Iow signal extraction from the noise background / data mining

I. Prochazka et al., 12ZMDT, Prague 2023

(4)

Course Concept

"open concept"

- questions / comments related to the subject welcome
- language is no limitation
- based on local tradition and experience:
 - photon counting,
 - high precision & accuracy laser ranging,
 - Lidar,
 - precise timing etc.
- Measurement, data processing and laboratory demo
- contributions from students to the course appreciated (see next)

Requirements

- 3 tests within the semester, announced in advance (~10 questions / test, language is no limitation)
- minimum 50 % of correct answers in each test
- one spare term for the three tests
- I! WARNING just one single spare term / test !!
- final note will be an average of the three test results (improvement possible by active contribution ..)

Course Structure / Schedule

- Definition of terms (measurements, observations, errors characterization, precision, accuracy, bias)
- 2. Types of measurements and related error sources (direct, indirect, substitution, event counting, ...)
- Normal errors distribution (histogram, r.m.s., r.s.s., averaging, ...)
- Normal errors distribution consequences (examples, demo, test#1)
- Data fitting and smoothing I. (interpolation, fitting, least square algorithm, mini-max methods, weighting methods)
- Data fitting and smoothing II (parameters estimate, fitting strategy, solution stability)

Course Structure / Schedule II

- Data fitting and smoothing III (polynomial fitting, "best fitting" polynomial, splines, demo)
- Data editing (normal data distribution, k * sigma, relation to data fitting, deviations from normal distribution, tight editing criteria, test #2)
- 3. Signal mining (noise properties, correlation, lock-in measurements)
- Signal mining methods (Correlation estimator, Fourier transform application)
- Signal mining methods examples (Time correlated photon counting, laser ranging, relation to data editing and data fitting)
- 6. Review, test #3

References

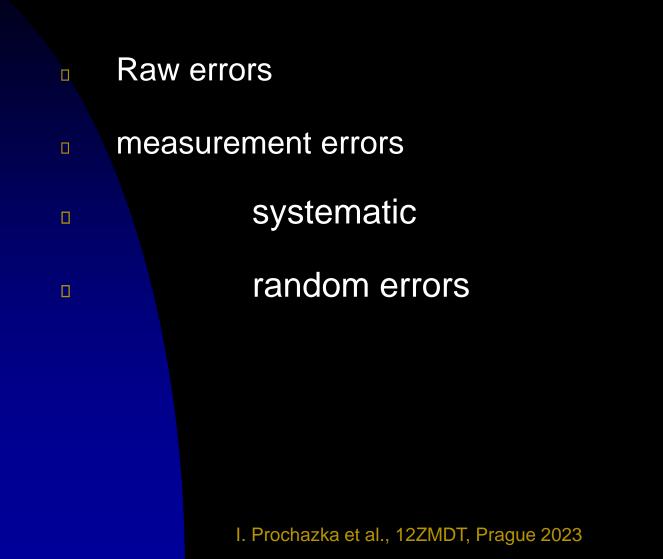
1. Horák, Z.: Praktická fyzika. SNTL, Praha 3. Water measurement manual, [online] [cit. 2005-Jan-02], < http://www.usbr.gov/pmts/hydraulics lab/pubs/wmm/chap03 02.html > - Chapter 3.2 - Measurement accuracy - Definitions of Terms Related to Accuracy 4. Wikipedia – The Free Encyklopedia, Accuracy and precision, [online] [cit. 2005-Jan-02], < http://en.wikipedia.org/wiki/Accuracy > 5. Wikipedia – The Free Encyklopedia, Interpolation, [online] [cit. 2005-Jan-02], < <u>http://en.wikipedia.org/wiki/Interpolation</u> > Wikipedia – The Free Encyklopedia, Curve fitting, [online] [cit. 2005-Jan-02], < http://en.wikipedia.org/wiki/Curve fitting > 7. Wikipedia – The Free Encyklopedia, Moving Average, [online] [cit. 2005-Jan-02], < http://en.wikipedia.org/wiki/Moving_average > 8. Moore A., Statistical Data Mining Tutorials, [online] [cit. 2005-Jan-02], < http://www.autonlab.org/tutorials/ > 9. BERKA, K.: Měření, pojmy, teorie, problémy. Academia, Praha, 1977 10. Broz, J. a kol.: Základy fyzikálního měření. SPN, Praha 11. Solomon R.C. Douglas and David M. Harrison, Dept. of Physics, Univ of Toronto - Least Squares Fitting of Data from the Physical Sciences & Engineering, [online] [cit. 2009-Feb-010], < <u>http://www.upscale.utoronto.ca/PVB/Harrison/MSW2004/MSW2004_Talk.html</u> > 12. Data Mining: What is Data Mining? [online] [cit. 2009-Feb-010], < <u>http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm</u> > 13. Photon Counting using Photomultiplier tubes, [online] [cit. 2009-Feb-010], < http://sales.hamamatsu.com/assets/applications/ETD/PhotonCounting TPHO9001E04.pdf > 14.University of Michigan – Error Analysis Tutorials, [online] [cit. 2009-Feb-10], < http://instructor.physics.lsa.umich.edu/ip-labs/tutorials/errors/vocab.html > 15.Data Fitting Manual, [online] [cit. 2009-Feb-10], < <u>http://bima.astro.umd.edu/wip/manual/node11.html</u> > 16. Wikipedia – The Free Encyklopedia, Accuracy and precision, [online] [cit. 2009-Feb-10], < http://en.wikipedia.org/wiki/Accuracy > 17. Matějka K. a kol., Vybrané analytické metody pro životní prostředí, 1998, Vydavatelství ČVUT - Chapter: Statistika a chyby měření (pp. 57-63)

Measurements 1

Units SI

- fundamental (kg, m, s, A, mol, candela, K)
- derived (m/s, …)
- standards SI, national, local,...

Measurements 2


direct x absolute

(examples)

indirect x relative substitute compensation ...

Event counting (examples)

Measurement errors

Precision and accuracy

!!! WARNING - language dependent !!!
přesnost cz
genauigkeit ge
točnosť ru

PRECISION Relative, internal, consistency, data spread

ACCURACY "absolute", related to standards

RANDOM ERRORS - Precision

- measurement errors caused by random influences
- various influences randomly combined
- random behaviour = > statistical treatment
- increasing the number of measurements, the random error influence <u>can be decreased</u>

SYTEMATIC ERRORS - Accuracy

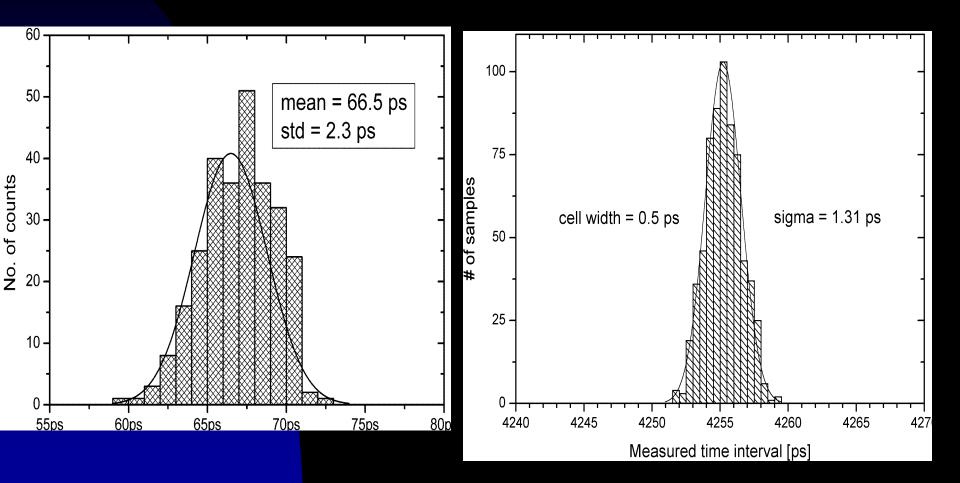
- A measure of the closeness of a measurement /its average/ to the true value.
- Includes a combination of random error (precision) and systematic error (bias) components.
- It is recommended to use the terms "precision" and "bias", rather than "accuracy," to convey the information usually associated with accuracy.

definition according to USC Information Sciences Institute, Marina del Rey, CA

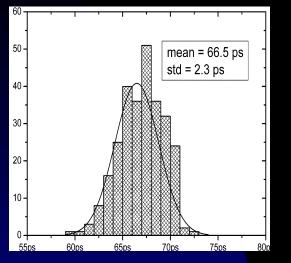
SYTEMATIC ERRORS – Accuracy 2

- errors of references, scales, ...
- measurement linearity
- external effects dependency
- in general very <u>difficult to estimate !!</u>
- increasing the number of measurements, the systematic error influence <u>cannot be decreased</u>

RANDOM and SYTEMATIC ERRORS How to estimate them ?


- It is recommended to use the terms "precision" and "bias", rather than "accuracy",
- precision may be estimated by statistical data treatment,
- bias may be determined as a result of individual contributors,
- To estimate the bias, <u>all the individual</u> <u>contributors must be identified and determined.</u>

Type of measurements versus errors


- comparative, compensation measurements are reducing the systematic errors,
- more direct measurement is reducing both the error types,
- event counting ("clean measurement") is drastically reducing the systematic errors,
 the random errors can be predicted and effectively reduced
 - biases may be reduced by quantum level counting

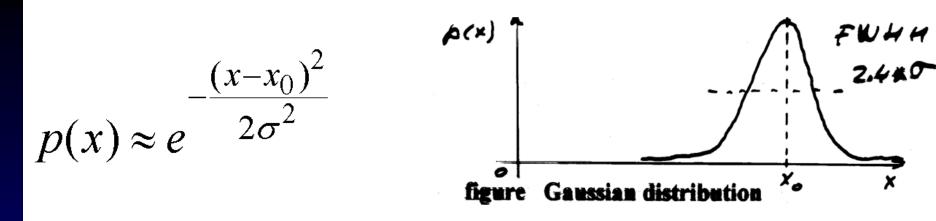
Random errors distribution – measured values

Histogram – statistical graph showing the frequency of occurrence, probability or Number of events

Random errors distribution – Gauss formula

3 KEY PRESUMPTIONS

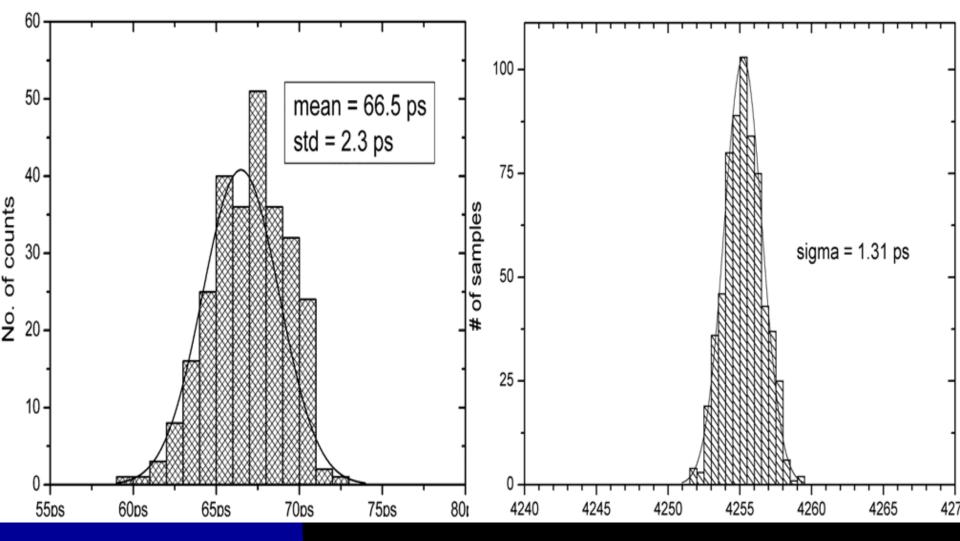
- Large number of errors ('elementary')
- Equal size of all these errors
- 3. Random signs of errors
- = > normal / Gauss distribution of errors


$$p(x) \approx e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

where p(x)... is a probability, that we will measure the value x_0 is a real value

σ parameter – standard deviation is a measure of precision

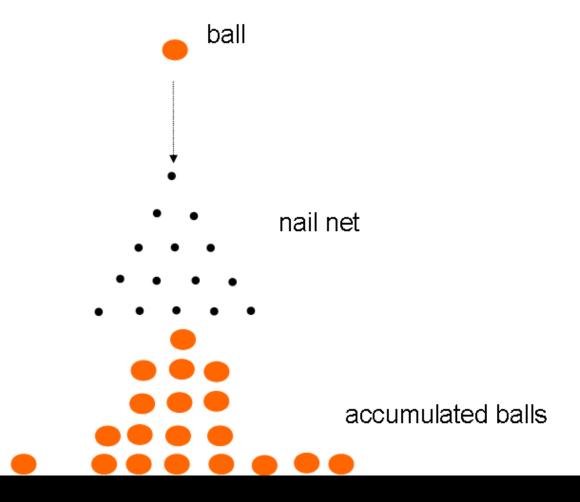
2.


Random errors distribution – Gauss 2

PROPERTIES

- Full Width Half Maximum \dots FWHM ~ 2.4 * σ is a measure of precision
- symetrical x₀
- approaches fast zero for $(ABS(x-x_0)) \rightarrow \sigma$

Random errors distribution – Gauss 3 Random errors distribution – measured values



I. Prochazka et al., 12ZMDT, Prague 2023

20

Random errors distribution – DEMO

large number and equal size of elementary errors, random sign of errors

• <u>the most probable value</u> x_0 is an arithmetic average

$$x_0 = \frac{1}{n} \sum_{i=1}^n x_i$$

1. the precision of the mean \underline{s} is increasing with

Xi

 X_0

n

$$s \approx \frac{1}{\sqrt{n}}$$

where

are the measured values is a mean value is a total No. of measurements

Example

Repeating the measurement 100 times, the random error of the resulting mean value will be 10 times lower.

The standard deviation σ may be estimated from the <u>R</u>oot <u>Mean Squares</u> of the individual deviations,

Xi

X₀

n

$$RMS = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x_0)^2}{n}}$$

where

are the measured values is a mean value is a total No. of measurements

By definition of probability :

$$\int_{0}^{\infty} p(x) = 1$$

- -

 $-\infty$

Assuming the p(x) for the normal distribution, one can evaluate, that 3σ

for a mean value = o

 $\int_{-3\sigma}^{3\sigma} p(x) > 0.99$

It means, that almost all the measured values (>99%) are within the limits $\pm -3 \sigma$.

Consequences :

1. the criterion $\pm -3 \sigma$ may be used to separate the measurements from the raw errors / noise

Let's define probability $P(k) = \int p(x) dx$ $-k \cdot \sigma$ P(k) ->0,99 0,95 The graph of *P(k)* for *k* ∈ (0,3) *P(k)* means probability, that 0.8 -0,68 0.6 measured value will be in the 0.4 range $x_0 \pm k\sigma$ 0.2 3 k 0.5 1.5 2.5 1 2 The graph of p(x) – Gauss distribution of errors x_0 is mean value σ is precision (rms)

x₀-30

I. Prochazka et al., 12ZMDT, Prague 2023

x₀-20

x_D-O

x₀+3σ

X₀+O

XD

x₀+20

RANDOM ERRORS Example Car manufacturing production – precision / accuracy

Question how precise / accurate (?) must be each component to guarantee that only < 1 / 1000 car will be not acceptable due to parts miss-match ?

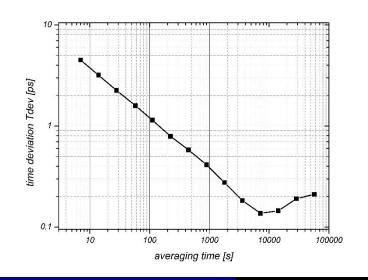
Problem
 high precision / accuracy = > high manufacturing costs
 low precision / accuracy = > high repairs costs

Solution probability of off-tolerance component must be ~ 1 *10⁻⁶

- = > probability of good comp. p(x) >= 0.9999999
- = > solve for integration limits k * sigma
- precision / accuracy of manufacturing must be about
 6 times better than a limit, for which the parts fit

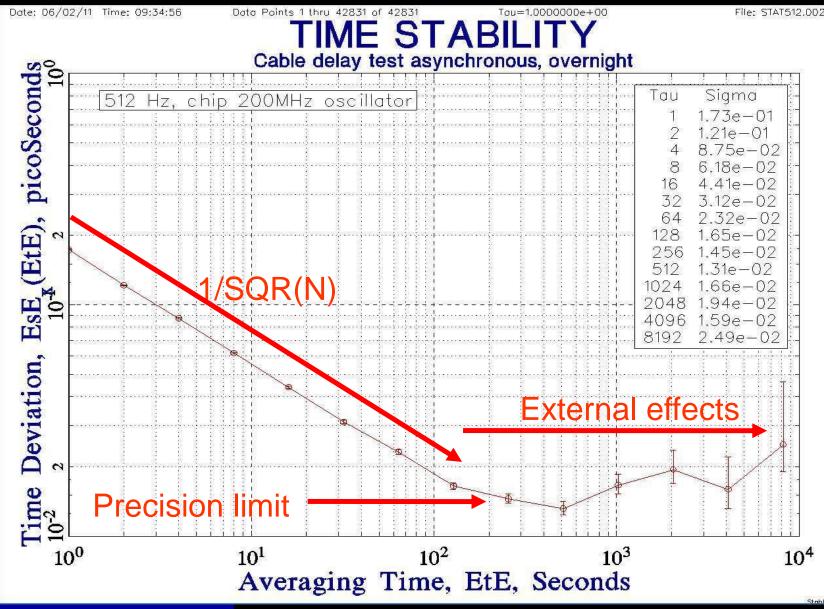
Consequences of normal distribution #5 Random Errors Averaging limits

- The precision of the mean value is increasing with SQR(N)
- BUT How long ? What is the limit ?
- Answer as long as the entire experiment is stable / reproducible

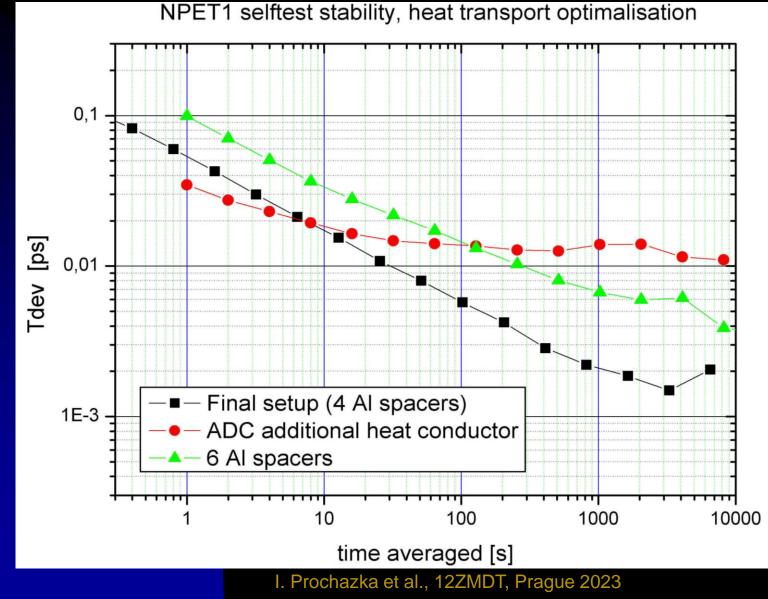

EXAMPLE Ocean level increase (~1 mm / year ??)

- Let's consider ocean waves ~ 1 m peak-peak, 10 seconds
- To get 1 mm precision, we have to average 1 million level readings, this would take 10 millions of seconds => > 100 days
- This will not work, ocean tides (6 hr, 12 hr, month,....), wind, ocean currents etc...
- In addition the ACCURACY issue ! Continental drift ~ 10 mm / year Invariant coordinates ?

Consequences of normal distribution #6 Random Errors Averaging limits Allan variation - definition


$$\sigma_{y} = \frac{1}{2(M-1)} \sum_{i=1}^{M-1} [y_{i+1} - y_{i}]^{2}$$

 where y_i is i-th measurement, M is number of measured data


- log / log scale graph
 - 1 / SQR(N) displayed as a line limitations clearly visible
- time and frequency measurements

Consequences of normal distribution #7 Allan variance example – time interval measurements

29

Consequences of normal distribution #7a Allan variance example – time interval measurements

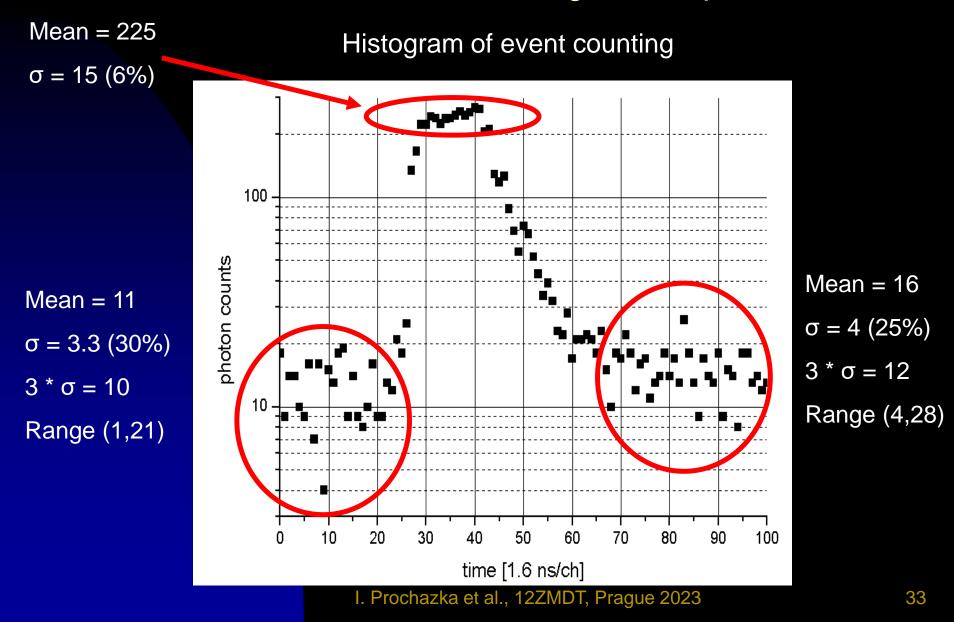
Consequences of normal distribution # 8 Precision of event counting

Precision σ of the result of event counting may be estimated as

 $\sigma = SQRT(n)$

where n is a count No.

- Consequence accumulating more counts, higher precision of the result is obtained
- The counts outside the range


n +/- 3 σ

indicate a new effect and vice versa

Consequences of normal distribution #9 Precision of event counting - examples

- Referendum pools statistical sample, ~ 1800 respondents only 2 possibilities YES / NO , both ~ equal probability $\sigma = SQRT(900) = 30 \dots => \sigma = 3.3\%$
- Consequence the confidence of a pool with 1800 respondents is ~ 3% (one sigma). To predict as "almost sure (>99%)" the difference must be >= 10%
- Example UK Wales "independence" referendum totally ~ 1.2 million voters results was 49.8 versus 50.2 % was it predictable ?

Consequences of normal distribution # 10 Precision of event counting - examples

Consequences of normal distribution # 11 Precision of event counting - examples

The following vector is the result of the event counting measurements with random errors.

Identify numbers outside the range of 95% correctly identificated data.

1)X₀, mean estimation: $x_{0} = \frac{\sum x_{i}}{n} \qquad x_{0} = \frac{1493}{30} \cong 49,8$ 2) σ estimation: event counting $\Rightarrow \quad \sigma \approx \sqrt{x_{0}} \quad \sigma = 7,05$

51	29	50	50	56
52	42	51	49	48
65	48	56	52	47
49	49	70	36	50
49	51	51	46	49
50	48	46	51	52

3)range estimation: $95\% \approx 2 \bullet \sigma = 14,1$ range is from $x_0-2 \bullet \sigma$ to $x_0+2 \bullet \sigma$ range: 35,7 - 63,9

4)data identification: numbers to throw away: 65, 29, 70

Precision of a combined measurement

- Presumption
 - the result is a function of several <u>independently</u> measured quantities, each having normal distribution

 $y = y(x_1, x_2, ..., x_n)$

• Standard deviation of the final distribution is then given by

$$\sigma(y) = \sqrt{\sum_{j=1}^{n} \left[\left(\frac{\partial y}{\partial x_j} \right)_{\langle x_j \rangle}^2 \cdot \sigma^2(x_j) \right]}$$

where $\sigma(x_j)$ are standard deviations (RMS) of the particular quantities

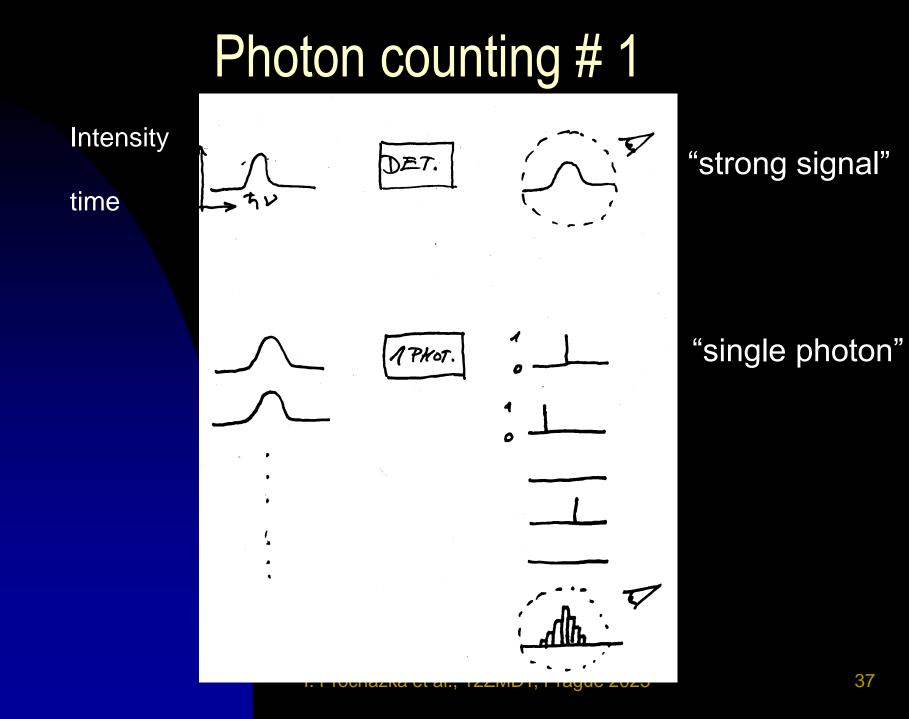
Combined measurement 2 – Examples

1. Sum of difference (i.e. height of a chimney):

$$y = x_1 \pm x_2 \Longrightarrow \sigma(y) = \sqrt{\sigma^2(x_1) + \sigma^2(x_2)}$$

2. Product of ratio (i.e. surface of a rectangle):

$$y = x_1 \cdot x_2 \text{ or } y = \frac{x_1}{x_2} \implies \sigma(y) = \langle y \rangle \cdot \sqrt{\left(\frac{\sigma(x_1)}{x_1}\right)^2 + \left(\frac{\sigma(x_2)}{x_2}\right)^2}$$


(the angle brackets () symbolize an average value)

3. Multiplication by constant C

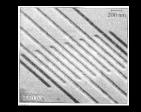
 $y = x \cdot C \implies \sigma(y) = |C| \cdot \sigma(x)$

4. Variable to the power of k

$$y = x^k \implies \sigma(y) = |k| \cdot \langle y \rangle \cdot \frac{\sigma(x)}{|x|}$$

Photon counting detectors

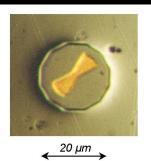
- GENERAL LIMITATION the dark count rate increases with area
- VACUUM / PHOTOCATHODE based apertures 3 mm up to ~ 1 meter
- dark count rate may be reduced by cooling

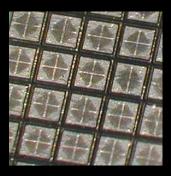

Hamamatsu 10 inch tube

- SEMICONDUCTING detectors apertures 5 µm up to 500 µm room / TE temp. up to 5 mm 77 K
- However, cooling impairs some detector parameters

Si SPAD 100um, TE cooled

 SUPERCONDUC TING detectors apertures max.
 10 µm


Superconducting detector 2 x 2 μ m


Single Photon Detectors

Several examples of SPAD structures made by CTU

Si ,200 um,TE3 cooled

GaAs messa

GaAsP, 350 um

Active quenching and gating circuit

<u>60 mm</u>

Complete detector packages

WHY Single photon detection ?

Not just "... higher sensitivity ... "

- quantum nature of light = > two states detected 0 / 1
- NO analog signal processing, inherently digital
 = > minimizing systematic errors
- Extremely low signals (<< 0.001 photon/pulse) detectable High dynamical range without degrading timing performance
- Measurement by-products

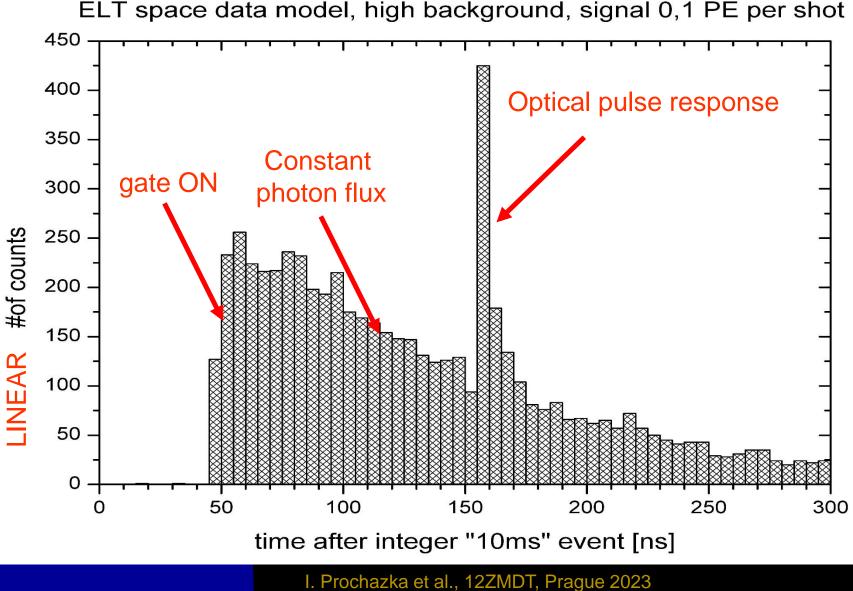
optical signal intensity & shape precision

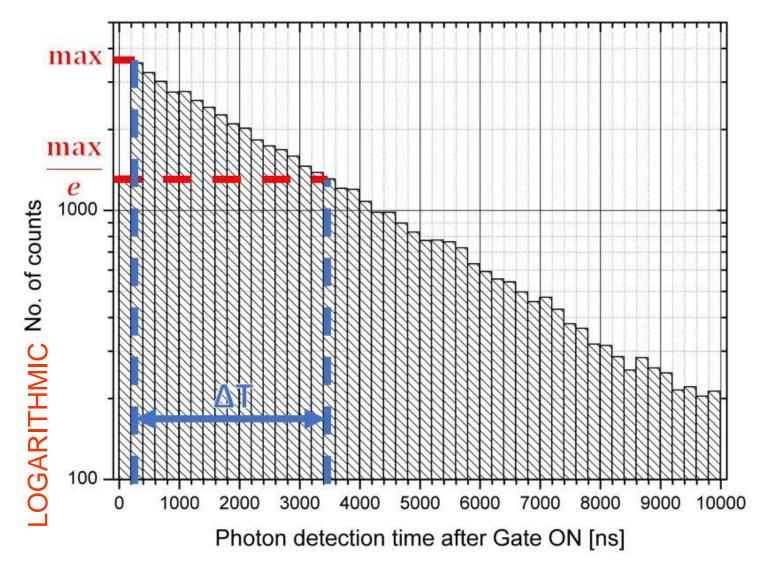
- picosecond resolution, sub-ps stability
- ps accuracy achievable
- Space qualified devices available

- 1. converting the probability of registration a photoelectron to a signal strength,
- 2. extracting the echo signal of interest from the backgound noise, (10^{20})
- 3. estimating the probability, that the extracted "signal" is a real, useful signal and not a result of a statistical nature of the noise.

probability of detection p intensity

$$p \approx I$$


 $p \approx I$

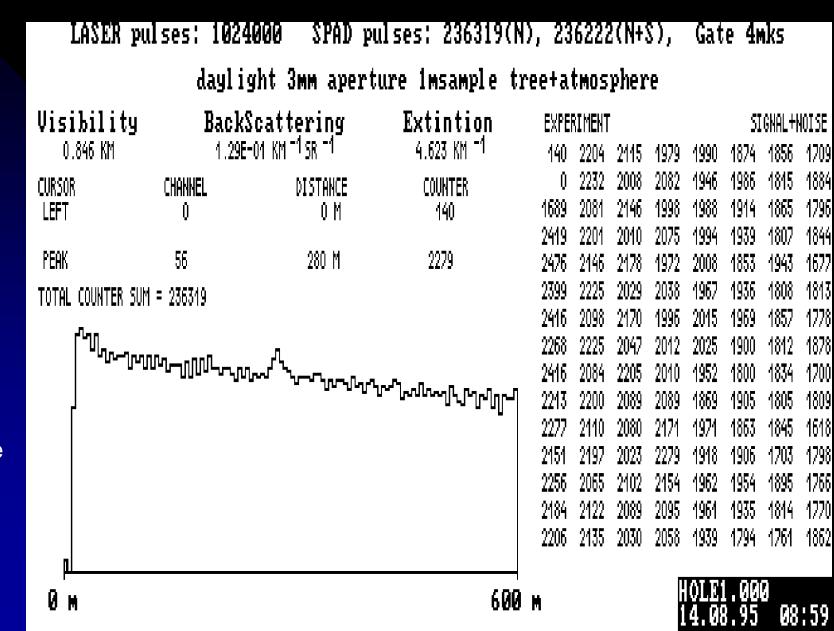

Ni

Na

photoelectrons registered number of all measurements, when the detection might occur total number of measurements

 $p_{i} = \frac{N_{i}}{N_{a}}$ $N_{a} = N_{tot} - \sum_{k=1}^{i-1} N_{k}$ $I_{i} \approx \frac{N_{i}}{N_{tot} - \sum_{k=1}^{i-1} N_{k}}$

Application # 6 Photon counting LIDAR



- Photon counting LIDAR
- for metrology and ecology
- laser diode transmitter
- photon counting detector Si

Cloud height monitoring air traffic control

Air pollution propagation monitoring ecology

Photon count No vers. range

LASER pulses: 1024000 SPAD pulses: 236319(N), 236222(N+S), Gate 4mks

daylight 3mm aperture 1msample tree+atmosphere

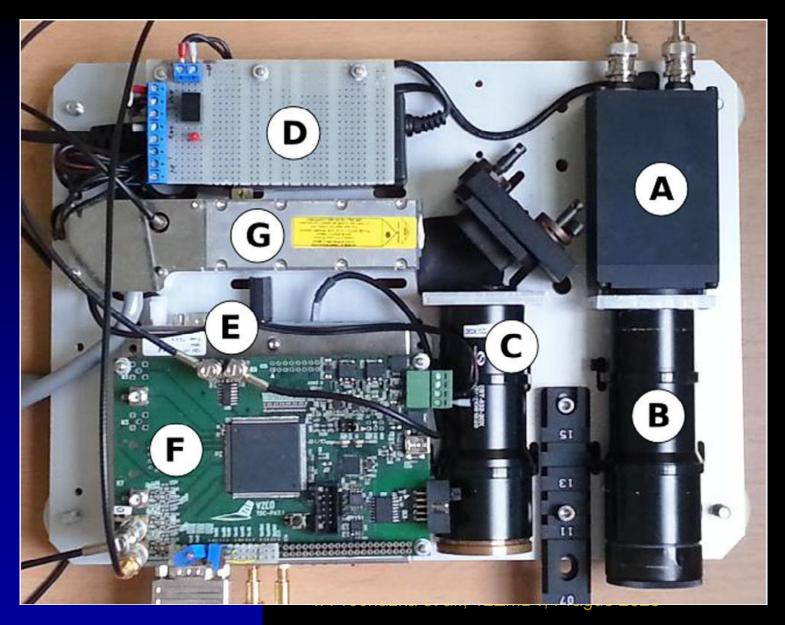
Visibility 0.846 KM		Scattering -01 KM =1 SR =1	Extintion 4.623 KM ⁻¹	REST 140	ORE 2272	2253	2179	2267	51 2207	GNAL+I 2260	40I SE 2454
CURSOR	Channel	DISTANCE	COUNTER	0	2306	2144	2298	2222	2344	2245	2376
LEFT	0	0 M	140	1691	2155	2296	2210	2274	2264	2284	2270
PEAK	56	280 M	2572	2426 2489	2284 2232	2455 2344	2300 2494	2286 2308	2299 2202	2245 2387	2336 2129
total counter sum		2 77 ()	Note higher	2418	2319	2185	2151	2266	2305	2007	2307
			· · · · · · · · · · · · · · · · · · ·	2441	2191	2342	2227	2326	2350	2291	2267
²⁴⁴¹ 2191 2342 2227 1000-1000-1000-1000-1000-100-100-100-10							2343	2273	2241	2400	
		- • • •		2452 2254	2186 2313	2391 2270	2252 2346	2264 2472	2458 2289	2273 2242	2478 2322
L L				2201	2010	2265	2040 2444	2172	2209	2292	2082
				2198	2320	2208	2572	2239	2300	2124	2318
				2310	2186	2299	2437	2295	2363	2369	2282
				2241	2251	2290	2376	2299	2346	2273	2292
r				2269	2270	2234	2339	2278	2180	2211	2417
, 0 м			600	M				OLE: 4.08			: 59
I. Prochazka et al., 12ZMDT, Prague 2023								47			

Intensity (probability) versus range

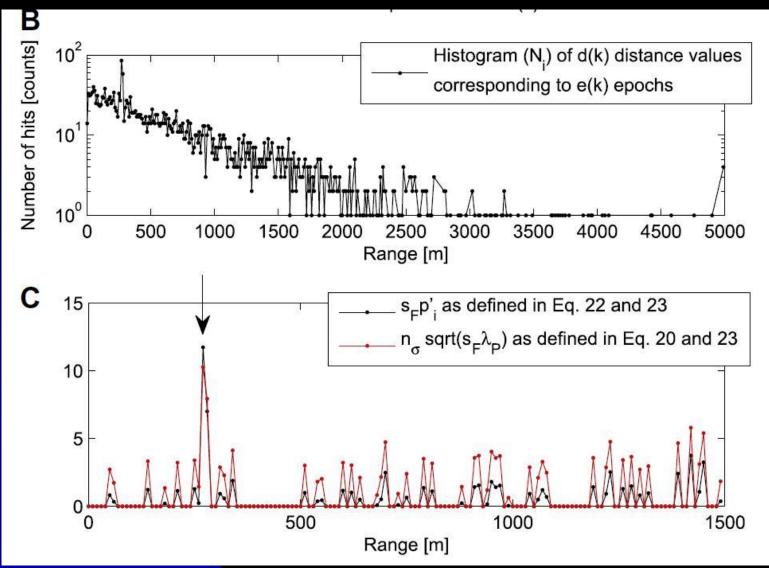
LASER pulses: 1024000 SPAD pulses: 236319(N), 236222(N+S), Gate 4mks

daylight 3mm aperture 1msample tree+atmosphere

Visibility 0.846 KM	BackScattering 1.29E-01 KM ⁻¹ SR ⁻¹		Extintion 4.623 KM ⁻¹	RESTORE			0	GNAL			
0.040 NN	1. 29 E	י מכי וזמוט	9.020 NTI '	0	100	27	0	59	U 	0	U L
CURSOR	Channel	DISTANCE	COUNTER	0	4	0	23	0	30	0	15
LEFT	0	0 M	0	104	0	0	0	44	19	0	36
				120	8	0	0	0	0	0	26
peak	56	280 M	300	220	38	28	0	0	0	121	0
TOTAL COUNTER SUM	= 3922			242	104	0	2	0	0	32	0
		_		146	0	6	5	34	128	6	1
si	gnal			94	108	0	54	126	0	0	32
	y la			124	0	82	Û	79	Û	0	0
		▲]	3σ	0	50	14	139	0	0	- 7	0
				43	34	0	205	0	44	15	0
	.,,.,,	······		0	62	13	300	0	0	0	81
ہے االن			Π	0	0	0	96	0	52	51	26
	П		П	3	0	0	0	77	5	44	0
. _]	մ	n [,]]		16	0	0	50	64	0	0	4
<u>, / / </u>	<u> </u>		<u> </u>								
0 m			600					0LE1	.000		
0 11			000	П				4.08	.95	Ø 8	: 59


Intensity

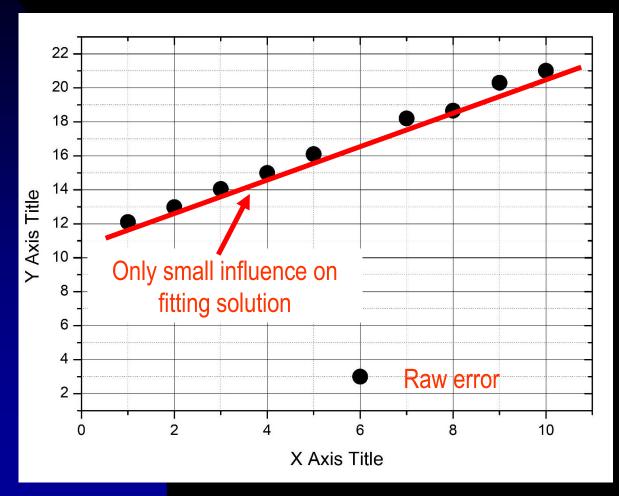
versus


range

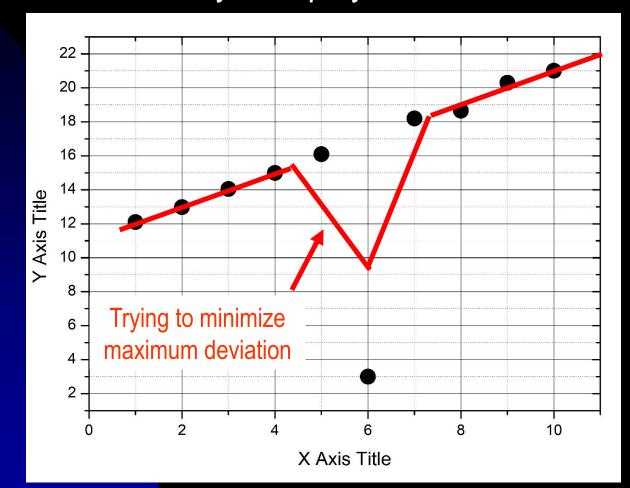
(probability)

Photon Counting Lidar for planetary missions Demo unit, CTU in Prague

Photon Counting Lidar for planetary missions Demo unit, CTU in Prague


APPLICATION

- Repeated measurements of slowly varying effects
- (optionally) investigation of their dependence on unknown parameters
- GOAL<mark>S</mark>
- Data smoothing : random errors reduction / precision increase / precision estimate
- Indirect measurement : determination of unknown parameters on the basis of a single variable measurements


"Best fit"

- least square fit (> 90% of cases) minimum of sum of squares
- mini-max fit minimum of maximal deviation Chebychev polynom solution
- and many other weighted average...

least square fit (> 90% of cases) minimum of sum of squares of (o-c) residuals

Data fitting and smoothing #2b mini-max fit : minimum of maximal deviation Chebychev polynom solution

TYPE of SOLUTION

- 1. known type of dependence F(a,b,c..., t) where F() is a known function a,b,c... are known with a limited precision
- Example motion equation, heat transport, electric circuit, ...
- 2. un-known type of dependence

SOLUTION STABILITY

- Well x ill defined parameters (correlated)
- parameter selection
- consequent increase of number of parameters
- STABILITY ROUGH ESTIMATE
- create two (interleaved) sub-sets of data compare the solutions

MARGINAL EFFECTS IDENTIFICATION

- If the residuals after fitting with a function F indicate significant dependence, it indicates the presence of an effect, which is not described by the function F.
- Example

F ... dependence of a height of a snow man as a function of temperature and sunshine.

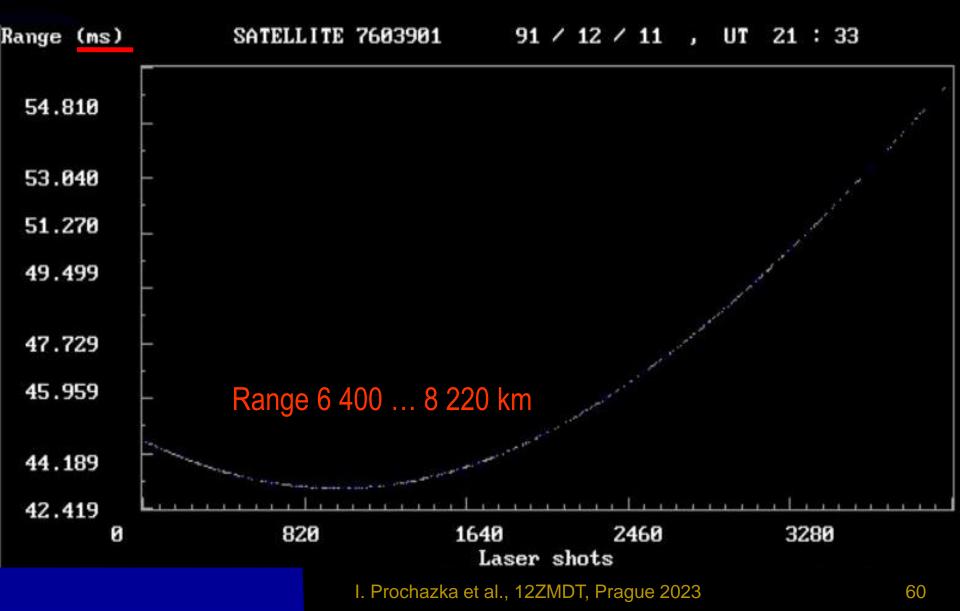
... It is not predicting the heights increase :-)

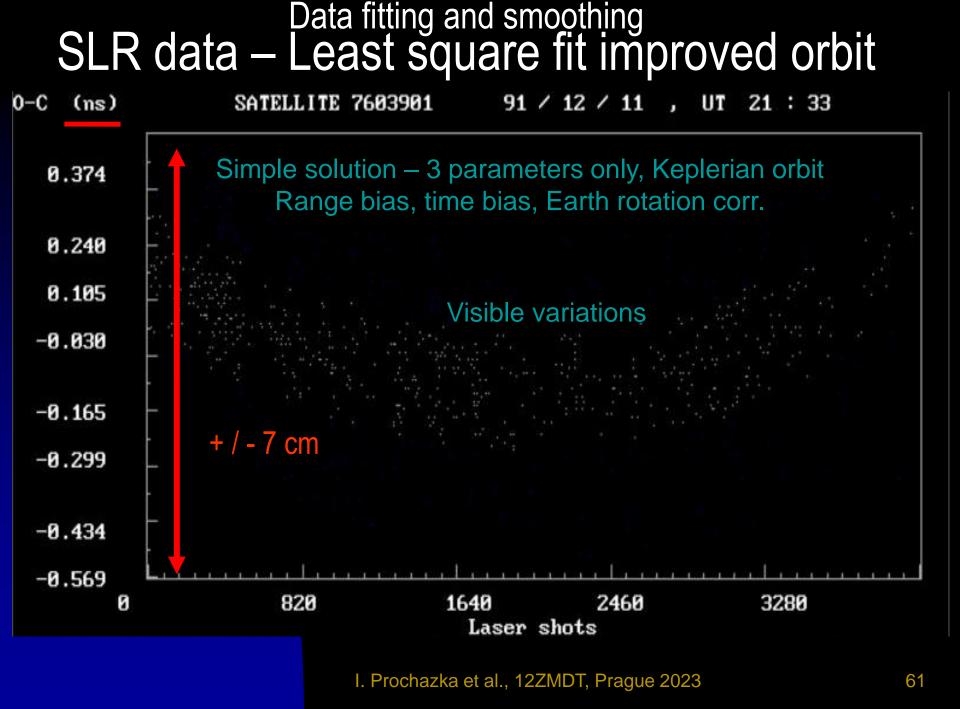
Data fitting and smoothing Least squares fit – Normal Equations

Least square fit definition

 $\Sigma_i [F(a_1 + \Delta a_1, a_2 + \Delta a_2, \dots, a_n + \Delta a_n, t) - M_i]^2 \rightarrow minimum^2$

 $(\mathsf{A})(\mathsf{B}) = (\mathsf{C})$

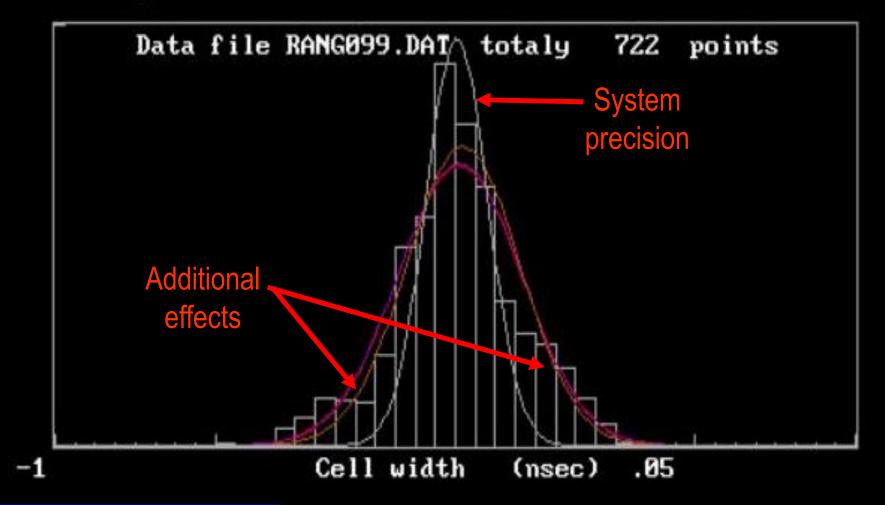

(A) ... square matrix of the n x n dimension (B) ... vector of desired elements corrections (C) ... n dimension vector $A_{jk} = {}_{i}\Sigma_{1}^{N} (\delta F/\delta a_{j})_{i} (\delta F/\delta a_{k})_{i}$ $C_{j} = {}_{i}\Sigma_{1}^{N} [M_{i} - F(a_{1}, ..., t)_{i}] (\delta F/\delta a_{j})_{i}$ ($\delta F/\delta a_{j}$)_i = [F($a_{1}, a_{2}, ..., a_{j} + d_{j}, ..., a_{n}, t$)_i - F($a_{1}, ..., a_{n}, t$)_i] / d_{j}


Results are correction of parameters

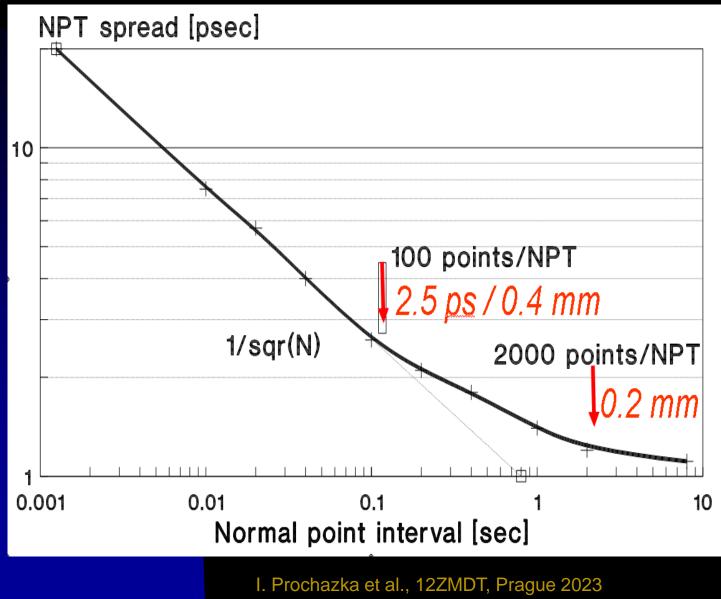
Data fitting and smoothing Root Mean Square – data scatter

- Where
- F_i is the fitting function value in the i-th point
 - x_i is the i-th data point
 - n is the total number of data points
 - k is the number of (solved for) parameter

Data fitting and smoothing SLR – raw data


Data fitting and smoothing SLR data - Least square fit orbit + polynom SATELLITE 7603901 91 / 12 / 11 UT 21 : 33 0-C(ns) 0.324 Previous data fitted (least square fit) using Low degree (4) polynomial fit 0.190 0.055 -0.080 -0.215+ / - 7 cm -0.350-0.484-0.619Ø 820 1640 2460 3280

I. Prochazka et al., 12ZMDT, Prague 2023


Laser shots

Data fitting and smoothing Histogram of final data fit

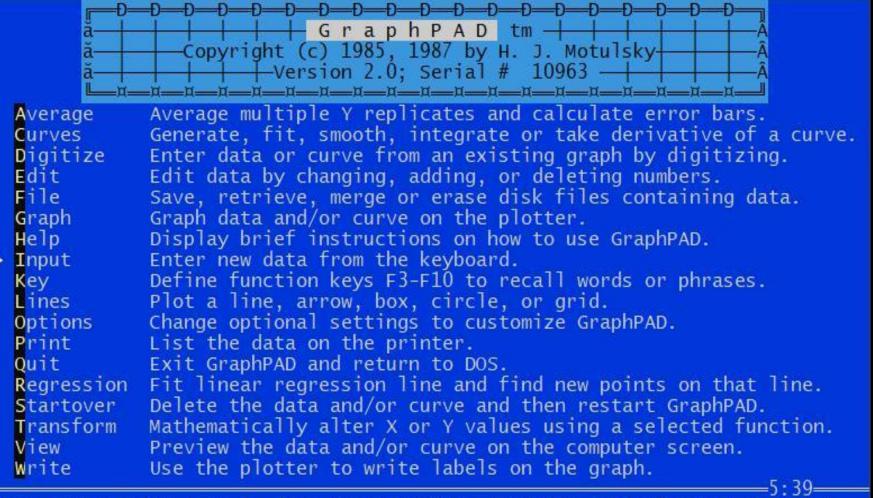
Range residuals 91 12 11 7603901. at 21:33 UT

Data fitting and smoothing SLR – fitted data averaging

Data fitting and smoothing Empiric rules for the best fitting polynom

General

The polynom degree should be as low as it fits the data "good"


(It fits the data with the lowest possible RMS ...)

- Strict limitation
 M < 10 unless special procedures are applied
- Number of points
 M << N and / or M² < N
 M is the degree of the polynom and N is the number of points
- wide gaps in the data series:
 A is the width of gasp, B is the width of all range of data
 If A : B is high then M ≤ B / A
- Serial Correlation Coefficient SCC ≤ 0.5
 I. Prochazka et al., 12ZMDT, Prague 2023

Experimental data - telescope pointing error in elevation "y" [arc min]

- Measured for various azimuth "x" 0 358 degrees
- 1. What is a good type of fitting function?
- 2. Find the parameters of this fitting function

Select by pressing ↑ or ↓, then press RETURN. (Or type a highlighted letter.)

```
Equation Menu: (Press ESC for Main Menu.)
A: Exponential decay
      Y = A^* \exp(-B^*X) + C^* \exp(-D^*X) + E
B: Exponential association
      Y = A^{*}[1-exp(-B^{*}X)] + C^{*}[1-exp(-D^{*}X)] + E
C: Exponential growth
      Y = A^* \exp(B^*X) + C^* \exp(D^*X)
D: Rectangular hyperbola (binding isotherm)
      Y = A^* X / (B + X)
E: Double rectangular hyperbola
      Y = A^*X/(B + X) + C^*X/(D + X) + E^*X
F: Sigmoid curve (log scale)
      A=bottom, B=top, C=log(EC50), D= Hill' Slope
G: Competition curve (log scale)
A=bottom, B=top, C=log(EC50)
H: Competition curve, 2 components (log scale)
      A=bottom, B=top, C=% site 1, D&E=log(EC50s)
I: Sine wave
      Y = A + B * sin(C*X + D)
J: Polynomial (1)
      Y = A^*XAB + C^*XAD + E
K: Polynomial (2) [This polynomial equation creates a `generic' curve.]
      Y = A + B^*X + C^*X^2 + D^*X^3 + E^*X^4
I: Mixed exponential
      Y=A^{*}exp(-B^{*}X) + C^{*}[1 - exp(-D^{*}X)] + E^{*}X
```

```
Sine wave

Y= A + B * sin(C*X + D)

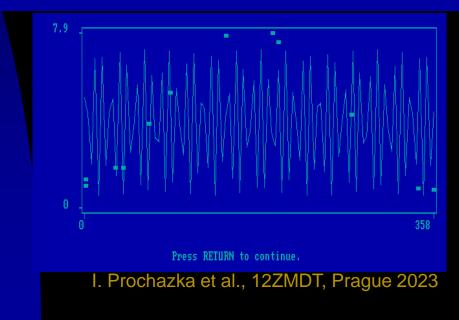
-Enter estimates; the values will be changed later.

Enter A: [ 3.856051] 3.856051

Enter B: [-3.275097] -3.275097

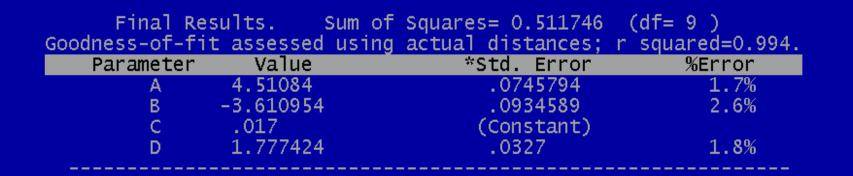
Enter C: [ 1.00096] 1.00096

Enter D: [-0.348034] -0.348034

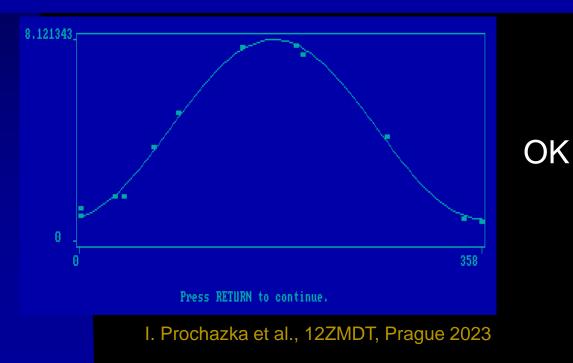

Enter the range of X values over which the curve is to be plotted.:

(The X values of the data range from 1 to 358 .)

Minimum X: [ 0 ] 0


Maximum X: [ 358 ] 358
```

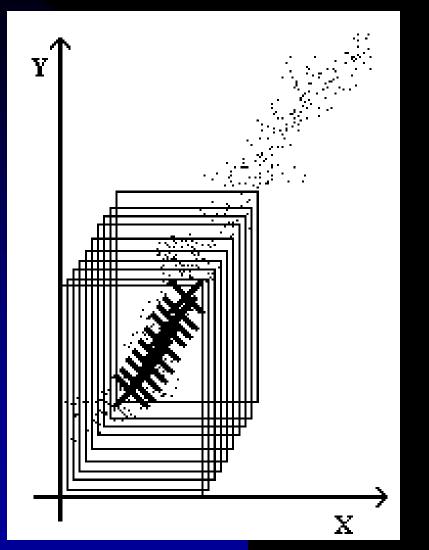
Do you want to view the curve generated by your estimates (Yes/No)? [No] 📒



- Where was the mistake?
- The data seemed to be periodical, but the fit output is total nonsense
- We forgot to input information of the period we expect !
- USE EVERY SINGLE BIT OF INFORMATION YOU HAVE
- Let's try once more including this information...
 (period coefficient estimate is ~ 0.017 deg/rad)

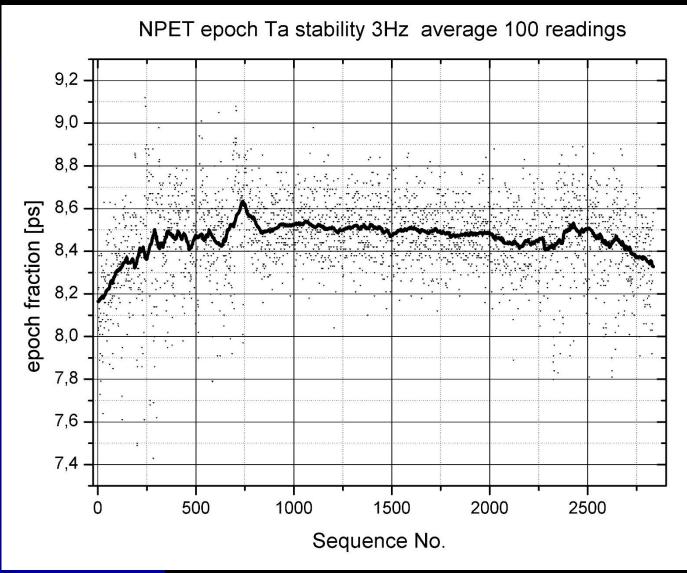
Sine wave Y= A + B * sin(C*X + D)

* The std. error values are estimates. Don't use for calculating statistics.



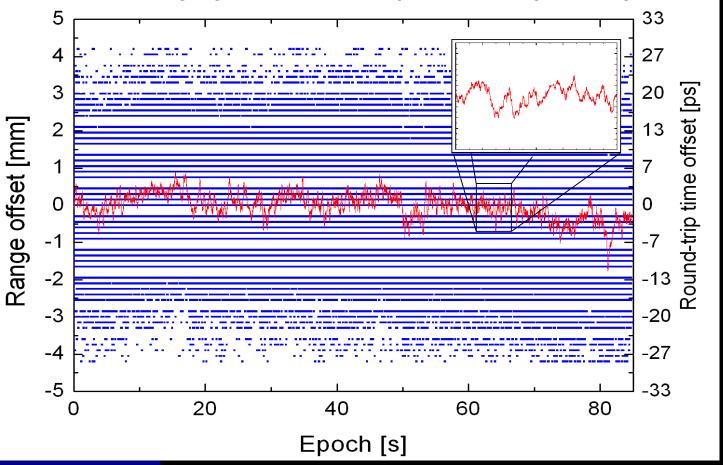
- SERIOUS CONCLUSIONs
- USE EVERY SINGLE BIT OF INFORMATION YOU HAVE
- The initial parameter estimate is critical for correct solution
- with only one exception which type of fitting function ?
- Ordinary polynom the polynom parameters are direct solution of normal equations

Data fitting and smoothing Moving average


- simple method to smooth / fit a series of equidistant data
- moving average in the i-th interval = mean of the values in the interval <i-k, i+k>, where k is an positive integer
- spread inside the window is 1/SQR(n) smaller than original one
- various definitions of moving average value on both the ends of the interval

Data fitting and smoothing Moving average #2

- windows moving by one point
- data from the beginning and the end are uncertain...
- <u>spread</u> inside the window is 1/SQR(n) smaller than original one
- the result is smoothed curve sequence of points,
- <u>number</u> of points is (almost) equal to original one


Data fitting and smoothing Moving average example # 1

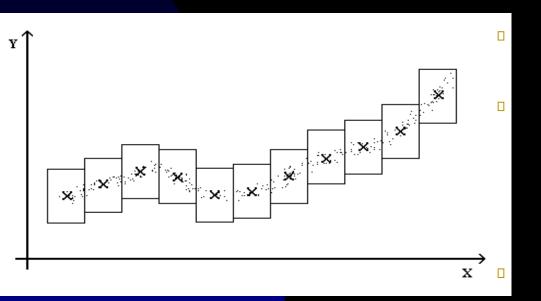
I. Prochazka et al., 12ZMDT, Prague 2023

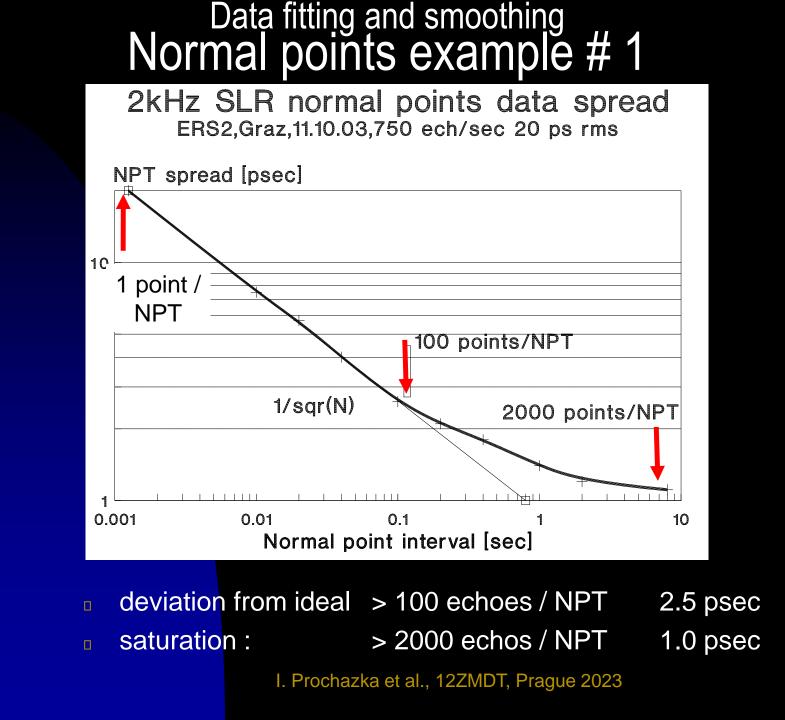
Moving average example # 2

Raw Ranging Data and 200-point Moving Average

- Moving average data spread (RMS) is much bigger than in normal distribution = >
- New physical effect was discovered, (L.Kral et al, 2005)

Data fitting and smoothing Normal points

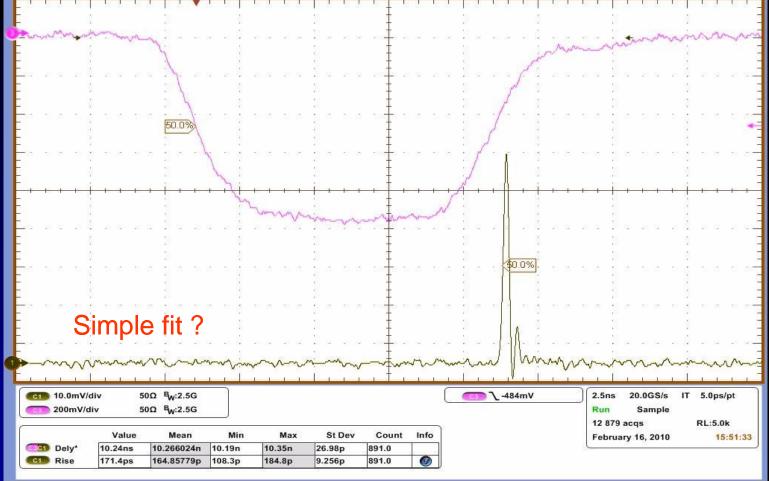

normal point is an arithmetic average of the data in a window


windows are not overlapping

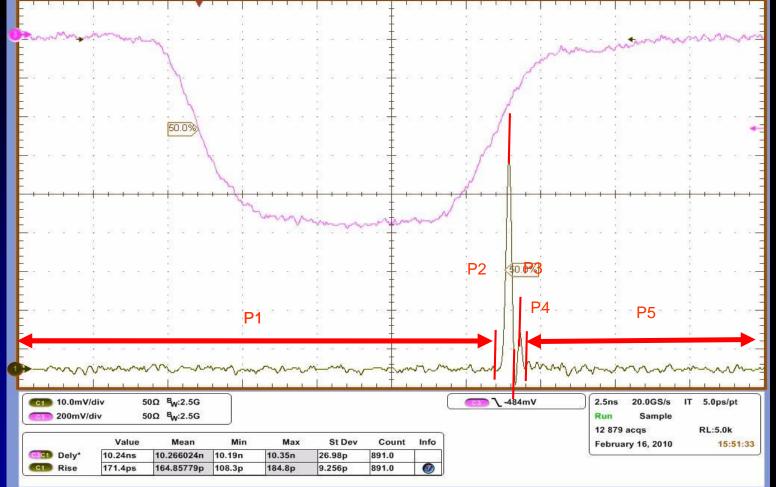
<u>spread</u> of normal points is 1 / SQR(n) lower than the original one where n is number of points in the window

Both ends are well defined

<u>Number</u> of Normal points is substantially lower than original data points



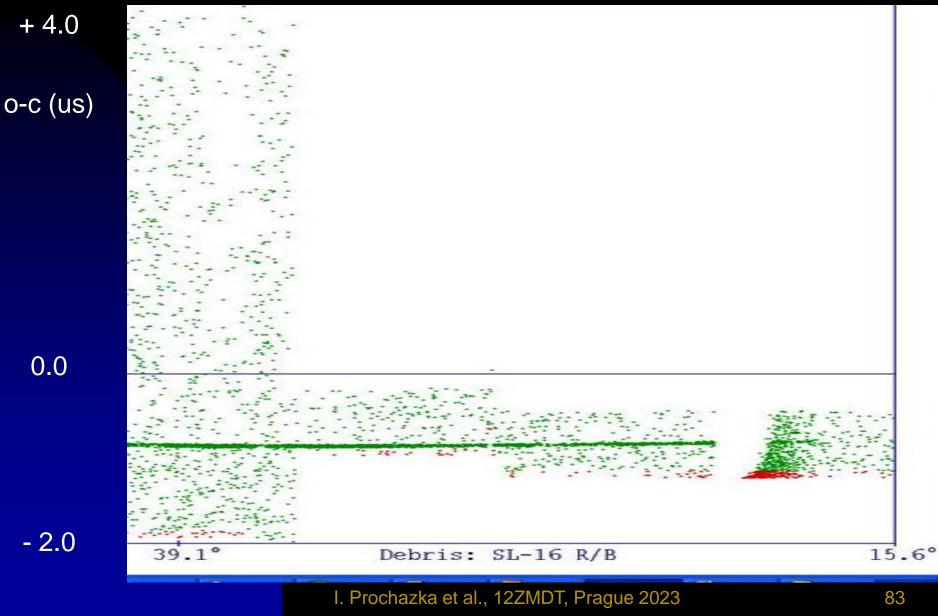
Data fitting and smoothing Splines

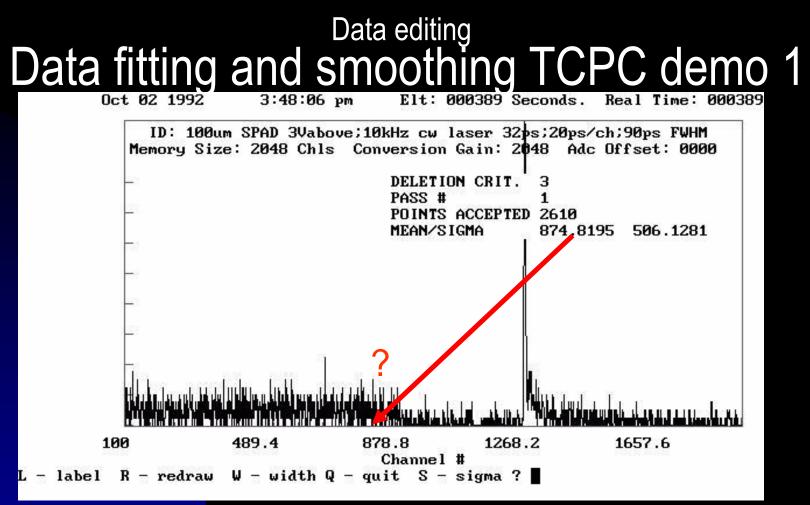

- data fitting by the series of low degree polynomials
- in the node /point of change from one polynomial to the other one / the value and the first derivative of both the polynomials must be equal
- most often used scheme the sequence of 3rd degree polynomials
- used to fit data, which can not be fitted by classical polynomials / for example : pulse shapes,.../

Data fitting and smoothing Spline fitting - typical problem example #1

No single polynom will fit correctly the lower trace

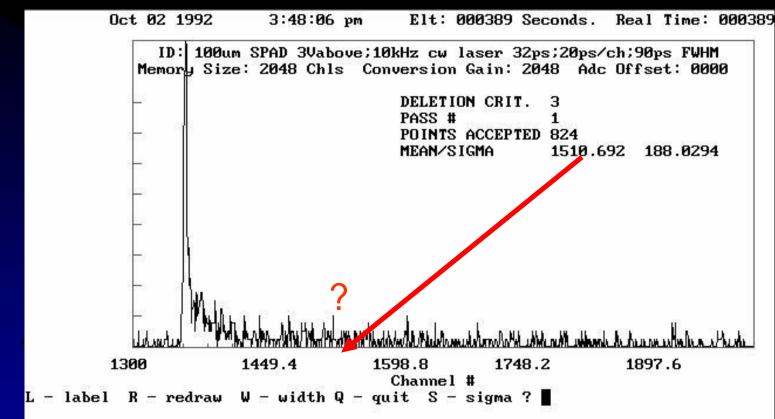
Data fitting and smoothing Spline fitting - typical problem example #1

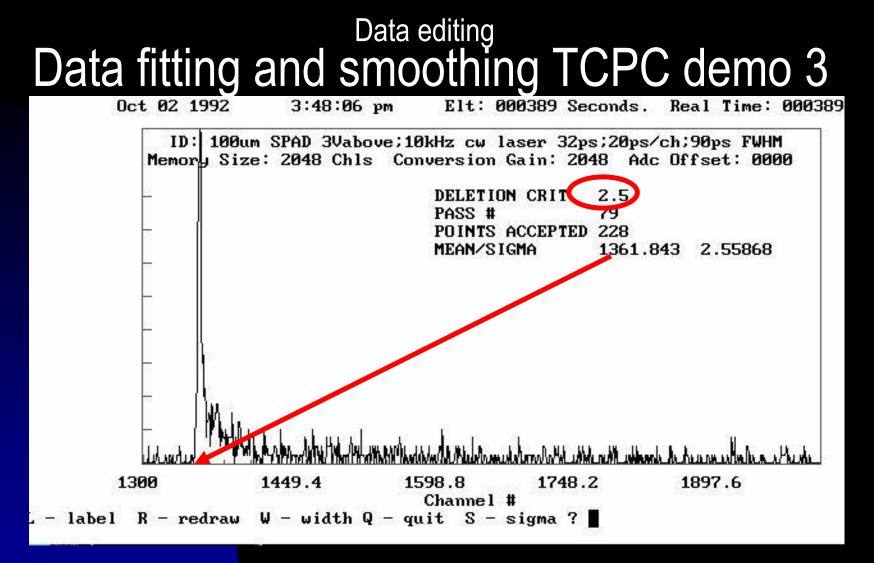



in the node - point of change from one polynomial to the other one – the value and the first derivative of both the polynomials must be equal

Data editing

- normal distribution and deviations from it
 - relation to data fitting
- probability of deviations > 3 * sigma and bigger
- proper selection of the editing criteria
 k * sigma ... for k = 2.0 ... 3.0
- applicable for $S / N > \sim 0.3$
- non-symetrical distribution
- normal distribution + DC offset
 = > convergence problem
 may be solved by tight editing criteria
 I. Prochazka et al., 12ZMDT, Prague 2023


Too high No of raw errors – simple "3*sigma" editing does not work Space debris tracking, G.Kirchner, Graz August 2013



- In a large amount of noise we have to locate desired correct value exactly (select narrow "data window" and tight editing criteria)
- Standard editing procedure "3*sigma " does not make any sense, see graph..

Data editing Data fitting and smoothing TCPC demo 2

- Even if we choose the right range of the data, the result still doesn't have to make sense
- After setting the proper value of SIGMA...

... we get the proper mean value, at least (correct data window and 2.5*sigma)

Data mining GOALS

- (1) Identification of useful signal within a "noise"
- (2) estimation of probability of correct signal identification
- <=> Eliminating the raw errors in a case, when number of raw errors is much larger than a number of useful signal
- In this chapter the term "noise" has a meaning of raw error
- In a previous example we have demonstrated that simple criteria like k * sigma will not work for very noisy data sets

Data mining # 2

- GENERAL RULE
- The signal is correlated
- noise is random

STRATEGY

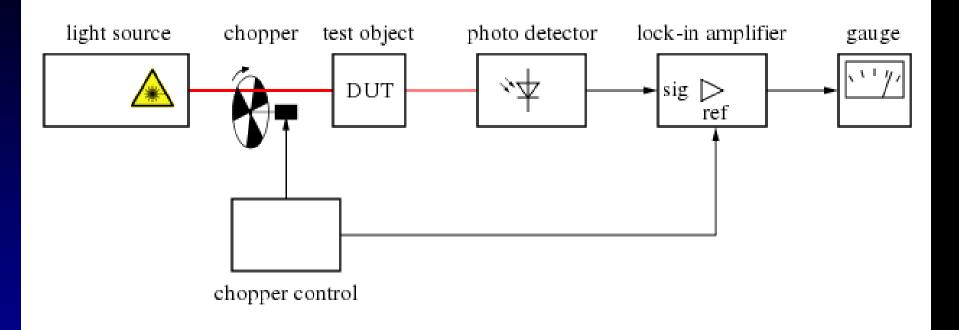
- The key problem identification of effects, with which the signal is correlated
 - EXAPLESimpulseeffectsperiodiceffectsothereffects

epoch period time known effect etc..

Data mining EXAMPLEs of data mining / correlation

direct TV broadcasting

- direction frequency polarization modulation (timing)
- Satellite Laser Ranging


direction wavelength epoch

Data mining Lock-in measurements

- used in experiments, in which there is a low degree of correlation
- additional "modulation" is applied to the experiment
- the signal ix extracted from the S + N on the basis of its correlation to the (known) external effect
- "lock-in a mplifier" for low voltage / current measurements

Data mining Lock-in measurements #2

Weak optical signal detection

Data mining "Correlation Estimator"

Enables to identify the known pattern in the noisy background

- Used in experiments, in which we can compare the original (for example transmitted) signal with the noisy (received) signal
- The problem is solved on the principle of maximizing the (auto)-correlation function
- The (fast) Fourier transformation approach (effective especially in 2D solutions, image processing,...)

application in

- radio-location
- precise / impulse / timing
- image processing (robotics)
- etc.

"Data mining "Correlation Estimator" # 2

For continuous functions *f* and *g*, the cross-correlation is defined as:

$$(f \star g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) \ g(t+\tau) \ dt,$$

where f^* denotes the complex conjugate_of f and τ is the time lag.

Similarly, for discrete functions, the cross-correlation is defined as:

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] g[m+n].$$

Wikipedia

"Data mining "Correlation Estimator" # 3

 The cross-correlation of functions *f*(*t*) and *g*(*t*) is equivalent to the convolution of *f**(−*t*) and *g*(*t*). I.e.:

$$f \star g = f^*(-t) \star g.$$

- If f is Hermitian, then $f \star g = f \star g$.
- $(f \star g) \star (f \star g) = (f \star f) \star (g \star g)$
- Analogous to the convolution theorem, the cross-correlation satisfies:

$$\mathcal{F}{f \star g} = (\mathcal{F}{f})^* \cdot \mathcal{F}{g},$$

where \mathcal{F} denotes the Fourier transform, and an asterisk again indicates the complex conjugate. Coupled with fast Fourier transform algorithms, this property is often exploited for the efficient numerical computation of cross-correlations. (see circular cross-correlation)

Wikipedia