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Course Goals

high precision / accuracy

correct interpretation of results

marginal effect identification

low signal extraction from the noise
background / data mining
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Course Concept

“‘open concept”
- questions / comments related to the subject welcome
- language is no limitation

based on local tradition and experience:

- photon counting,

- high precision & accuracy laser ranging,
- Lidar,

- precise timing etc.

Measurement, data processing and laboratory demo

contributions from students to the course appreciated
(see next)
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Requirements
3 tests within the semester, announced in advance
( ~ 10 questions / test, language is no limitation)
minimum 50 % of correct answers in each test
one spare term for the three tests
Il WARNING just one single spare term / test !

final note will be an average of the three test results
(improvement possible by active contribution ..)
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Course Structure / Schedule

Definition of terms
(measurements, observations, errors characterization, precision,
accuracy, bias)

Types of measurements and related error sources
(direct, indirect, substitution, event counting, ...)

Normal errors distribution _
(histogram, r.m.s., r.s.S., averaging, ...)

Normal errors distribution consequences
(examples, demo, test#1)

Data fitting and smoothing I.
(interpolation, fitting, least square algorithm, mini-max methods,
weighting methods)

Data fitting and smoothing _ 3
(parameters estimate, fitting strategy, solution stability)
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Course Structure / Schedule |l

Data fitting and smoothing Il
(polynomial fitting, “best fitting” polynomial, splines, demo)

Data editing
(normal data distribution, k * sigma, relation to data fitting,
deviations from normal distribution, tight editing criteria, test #2)

Signal mining _ _
(noise properties, correlation, lock-in measurements)

Signal mining methods
(Correlation estimator, Fourier transform application)

Signal mining methods — examples
(Time correlated photon counting, laser ranging, relation to data
editing and data fitting)

Review, test #3
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Measurements 1

Units Sl
fundamental (kg, m, s, A, mol, candela, K)

derived (m/s, ...)

standards Sl , national, local,..
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Measurements 2

»  type of measurement

direct X Indirect

absolute X relative
substitute
compensation ...

(examples)

o Event counting
(examples)
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Measurement errors

Raw errors

measurement errors

systematic

random errors
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Precision and accuracy

' WARNING - language dependent !!!

presnost cz
genauigkeit ge
tocnost ru
PRECISION

Relative, internal, consistency, data spread

ACCURACY
“absolute”, related to standards
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RANDOM ERRORS - Precision

. measurement errors caused by random
iInfluences

. various influences randomly combined
. random behaviour = > statistical treatment

- Increasing the number of measurements, the
random error influence can be decreased
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SYTEMATIC ERRORS - Accuracy

A measure of the closeness of a measurement /its
average/ to the true value.

Includes a combination of random error (precision) and
systematic error (bias) components.

It is recommended to use the terms "precision” and "bias”,
rather than "accuracy," to convey the information usually
associated with accuracy.

definition according to USC Information Sciences Institute, Marina del Rey, CA
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SYTEMATIC ERRORS - Accuracy 2

. errors of references, scales, ...

. measurement linearity
. external effects dependency

. In general — very difficult to estimate !!

- Increasing the number of measurements, the
systematic error influence cannot be decreased
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RANDOM and SYTEMATIC ERRORS

How to estimate them ?

. Itis recommended to use the terms "precision”
and "bias", rather than "accuracy”’,

- precision may be estimated by statistical data
treatment,

- bias may be determined as a result of individual
contributors,

. To estimate the bhias, all the individual
contributors must be identified and determined.
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Type of measurements versus errors

comments

comparative, compensation measurements are
reducing the systematic errors,

more direct measurement is reducing both the error
types,

event counting (“clean measurement”) is drastically
reducing the systematic errors,

- the random errors can be predicted and effectively
reduced

- biases may be reduced by quantum level counting

|. Prochazka et al., 12ZMDT, Prague 2023 16
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Random errors distribution — Gauss formula

3 KEY PRESUMPTIONS

1. Large number of errors (‘elementary’)
.. Equal size of all these errors

s, Random signs of errors

= > normal / Gauss distribution of errors

where p(x) ... is a probability, that we will measure the value x
Xy .... Is arealvalue
g ..... parameter — standard deviation

IS a measure of precision

|. Prochazka et al., 12ZMDT, Prague 2023 18



Random errors distribution — Gauss 2

A

: pex)
(x—xp)

p(x)xe 20

- PROPERTIES

« Full Width Half Maximum ... FWHM ~ 2.4 * G is a measure of precision
* symetrical x,

* approaches fast zero for (ABS(x-x,)) -> o
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Random errors distribution — Gauss 3
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Random errors distribution - DEMO

large number and equal size of elementary errors, random sign of errors

ball

accumulated balls
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Consequences of normal distribution - 1

e the most ablevalue x; is
an arithmetic average

1 #
=—2. X

1=

A0

1. the precision of the mean sisincreasing with

1

S R ——
where X; are the measured values
X IS & mean value
n IS a total No. of measurements
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Consequences of normal distribution - 2

Example
Repeating the measurement 100 times, the random error
of the resulting mean value will be 10 times lower.

The standard deviation o may be estimated from the
Root Mean Squares of the individual deviations,

|| H 2

| . .
||| Z (Yf} — Xy )
RMS ==L

I'ql 1

where X; are the measured values
X IS @ mean value
n IS a total No. of measurements

|. Prochazka et al., 12ZMDT, Prague 2023
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Consequences of normal distribution - 3

O
By definition of probability : J. p(x) — l
— GO

Assuming the p(x) for the normal distribution, one can
evaluate, that

3c
for a mean value = 0 I p(JC) > (.99

-3c
It means, that almost all the measured values (=99%) are
within the limits +/- 3 .

Consequences :
1. the criterion +/- 3 ¢ may be used to separate the
10 S€
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Consequences of normal distribution - 4

* Let’s define probability (k )

The graph of P(k) for k € <0, 3>
P(k) means probability, that
measured value will be in the
range x, + ko

|
I
|
|
|
|
|
|
I
|
I
3

1.5

The graph of pfx) — Gauss
distribution of errors

X, 1s mean value

X

G 1s precision (rms) X0+20  X+30
o+ a
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RANDOM ERRORS Example
Car manufacturing production — precision / accuracy

0 Question  how precise / accurate (?) must be each component
to guarantee that only <1 /1000 car
will be not acceptable due to parts miss-match ?

0 Problem high precision / accuracy = > high manufacturing costs
low precision / accuracy = > high repairs costs

0 Solution  probability of off-tolerance component must be ~ 1 *10

=> probability of good comp. p(x) >= 0.999 999
=> solve for integration limits k * sigma

=> precision / accuracy of manufacturing must be about
6 times better than a limit, for which the parts fit
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Consequences of normal distribution #5
Random Errors Averaging limits

o The precision of the mean value is increasing with SQR(N)

0 BUT - How long ? What is the limit ?

o Answer - aslong as the entire experiment is stable / reproducible
EXAMPLE Ocean level increase (~ 1 mm/year ?? )

0 Let’s consider ocean waves ~ 1 m peak-peak, 10 seconds

o Toget 1l mm precision, we have to average 1 million level readings,
this would take 10 millions of seconds => > 100 days

0 This will not work, ocean tides ( 6 hr, 12 hr, month,....), wind, ocean
currents etc... would limit the final precision

0 In addition — the ACCURACY issue !
Continental drift ~ 10 mm / year
Invariant coordinates ?
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Consequences of normal distribution #6
Random Errors Averaging limits

Allan variation - definition

o Where y.is I-th measurement, M is number of
measured data

; log / log scale graph

0 1/ SQR(N) displayed as a line
limitations clearly visible

time deviation Tdev [ps]

0 time and frequency measurements

A et al.,, 12ZMDT, Prague 2023 28

averaging time [s]




Consequences of normal distribution #7
Allan variance example — time interval measurements

Date: D6/02/11 Time: 09:34:56 Dato Paints 1 thru 42831 of 42831 Tau=1.000000Ce+00

TIME STABILITY

File: STATS12.002

Tau Sigma o
1 1.73e=01 [7]
2 1.21e—01 |
4 8.75e—-02 ]
8 6.18e—02 [
B 4.41e—02 |
5 BDe—02 [
64 2.32e¢—02 |
128 1.65e—02 |-
256 1.45e—02 |
512 1.31e—02 |]
1024 1.66e—02 [ ]
2048 1.94e—02 |
4096 1.59e—02 []
8192 2.4%e—02 |4

Time Deviat

.| Precision limit

10! 102 10°
Averaging Time, EtE, Seconds




Consequences of normal distribution #7a
Allan variance example — time interval measurements

NPET1 selftest stability, heat transport optimalisation

—m— Final setup (4 Al spacers)
—e— ADC additional heat conductor
6 Al spacers

10 100 1000

time averaged [s]
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Consequences of normal distribution # 8
recision of event counting

Precision o of the result of event counting
may be estimated as

o = SQRT(n)
where N IS a count No.

Consequence — accumulating more counts, higher
precision of the result is obtained

The counts outside the range
n+/-30

Indicate a new effect and vice versa

|. Prochazka et al., 12ZMDT, Prague 2023
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Consequences of normal distribution # 9
Precision of event counting - examples

Referendum pools

statistical sample, ~ 1800 respondents

only 2 possibilities YES / NO , both ~ equal probability
o = SQRT(900) = 30 ... =>0=3.3%

Conseguence — the confidence of a pool with 1800
respondents is ~ 3% (one sigma).

To predict as “almost sure (>99%)”

the difference must be >= 10%

Example — UK Wales “independence” referendum
totally ~ 1.2 million voters

results was 49.8 versus 50.2 %

was it predictable ?

|. Prochazka et al., 12ZMDT, Prague 2023 32



Consequences of normal distribution # 10
Precision of event counting - examples

Mean = 225 Histogram of event counting
o =15 (6%)

Mean = 16
0 =4 (25%)
3*0=12

Mean = 11
o = 3.3 (30%)
3*0=10

Range (1,21) "y Range (4,28)

50 60 70 80

time [1.6 ns/ch]
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Consequences of normal distribution # 11
Precision of event counting - examples

The following vector is the result of the event counting measurements with random
errors.
|dentify numbers outside the range of 95% correctly identificated data.

1)X,, mean estimation: 51 | 29 | 50 | 50 | 56
52 | 42 | 51 49 | 48
X, 1493
X, = Z X, = —— =498 65 | 48 | 56 | 52 | 47
n 30 49 | 49 | 70 | 36 | 50
49 | 51 | 51 | 46 | 49
2)o estimation: 50 48 46 51 57

eventcounting > o = ./x, o =705

0

3)range estimation: 95% = 2ec = 14,1 range is from X -2ec t0 X,+2ec
range: 35,7 - 63,9

4)data identification: numbers to throw away: 69, 29, 70
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Precision of a combined measurement

* Presumption
- the result 1s a function of several independently measured

quantities, each having normal distribution

y=y(x.%,, ... %,)

Standard deviation of the final distribution 1s then given by

2
i

o= 2 2] o)
A

where o (x;) are standard deviations (RMS) ot the particular
quantities
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Combined measurement 2 — Examples

1. Sum of difference (i.e. height of a chimney):

y=x1tx, =0(y) = \/02(x1) + 0%(x;)

2. Product of ratio (i.e. surface of a rectangle):

y=x xory=5 = a(y) = (- \/("("”)2 + (222

X2

(the angle brackets () symbolize an average value)
3. Multiplication by constant C
y=x-C= o(y)=1C| - o(x)

4. Variable to the power of k

y=x¥= o(y) = |k| - (y)
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Photon counting # 1

Intensity _
“strong signal”

time

“single photon”

37



Photon counting detectors

GENERAL LIMITATION - the dark count rate increases with area

VACUUM / PHOTOCATHODE based
apertures 3 mm up to ~ 1 meter

dark count rate may be reduced by cooling

SEMICONDUCTING detectors
apertures 5 umup to 500 ym room / TE temp.
upto Smm 77K

However, cooling impairs some detector parameters -
Si SPAD 100um, TE cooled

SUPERCONDUCTING detectors
apertures max. 10 uym

Superconducting detector 2 x 2 um

|. Prochazka et al., 12ZMDT, Prague 2023 38



Single Photon Detectors

Several examples of SPAD structures made by CTU

Si ,200 um,TE3 cooled GaAs messa GaAsP, 350 um

Active quenching Complete detector packages
and gating circuit

'I. Prochazka et al., 12ZMDT, Prague 2023 39



WHY Single photon detection

Not just ,, .. higher sensitivity ..,
guantum nature of light = > two states detected 0/ 1

NO analog signal processing, inherently digital
= > minimizing systematic errors

Extremely low signals ( << 0.001 photon/pulse) detectable
High dynamical range without degrading timing performance

Measurement by-products optical signal intensity & shape
precision 1
. . . O~ —
picosecond resolution, sub-ps stability 'N

pPS accuracy achievable

Space qualified devices available

|. Prochazka et al., 12ZMDT, Prague 2023 40



Photon counting data processing #1

converting the probability of registration a
photoelectron to a signal strength,

. extracting the echo signal of interest from
the backgound noise, ( 4o %%/
estimating the probability, that the extracted
“signal” is a real, useful signal and not a
result of a statistical nature of the noise.

probability of detection ~p intensity
p=1

|. Prochazka et al., 12ZMDT, Prague 2023



Photon counting data processing # 2
p~1

photoelectrons registered

number of all measurements, when
the detection might occur

total number of measurements

i-1

Ny =Ny "ZNk

k=1
N,
i=1

N "ZNk

k=1

I

l
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ing # 3

ELT space data model, high background, signal 0,1 PE per shot

Optical pulse response
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Photon counting data processing # 4
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Application # 6 Photon counting LIDAR

- Photon counting LIDAR

o for metrology and ecology

o laser diode transmitter

o photon counting detector Si

Cloud height monitoring Air pollution propagation monitoring
air traffic control ecology

. h 23100.4.07.93. pipe near the elevator Ribinsk,

Visihility 8.220 kn A Experingnt

BackScatter 1.04E-88 kn ! sr 71

Dxtintion Q4% kn™! ¢ ” N

OO mn TrR4CHS
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Photon counting LIDAR data processing # 1

ASER pulses; 1W2aMBM  SPAD pulses: 230319(N), 230222(Nt3), Gate dmks
dayl ight Imm aperture imsample treetatmosphere
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Photon counting LIDAR data processmg # 2

ASER pulses; 1B24W0W  SPAD pulses: 23t , Nty ), Gate dmks
dayl ight Imm aperture Imsample treetatmosphere

Uisihility BackScattering Extintion RESTORE STRHALHHITSE
0,34 K 1 29601 1 15p -1 425 it OO TS W LR W0 ) O
(URIR CHRRHEL LISTRHCE COUNTER D B e I N de I N
LEFT 0 0K 140 16 MSE 209 IM0 I NB MM
MOE LB MSE 00 I 20 1M I

FE i 240 1 iyl NED ML B MM B 00 1 M

TOTAL COUNTER SUH = 2864 Note higher 2 23 M8 28 28 205 2% 2
el M2 20 0% 0 1% 2

fluctuations 0% 229 M9 20 241 I 2t 2400
I _ M0 M 2 D 4 MR LT N
ntensity: pHc I LV P I P R VRV

(probability) R I R
versus MIE 0 L0 W0 MK 7
range G R R
mE U D) TR TN 2N T )
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Photon countlng LIDAR data processmg # 3

ASER pulses, 1HZauby ‘Al pulses, £ao Nt3), Gate dmks

dayl ight 3mm aperture Imsample tree+atnuﬁphere
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CTU in Prague

Photon Counting Lidar for planetary missions
Demo unit
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Photon Counting Lidar for planetary missions
Demo unit, CTU in Prague

Histogram (Ni) of d(k) distance values

corresponding to e(k) epochs

___J

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Range [m]

Number of hits [counts] I

st’i as defined in Eq. 22 and 23
n_ sqrt(sFlP) as defined in Eq. 20 and 23
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Data fitting and smoothing

APPLICATION
Repeated measurements of slowly varying effects

(optionally) investigation of their dependence on unknown
parameters

GOALS

Data smoothing : random errors reduction / precision increase
/ precision estimate

Indirect measurement : determination of unknown parameters
on the basis of a single variable measurements
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Data fitting and smoothing #2

“Best fit”

least square fit (> 90% of cases)
minimum of sum of squares

mini-max fit

minimum of maximal deviation
Chebychev polynom solution

and many other
weighted average...

|. Prochazka et al., 12ZMDT, Prague 2023
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Data fitting and smoothing #2a

least square fit (> 90% of cases)
minimum of sum of squares of (0-c) residuals

Q
=
%
E
<
>

Only small influence on
fitting solution

X Axis Title
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Data fitting and smoothing #2b

mini-max fit : minimum of maximal deviation
Chebychev polynom solution

Q
=
%
S
<
>

Trying to minimize
maximum deviation

X Axis Title
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Data fitting and smoothing # 3

TYPE of SOLUTION

1. known type of dependence
F(a,b,c..., 1)
where  F() Is a known function
a,b,c... are known with a limited precision

Example
motion equation, heat transport, electric circult, ...

2. un-known type of dependence

|. Prochazka et al., 12ZMDT, Prague 2023
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Data fitting and smoothing # 4

SOLUTION STABILITY

Well x ill defined parameters (correlated)
parameter selection

consequent increase of number of parameters

STABILITY ROUGH ESTIMATE

create two (interleaved) sub-sets of data
compare the solutions
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Data fitting and smoothing # 5

MARGINAL EFFECTS IDENTIFICATION

If the residuals after fitting with a function F indicate significant
dependence, it indicates the presence of an effect, which is
not described by the function F.

Example
F ... dependence of a height of a snow man as a function of

temperature and sunshine.
... Itis not predicting the heights increase :-)
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Data fitting and smoothin

Least squares fit - NormaIgEquationS

Least square fit definition

% [F(a, + Aaj, a, + Aa,, ....... ,a + Aa_, t) — M]?-> minimum

(A)B) = (C)
(A) ... square matrix of the n x n dimension
(B) ... vector of desired elements corrections
(C) ... ndimension vector
Ay = N (3F/5ay), (8F/da,),
C = TN M -F(a, ..., 1)] (8F/5ay),
(6F/da), = [F(ay, a,, ..., &+ d;, ..., &, 1), - F(a, ..., a, )]/ d,

Results are correction of parameters
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Data fitting and smoothing
Root Mean Square — data scatter

0 Where

» Fis the fitting function value in the i-th point
O  Xils the I-th data point
0  nis the total number of data points
o  kisthe number of (solved for) parameter

|. Prochazka et al., 12ZMDT, Prague 2023
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Range (ms)

o4.

53
51
49

47
45

44,

42

818

.648
278
.499

08I
.959

189

.419

Data fitting and smoothing

SLR - raw data

SATELLITE 7663961 9112711 , UT 21 @ 33

Range 6400 ... 8220 km -~

o e—

820 16408 246 3286
Laser shots
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Data fitting and smoothing .
SLR data - Least square fit improved orbit

0-C (ns) SATELLITE 7683961 919712711 , UT 21 @ 33
8.374 | Simple solution — 3 parameters only, Keplerian orbit
_ Range bias, time bias, Earth rotation corr.
8.248 |-
9.185 | . =
Visible variations
-0.830 | i
-8.165
b + .
-8.299 | [-Tcm
-8.434 |
_8.569 111111111 g gongres gengiey gonge ' goug a groe g groe | U T W W S W W | (P T T A STV ok
8 820 1648 2460 3280

Laser shots
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Data fitting and smoothing .
SLR data - Least square fit orbit + polynom

0-C (ns) SATELLITE 7683961 9112711 , UT 21 @ 33

8.324 Previous data fitted (least square fit) using
Low degree (4) polynomial fit

0.190 " o T I , SELAT |
.ess | .1 Gt me R

-0 .880

-8.215 ~
-8.358 -

-8.484

-8.619 K b bt
8 820 1640 2468 3280

Laser shots
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~ Data fitting and.smoothin? .
Histogram of final data fit

Range residuals 91 12 11 7663981. at 21:33 UT

Data file RANGB99.DAT" totaly 722 points

| System
5 precision

Additional ‘T
effects i ’f |

, I. f’ ' q

-
’\' [ Jh d

\ | I
Cell width (naec). .05
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Data fitting and smoothing

SLR - fitted data averaging

NPT spread [psec]

100 points/NPT

| NZ.Sps/OA mm
1/sar(N) ™ . 2000 points/NPT

0.2 mm

[ I L1 11 Il
-

0.01 0.1 1
Normal point interval [sec]
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Empiric rules for t

O

Data fittin%and smoothing
e best fitting polynom

General

The polynom degree should be as low as it fits the data
“good”

(It fits the data with the lowest possible RMS ...)

Strict limitation
M <10 unless special procedures are applied

Number of points
M<<N and/or M?<N
M is the degree of the polynom and N is the number of points

wide gaps in the data series:
A iIs the width of gasp, B is the width of all range of data
If A:Bis high then M<B/A

Serial Correlation Coefficient SCC < 0.5
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Data fitting and smoothing
Example # 1

Experimental data - telescope pointing error in elevation ,y“ [arc min]
Mount corpection inazimuth; Cairo 1994 [89-12-1994]

1.3

@ 338

Measured for various azimuth ,x“ 0 — 358 degrees
1. What is a good type of fitting function ?

2. Find the parameters of this fitting function
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Data fitting and smoothing
Example # 1

L) =t)t Jm ) e ] el e ) ) Jremmen Yo ) o e e o e et Jremmry
GraphPAD /I tm :

opyright (c) 1985, 1987 by H. J. Motulsky A

Version 2.0; Serial # 10963 A

Average Average multiple Y replicates and calculate error bars.
Curves Generate, fit, smooth, integrate or take derivative of a curve.
Digitize Enter data or curve from an existing graph by digitizing.
Edit Edit data by changing, adding, or deleting numbers.
File Save, retrieve, merge or erase disk files containing data.
Graph Graph data and/or curve on the plotter.
Help Display brief instructions on how to use GraphPAD.

=p Input Enter new data from the keyboard.
Key Define function keys F3-F10 to recall words or phrases.
Lines Plot a line, arrow, box, circle, or grid.
Options Change optional settings to customize GraphPAD.
Print List the data on the printer.
Quit Exit GraphPAD and return to DOS.

Regression Fit linear regression line and find new points on that line.
Startover Delete the data and/or curve and then restart GraphPAD.
Transform Mathematically alter X or Y values using a selected function.
View Preview the data and/or curve on the computer screen.

Write Use the plotter to write labels on the graph. -
Select by pressing | or |, then press RETURN. (Or type a highlighted letter.)
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Data fitting and smoothing
Example # 1

Equation Menu: Press ESC Tor Main Menu.
: Exponential decay
Y = Afexp(-B*X) +C¥exp(-D*X) + E
Exponential association
Y = A*[1-exp(-B*X)] + C*[1l-exp(-D*X)] +E
Exponential growth
Y = Afexp(B*X) + C¥exp(D*X)
Rectangular hyperbola (binding isotherm)
¥ = A*X/(B + X)
Double rectangular hyperbola
¥ =UARXSAEB B X)) CEX/ED X)) &) EXX
Sigmoid curve (log scale)
A=bottom, B=top, C=log(EC50), D= Hill' Slope
: Competition curve (log scale)
A=bottom, B=top, C=1log(EC50)
: Competition curve, 2 components (log scale)
A=bottom, B=top, C=% site 1, D&E=1og(EC50s)
—» I: Sine wave
Y=3A: + B * sanfCexX ) B)
J: Polynomial (1)
Y= A*XAB + C*XAD + E
K: Polynomial (2) [This polynomial equation creates a generic' curve.]
¥ =A tBXX +.C*XAZ2 + D*XA3 + E*XA4
L: Mixed exponential
Y=A¥exp(-B*X) + C*[1 - exp(-D*X)] + E*X

m W) M o >

n

=1 I ()
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Data fitting and smoothing
Example # 1

Y= A+ B * sin{(C*X + D)
-Enter estimates; the values will be changed Tater.

$ine wave

Enter A: [ 3.856051] 3.856051
Enter B: [-3.275097] -3.275097
Enter C: [ 1.00096] 1.00096

Enter D: [-0.348034] -0.348034

Enter the range of X values over which the curve 1is to be plotted.:
(The X values of the data range from 1 to 358 .)
Minimum X: [ O] O
Maximum X: [ 358 ] 358

Do you want to view the curve generated by your estimates (ves/No)? [No] B

7.9

Press RETURN to continue.
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Data fitting and smoothing
Example # 1

Where was the mistake?

The data seemed to be periodical, but the fit output is total
nonsense

We forgot to input information of the period we expect !
USE EVERY SINGLE BIT OF INFORMATION YOU HAVE

Let's try once more including this information...
(period coefficient estimate is ~ 0.017 deg/rad )

|. Prochazka et al., 12ZMDT, Prague 2023

70



Data fitting and smoothing
Example # 1

S1ine wave
Y= A + B * sin{C*X + D)

Final Results. sum of Squares= 0.511746 (df= 9 )
Goodness-of-fit assessed using actual distances; r squared=0.994.
Parameter value %
A 4.51084 .0745794 1.7%
B -3.610954 .0934589 2.6%
C .017 (Constant)
D 1.777424 .0327 1.8%

* The std. error values are estimates. Don't use for calculating statistics.

8.121343,

OK

1] 338
Press RETURN to continue,
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Data fitting and smoothing
Example # 1
SERIOUS CONCLUSIONS
USE EVERY SINGLE BIT OF INFORMATION YOU HAVE

The initial parameter estimate is critical for correct
solution

with only one exception — which type of fitting function ?

Ordinary polynom — the polynom parameters are direct
solution of normal equations
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Data fitting and smoothing
Moving average

simple method to smooth / fit a series of equidistant data

moving average in the i-th interval = mean of the values
In the interval <i-k, i+k>, where k is an positive integer

spread inside the window is 1/SQR(n) smaller than
original one

various definitions of moving average value on both
the ends of the interval

|. Prochazka et al., 12ZMDT, Prague 2023

73



Data fitting and smoothin%
Moving average #

o windows moving by one point

»  data from the beginning and
the end are uncertain...

»  spread inside the window is
1/SQR(n)
smaller than original one

o the result is smoothed curve
sequence of points,

0 number of points is (almost)
equal to original one
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~ Data fitting and smoothing
Moving average example # 1

NPET epoch Ta stability 3Hz average 100 readings

&
o

7
=
c
9
-—
O
“‘_,E 8,2
L
O
)
o
o

~N
(00)

~
(o))
1

~N
LN
1

500 1000 1500 2000 2500
Sequence No.

|. Prochazka et al., 12ZMDT, Prague 2023




&
E
et

()
b
gq—

(@)

L)

(@)

c

)
e

Moving average example # 2

Raw Ranging Data and 200-point Moving Average

Round-trip time offset [ps]

Epoch [s]
Moving average data spread (RMS) is much bigger than in
normal distribution = >

New physical effect was discovered, (L.Kral et al, 2005)
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Data fitting and smoothing
Normal points

0 normal point is an arithmetic
average of the data in a window

windows are not overlapping

spread of normal points is

1/ SQR(n) lower than the original
one where n is number of points
In the window

Both ends are well defined

0 Number of Normal points is
substantially lower than original
data points
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Data fitting and smoothing
Normal points example # 1

oints data

~

NPT

1 point / |

deviation from ideal > 100 echoes/ NPT
saturation : > 2000 echos / NPT
|. Prochazka et al., 12ZMDT, Prague 2023
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Data fitting and smoothing
Splines

data fitting by the series of low degree polynomials

In the node /point of change from one polynomial to the
other one / the value and the first derivative of both the
polynomials must be equal

most often used scheme - the sequence of 3rd degree
polynomials

used to fit data, which can not be fitted by classical
polynomials / for example : pulse shapes,.../
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Data fitting and smoothing

Spline fitting - typical problem example #1

F Simple fit ? .l
T ’ll :

+ n | f\ e A B
?_f-n AW NN A AANAAA AN A o e PR NS i A S U VA A V% N NN A A A A M
| | | | | | 1 | | | | | | | #

| | | | | | | | | | [ | | | | | | | | | | | | | | | | | | | | | | |

@ 200mV/div 50Q §u:2.5G Run Sample
" 12 879 acqs RL:5.0k
Value Mean Min Max St Dev Count Info February 16, 2010

| @z 10.0mv/div 50Q By:2.5G ([ @&\ 484mv |[ 25ns  20.06s/s 1T 5.0ps/pt ‘

@3 Dely* 10.24ns 10.266024n [10.19n 26.98p |891.0
| @ Rise 171.4ps 164.85779p |[108.3p 9.256p |891.o |

No single polynom will fit correctly the lower trace
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Data fitting and smoothing

line fitting - typical problem example #1

K ~ ~ I A )
?—/"V‘/\f’\,."\J"'V"v’\\».f'“ﬂb’\h‘k_./‘“~/\—'”\ﬁvv"'-.r--vw'«f"\/\‘—""'\_ﬂ”‘—" Mo~V AL AN
1 | 1 L | 1 1 1 1 I 1 | 1 | I | L 1

&IB» 10.0mVidiv 500 By:2.5G |[ 2.5ns 20.0G6s/s IT 5.0psipt
T 200mV/div 50Q By:2.5G

Sample

" 12 879 acqgs RL:5.0k
Value Mean Min ax ount nfo February 16, 2010 =

73 Dely* 10.24ns 10.266024n (10.19n >
| @ Rise 171.4ps 164.85779p (108.3p

In the node - point of change from one polynomial to the other one —
the value and the first derivative of both the polynomials must be equal
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Data editing

normal distribution and deviations from it
relation to data fitting
probability of deviations > 3 * sigma and bigger

proper selection of the editing criteria
k*sigma ...fork=2.0... 3.0

applicable for S/N>~0.3
non-symetrical distribution

normal distribution + DC offset
= > convergence problem

may be solved by tight editing criteria
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Too high No of raw errors — simple “3*sigma” editing does not work
Space debris tracking, G.Kirchner, Graz August 2013

Debris: SLL—16 R/B




Data editing

Data fitting and smoothing TCPC demo 1

Oct B2 1992 3:48:86 pm Elt: 888389 Seconds. Real Time: B68389

ID: 18Bum SPAD 3Vabove:18kHz cuw laser 32ps:Z28ps/ch:98ps FWHM
Memory Size: 26848 Chls Conversion Gain: 2048 Adc Offset: 6060

DELETION CRIT. 3

PASS # 1

POINTS ACCEPTED 2616

MEAN/S IGMA 874_,8195 586.1281

Chammel #

L — label R - redraw W - width Q — quit S - sigma ? |

0 In a large amount of noise we have to locate desired
correct value exactly (select narrow “data window” and
tight editing criteria)

»  Standard editing procedure “3*sigma “ does not make

any sense, see graph..
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Data editing

Data fitting and smoothing TCPC demo 2

Oct 62 1992 3:48:66 pn Elt: 888389 Seconds. Real Time: BBB38S

18B8um SPAD 3Vabove:18kHz cuw laser 32Z2ps:Z28ps/ch:98ps FUHM
by Size: 2848 Chls Conversion Gain: 26848 Adc Offset: 8888

DELETION CRIT. 3

PASS # 1

POINTS ACCEPTED 824

MEAN/SIGMA 1518.692 188.8294

] lha.Lll.ulu.l‘.nl;H 1L AWV,

1360 . 1598.8 1748 .2
Channel #
L - label R - redraw W — width Q@ — quit S - sigma ? |}

0 Even if we choose the right range of the data,
the result still doesn't have to make sense

0 After setting the proper value of SIGMA...
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Data editing

Data fitting and smoothing TCPC

Oct 82 1992 3:48:06 pm Elt: 888389 Seconds. Real Time: BABA389

demo 3

1368

Memor,

9,

ID:

DELETION CRI@
PASS #

POINTS ACCEPTED 228

] |
Aﬂlu wh g b I |.||‘i|l.l AN Tt Nl lora/inS oA A iskdands )

1449 .4 1598.8 1748 .2
Channmel #
— label R - redraw W — width Q@ — quit S - sigma ? I

.. we get the proper mean value, at least

(correct data window and 2.5*sigma)
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MEAN/S IGMA 1361.843 2.55868

AT | T Y YT,
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Data mining

GOALS

(1) Identification of useful signal within a “noise”
(2) estimation of probability of correct signal identification

< = > Eliminating the raw errors
In a case, when number of raw errors is much larger than a
number of useful signal

In this chapter the term “noise” has a meaning of raw error
In a previous example we have demonstrated that simple

criteria like k * sigma will not work for very noisy data sets
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Data mining # 2

GENERAL RULE

The signal is correlated

noise is random

STRATEGY

The key problem — identification of effects,
with which the signal is correlated

EXAPLES

impulse  effects
periodic  effects
other effects

epoch
period

time

known effect
etc..
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Data mining

EXAMPLESs of data mining / correlation

0 direct TV broadcasting

0 direction

; frequency

; polarization

: modulation (timing)

0 Satellite Laser Ranging
direction
wavelength
epoch
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Data mining

Lock-In measurements

used in experiments, in which there is a low degree of
correlation

additional “modulation” is applied to the experiment

the signal ix extracted from the S + N on the basis of
Its correlation to the (known) external effect

“lock-in amplifier” for low voltage / current measurements

|. Prochazka et al., 12ZMDT, Prague 2023

90



Data mining

Lock-in measurements #2

» Weak optical signal detection

light source chopper test object photo detector lock-in amplifier

chopper control
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Data mining

“Correlation Estimator”

Enables to identify the known pattern in the noisy background

Used in experiments, in which we can compare the original
(for example transmitted) signal with the noisy (received) signal

The problem is solved on the principle of maximizing the
(auto)-correlation function

The (fast) Fourier transformation approach
(effective especially in 2D solutions, image processing,..)

application in - radio-location
- precise / impulse / timing
- Image processing (robotics)
- etc.
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Data mining

“Correlation Estimator” # 2

For continuous functions fand g, the cross-correlaition Is defined as:

(f*xqg)(T) def / f*(t) g(t + 1) dt,

where f* denotes the complex conjugate of fand Tis the time lag.

Similarly, for discrete functions, the cross-correlation is defined as:

(f*g)n] o Z f*m] glm +n|.

Mm=—20C

Wikipedia
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Data mining

“Correlation Estimator” # 3

« The cross-correlation of functions f(f) and g(f) is equivalent to

the convolution of #(=f) and g(f). l.e.:

frg=f"(—t)*g.

s If fis Hermitian, then f % g = [ * g.

s (fxg)x(fxg)=(f*f)*x(gxg)

» Analogous to the convolution theorem, the cross-correlation

satisfies:

FAfxg} = (FUf})" - Flgh

where JF denotes the Fourier transform, and an asterisk again

indicates the complex conjugate. Coupled with fast Fourier

transform algorithms, this property is often exploited for the

efficient numerical computation of cross-correlations. (see circular
cross-correlation) Wikipedia
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