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Plasmonic Time Crystals:  
an EM parametric oscillator utilizing plasmon modes



Photonic Time Crystals

time varying host dielectric with permittivity
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"(t+ T ) = "(t)periodic time modulation
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T =
2⇡

⌦

modulation frequency

would typically require strong and abrupt modulation to observe at optical frequencies 

Context: intensive recent activity on 
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Fig. 1. Reflection by a spatial interface vs Fig. 1. Reflection by a spatial interface vs reflection by a temporal interface. A monochro-
matic plane wave incident on a spatial boundary vs a plane wave experiencing an abrupt
change in permittivity (a temporal boundary), respectively.

Fig. 2. Schematic of a photonic time-crystal concept Fig. 2. Schematic of a photonic time-crystal concept where the dielectric permittivity of the
material is modulated periodically in time (a), giving rise to dispersion relation characterized
by bands separated by significant gaps in the momentum k (b).

permittivity is slow, hence time-refraction was observed also at optical frequencies [24–30].
On the other hand, observing time-reflection requires a strong ω(t) modulation occurring at the
time-scale of a single cycle, otherwise time-reflection is extremely weak and PTCs become
impossible altogether. Traditional nonlinear optics e!ects (e.g., the optical Kerr e!ect) is ultrafast,
but orders of magnitude too weak to observe time-reflection and PTCs, while other known
mechanisms with larger nonlinear responses typically require transport of some sort (particles,
charges, etc.) and thus are too slow. For this reason, experiments showing time-reflection at
optical frequencies remain a challenge.

So far, the only mechanism that might give rise to sizeable time-reflections at optical frequencies
is exciting many electrons at rates comparable to one optical cycle (a few fs), which can lead to
index variation on the order of unity. It has been argued that such process is impossible at optical
frequencies, but recent experiments have shown otherwise: time-refraction within a single optical
cycle was very recently demonstrated [29,30]. This major advancement was possible due the
emergence of transparent conducting oxides (TCOs) as a platform for the realization of low loss,
ultrafast, tunable and all-optically switchable photonics.

TCOs display large light-induced index changes at ultrafast rates [24–27,31–34] where
significant variations in ω(t) can be induced by laser pulses of few-fs duration and probed near
their epsilon near zero (ENZ) point. TCOs exhibit a relatively broad spectral range where the real
part of the dielectric permittivity is nearly zero (ENZ), with the imaginary part being relatively
small, resulting in a near zero refractive index (NZI). Such materials enable extreme optics,

from Boltasseva, Shalaev & Segev, Optical Materials Express 14(3)(2024)592

see also Lustig, Segal, Shoam, Fruhling, Shalaev, Boltasseva & Segev, Optics Express 31(6)(2023)9165



Plasmonic Time Crystals
periodically time modulated electron plasma in medium 
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N0(t+ T ) = N0(t)
common modulation frequency

<latexit sha1_base64="zcz6usm++0SRRGvczY51mhe5iuc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEkEcwDkiXMTmaTMbOzy0yvEEL+wYsHRbz6P978GyfJHjRa0FBUddPdFSRSGHTdLye3srq2vpHfLGxt7+zuFfcPmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0fXMbz1ybUSs7nGccD+iAyVCwShaqXnbc8t42iuW3Io7B/lLvIyUIEO9V/zs9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248Sfza6fkxCp9EsbalkIyV39OTGhkzDgKbGdEcWiWvZn4n9dJMbz0J0IlKXLFFovCVBKMyex10heaM5RjSyjTwt5K2JBqytAGVLAheMsv/yXNs4p3XqneVUu1qyyOPBzBMZTBgwuowQ3UoQEMHuAJXuDViZ1n5815X7TmnGzmEH7B+fgGadqOYQ==</latexit>

N0(t)and the electron concentration           in the medium

modulate periodically in time both the permittivity        of the hosting medium 
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⌦ =
2⇡

T

time variation of      may be attributed to the effect of the external driving on the bound electrons of the ambient crystal
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small (weak) fractional  
dimensionless modulation profile

unmodulated electron density  
in the medium in steady state 
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N0(t) = n0(1 + �n(t))

small (weak) fractional periodic  
dimensionless modulation profile

constant permittivity of  
the medium in equilibrium 
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"(t) = "0(1 + �"(t))

modulation of both quantities could be taken to be weak



Experimental Realization

 
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 v t ~
Electron gas

Gate
x

0  p ˆ, ~  (pump)z tJ z

Imprimo directamente no ppt, e no pdf faço um crop (em Tools)

a grounded semiconductor slab of subwavelength thickness positioned beneath a gate plate which together form a capacitor

apply time-varying voltage across the capcitor to modulate the amount of charge              in the semiconductor 

charge may be injected or extracted by grounding the semiconductor
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/ N0(t)



General: wave propagation in the time-modulated plasma

linearization w.r.t. the small quantities 

2

the characteristic excitations in a Lorentz-type medium
(a set of localized charged oscillators). The focus in42

was on excitation of these longitudinal optical phonons
by a charge embedded in the modulated medium.

General Considerations. Wave propagation in time-
modulated plasma is governed by the Maxwell equations

1

c

@B(r, t)

@t
= �r⇥E(r, t)

1

c

@ ("(t)E(r, t))

@t
= r⇥B(r, t)� 4⇡

c
J(r, t) (1)

coupled to the linearized continuity and transport equa-
tions:

@n(r, t)

@t
+N0(t)r · v(r, t) = 0, (2)

@v(r, t)

@t
=

e

m
E(r, t)� ⌫v(r, t). (3)

Here n(r, t) ⌧ N0(t) is the local fluctuating part of the
electron density (which rides atop the spatially uniform
background electron density N0(t)), v(r, t) is the electron
velocity field, and ⌫ is a collision frequency that accounts
for losses in the system. The (linearized) fluctuating part
of the current is J = eN0 (t)v. The specific details of cur-
rents and fields arising from the external periodic driving
fall outside our scope of interest. A possible realization of
plasma with time-varying N0 can be achieved by having
an electronic “pump” which creates a time-varying oscil-
lating current along, say, the z-direction (J0 ⇠ ẑ), which

induces time variation of N0. (See Fig.S1 of the Sup-
plementary Material for a schematic description of such
a system.) Our goal is to characterize how the exter-
nal driving (strong signal) a↵ects propagation of another
wave (weak signal) propagating in the plasma channel in
the xy-plane. For simplicity, we neglect gradients in the z
direction, resulting in the linearized continuity equation
(2). Time variation of " may be attributed to the ef-
fect of the driving on the bound electrons of the ambient
crystal. Our plasma is spatially homogeneous (N0(t) and
"(t) are space-independent). Consequently, it is enough
to consider waves with spatial dependence ⇠ eik·r.

Owing to isotropy of our system, its excitations can
be decoupled into longitudinal and transverse. Below we
consider various examples of temporal modulation ap-
plied to longitudinal and transverse plasmons.

Longitudinal Plasmons. This class of waves is charac-
terized by having B = 0 and E = �r�, where � is the
electric potential. The potential � and the charge density
n obey the dynamic Poisson equation

r ·E(r, t) ⌘ �r2�(r, t) =
4⇡e

"(t)
n(r, t) . (4)

At this point, it is useful to introduce the scalar func-
tion f(r, t) = r · v(r, t). It then follows from Eqs.(2)-(4)
that f(r, t) satisfies the second order equation

@2f

@⌧2
+ !2

p
"(t)

"0
(1 + �n(t)) f + ⌫

@

@⌧

✓
"(t)

"0
f

◆
= 0, (5)

where similarly to the discussion of the parametric os-
cillator in43 we introduced the new time variable d⌧ =
dt "0/"(t). Furthermore, !2

p = 4⇡e2n0
m"0

is the (square of
the) plasma frequency of the unmodulated (equilibrium)
system.

If the modulation is such that "(t) never vanishes (so
that transformation of the time variable is always regu-
lar), not much is lost by considering the simpler case of
time-independent " = "0 and avoiding this transforma-
tion altogether. In this case, we obtain

@2f

@t2
+ !2

p(1 + �n(t))f + ⌫
@f

@t
= 0 (6)

namely, the equation for a damped parametric
oscillator43. Note in passing that the first-order damping
term in (6) may be eliminated by redefining f = e�⌫t/2g.
The resulting equation for g is

@2g

@t2
+ !2

p

✓
1� ⌫2

4!2
p

+ �n(t)

◆
g = 0 . (7)

A unique feature of (5) and (6) is that they do not con-
tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
modulation is switched on, exponential growth of f (and
all other relevant quantities) becomes possible, simulta-
neously for all k-modes. This collective instability facili-
tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
as we explain in detail below.

The two Floquet-type fundamental solutions of (6) are
of the form44–47 f1,2(t) = e�i!1,2tu1,2(t), where !1,2 are
the two fundamental frequencies, and u1,2(t) are periodic
functions with period T = 2⇡/⌦. Thus, f1,2(t + T ) =
e�i!1,2T f1,2(t) = ⇤1,2f1,2(t), where ⇤1,2 = e�i!1,2T are
the eigenvalues of the temporal transfer matrix TTT , which
acts on the two dimensional space of solutions of (6) and
propagates them through one period of time. The fun-
damental frequencies !1,2 = !0

1,2 + i!00
1,2 are typically

complex. Thus, if at least one of the imaginary parts
!00
1,2 is negative, the corresponding eigenvalues ⇤1,2 will

be larger than 1 in absolute values. Therefore, the corre-
sponding Floquet solution will grow as function of time,

electron velocity field (much smaller than the velocity induced by the pump)

local fluctuating part of the electron density (riding atop the spatially uniform background density        )  
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the characteristic excitations in a Lorentz-type medium
(a set of localized charged oscillators). The focus in42

was on excitation of these longitudinal optical phonons
by a charge embedded in the modulated medium.

General Considerations. Wave propagation in time-
modulated plasma is governed by the Maxwell equations

1

c

@B(r, t)

@t
= �r⇥E(r, t)

1

c

@ ("(t)E(r, t))

@t
= r⇥B(r, t)� 4⇡

c
J(r, t) (1)

coupled to the linearized continuity and transport equa-
tions:

@n(r, t)

@t
+N0(t)r · v(r, t) = 0, (2)

@v(r, t)

@t
=

e

m
E(r, t)� ⌫v(r, t). (3)

Here n(r, t) ⌧ N0(t) is the local fluctuating part of the
electron density (which rides atop the spatially uniform
background electron density N0(t)), v(r, t) is the electron
velocity field, and ⌫ is a collision frequency that accounts
for losses in the system. The (linearized) fluctuating part
of the current is J = eN0 (t)v. The specific details of cur-
rents and fields arising from the external periodic driving
fall outside our scope of interest. A possible realization of
plasma with time-varying N0 can be achieved by having
an electronic “pump” which creates a time-varying oscil-
lating current along, say, the z-direction (J0 ⇠ ẑ), which

induces time variation of N0. (See Fig.S1 of the Sup-
plementary Material for a schematic description of such
a system.) Our goal is to characterize how the exter-
nal driving (strong signal) a↵ects propagation of another
wave (weak signal) propagating in the plasma channel in
the xy-plane. For simplicity, we neglect gradients in the z
direction, resulting in the linearized continuity equation
(2). Time variation of " may be attributed to the ef-
fect of the driving on the bound electrons of the ambient
crystal. Our plasma is spatially homogeneous (N0(t) and
"(t) are space-independent). Consequently, it is enough
to consider waves with spatial dependence ⇠ eik·r.

Owing to isotropy of our system, its excitations can
be decoupled into longitudinal and transverse. Below we
consider various examples of temporal modulation ap-
plied to longitudinal and transverse plasmons.

Longitudinal Plasmons. This class of waves is charac-
terized by having B = 0 and E = �r�, where � is the
electric potential. The potential � and the charge density
n obey the dynamic Poisson equation
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At this point, it is useful to introduce the scalar func-
tion f(r, t) = r · v(r, t). It then follows from Eqs.(2)-(4)
that f(r, t) satisfies the second order equation
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where similarly to the discussion of the parametric os-
cillator in43 we introduced the new time variable d⌧ =
dt "0/"(t). Furthermore, !2

p = 4⇡e2n0
m"0

is the (square of
the) plasma frequency of the unmodulated (equilibrium)
system.

If the modulation is such that "(t) never vanishes (so
that transformation of the time variable is always regu-
lar), not much is lost by considering the simpler case of
time-independent " = "0 and avoiding this transforma-
tion altogether. In this case, we obtain
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namely, the equation for a damped parametric
oscillator43. Note in passing that the first-order damping
term in (6) may be eliminated by redefining f = e�⌫t/2g.
The resulting equation for g is
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A unique feature of (5) and (6) is that they do not con-
tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
modulation is switched on, exponential growth of f (and
all other relevant quantities) becomes possible, simulta-
neously for all k-modes. This collective instability facili-
tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
as we explain in detail below.

The two Floquet-type fundamental solutions of (6) are
of the form44–47 f1,2(t) = e�i!1,2tu1,2(t), where !1,2 are
the two fundamental frequencies, and u1,2(t) are periodic
functions with period T = 2⇡/⌦. Thus, f1,2(t + T ) =
e�i!1,2T f1,2(t) = ⇤1,2f1,2(t), where ⇤1,2 = e�i!1,2T are
the eigenvalues of the temporal transfer matrix TTT , which
acts on the two dimensional space of solutions of (6) and
propagates them through one period of time. The fun-
damental frequencies !1,2 = !0

1,2 + i!00
1,2 are typically

complex. Thus, if at least one of the imaginary parts
!00
1,2 is negative, the corresponding eigenvalues ⇤1,2 will

be larger than 1 in absolute values. Therefore, the corre-
sponding Floquet solution will grow as function of time,
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General Considerations. Wave propagation in time-
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A unique feature of (5) and (6) is that they do not con-
tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
modulation is switched on, exponential growth of f (and
all other relevant quantities) becomes possible, simulta-
neously for all k-modes. This collective instability facili-
tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
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tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
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all other relevant quantities) becomes possible, simulta-
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tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
as we explain in detail below.
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A unique feature of (5) and (6) is that they do not con-
tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
modulation is switched on, exponential growth of f (and
all other relevant quantities) becomes possible, simulta-
neously for all k-modes. This collective instability facili-
tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
as we explain in detail below.

The two Floquet-type fundamental solutions of (6) are
of the form44–47 f1,2(t) = e�i!1,2tu1,2(t), where !1,2 are
the two fundamental frequencies, and u1,2(t) are periodic
functions with period T = 2⇡/⌦. Thus, f1,2(t + T ) =
e�i!1,2T f1,2(t) = ⇤1,2f1,2(t), where ⇤1,2 = e�i!1,2T are
the eigenvalues of the temporal transfer matrix TTT , which
acts on the two dimensional space of solutions of (6) and
propagates them through one period of time. The fun-
damental frequencies !1,2 = !0
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complex. Thus, if at least one of the imaginary parts
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1,2 is negative, the corresponding eigenvalues ⇤1,2 will

be larger than 1 in absolute values. Therefore, the corre-
sponding Floquet solution will grow as function of time,
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Goal: 

to characterize how the external driving (strong signal) affects propagation of another wave (weak signal) 

propagating in the plasma channel in the xy-plane.

for lack of time  we shall concentrate in the rest of this talk on the effect of time modulation of 

longitudinal plasmons, which is enough to explain the concept of Plasmonic Time Crystal (PLTC)

are space independent          

thus, it is enough to consider plane wave excitations with spatial dependence  

the plasma is spatially homogeneous: 
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the plasma is isotropic excitations are decoupled into longitudinal and transverse modes 

——————



Longitudinal Plasmons

for these waves

2

the characteristic excitations in a Lorentz-type medium
(a set of localized charged oscillators). The focus in42

was on excitation of these longitudinal optical phonons
by a charge embedded in the modulated medium.

General Considerations. Wave propagation in time-
modulated plasma is governed by the Maxwell equations
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coupled to the linearized continuity and transport equa-
tions:
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Here n(r, t) ⌧ N0(t) is the local fluctuating part of the
electron density (which rides atop the spatially uniform
background electron density N0(t)), v(r, t) is the electron
velocity field, and ⌫ is a collision frequency that accounts
for losses in the system. The (linearized) fluctuating part
of the current is J = eN0 (t)v. The specific details of cur-
rents and fields arising from the external periodic driving
fall outside our scope of interest. A possible realization of
plasma with time-varying N0 can be achieved by having
an electronic “pump” which creates a time-varying oscil-
lating current along, say, the z-direction (J0 ⇠ ẑ), which

induces time variation of N0. (See Fig.S1 of the Sup-
plementary Material for a schematic description of such
a system.) Our goal is to characterize how the exter-
nal driving (strong signal) a↵ects propagation of another
wave (weak signal) propagating in the plasma channel in
the xy-plane. For simplicity, we neglect gradients in the z
direction, resulting in the linearized continuity equation
(2). Time variation of " may be attributed to the ef-
fect of the driving on the bound electrons of the ambient
crystal. Our plasma is spatially homogeneous (N0(t) and
"(t) are space-independent). Consequently, it is enough
to consider waves with spatial dependence ⇠ eik·r.

Owing to isotropy of our system, its excitations can
be decoupled into longitudinal and transverse. Below we
consider various examples of temporal modulation ap-
plied to longitudinal and transverse plasmons.

Longitudinal Plasmons. This class of waves is charac-
terized by having B = 0 and E = �r�, where � is the
electric potential. The potential � and the charge density
n obey the dynamic Poisson equation

r ·E(r, t) ⌘ �r2�(r, t) =
4⇡e

"(t)
n(r, t) . (4)

At this point, it is useful to introduce the scalar func-
tion f(r, t) = r · v(r, t). It then follows from Eqs.(2)-(4)
that f(r, t) satisfies the second order equation
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where similarly to the discussion of the parametric os-
cillator in43 we introduced the new time variable d⌧ =
dt "0/"(t). Furthermore, !2

p = 4⇡e2n0
m"0

is the (square of
the) plasma frequency of the unmodulated (equilibrium)
system.

If the modulation is such that "(t) never vanishes (so
that transformation of the time variable is always regu-
lar), not much is lost by considering the simpler case of
time-independent " = "0 and avoiding this transforma-
tion altogether. In this case, we obtain
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namely, the equation for a damped parametric
oscillator43. Note in passing that the first-order damping
term in (6) may be eliminated by redefining f = e�⌫t/2g.
The resulting equation for g is
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A unique feature of (5) and (6) is that they do not con-
tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
modulation is switched on, exponential growth of f (and
all other relevant quantities) becomes possible, simulta-
neously for all k-modes. This collective instability facili-
tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
as we explain in detail below.

The two Floquet-type fundamental solutions of (6) are
of the form44–47 f1,2(t) = e�i!1,2tu1,2(t), where !1,2 are
the two fundamental frequencies, and u1,2(t) are periodic
functions with period T = 2⇡/⌦. Thus, f1,2(t + T ) =
e�i!1,2T f1,2(t) = ⇤1,2f1,2(t), where ⇤1,2 = e�i!1,2T are
the eigenvalues of the temporal transfer matrix TTT , which
acts on the two dimensional space of solutions of (6) and
propagates them through one period of time. The fun-
damental frequencies !1,2 = !0

1,2 + i!00
1,2 are typically

complex. Thus, if at least one of the imaginary parts
!00
1,2 is negative, the corresponding eigenvalues ⇤1,2 will

be larger than 1 in absolute values. Therefore, the corre-
sponding Floquet solution will grow as function of time,
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nal driving (strong signal) a↵ects propagation of another
wave (weak signal) propagating in the plasma channel in
the xy-plane. For simplicity, we neglect gradients in the z
direction, resulting in the linearized continuity equation
(2). Time variation of " may be attributed to the ef-
fect of the driving on the bound electrons of the ambient
crystal. Our plasma is spatially homogeneous (N0(t) and
"(t) are space-independent). Consequently, it is enough
to consider waves with spatial dependence ⇠ eik·r.

Owing to isotropy of our system, its excitations can
be decoupled into longitudinal and transverse. Below we
consider various examples of temporal modulation ap-
plied to longitudinal and transverse plasmons.

Longitudinal Plasmons. This class of waves is charac-
terized by having B = 0 and E = �r�, where � is the
electric potential. The potential � and the charge density
n obey the dynamic Poisson equation
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cillator in43 we introduced the new time variable d⌧ =
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p = 4⇡e2n0
m"0

is the (square of
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system.
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time-independent " = "0 and avoiding this transforma-
tion altogether. In this case, we obtain
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A unique feature of (5) and (6) is that they do not con-
tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
modulation is switched on, exponential growth of f (and
all other relevant quantities) becomes possible, simulta-
neously for all k-modes. This collective instability facili-
tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
as we explain in detail below.

The two Floquet-type fundamental solutions of (6) are
of the form44–47 f1,2(t) = e�i!1,2tu1,2(t), where !1,2 are
the two fundamental frequencies, and u1,2(t) are periodic
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acts on the two dimensional space of solutions of (6) and
propagates them through one period of time. The fun-
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be larger than 1 in absolute values. Therefore, the corre-
sponding Floquet solution will grow as function of time,
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velocity field, and ⌫ is a collision frequency that accounts
for losses in the system. The (linearized) fluctuating part
of the current is J = eN0 (t)v. The specific details of cur-
rents and fields arising from the external periodic driving
fall outside our scope of interest. A possible realization of
plasma with time-varying N0 can be achieved by having
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lating current along, say, the z-direction (J0 ⇠ ẑ), which
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a system.) Our goal is to characterize how the exter-
nal driving (strong signal) a↵ects propagation of another
wave (weak signal) propagating in the plasma channel in
the xy-plane. For simplicity, we neglect gradients in the z
direction, resulting in the linearized continuity equation
(2). Time variation of " may be attributed to the ef-
fect of the driving on the bound electrons of the ambient
crystal. Our plasma is spatially homogeneous (N0(t) and
"(t) are space-independent). Consequently, it is enough
to consider waves with spatial dependence ⇠ eik·r.

Owing to isotropy of our system, its excitations can
be decoupled into longitudinal and transverse. Below we
consider various examples of temporal modulation ap-
plied to longitudinal and transverse plasmons.

Longitudinal Plasmons. This class of waves is charac-
terized by having B = 0 and E = �r�, where � is the
electric potential. The potential � and the charge density
n obey the dynamic Poisson equation

r ·E(r, t) ⌘ �r2�(r, t) =
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cillator in43 we introduced the new time variable d⌧ =
dt "0/"(t). Furthermore, !2
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is the (square of
the) plasma frequency of the unmodulated (equilibrium)
system.

If the modulation is such that "(t) never vanishes (so
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time-independent " = "0 and avoiding this transforma-
tion altogether. In this case, we obtain
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A unique feature of (5) and (6) is that they do not con-
tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
modulation is switched on, exponential growth of f (and
all other relevant quantities) becomes possible, simulta-
neously for all k-modes. This collective instability facili-
tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
as we explain in detail below.

The two Floquet-type fundamental solutions of (6) are
of the form44–47 f1,2(t) = e�i!1,2tu1,2(t), where !1,2 are
the two fundamental frequencies, and u1,2(t) are periodic
functions with period T = 2⇡/⌦. Thus, f1,2(t + T ) =
e�i!1,2T f1,2(t) = ⇤1,2f1,2(t), where ⇤1,2 = e�i!1,2T are
the eigenvalues of the temporal transfer matrix TTT , which
acts on the two dimensional space of solutions of (6) and
propagates them through one period of time. The fun-
damental frequencies !1,2 = !0

1,2 + i!00
1,2 are typically

complex. Thus, if at least one of the imaginary parts
!00
1,2 is negative, the corresponding eigenvalues ⇤1,2 will

be larger than 1 in absolute values. Therefore, the corre-
sponding Floquet solution will grow as function of time,



namely, the equation of a parametric oscillator!
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for  the sake of simplicity, we shall consider below lossless system and set
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then it follows from Maxwell’s equations and from the linearized continuity and transport equations that
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namely, the equation of a parametric oscillator!
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a unique feature of this equation: it does not depend on the wave number k

this is specific to longitudinal plasmons, due to their k-independent dispersion relation  
(in the absence of modulation)
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this implies that after time modulation is switched on, exponential growth of    (and all other relevant quantities) becomes 
possible, simultaneously for all k-modes
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this collective instability facilitates interaction the plasma with the external driving circuitry,  
culminating in strong parametric amplification



Floquet Theory

the two solutions of

periodic driving
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the characteristic excitations in a Lorentz-type medium
(a set of localized charged oscillators). The focus in42

was on excitation of these longitudinal optical phonons
by a charge embedded in the modulated medium.

General Considerations. Wave propagation in time-
modulated plasma is governed by the Maxwell equations
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coupled to the linearized continuity and transport equa-
tions:

@n(r, t)

@t
+N0(t)r · v(r, t) = 0, (2)

@v(r, t)

@t
=

e

m
E(r, t)� ⌫v(r, t). (3)

Here n(r, t) ⌧ N0(t) is the local fluctuating part of the
electron density (which rides atop the spatially uniform
background electron density N0(t)), v(r, t) is the electron
velocity field, and ⌫ is a collision frequency that accounts
for losses in the system. The (linearized) fluctuating part
of the current is J = eN0 (t)v. The specific details of cur-
rents and fields arising from the external periodic driving
fall outside our scope of interest. A possible realization of
plasma with time-varying N0 can be achieved by having
an electronic “pump” which creates a time-varying oscil-
lating current along, say, the z-direction (J0 ⇠ ẑ), which

induces time variation of N0. (See Fig.S1 of the Sup-
plementary Material for a schematic description of such
a system.) Our goal is to characterize how the exter-
nal driving (strong signal) a↵ects propagation of another
wave (weak signal) propagating in the plasma channel in
the xy-plane. For simplicity, we neglect gradients in the z
direction, resulting in the linearized continuity equation
(2). Time variation of " may be attributed to the ef-
fect of the driving on the bound electrons of the ambient
crystal. Our plasma is spatially homogeneous (N0(t) and
"(t) are space-independent). Consequently, it is enough
to consider waves with spatial dependence ⇠ eik·r.

Owing to isotropy of our system, its excitations can
be decoupled into longitudinal and transverse. Below we
consider various examples of temporal modulation ap-
plied to longitudinal and transverse plasmons.

Longitudinal Plasmons. This class of waves is charac-
terized by having B = 0 and E = �r�, where � is the
electric potential. The potential � and the charge density
n obey the dynamic Poisson equation

r ·E(r, t) ⌘ �r2�(r, t) =
4⇡e

"(t)
n(r, t) . (4)

At this point, it is useful to introduce the scalar func-
tion f(r, t) = r · v(r, t). It then follows from Eqs.(2)-(4)
that f(r, t) satisfies the second order equation
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where similarly to the discussion of the parametric os-
cillator in43 we introduced the new time variable d⌧ =
dt "0/"(t). Furthermore, !2

p = 4⇡e2n0
m"0

is the (square of
the) plasma frequency of the unmodulated (equilibrium)
system.

If the modulation is such that "(t) never vanishes (so
that transformation of the time variable is always regu-
lar), not much is lost by considering the simpler case of
time-independent " = "0 and avoiding this transforma-
tion altogether. In this case, we obtain
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namely, the equation for a damped parametric
oscillator43. Note in passing that the first-order damping
term in (6) may be eliminated by redefining f = e�⌫t/2g.
The resulting equation for g is
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A unique feature of (5) and (6) is that they do not con-
tain the wave number k. This is specific to longitudinal
plasmons, due to their k-independent dispersion relation
(in the absence of modulation) ! = ±!p (see the dashed
lines in Fig 1a.) Such dispersion implies that after time
modulation is switched on, exponential growth of f (and
all other relevant quantities) becomes possible, simulta-
neously for all k-modes. This collective instability facili-
tates interaction of the plasma with the external driving
circuitry, culminating in strong parametric amplification,
as we explain in detail below.

The two Floquet-type fundamental solutions of (6) are
of the form44–47 f1,2(t) = e�i!1,2tu1,2(t), where !1,2 are
the two fundamental frequencies, and u1,2(t) are periodic
functions with period T = 2⇡/⌦. Thus, f1,2(t + T ) =
e�i!1,2T f1,2(t) = ⇤1,2f1,2(t), where ⇤1,2 = e�i!1,2T are
the eigenvalues of the temporal transfer matrix TTT , which
acts on the two dimensional space of solutions of (6) and
propagates them through one period of time. The fun-
damental frequencies !1,2 = !0

1,2 + i!00
1,2 are typically

complex. Thus, if at least one of the imaginary parts
!00
1,2 is negative, the corresponding eigenvalues ⇤1,2 will

be larger than 1 in absolute values. Therefore, the corre-
sponding Floquet solution will grow as function of time,
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FIG. 1: a) Band structure of the static dispersive crystal, showing both positive and negative frequency bands. The arrows
indicate possible interband transitions. bi) !00 as a function of the (weak) modulation strength for i) ⌦ = 2!p (blue solid lines),
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are bounded, while in regions of instability f(t) exhibits
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theory.
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(6) are demonstrated succinctly by the following two ex-
amples:

(i) harmonic modulation:

�n(t) = �nM cos⌦t . (8)

In this case (and in the absence of losses) Eq.(6) re-
duces to the famous Mathieu equation44–46,48,49, which
exhibits rich structure of stability and instability regions
in the space of parameters ⌦/!p and �nM. In partic-
ular, for ⌦ = 2!p, it is well known that the ampli-
tude of oscillations grows exponentially approximately
as exp(�nM!pt/4). It is instructive to interpret this in-
stability as a collective resonance (i.e., for all values of
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Note that in the same Fig.1a we also plotted the two
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branches are sometimes referred to in the literature as
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which appear only after periodic modulation is switched
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tion II of47 for more elementary details about Floquet
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!00(⌫) ' !00(0) � ⌫/2, persists also for su�ciently small
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⌫, as should be clear from the argument leading to (7)43.
Note that in the same Fig.1a we also plotted the two

branches of the spectrum for a transverse plasmon ! =
±!(k), discussed in the next subsection. These spectral
branches are sometimes referred to in the literature as
“bands”, not to be confused with (time) Bloch bands,
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quency ⌦ and on the parameters controlling the (dimen-
sionless) modulation profile �n(t). This parameter space
is split into regions of stability and instability, separated
by borderlines. In regions of stability, oscillations of f(t)
are bounded, while in regions of instability f(t) exhibits
resonant behavior, with unbounded oscillations. See Sec-
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(6) are demonstrated succinctly by the following two ex-
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in the space of parameters ⌦/!p and �nM. In partic-
ular, for ⌦ = 2!p, it is well known that the ampli-
tude of oscillations grows exponentially approximately
as exp(�nM!pt/4). It is instructive to interpret this in-
stability as a collective resonance (i.e., for all values of

the wavenumber k) between the two branches ±!p of the
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also when ⌦ is slightly detuned away from 2!p, albeit
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⌫, as should be clear from the argument leading to (7)43.
Note that in the same Fig.1a we also plotted the two
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(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p

s
�n2

M

((2n+ 1)⇡)2
��2 , (11)

where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

focus on the modulation

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).

p





/ p

0.5 1.0 1.5 2.0 2.5 3.0
!0.15

!0.10

!0.05

0.00

0.05

0.10

0.15

FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

in particular, for weak modulation amplitude 
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(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p
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((2n+ 1)⇡)2
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p
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((2n+ 1)⇡)2
��2 , (11)

where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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FIG. 1: a) Band structure of the static dispersive crystal, showing both positive and negative frequency bands. The arrows
indicate possible interband transitions. bi) !00 as a function of the (weak) modulation strength for i) ⌦ = 2!p (blue solid lines),
ii) ⌦ = (2± 0.01)!p (green dashed lines) and iii) ⌦ = (2± 0.03)!p (black dotted lines). bii) !00 as a function of the detuning
parameter � for fixed weak modulation amplitude �nM = 0.05 for the first three odd resonances (2n+1 = 1, 3, 5) in (11). The
dashed curves are the analytic predictions. The three resonances are centered at � = 0 and the growth rate becomes smaller
as n increases. biii) The same as in bii) with �nM = 0.05 for the even resonances 2n = 2, 12, 22 in (12). Note the smaller
vertical scale compared to the previous case. The three displayed resonances are are in good agreement with the n-independent
prediction of (12), despite the large disparity of chosen values for n. Evidently, these three resonances are centered around a
negative value of � consistent with ��n2

M/8 as predicted in (12).

rendering the system unstable.
The eigenvalues ⇤1,2 depend on the modulation fre-

quency ⌦ and on the parameters controlling the (dimen-
sionless) modulation profile �n(t). This parameter space
is split into regions of stability and instability, separated
by borderlines. In regions of stability, oscillations of f(t)
are bounded, while in regions of instability f(t) exhibits
resonant behavior, with unbounded oscillations. See Sec-
tion II of47 for more elementary details about Floquet
theory.

These general statements about stability properties of
(6) are demonstrated succinctly by the following two ex-
amples:

(i) harmonic modulation:

�n(t) = �nM cos⌦t . (8)

In this case (and in the absence of losses) Eq.(6) re-
duces to the famous Mathieu equation44–46,48,49, which
exhibits rich structure of stability and instability regions
in the space of parameters ⌦/!p and �nM. In partic-
ular, for ⌦ = 2!p, it is well known that the ampli-
tude of oscillations grows exponentially approximately
as exp(�nM!pt/4). It is instructive to interpret this in-
stability as a collective resonance (i.e., for all values of

the wavenumber k) between the two branches ±!p of the
static (unmodulated) crystal. This instability persists
also when ⌦ is slightly detuned away from 2!p, albeit
with a smaller growth exponent43

!00 ' !p

4

q
�n2

M � 16�2 (9)

where � = (⌦/2!p)� 1 is the detuning parameter. The
width of the instability region around ⌦ = 2!p is de-
termined by reality of !00. In particular, this means
that there is a minimal threshold value of �nTh

M = 4|�|
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a simple perturbative result for the growth exponent of weak ‘linear’ resonances for arbitrary periodic weak 
modulation profile (at zero detuning           )
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(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
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commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate
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2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
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with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh
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of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =
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l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate
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This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
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cies ⌦odd
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with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh
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of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =
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of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p

s
�n2

M

((2n+ 1)⇡)2
��2 , (11)

where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
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Kronig-Penney model for energy band structure in one
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
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resonance requires a threshold value �nTh
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show in the Supplemental Material that there is yet an-
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of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res
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M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00
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M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p
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�n2
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((2n+ 1)⇡)2
��2 , (11)

where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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integer n, with growth exponents

!00 = !p

s✓
�n2

M

4

◆2

�
✓
�+

�n2
M

8

◆2

(12)

where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p

s
�n2
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((2n+ 1)⇡)2
��2 , (11)

where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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integer n, with growth exponents

!00 = !p

s✓
�n2

M

4

◆2

�
✓
�+

�n2
M

8

◆2

(12)

where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p

s
�n2
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((2n+ 1)⇡)2
��2 , (11)

where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47

!00 = !p

s
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((2n+ 1)⇡)2
��2 , (11)

where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because

4

(ii) periodic piecewise constant modulation: In this
case, in its simplest form, �n(t) assumes one constant
value �n1 during the first part 0  t < ⌧ of the mod-
ulation period and another constant value �n2 during
its remaining part ⌧  t < T 44,45. The spatial analog
of Eq. (7) with this type of modulation is the familiar
Kronig-Penney model for energy band structure in one
dimensional crystals.

For concreteness, let us focus on the modulation

�n (t) = �nM sgn (sin (⌦t)) (10)

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the
plane of parameters ⌦/!p and �nM

44,45. In particular,
for weak modulation amplitude �nM (and in the absence
of dissipation ⌫ = 0), one finds an infinite family of res-
onances analogous to the aforementioned resonance of
the Mathieu equation, centered at modulation frequen-
cies ⌦odd

n = 2⇡/T = 2!p/(2n + 1) with integer n, and
with growth exponents47
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where � = ⌦/⌦odd
n � 1 is the detuning parameter.

Thus, at the center of the resonance (� = 0), !00
Res =

!p�nM/(2n + 1)⇡ is linear in �nM , and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Mathieu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value �nTh

M = (2n+1)⇡|�|
of the modulation amplitude to induce instability with
diminished !00.

In addition to this family of ‘linear’ resonances, we
show in the Supplemental Material that there is yet an-
other family of weaker resonances centered in the vicinity
of modulation frequencies ⌦even

n = 2!p/2n = !p/n with
integer n, with growth exponents
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where � = ⌦/⌦even
n � 1 is the detuning parameter away

from ⌦even
n . In contrast with (11), the centers of these

resonances (i.e., maximal instability) occur at modula-
tion frequencies ⌦Res

n = ⌦even
n (1� �n2

M/8), which depend
quadratically on �nM . Furthermore, at ⌦ = ⌦Res

n , all
these resonances share an n-independent common growth
exponent !00

Res = !p�n2
M/4, quadratic in �nM , and there-

fore of higher order in perturbation theory.
The predictions of (11) and (12) are compared against

numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.

For completeness, in Fig.2 we show numerical results
for the growth rates !00 of resonances arising at fixed

strong modulation amplitude �nM = 0.5 as function of
the modulation amplitude ⌦. The general pattern of res-
onances at weak modulation amplitudes, summarized in
(11) and (12), is clearly preserved, up to some amount of
bounded shifts in resonance frequencies. However, as can
be clearly seen in Fig.2, at strong modulation amplitude,
the strength of the even resonances of (12) can become
comparable, or even surpass the odd resonances of (11).
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FIG. 2: !00 as a function of the modulation frequency ⌦ for
fixed strong modulation amplitude �nM = 0.5. The verti-
cal grid lines mark the modulation frequencies ⌦ = 2!p/m
with m = 1, 2, ..., 7 at the positions of the linear (odd m)
and quadratic (even m) resonances (Eqs.(11) and (12), re-
spectively) in the case of weak modulation amplitude.

In the Supplementary Material we give a simple per-
turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
as special cases. To this end consider the Fourier de-
composition �n(t) =

P1
l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))

of the modulation amplitude. Resonant behavior of f(t)
should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate

!00 =
!p|cn|

2
. (13)

This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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numerical simulation of the piecewise constant modula-
tion in Fig.1bi-iii, showing excellent agreement.
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turbative derivation of the growth rate !00 of ‘linear res-
onances’ (at zero detuning � = 0 and in the absence
of losses ⌫ = 0) for an arbitrary weak periodic modu-
lation profile �n(t) in (6), which includes (9) and (11)
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composition �n(t) =
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should be expected when the modulation frequency ⌦ is
commensurate with the gap 2!p in the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2!p/⌦ = n, with integer n. In this case, the nth Fourier
mode of �n(t) will become resonant, and will induce in-
stability with growth rate
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This result is linear in cn, and therefore in �n, being the
result of first order perturbation theory.
For example, in the Mathieu case (8), cl =

(�nM/2)�l,1, so there is only one linear resonance which
occurs for n = 1 at ⌦ = 2!p and with the known growth
exponent !00 = !p�nM/4.
For the piecewise constant modulation (10), all even

Fourier modes c2n = 0 vanish, while the odd ones are
c2n+1 = 2�nM/(2n + 1)⇡i. Thus, there is an infi-
nite set of linear resonances at modulation frequencies
⌦ = 2!p/(2n+1), with corresponding growth exponents
!00 = !p�nM/(2n+1)⇡, which agrees with the aforemen-
tioned result (11). In this case, there are no linear res-
onances corresponding to even index 2n simply because
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there are no Fourier modes of even order in the modula-
tion (10). Finally, as we mention in47, modulation by a
comb of Dirac-delta impulses can be realized as a certain
limit of piecewise constant modulation. Such modula-
tion induces ‘linear’ resonances, whose growth rates are
given by our general formula (13) in the limit of weak
modulation amplitude.

Transverse Plasmons. We shall now briefly consider
temporal modulation of transverse plasmons19,33–37,
mainly in order to compare it against that of longitu-
dinal plasmons. For simplicity, we shall assume in this
section that the material dissipation is negligible (⌫ = 0).
Transverse waves are governed by the two Maxwell equa-
tions (1), the (linearized) continuity equation (2), and
by Newton’s law for electrons (3). (The two remaining
Maxwell equations, namely, Gauss’ law (4) for the elec-
tric field and solenoidality r ·B(r, t) = 0 of the magnetic
field, need only be imposed at the initial time of evo-
lution, and automatically persist at later times.) Since
the medium in question is translationally invariant, it is
enough to consider plane-wave solutions ⇠ eik·r, and an-
alyze the dynamics of a wave with a fixed wave-vector
k. (In order to avoid notational cluttering, we shall omit
the Fourier index k from all relevant physical quantities.)

Due to isotropy of the medium, with no loss of gen-
erality, henceforth we take E = Eẑ,B = Bŷ,k = kx̂
and v = vẑ. Thus, j = eN0(t)v ? k, leading to
@n/@t = �ik ·j = 0 from (2). This ensures consistency of
(the time derivative of) Eq. (4) and the second equation
in (1). After substituting our Ansatz, Eqs. (1) and (3)
reduce to

@v

@t
=

e

m
E ,

@B

@t
= ikcE

@

@t
["(t)E] = ikcB � 4⇡j with j = eN0(t)v . (14)

Note that if we set N0(t) = 0 in the above equations
(no free electrons), but allow temporal modulation of
the term "(t), we recover the dynamic equations for a
standard photonic crystal in a temporally modulated di-
electric.

It is convenient at this point to derive a second order
di↵erential equation for B rather than for E, in order to
avoid the necessity of taking a time derivative of N0(t).
To this end, we first eliminate v = �ie

ckmB from the first
pair of equations in (14) and use this result to express
j in terms of B. Then, by taking the time derivative of
the second equation in (14), with the use of the equation
for j following it, we obtain our desired equation for B

as @
@t

�
"(t)@B@t

�
+

⇣
k2c2 + 4⇡N0(t)e

2

m

⌘
B = 0.

Assuming that " = "0 is time-independent, it is
straightforward to show that B satisfies

d2B

dt2
+ !2

T

"
1 +

!2
p

!2
T

�n(t)

#
B = 0 , (15)

where !2
T = c2k2

"0
+ !2

p is the transverse plasmon fre-
quency, for a given wavenumber k. Equation (15) is sim-

ilar in form to (6) (with ⌫ = 0), coincides with the latter
at k = 0, and therefore describes a parametric oscillator,
as in the case of longitudinal plasmons. Evidently, we can
translate the entire previous discussion of resonances in
modulated longitudinal plasmons to transverse plasmons,
simply by replacing !p in the appropriate places by !T

and by rescaling the modulation amplitude �n(t) by a
factor !2

p/!
2
T . Thus, compared to the longitudinal case,

the modulation amplitude is e↵ectively reduced and the
resonance frequency of the system is increased. Stability
regions in the parameter space pertaining to modulated
longitudinal plasmons become k-bands of the transverse
PLTC, while regions of instability correspond to gaps.
We stress that the resonances associated with (15) arise

for each wavenumber k separately, in contrast with the
collective, k-independent nature of resonances in modu-
lated longitudinal plasmons.
For example, in the case of piecewise constant mod-

ulation (10), we see from (11) pertaining to longitu-
dinal plasmons, that there will be resonances of the
transverse plasmon at modulation frequency ⌦odd

n,T =
2!T /(2n + 1) with integer n and growth exponents

!00 = !T

q
(!2

p�nM/(2n+ 1)⇡!2
T )

2 ��2, in which � =

⌦/⌦odd
n,T � 1 is the detuning parameter. Analogous re-

sults exist obviously also for the weaker longitudinal res-
onances (12).
Conclusions. In this Letter we carried a comprehen-

sive study of plasmonic time crystals, demonstrating that
these platforms support both longitudinal and transverse
modes. We have shown that under a periodic time mod-
ulation, these systems function as parametric oscillators.
We have analyzed their stability properties across var-
ious parameters. Notably, the resonance of the longi-
tudinal modes does not depend on the wave vector k,
allowing these modes to undergo a collective resonance.
This characteristic can be leveraged to achieve optical
amplification.
In contrast, transverse PLTCs depend on the k-vector

of propagating waves, and in this case, stability re-
gions in parameter space correspond to k-bands of the
PLTC, while instability regions correspond to gaps. The
strongest parametric instabilities are determined by in-
terband transitions at modulation frequency ⌦ = 2!T .
Higher-order instabilities result from related mechanisms
but at lower modulation rates.
Remarkably, we find that for piecewise modulation

there is an infinite family of resonances with common
growth rate associated with modulation frequencies that
scale as 2!p/n (2!T /n) for longitudinal (transverse) plas-
mons, with even index n.
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Appendix 2

III. PIECEWISE CONSTANT MODULATION

A. Modulation Period with Two Di↵erent
Amplitude Values

Here we shall derive equations (11) and (12) of the

main text - the expressions for the growth exponents as-

sociated with resonances of odd and even indices, respec-

tively. In the next subsection we shall also solve this

model in the limit in which the piecewise modulation be-

comes a time-periodic Dirac comb of �-impulses.

In the simplest form of piecewise constant periodic

modulation, �n(t) assumes one constant value �n1 dur-

ing the first part 0  t < ⌧ of the modulation period

and another constant value �n2 during its remaining part

⌧  t < T 1,2
.

The common practice to solving (2) with periodic

modulation is to analyze the initial value problem, and

compute the two independent fundamental solutions c(t)
and s(t) with initial conditions c(0) = 1; ċ(0) = 0 and

s(0) = 0; , ṡ(0) = 1 (namely, the cosine- and sine-like so-

lutions). These solutions can be easily computed explic-

itly in our case of piecewise constant modulation. The

transfer matrix TTT is then constructed from the values

of these fundamental solutions and their derivatives at

t = T 3
. Here we shall follow an alternative method

4–6

(familiar from the theory of Lyapunov stability) to com-

puting TTT , but in a basis di↵erent from that of {c(t), s(t)}.
(The eigenvalues ⇤1,2 of TTT are of course basis indepen-

dent.) To this end, we adopt a “hamiltonian” approach

and rewrite (2) as a system of two coupled first order

equations

d

dt

0

@
 1

 2

1

A =

0

B@
0 !p

�!p

⇣
1� ⌫2

4!2
p
+ �n(t)

⌘
0

1

CA

0

@
 1

 2

1

A

(3)

with  1 = !pg(t) and  2 = ġ(t) (thus rendering  1 and

 2 the same physical dimension). Equation (3) can be in-

tegrated formally by applying the time ordered exponent

UUU(t, t0) = T exp

 
t́

t0

LLL(t0)dt0

!
of the matrixLLL(t) (the “Li-

ouvillian”) on the right hand side of (3) to the vector of

initial conditions at t = t0. For constant �n, as in each

part of the modulation period in the present example,

one can exponentiate LLL explicitly and find

MMM(⇥; t) = eLLLt
=

0

@
cos⇥t !p

⇥ sin⇥t

� ⇥
!p

sin⇥t cos⇥t

1

A (4)

with ⇥ = !p

q
1� ⌫2

4!2
p
+ �n . In the main text we focus

on the modulation

�n (t) = �nM sgn (sin (⌦t)) (5)

which flips sign at the middle of the modulation pe-

riod. In this case the transfer matrix for Eq.(2) is read-

ily found as TTT g = UUU(T, 0) = MMM(⇥�;T/2)MMM(⇥+;T/2),

where ⇥± = !p

q
1� ⌫2

4!2
p
± �nM .

From the relation f = e�⌫t/2g we have

(!pf(t), ḟ(t))T = e�⌫t/2KKK(!pg(t), ġ(t))T with

KKK =

✓
1 0

�⌫/2!p 1

◆
, and therefore the transfer

matrix for Eq. (1) is TTT f = e�⌫T/2KKKTTT gKKK�1. Thus,

1

2
TrTTT f =

1

2
(⇤1 + ⇤2) =

1

2
e�⌫T/2

TrTTT g

= e�⌫T/2
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cos
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cos

✓
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⌦

◆

�1

2
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+
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sin
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⌦

◆
sin

✓
⇡⇥�
⌦

◆�
(6)

which coincides with the known result
1,2

in the absence

of dissipation ⌫ = 0. (See also chapter 8 of
3
and note

the obvious typo in Eq.(8.5) therein.)

For simplicity, from now on we shall focus on the non-

dissipative case ⌫ = 0, and rewrite (6) more neatly as

1
2 TrTTT f = cos

✓
⇡(⇥+ +⇥�)

⌦

◆

� (⇥+ �⇥�)
2

4⇥+⇥�
·

cos

✓
⇡(⇥+ �⇥�)

⌦

◆

� cos

✓
⇡(⇥+ +⇥�)

⌦

◆�
. (7)

In regions of stability, where ⇤
⇤
2 = ⇤1 = e�i!T

(with real

!), we thus have 1
2TrTTT f = cos!T , so that |TrTTT f/2| < 1.

In contrast, in the unstable regime we can always choose

⇤1 = 1/⇤2 = ±e!
00T

with !00 > 0. Thus, ! = i!00

for positive ⇤1,2, or ! = ⇡/T + i!00
for negative ⇤1,2

(where !0
= ⇡/T is restricted to the first Brillouin zone).

Therefore, in the unstable regime we have
1
2TrTTT f =

± cosh(!00T ) so that |TrTTT f/2| > 1. The boundaries sep-

arating stable and unstable regions are therefore given

by the curves where TrTTT f/2 = ±1. This leads, like in

the case of Mathieu’s equation, to a rich chart of stability

and instability regions in the plane of parameters ⌦/!p

and �nM
1,2

.

Let us now investigate the stability of this system per-

turbatively for weak modulation amplitude �nM . In

this case, the factor (⇥+ � ⇥�)
2/⇥+⇥� in the second

term in (7) is clearly of order �n2
M . Thus, the modula-

tion frequencies which induce instabilities at infinitesimal

�nM ! 0
+

are determined in this limit by the leading

term cos(⇡(⇥+ +⇥�)/⌦) ' cos(2⇡!p/⌦) in (7) tending

to ±1. The first few terms of the expansion of (7) around
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�nM = 0 are

1

2
TrTTT f = cos

✓
2⇡!p

⌦

◆
+

1

2


⇡!p

2⌦
sin

✓
2⇡!p

⌦

◆
� sin

2
⇣⇡!p

⌦

⌘�
�n2

M +

1

32


4

⇣⇡!p

⌦

⌘2
� 6 +

✓
6�

⇣⇡!p

⌦

⌘2
◆
cos

✓
2⇡!p

⌦

◆
+

9

2

⇡!p

⌦
sin

✓
2⇡!p

⌦

◆�
�n4

M + O(�n6
M ) .

(8)

The instability near cos(2⇡!p/⌦) = �1 occurs around

modulation frequencies ⌦ = 2⇡/T = 2!p/(2n + 1) with

integer n. (In the expansion of (7) around �nM = 0

leading to (8), we tacitly assumed T was bounded, which

means that the integer n, indexing the corresponding

parametric resonance, is assumed to be bounded as well.)

Thus, let us substitute ⌦ = 2!p(1 +�)/(2n + 1) in (8),

with � a small detuning parameter. We find 1/2TrTTT f ⌘
cos ((!0

+ i!00
)T ) = �1 �

⇥
�n2

M � (2n+ 1)
2⇡2

�
2
⇤
/2 +

O(�n2
M�,�3

) ' cos

⇣
i
p

�n2
M � (2n+ 1)2⇡2�2 ± ⇡

⌘
.

Therefore, up to the indicated accuracy, !0
= ±⇡/T =

±!p(1 +�)/(2n+ 1) and

!00
= !p

s
�n2

M

((2n+ 1)⇡)2
��2 . (9)

Thus, maximal instability (the center of the resonance)

occurs at � = 0, where !00
Res = !p�nM/(2n+1)⇡ is linear

in �nM , and is therefore of leading order in perturbation

theory. Furthermore, similarly to the corresponding re-

sult for the Mathieu case, given in Eq. (9) in the main

text, detuning the modulation frequency away from the

resonance requires a threshold value �nTh
M = (2n+1)⇡|�|

of the modulation amplitude to induce instability with

diminished !00
.

This is not the case for the parametric reso-

nances around the other instability borderline at

cos(2⇡!p/⌦) = +1, which occur in the vicinity of

modulation frequencies ⌦ = 2!p/2n = !p/n with

integer n. By substituting ⌦ = !p(1 +�)/n in (8) and

expanding the resulting expression in powers of �, we

find that the associated resonance lies in the parametric

regime where � scales like �n2
M so that 1/2TrTTT f ⌘

cos ((!0
+ i!00

)T ) = 1 + (1/2)(2⇡n)2[�n4
M/16 �

(� + �n2
M/8)2] + O(�

3, �n2
M�

2, �n4
M�, �n6

M ) '
cosh

h
(2⇡n)

p
�n4

M/16� (�+ �n2
M/8)2

i
. Thus, up to

the indicated accuracy

!00
= !p

s✓
�n2

M

4

◆2

�
✓
�+

�n2
M

8

◆2

(10)

(and of course !0
= 0). Thus, in contrast with (9), these

resonances (that is, maximal instability) are not centered

at modulation frequency ⌦ = !p/n where cos(!T ) = 1

reaches the upper border of the stability region, but

rather at a slightly smaller and �nM -dependent modu-

lation frequency ⌦Res = (1 � �n2
M/8)!p/n. Moreover,

notwithstanding the n-dependence of the location reso-

nances of this type, (10) is completely independent of n,
in contrast with (9), with a common maximal growth ex-

ponent !00
Res = !p�n2

M/4, which is quadratic in �nM , and

is therefore of higher order in perturbation theory.

B. The E↵ect of Dissipation - Numerical Results

The discussion in the main text focused on lossless sys-

tems, ⌫ = 0. For completeness, in Fig.S3 we demonstrate

schematically the e↵ect of turning the damping coe�-

cient ⌫ on.

This figure shows the locus of the eigenfrequencies

!0
+ i!00

in the complex plane, for values of the loss pa-

rameter ⌫ in the range 0 < ⌫ < 5!p. The direction of

increasing loss is indicated by arrows. The modulation

frequency is ⌦ = 2!p and �nM = 0.5. At ⌫ = 0, one of

the eigenfrequencies resides in the upper half of the fre-

quency plane, represented by the upper endpoints of the

curves (note that due to the periodicity of the band dia-

gram in !0
the two endpoints represent the same eigen-

frequency). Its counterpart (not shown in the figure), is

located symmetrically across the !00
= 0 horizontal axis.

As the dissipation parameter increases, both modes de-

scend towards the lower-half frequency plane, eventually

converging in a bifurcation. The eigenfrequency of the

mode experiencing gain intersects the !00
= 0 line when

⌫ is approximately 0.32!p, highlighting a critical transi-

tion point influenced by dissipation. For comparison, the

green points represent a similar study for the case when

the modulation strength is vanishingly small (�nM ⇡ 0).

As expected, in this case the spectrum lies completely in

the lower-half frequency plane.

C. Dirac Comb of �-Impulses

Going back to the more general piecewise constant

profile (with ⌧ 6= T/2, that is, uneven durations of the

two constant values of the modulation amplitude �n), an
interesting limit is obtained when, for example, we let

⌧ ! 0
+, n1 / 1/⌧ and n2 = 0. In this limit we obtain a

Dirac comb of �-impulses, namely,

�n(t) = ↵
1X

j=1

�(t� jT ) (11)

with time-independent parameters ↵ and T . With this

type of modulation, Eq. (1) is conveniently solved by

computing explicitly the transfer matrix TTT (in the ‘scat-

tering basis’), as we now explain. Between impulses, say

for jT < t < (j + 1)T , f(t) evolves as a linear combina-

tion Aje�i!+(t�jT )
+Bje�i!�(t�jT )

of the two frequencies
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FIG. S2: Locus of !0 + i!00 in the complex plane as a func-
tion of the damping strength ⌫ at modulation frequency
⌦ = 2!p. The arrows indicate the direction of increasing
⌫. i) �nM = 0.5 (solid blue lines), ii) �nM = 0+ (green dots).
The horizontal grid line (in gray) separates the stable and
unstable regions.

!± = �i⌫/2±!0
p of the time-independent problem, with

!0
p =

q
!2
p � ⌫2/4, under the further assumption that

!0
p is real-valued, namely, that the system is not over-

damped. The solution f(t) is continuous throughout the
impulse at t = (j+1)T , while @tf su↵ers a jump discon-

tinuity: @tf+ � @tf� = �↵!2
pf (with obvious notations).

These properties uniquely determine the ampli-

tudes Aj+1 and Bj+1 right after a given impulse as

(Aj+1, Bj+1)
T
= TTT (Aj , Bj)

T
where

7

TTT = e�
⌫T
2

0

@
1� iu �iu

iu 1 + iu

1

A

0

@
e�i✓

0

0 ei✓

1

A (12)

with u =
↵!2

p

2!0
p
and ✓ = !0

pT . The eigenvalues of TTT control

stability of the system, namely, whether the amplitudes

grow (regions of instability in parameter space) or remain

bounded (regions of stability). For simplicity, let us ana-

lyze the stability properties of the PLTC in the absence

of damping (⌫ = 0), where u =
↵!p

2 .

In this case detTTT = 1 and the two mutually recipro-

cal eigenvalues of TTT are ⇤± = TrTTT/2±
p

(TrTTT/2)2 � 1,

where TrTTT/2 = ReT11 = cos ✓ � u sin ✓.
Thus, if |ReT11| > 1, both eigenvalues are real, with

either |⇤+| or |⇤�| > 1, resulting in the growth of f(t)
after each kick. This is the region of instability. If,

on the other hand, |ReT11| < 1, then ⇤� = ⇤
⇤
+ so

that |⇤±| = 1 and f(t) remains bounded as function

of time. This is the region of stability. Clearly, the

boundaries separating regions of stability and instabil-

ity are determined by cos ✓ � u sin ✓ = ±1. Such points

in the parameter space of TTT are exceptional points, where

the matrix is non-diagonalizable, possessing only a sin-

gle eigenvector. Straightforward calculation shows that

at the instability threshold u and ✓ are related either

by u = cot ✓/2 (when TrTTT/2 = �1) or u = � tan ✓/2

0 1 2 3 4 5
0

1

2

3

4

5

/ 

cot
2

u 


u
tan
2

u 
 

FIG. S3: Stability region of the u � ✓ plane for the Dirac
impulse model (11). The zone shaded in gray is the stability
region in parameter space. The boundary curves are deter-
mined by u = cot ✓/2 (dashed curves) and u = � tan ✓/2 (dot
dashed curves).

(when TrTTT/2 = 1). Let us denote the border stability

lines of the first type by ✓�(u), and the border stabil-

ity lines of the second type by ✓+(u). As illustrated

in Fig.S4, the stability regions are the areas lying be-

tween these curves and the horizontal axis in the u � ✓
plane. The curves ✓�(u) terminate on the horizontal axis

of Fig.S4 at points where ✓/⇡ = an odd integer, whereas
the curves ✓+(u) terminate there at points where ✓/⇡ =

an even integer. Let us consider now narrow strips in

the unstable region immediately to the right of the bor-

der lines. That is, for a given u, we set ✓ = ✓±(u) + �

with 0 < u� ⌧ 1. By expressing sin ✓±(u) and cos ✓±(u)
in terms of u, it is straightforward to show in these

strips that cos(!T ) = TrTTT/2 = ±(cos� + u sin�) '
± cosh(

p
2u�). Thus, immediately on the right of both

lines ✓±(u) the instability growth rate is !00
=

p
2u�/T ,

but such generic instability is non-resonant (in the sense

that it does not have a local maximum as function of

�). Resonances naturally appear near the horizontal

axis in Fig.S4, where the ’tongues’ of instability termi-

nate, that is where also ✓/⇡ = n an integer. (We remind

the reader that odd integers correspond to the ✓�(u)
lines, and even integers to the ✓+(u) lines.) Thus, for

u ⇠ � ⌧ 1 we obtain cos(!T ) = ±(cos� + u sin�) '
(�1)

n
cosh(

p
u2 � (�� u)2) + O(�

4, u�3
). Therefore,

in the vicinity of a given ✓ ' n⇡ in the u�✓ plane, the res-
onance is centered at� = u (that is, at ✓Res = ✓±(u)+u),
with maximal growth rate

!00
n =

u

T
=

⌦u

2⇡
, (13)

independently of n. The real part of the Floquet fre-

quency depends on the the parity of n. Thus, !0
= 0 for

resonances corresponding to even n, while !0
= ±⇡/T =

±⌦/2 (in the first Brillouin zone) for resonances corre-
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sponding to odd n.
Finally, as can be seen in Fig.S4, the system is always

unstable in the vicinity of ✓n = n⇡ + 0
�

(with integer

n), which corresponds to modulation frequency ⌦n =

2!p/n. Furthermore, as u ! 0+ (no impulses) the gaps

disappear, rendering the system always stable, while in

the opposite limit u ! +1 the stability regions shrink

to the points ✓n = n⇡ + 0
+
.

IV. PARAMETRIC RESONANCES AT WEAK
MODULATION - THE GENERAL CASE

We shall now o↵er a very simple demonstration of

the existence of parametric resonances for generic pe-

riodic modulation at frequencies ⌦ = 2!p/n with inte-

ger n, and derive the corresponding growth exponents

at these resonances (i.e., at zero detuning �) given by

Eq.(13) in the main text. For simplicity, we limit the

discussion to the non-dissipative case ⌫ = 0. To this

end, we consider the system of equations (3), where now

 1 = !pf(t) and  2 = ḟ(t). We further assume that the

weak modulation �n(t) oscillates equally between positive

and negative values, so that its zeroth Fourier component

c0 =

T́

0
�n(t)dt/T = 0 (i.e., its mean value) vanishes.

In the absence of modulation (�n = 0), Eq.(3) is iden-

tical in form to the Schrödinger equation for a spin-1/2
(with magnetic moment normalized to 2) precessing in a

constant magnetic fieldBBB = �!pŷ, whose eigen-solutions
are

 ±(t) =
1p
2

0

@
1

±i

1

A e±i!pt (14)

and with corresponding eigenvalues ⌥!p. Now we turn

the modulation on, and in the spirit of the discussion

in
8
of parametric resonances in the Mathieu equation,

seek a solution of (3) in the form  (t) = ( 1, 2)
T

=

a(t) +(t) + b(t) �(t), with slowly varying amplitudes

a(t) and b(t), which serve as amplitude envelopes to the

harmonically oscillating factors. (This is reminiscent of

transforming to the interaction picture in Quantum Me-

chanics.) Thus, if f(t) =  1(t)/!p is the Floquet eigenso-

lution of the equation with eigenvalue ⇤ = e�i(!0+i!00)T
,

then the growth (or decay) coe�cient !00
should be en-

coded in the exponential envelope of a(t) and b(t), while
the oscillatory parts of the latter should combine with the

phase factors e±i!pt in (14) to produce the real part !0
of

the Floquet frequency. By substituting this form of  (t)
in (3) and utilizing orthonormality of the eigenspinors

(14) we obtain the equation for a(t) and b(t) as

d

dt

0

@
a(t)

b(t)

1

A = i
!p�n(t)

2

0

@
1 e�2i!pt

�e2i!pt �1

1

A

0

@
a(t)

b(t)

1

A .

(15)

This equation is exact. In what follows we shall assume

the modulation �n(t) is very weak, and contend ourselves

with solving (15) perturbatively to leading order in �n(t).
By assumption, �n(t) oscillates evenly between posi-

tive and negative values, and its oscillations are in gen-

eral incommensurate with those of the phases e±2i!pt. In

our perturbative solution of (15), we have to integrate its

right-hand over a period of time t (starting at some ini-

tial time t0). Let us assume t contains many modulation

cycles. For generic modulation �n(t) it is plausible to

expect significant cancellations (or ‘destructive interfer-

ence’) in this integral. Therefore, this integral should be

dominated by the least oscillating terms in the quanti-

ties (�n(t) exp±2i!pt) in the integrand, which must be a

combination of an appropriate Fourier mode of �n(t) and
the phases e±2i!pt. Thus, we substitute the Fourier de-

composition �n(t) =
P1

l=1 (cl exp(il⌦t) + c⇤l exp(�il⌦t))
in (15) and average it over one modulation period.

In this procedure we encounter integrals of the form

(1/T )
T́

0
dt exp[±i(l⌦� 2!p)t], whose phase is minimized

for the pair of Fourier modes corresponding to l =

[2!p/⌦] (where [x] is the integral part of the real number

x). In particular, if ⌦ and 2!p are commensurate such

that ⌦ = 2!p/n with integer n, this minimal phase, oc-

curring for l = n will be exactly null, and the dominant

part in (15) will be

d

dt

0

@
a(t)

b(t)

1

A =
!p

2

0

@
0 icn

�ic⇤n 0

1

A

0

@
a(t)

b(t)

1

A , (16)

with eigenvalues ±!p|cn|/2, leading to growth exponent

!00
=
!p|cn|

2
(17)

for the instability at modulation frequency ⌦ = 2!p/n.
This result is linear in cn, and therefore in �n by con-

struction. Thus, any such parametric resonance is one of

the set of dominant resonances for the modulation pro-

file �n(t), analogous to the one associated with (9) in the

case of piecewise constant modulation.

We comment that in the averaging procedure lead-

ing to (16) we have obviously lost all information about

the oscillatory behavior of the amplitudes a(t) and b(t),
and in particular, of the real part !0

of the Floquet fre-

quency corresponding to this resonance. Indeed, the

(approximate) amplitudes a(t) and b(t) resulting from

(16) are not oscillatory and have purely real exponen-

tial behavior e±!00t
. The only oscillatory part of the

full solution for  (t) = ( 1(t), 2(t))T comes from the

phases e±i!pt in (14), which are independent of �n(t)
and therefore of the modulation frequency ⌦. Indeed,

the approximate growing (unstable) solution arising from

(16) and (17) is (a(t), b(t))T ' (1,�i)T e!
00t
, leading

to ( 1, 2)
T

= (!pf(t), ḟ(t)) ' (cos!pt,� sin!pt)e!
00t

(where a term of order !00/!p / |cn| was neglected in

the component  2 = ḟ). Thus, the cosine factor in f(t)
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oscillates periodically at frequency !p = n⌦/2 6= ⌦, and

is therefore not even a proper Floquet solution (unless

n = 2 accidentally). Therefore, the averaged ‘hamilto-

nian’ (16) should only be used to determine the expo-

nential envelope of the Floquet eigensolutions.

For example, in the Mathieu case (Eq.(8) in the main

text), cl = (�nM/2)�l,1, so there is only one dominant

resonance which occurs for n = 1 at ⌦ = 2!p and with

the known growth exponent !00
= !p�nM/4.

For the piecewise constant modulation (5), the Fourier

modes are cn = 0 for even n and cn = 2�nM/⇡in for

odd values of n. Thus, there is an infinite set of dom-
inant resonances at modulation frequencies ⌦ = 2!p/n
with n an odd number, with corresponding growth expo-

nents !00
= !p�nM/⇡n, which agrees with the result (9)

obtained directly from the dispersion relation (7). There

are no dominant resonances corresponding to n even sim-

ply because there are no Fourier modes of even order for

the modulation (5), as we discovered by direct analysis

of (8).

Finally, for the Dirac-comb impulse modulation (11),

the Fourier modes are cn =
↵
T =

2u
!pT

, independently of

n, and indeed, we see from (13) and (17) that !00
=

u
T =

!p|cn|
2 .

In order to determine higher order resonances of the

modulated system, that is, resonances with growth ex-

ponents !00
which depend on higher powers of the small

amplitude �n, as those mentioned in
8
for the Mathieu

equation, or those corresponding to (10) for the piece-

wise constant case, one should analyze higher orders in

the time-dependent perturbative expansion of the solu-

tion of (15).

V. NUMERICAL RESULTS FOR RESONANCE
GROWTH RATES FOR TRANSVERSE

MODULATED PLASMONS

As was discussed in the main text, the discussion of

instabilities in longitudinal PLTCs can be transferred,

mutatis mutandis, to transverese PLTCs.

In particular, the most significant instability is linked

to the interband transition at modulation frequency

⌦T (k) = 2!T (k) = 2

q
!2
p + c2k2/"0, as indicated in

Fig.1a in the main text. As in the case of longitudi-

nal plasmons, we interpret this instability as arising from

the interaction between negative and positive frequency

branches ±!T (k). However, for transverse plasmons, it

is k-dependent, in contrast with the longitudinal case.

Consequently, in the PLTC, the parametric gain is pre-

dominantly governed by longitudinal plasmons, which,

as previously discussed, experience a collective, k inde-

pendent leading resonance at ⌦ = 2!p. It is this col-

lective resonance that determines the optimal path for

gain extraction from the external driving. For complete-

ness, we show in Fig.S5 the gain rate of transverse plas-

mons as a function of the modulation frequency in the

case of piecewise modulation, for a particular value of k.
The system parameters are as in Fig.2 in the main text,

namely, strong modulation amplitude �nM = 0.5. Note

that at such strong modulation amplitudes, the locations

of longitudinal resonances shift from their corresponding

weak amplitude locations around ⌦ = 2!p/m with inte-

ger m. However, as is evident from Fig.2, these shifts are

bounded, and at least for the first few (longitudinal and

transverse) resonances we discuss specifically in this sec-

tion, there is no risk of confusion among resonances by re-

ferring to the corresponding locations at weak amplitude

modulation. Having said that, we see in Fig.S5 that the

gain rate for k = 0 coincides with the gain rate of the lon-

gitudinal plasmons (solid blue curves). (Shown in Fig.S5

are the two resonances corresponding to values m = 1, 2
of Fig.2 at ⌦ = 2!p and !p, respectively.) For nonzero k
the gain peaks are blue-shifted (dashed black curves) to

⌦ = 2!T /m > 2!p/m with integer m. According to the

discussion around Eq.(15) in the main text, we can relate

the resulting resonances to those arising in a longitudi-

nal PLTC with e↵ectively smaller amplitude !2
p�nM/!2

T ,

which would generate a smaller growth rate compared to

the longitudinal case as k increases. For the particular

chosen value of k in Fig.S5 we have !T =
p
2!p. As

expected, the displayed dashed curves, indicating tran-

seversal resonances are centered near the dashed vertical

lines at ⌦/!p = 2
p
2,
p
2 and 2

p
2/3, corresponding to

the predicted (weak amplitude locations) at 2!T /m with

m = 1, 2, 3. As is also evident from Fig.S5, the peak gain

for the transversal resonances at k 6= 0 are smaller com-

pared to their counterparts in Fig.2, which is consistent

with the e↵ective reduction of the e↵ective modulation

amplitude, as discussed above.
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