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Plasmonic Time Crystals:
an EM parametric oscillator utilizing plasmon modes



Context: intensive recent activity on

Photonic Time Crystals

time varying host dielectric with permittivity e(t)

periodic time modulation e(t+T) = e(t) T = —

modulation frequency

would typically require strong and abrupt modulation to observe at optical frequencies
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Fig. 1. Reflection by a spatial interface vs reflection by a temporal interface. A monochro-
matic plane wave incident on a spatial boundary vs a plane wave experiencing an abrupt
change in permittivity (a temporal boundary), respectively.
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Fig. 2. Schematic of a photonic time-crystal concept where the dielectric permittivity of the
material is modulated periodically in time (a), giving rise to dispersion relation characterized
by bands separated by significant gaps in the momentum Kk (b).

from Boltasseva, Shalaev & Segev, Optical Materials Express 14(3)(2024)592

see also Lustig, Segal, Shoam, Fruhling, Shalaev, Boltasseva & Segev, Optics Express 31(6)(2023)9165



Plasmonic Time Crystals

periodically time modulated electron plasma 1n medium

modulate periodically in time both the permittivity £(¢) of the hosting medium

and the electron concentration No(?) in the medium

e(t+T)=c¢e(t)

common modulation frequency Q="
NO(t =+ T) — No(?f)

time variation of £ may be attributed to the effect of the external driving on the bound electrons of the ambient crystal



modulation of both quantities could be taken to be weak

e(t) = eo(1 + de(t))

e

constant permittivity of
the medium 1n equilibrium

small (weak) fractional periodic
dimensionless modulation profile

/

unmodulated electron density
in the medium in steady state

small (weak) fractional
dimensionless modulation profile



Experimental Realization

]_x
— | Electron gas |

— _I_

Jp (Z,t)"“i (pump) T

a grounded semiconductor slab of subwavelength thickness positioned beneath a gate plate which together form a capacitor

apply time-varying voltage across the capcitor to modulate the amount of charge o« Ny(¢) 1n the semiconductor

charge may be 1njected or extracted by grounding the semiconductor



General: wave propagation in the time-modulated plasma

Maxwell’s equations laB;’t) = —V x E(r,t)
C
10(e(t)E(r,t)) 47
y Y = V x B(r,t) » J(r, 1)

coupled with the linearized continuity and transport equations

on(r,t) B
5 No(t)V -v(r,t) =0
ov(r,t) e
Eran EE(I’, t) —vv(r,t)

v collision frequency which accounts to losses in the system

linearization w.r.t. the small quantities
n(r,t) < Ny(t) local fluctuating part of the electron density (riding atop the spatially uniform background density No(t))

v(r,t) electron velocity field (much smaller than the velocity induced by the pump)

J =eNy(t)v the (linearized) fluctuating part of the electron current



Goal:
to characterize how the external driving (strong signal) affects propagation of another wave (weak signal)
propagating in the plasma channel in the xy-plane.

the plasma is spatially homogeneous: Ny(t) & €(t)  are space independent

thus, it is enough to consider plane wave excitations with spatial dependence ~ etk T

the plasma is isotropic ——  excitations are decoupled into longitudinal and transverse modes

for lack of time we shall concentrate in the rest of this talk on the effect of time modulation of
longitudinal plasmons, which is enough to explain the concept of Plasmonic Time Crystal (PLTC)




Longitudinal Plasmons

for these waves B = (0 and E = —V¢ ¢ =electric potential

Gauss law (dynamic Poisson equation) V- -E(r,t) = —V¢(r,t) = ——n(r, 1)

introduce the scalar function / (I'a t) = V- V(I'7 t)



for the sake of simplicity, we shall consider below lossless system and set IV — 0
in addition, if () never vanishes, there is no essential loss of generality by assuming time independent
€(t) — &0

2
dme“ng

the plasma frequency (squared) of the unmodulated medium in equilibrium wg

™TeE

then 1t follows from Maxwell’s equations and from the linearized continuity and transport equations that

Pf
Ot2

w(1+ on(t))f =0

namely, the equation of a parametric oscillator!



o f

O12 | ”12?(1 +on(t))f =0 namely, the equation of a parametric oscillator!

a unique feature of this equation: it does not depend on the wave number k

this 1s specific to longitudinal plasmons, due to their k-independent dispersion relation
(in the absence of modulation) w = fw,

this implies that after time modulation 1s switched on, exponential growth of f (and all other relevant quantities) become
possible, sismultaneously for all k-modes

this collective instability facilitates interaction the plasma with the external driving circuitry,
culminating in strong parametric amplification



periodic driving  dn(t +T) = dn(t)
modulation period T

5 f

the two solutions of
Ot?

| wg(l + on(

—iwl,gt

are of the form fi2(t) = e
the two tundamental ire

Floquet Theory

modulation frequency Q=—

t))f =0

Ulyg(t), where Wi,2 aIec

quenciles, and w1 2(t) are periodic

functions with period T' = 27 /Q. Thus, f12(t +T) =
€_Zw1’2Tf1,2(t) — A1’2f1’2(t), where Al,g = e~ w12l gare
the eigenvalues of the temporal transfer matrix T', which

acts on the two dimensional space of solutions of the ODE for f and

propagates them through one period ot time. '1'he fun-
damental frequencies wis = wj o + iwy, are typically
complex. Thus, if at least one of the imaginary parts

wy 5 is negative, the
be larger than 1 in a

corresponding eigenvalues Aj o will
bsolute values. Theretore, the corre-

sponding Floquet so.

ution will grow as function of time,

rendering the system unstable.



T'he eigenvalues Aj o depend on the modulation tre-
quency {2 and on the parameters controlling the (dimen-
sionless) modulation profile n(t). This parameter space
is split into regions of stability and instability, separated
by borderlines. In regions of stability, oscillations of f(t)
are bounded, while in regions of instability f(¢) exhibits
resonant behavior, with unbounded oscillations.



Examples: various modulation profiles

(i) harmonic modulation: (Mathieu’s equation)

on(t) = dny cos Ut

1t exhibits rich structure of stability and instability regions
in the space of parameters 2/w, and dnp;. In partic-
ular, for 2 = 2w,, 1t 1s well known that the ampli- | | |
tude of oscillations grows exponentially approximately discussed clearly in L&L Mechanics
as exp(dnyw,t/4). 1t is instructive to interpret this in-
stability as a collective resonance (i.e., for all values of

instructive iterpretation: a collective resonance (1.€., for all values of the wavenumber k) between the
two branches +w, of the static (unmodulated) crystal




this instability persists also when {2 is slightly detuned away from 2w, albeit with a slightly smaller growth exponent

W'~ %\/5%%\4 — 16A?2

where A = (2/2w,) — 1 is the detuning parameter. The
width of the instability region around {} = 2w, is de-
termined by reality of w’”. In particular, this means
that there is a minimal threshold value of dn}i! = 4|A]
required to induce instability. Similar but weaker in-
stabilities occur also at modulation frequencies around

(), = 2w,/n with integer n



(ii) periodic piecewise constant modulation: In this
case, in its simplest form, dn(t) assumes one constant
value on; during the first part 0 < t < 7 of the mod-
ulation period and another constant value ons during

its remaining part 7 < t < 1

the spatial analog of this temporal modulation 1s the celebrated Kronig-Penney model for electronic energy
bands 1n one dimensional crystals



focus on the modulation on (t) = 0N\ SgN (Sin (Qt))

which flips sign at the middle of the modulation period.
Here, as in the case of Mathieu’s equation, one obtains
a rich chart of stability and instability regions in the

plane of parameters {)/w, and onys

in particular, for weak modulation amplitude 0737 one finds an infinite family of res-

onances analogous to the aforementioned resonance of

5773\4
((2n +1)m)?

the Mathieu equation, centered at modulation frequen- \/

cies Q044 = 27/T = 2w, /(2n + 1) with integer n, and with growth exponents "=, ~ A?

where A = Q/Q°4 — 1 is the detuning parameter.
Thus, at the center of the resonance (A = 0), wi.. =
wp5nM/(2n + 1) is linear in dn)s, and is therefore of
leading order in perturbation theory. Furthermore, simi-
larly to the corresponding result (9) for the Matmeu case
(8), detuning the modulation frequency away from the
resonance requires a threshold value dnif = (2n+1)w|A]
of the modulation amplitude to induce instability with
diminished w".




in addition to this family of ‘linear’ resonances, we also found yet another family of weaker resonances, centered in the vicinity

of modulation frequencies Q0" = 2w, /2n = w,/n with

integer n, with growth exponents 5m2 0\ 2 5p2 \ 2
el (5

where A = Q/Q°v" — 1 is the detuning parameter away
from QSV°". In contrast with (11), the centers of these
resonances (i.e., maximal instability) occur at modula-
tion frequencies Q1 = Q°ven (1 —dn?, /8), which depend
quadratically on dnjy;. Furthermore, at Q = Q7 all
these resonances share an n-independent common growth
exponent Wy, = wpén?w /4, quadratic in dn,s, and there-
fore of higher order in perturbation theory.




Comparison with the numerical solution
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FIG. 1: a) Band structure of the static dispersive crystal, showing both positive and negative frequency bands. The arrows
indicate possible interband transitions. bi) w’ as a function of the (weak) modulation strength for i) 2 = 2w, (blue solid lines),
ii) Q = (24+0.01)w, (green dashed lines) and iii) Q = (2 £ 0.03)w, (black dotted lines). bii) w” as a function of the detuning
parameter A for fixed weak modulation amplitude dny = 0.05 for the first three odd resonances (2n+1 =1,3,5) in (11). The
dashed curves are the analytic predictions. The three resonances are centered at A = 0 and the growth rate becomes smaller
as n increases. biii) The same as in bii) with dny = 0.05 for the even resonances 2n = 2,12,22 in (12). Note the smaller
vertical scale compared to the previous case. The three displayed resonances are are in good agreement with the n-independent
prediction of (12), despite the large disparity of chosen values for n. Evidently, these three resonances are centered around a
negative value of A consistent with —dn3,/8 as predicted in (12).



a stmple perturbative result for the growth exponent of weak ‘linear’ resonances for arbitrary periodic weak
modulation profile dn(t) (at zero detuning A = o)

consider the Fourier decomposition ~ dn(t) = Sj;’il (cr exp(il2t) + ¢ exp(—1l2t))

of the modulation amplitude. Resonant behavior ot f(?)
should be expected when the modulation frequency (2 is
commensurate with the gap 2w, In the dispersion rela-
tion of the unmodulated longitudinal plasmon, such that
2w, /) = n, with integer n. In this case, the nth Fourier
mode of dn(t) will become resonant and will induce in-

stability with growth rate w"” = wp‘26”|

This result is linear in ¢,,, and therefore in on, being the
result of first order perturbation theory.




For example, in the Mathieu case ¢; = (0nar/2)d;1, so there is only one linear resonance which

occurs for n = 1 at Q = 2w, and with the known growth
exponent w' = w,dn, /4.

For the piecewise constant modulation all even

Fourier modes c¢s5,, = 0 vanish, while the odd ones are
Cont1 = 20npy/(2n + 1)mi. Thus, there is an nfi-
nite set of linear resonances at modulation frequencies
() =2w,/(2n+ 1), with corresponding growth exponents
w" = wyonys /(2n+ 1), which agrees with the aforementioned result

In this case, there are no linear resonances corresponding to even imdex 2n simply because

there are no Fourier modes of even order in the modulation



Appendix

III. PIECEWISE CONSTANT MODULATION

A. Modulation Period with Two Different
Amplitude Values

Here we shall derive equations (11) and (12) of the
main text - the expressions for the growth exponents as-
sociated with resonances of odd and even indices, respec-
tively. In the next subsection we shall also solve this
model in the limit in which the piecewise modulation be-
comes a time-periodic Dirac comb of d-impulses.

In the simplest form of piecewise constant periodic
modulation, dn(t) assumes one constant value dn; dur-
ing the first part 0 < t < 7 of the modulation period
and another constant value dngy during its remaining part
r<t< T2,

The common practice to solving (2) with periodic
modulation is to analyze the initial value problem, and
compute the two independent fundamental solutions c¢(t)
and s(t) with initial conditions ¢(0) = 1; ¢(0) = 0 and
s(0) = 0;,5(0) = 1 (namely, the cosine- and sine-like so-
lutions). These solutions can be easily computed explic-
itly in our case of piecewise constant modulation. The
transfer matrix T is then constructed from the values
of these fundamental solutions and their derivatives at
t = T'3. Here we shall follow an alternative method*®
(familiar from the theory of Lyapunov stability) to com-
puting T', but in a basis different from that of {c(t), s(t)}.
(The eigenvalues Aj 2 of T are of course basis indepen-
dent.) To this end, we adopt a “hamiltonian” approach
and rewrite (2) as a system of two coupled first order
equations

d (¥ 0 “p (31

at (0 —wp (1 — % + (577,(75)) 0 (e
(3)
with ¢ = w,g(t) and 2 = () (thus rendering v, and
19 the same physical dimension). Equation (3) can be in-
tegrated formally by applying the time ordered exponent

t
Ul(t,tg) = Texp fL(t’)dt’) of the matrix L(t) (the “Li-
to

ouvillian”) on the right hand side of (3) to the vector of
initial conditions at ¢t = ty. For constant dn, as in each
part of the modulation period in the present example,
one can exponentiate L explicitly and find

cos Ot % sin Ot

M(O;t) = Lt = (4)
<}
— sin©®t cos Ot

with © = wp\/l — % +0n. In the main text we focus
P

on the modulation
on (t) = dny sgn (sin (Q2t)) (5)

which flips sign at the middle of the modulation pe-
riod. In this case the transfer matrix for Eq.(2) is read-

ily found as Ty, = U(T,0) = M(©_;T/2)M(©4;T/2),
where ©4 = wp\/l — % + dnay.

From the relation f = e “/2g we have
(wpf (), FNT = e "PK(wpg(t), 9(1))"  with
K = ! 0 , and therefore the transfer

—v/2w, 1

matrix for Eq. (1) is Ty = e ¥7/2KT,K~*. Thus,

1 1 1
§TrTf = 5(Al +As) = §€_VT/2TrTg

€ [COS (—Q ) COS <—Q )

(&) (F)=(F)]

which coincides with the known result!:? in the absence
of dissipation v = 0. (See also chapter 8 of? and note
the obvious typo in Eq.(8.5) therein.)

For simplicity, from now on we shall focus on the non-
dissipative case v = 0, and rewrite (6) more neatly as

L TrTf:(:OS(?T(@JrJ @‘)>
o [ (o)

o (”<@+Q+ @—>)] . (7)

In regions of stability, where A3 = A; = e=*T (with real
w), we thus have $Tr Ty = coswT’, so that |Tr Ty /2| < 1.
In contrast, in the unstable regime we can always choose
A = 1/Ay = £e¥'T with w” > 0. Thus, w = iw"”
for positive A9, or w = 7/T + iw” for negative Aj o
(where w’ = /T is restricted to the first Brillouin zone).
Therefore, in the unstable regime we have %TrT Fo=
+ cosh(w”T) so that |TrT /2| > 1. The boundaries sep-
arating stable and unstable regions are therefore given
by the curves where TrT;/2 = 1. This leads, like in
the case of Mathieu’s equation, to a rich chart of stability
and instability regions in the plane of parameters /w,
and dnjs 2.

Let us now investigate the stability of this system per-
turbatively for weak modulation amplitude dn,;. In
this case, the factor (@4 — ©_)?/©,.0O_ in the second
term in (7) is clearly of order dn2,. Thus, the modula-
tion frequencies which induce instabilities at infinitesimal
dnyr — 07 are determined in this limit by the leading
term cos(m(©4 + O_)/Q) ~ cos(27mw,/Q) in (7) tending
to £1. The first few terms of the expansion of (7) around



onyr = 0 are

1 2
~TrT; = cos < mup) +

2 Q

Llmwp . (21wp\ o (TWp 9

5 [_29 sin (—Q ) sin (_Q ) onys +

1 TWp \ 2 TWp \ 2 2w
1) o (o () ) e (35
5 [ a 6+ <6 9 cos { —q +

(;u )] onis +0(6nS,).

(8)

The instability near cos(27rw,/2) = —1 occurs around
modulation frequencies Q = 27/T = 2w, /(2n + 1) with
integer n. (In the expansion of (7) around dny; = 0
leading to (8), we tacitly assumed 7" was bounded, which
means that the integer n, indexing the corresponding
parametric resonance, is assumed to be bounded as well.)
Thus, let us substitute Q = 2w, (1 4+ A)/(2n + 1) in (8),
with A a small detuning parameter. We find 1/2TrT; =
cos (W' +iw")T) = =1 — [6n3; — (2n + 1)*m2A%] /2 +

O(dn3,;A,A3) =~ cos (z\/én%w — (2n+1)272A2% + 7r).

Therefore, up to the indicated accuracy, w’' = +n/T =
+w,(1+ A)/(2n+ 1) and

2
ons,

YT wp\/((Qn T2 A ()

Thus, maximal instability (the center of the resonance)
occurs at A = 0, where wfj . = wpdnar/(2n+1)m is linear
in dnys, and is therefore of leading order in perturbation
theory. Furthermore, similarly to the corresponding re-
sult for the Mathieu case, given in Eq. (9) in the main
text, detuning the modulation frequency away from the
resonance requires a threshold value dnif = (2n+1)m|A]
of the modulation amplitude to induce instability with
diminished w”.

This is not the case for the parametric reso-
nances around the other instability borderline at
cos(2mw,/2) = +1, which occur in the vicinity of
modulation frequencies Q@ = 2w,/2n = w,/n with
integer n. By substituting Q = w,(1 + A)/n in (8) and
expanding the resulting expression in powers of A, we
find that the associated resonance lies in the parametric
regime where A scales like dn3; so that 1/2TrT; =
cos((w' +iw")T) = 1 + (1/2)(2mn)*[én3,;/16 —
(A + 6n3,/8)%] + O(A3,6n2,A% 6n3, A, 0n8,) =~

cosh [(2m)¢5n§w 16 — (A + on2, /8)2} .

the indicated accuracy

2\ 2 2\ 2
e (T5) (52 25)

(and of course w’ = 0). Thus, in contrast with (9), these
resonances (that is, maximal instability) are not centered

Thus, up to

at modulation frequency Q = w,/n where cos(wT) =1
reaches the upper border of the stability region, but
rather at a slightly smaller and dnj,/-dependent modu-
lation frequency Qges = (1 — dn3;/8)w,/n. Moreover,
notwithstanding the n-dependence of the location reso-
nances of this type, (10) is completely independent of n,
in contrast with (9), with a common maximal growth ex-
ponent wh_. = w,dn3, /4, which is quadratic in dnys, and
is therefore of higher order in perturbation theory.

B. The Effect of Dissipation - Numerical Results

The discussion in the main text focused on lossless sys-
tems, v = 0. For completeness, in Fig.S3 we demonstrate
schematically the effect of turning the damping coeffi-
clent v on.

This figure shows the locus of the eigenfrequencies
w’ 4+ iw” in the complex plane, for values of the loss pa-
rameter v in the range 0 < v < 5w,. The direction of
increasing loss is indicated by arrows. The modulation
frequency is 2 = 2w, and dny = 0.5. At v = 0, one of
the eigenfrequencies resides in the upper half of the fre-
quency plane, represented by the upper endpoints of the
curves (note that due to the periodicity of the band dia-
gram in w’ the two endpoints represent the same eigen-
frequency). Its counterpart (not shown in the figure), is
located symmetrically across the w’ = 0 horizontal axis.
As the dissipation parameter increases, both modes de-
scend towards the lower-half frequency plane, eventually
converging in a bifurcation. The eigenfrequency of the
mode experiencing gain intersects the w” = 0 line when
v is approximately 0.32w,, highlighting a critical transi-
tion point influenced by dissipation. For comparison, the
green points represent a similar study for the case when
the modulation strength is vanishingly small (dny; = 0).
As expected, in this case the spectrum lies completely in
the lower-half frequency plane.

C. Dirac Comb of j-Impulses

Going back to the more general piecewise constant
profile (with 7 # T'/2, that is, uneven durations of the
two constant values of the modulation amplitude én), an
interesting limit is obtained when, for example, we let
7 — 0", n; o< 1/7 and ny = 0. In this limit we obtain a
Dirac comb of J-impulses, namely,

on(t) = §(t—jT) (11)

j=1

with time-independent parameters v and 7. With this
type of modulation, Eq. (1) is conveniently solved by
computing explicitly the transfer matrix T' (in the ‘scat-
tering basis’), as we now explain. Between impulses, say
for jT <t < (5 4+ 1)T, f(t) evolves as a linear combina-
tion Aje~"+(t=IT) 4 Bie~w-(=iT) of the two frequencies
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FIG. S2: Locus of w’ + iw” in the complex plane as a func-
tion of the damping strength v at modulation frequency
Q) = 2wp,. The arrows indicate the direction of increasing
v. i) énay = 0.5 (solid blue lines), ii) dnar = 07 (green dots).
The horizontal grid line (in gray) separates the stable and
unstable regions.

wt = —iv/2+ wj, of the time-independent problem, with
w, = /w2 —v?/4, under the further assumption that

w, is real-valued, namely, that the system is not over-
damped. The solution f(t) is continuous throughout the
impulse at t = (j + 1)T', while 0; f suffers a jump discon-
tinuity: Oy fy — O f— = —ozwf, f (with obvious notations).
These properties uniquely determine the ampli-

tudes A;;; and B,;;; right after a given impulse as
(Aj+1, Bj1)" =T(A;, B;j)" where

. 11— —u e ¥ 0
T=e¢ 2 (12)

v 14 u 0 ¢

2
with u = ;[:j,” and 0 = w,T. The eigenvalues of T' control

stability of 1?he system, namely, whether the amplitudes
grow (regions of instability in parameter space) or remain
bounded (regions of stability). For simplicity, let us ana-
lyze the stability properties of the PLTC in the absence
of damping (v = 0), where u = “32.

In this case detT = 1 and the two mutually recipro-
cal eigenvalues of T are Ay = TrT/2 + /(TrT/2)2 — 1,
where TrT /2 = ReT11 = cosf — usin 6.

Thus, if |ReT11| > 1, both eigenvalues are real, with
either |Ay| or |[A_| > 1, resulting in the growth of f(t)
after each kick. This is the region of instability. If,
on the other hand, |ReTii| < 1, then A_ = A% so
that [AL| = 1 and f(¢) remains bounded as function
of time. This is the region of stability. Clearly, the
boundaries separating regions of stability and instabil-
ity are determined by cosf — usinf = 4+1. Such points
in the parameter space of T' are exceptional points, where
the matrix is non-diagonalizable, possessing only a sin-
gle eigenvector. Straightforward calculation shows that
at the instability threshold u and 6 are related either
by u = cot/2 (when TrT/2 = —1) or u = —tanf/2

Vy=—tan—
.
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FIG. S3: Stability region of the u — 6 plane for the Dirac
impulse model (11). The zone shaded in gray is the stability
region in parameter space. The boundary curves are deter-
mined by u = cot #/2 (dashed curves) and u = —tan /2 (dot
dashed curves).

(when TrT/2 = 1). Let us denote the border stability
lines of the first type by 6_(u), and the border stabil-
ity lines of the second type by 60, (u). As illustrated
in Fig.S4, the stability regions are the areas lying be-
tween these curves and the horizontal axis in the u — 6
plane. The curves 6_(u) terminate on the horizontal axis
of Fig.S4 at points where 0/m = an odd integer, whereas
the curves 0, (u) terminate there at points where 6/7 =
an even integer. Let us consider now narrow strips in
the unstable region immediately to the right of the bor-
der lines. That is, for a given u, we set 6 = 0. (u) + A
with 0 < uA < 1. By expressing sin 6 (u) and cos 0 (u)
in terms of w, it is straightforward to show in these
strips that cos(wT) = TrT/2 = +(cos A + usinA) ~
+ cosh(v2uA). Thus, immediately on the right of both
lines 64 (u) the instability growth rate is w” = vV2uA/T,
but such generic instability is non-resonant (in the sense
that it does not have a local maximum as function of
A). Resonances naturally appear near the horizontal
axis in Fig.S4, where the 'tongues’ of instability termi-
nate, that is where also /7 = n an integer. (We remind
the reader that odd integers correspond to the 6_(u)
lines, and even integers to the 64 (u) lines.) Thus, for
u ~ A < 1 we obtain cos(wT) = +(cos A + usin A) ~
(—=1)" cosh(y/u? — (A — u)2) + O(A*,uA3). Therefore,
in the vicinity of a given € ~ nm in the u—60 plane, the res-
onance is centered at A = u (that is, at Oges = 0+ (u)+u),
with maximal growth rate

, u Qu
=== — 13
“n T T T op (13)
independently of n. The real part of the Floquet fre-
quency depends on the the parity of n. Thus, w’ = 0 for
resonances corresponding to even n, while w’ = +7 /T =
+0/2 (in the first Brillouin zone) for resonances corre-



sponding to odd n.

Finally, as can be seen in Fig.S4, the system is always
unstable in the vicinity of 6,, = nm + 0~ (with integer
n), which corresponds to modulation frequency €2, =
2wy /n. Furthermore, as u — 0+ (no impulses) the gaps
disappear, rendering the system always stable, while in
the opposite limit v — +oo the stability regions shrink
to the points 0,, = nm + 0.

IV. PARAMETRIC RESONANCES AT WEAK
MODULATION - THE GENERAL CASE

We shall now offer a very simple demonstration of
the existence of parametric resonances for generic pe-
riodic modulation at frequencies Q! = 2w, /n with inte-
ger n, and derive the corresponding growth exponents
at these resonances (i.e., at zero detuning A) given by
Eq.(13) in the main text. For simplicity, we limit the
discussion to the non-dissipative case v = 0. To this
end, we consider the system of equations (3), where now

Y1 = wpf(t) and o = f(t). We further assume that the
weak modulation dn(t) oscillates equally between positive
and negative values, so that its zeroth Fourier component

T
co = [on(t)dt/T =0 (i.e., its mean value) vanishes.
0

In the absence of modulation (én = 0), Eq.(3) is iden-
tical in form to the Schrédinger equation for a spin-1/2
(with magnetic moment normalized to 2) precessing in a
constant magnetic field B = —w,y, whose eigen-solutions
are

1
Vyi(t)=—=

+iw, t
e>'wr (14)
V2 \ 4

and with corresponding eigenvalues Fw,. Now we turn
the modulation on, and in the spirit of the discussion
in® of parametric resonances in the Mathieu equation,
seek a solution of (3) in the form W(t) = (¢1,o)T =
a(t)Wy(t) + b(t)W_(t), with slowly varying amplitudes
a(t) and b(t), which serve as amplitude envelopes to the
harmonically oscillating factors. (This is reminiscent of
transforming to the interaction picture in Quantum Me-
chanics.) Thus, if f(t) = 11(t)/w, is the Floquet eigenso-
lution of the equation with eigenvalue A = e—i(«'+iw )T
then the growth (or decay) coefficient w” should be en-
coded in the exponential envelope of a(t) and b(t), while
the oscillatory parts of the latter should combine with the
phase factors e**r! in (14) to produce the real part w’ of
the Floquet frequency. By substituting this form of W(¢)
in (3) and utilizing orthonormality of the eigenspinors
(14) we obtain the equation for a(t) and b(t) as

—2iwpt
d a(t) B Z,wp(Sn(t) 1 e a(t)

i\ b(t) 20 \etiwt b(t)

(15)

This equation is exact. In what follows we shall assume
the modulation dn(t) is very weak, and contend ourselves
with solving (15) perturbatively to leading order in én(t).

By assumption, dn(t) oscillates evenly between posi-
tive and negative values, and its oscillations are in gen-
eral incommensurate with those of the phases e*?rt In
our perturbative solution of (15), we have to integrate its
right-hand over a period of time ¢ (starting at some ini-
tial time ¢g). Let us assume ¢ contains many modulation
cycles. For generic modulation dn(t) it is plausible to
expect significant cancellations (or ‘destructive interfer-
ence’) in this integral. Therefore, this integral should be
dominated by the least oscillating terms in the quanti-
ties (on(t) exp £2iw,t) in the integrand, which must be a
combination of an appropriate Fourier mode of dn(t) and
the phases et2™»?. Thus, we substitute the Fourier de-
composition dn(t) = >°,°; (¢ exp(il§t) + ¢f exp(—ilQt))
in (15) and average it over one modulation period.
In this procedure we encounter integrals of the form

T
(1/T) [ dt exp[£i(IQ — 2w,)t], whose phase is minimized
0

for the pair of Fourier modes corresponding to [ =
2w, /] (where [x] is the integral part of the real number
x). In particular, if Q and 2w, are commensurate such
that Q0 = 2w, /n with integer n, this minimal phase, oc-
curring for [ = n will be exactly null, and the dominant
part in (15) will be

d a(t) 0 icy a(t)
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with eigenvalues +wy|c,|/2, leading to growth exponent

y_ Wplcal

= (17)
for the instability at modulation frequency Q2 = 2w, /n.
This result is linear in ¢,, and therefore in dn by con-
struction. Thus, any such parametric resonance is one of
the set of dominant resonances for the modulation pro-
file dn(t), analogous to the one associated with (9) in the
case of piecewise constant modulation.

We comment that in the averaging procedure lead-
ing to (16) we have obviously lost all information about
the oscillatory behavior of the amplitudes a(t) and b(t),
and in particular, of the real part w’ of the Floquet fre-
quency corresponding to this resonance. Indeed, the
(approximate) amplitudes a(t) and b(t) resulting from
(16) are not oscillatory and have purely real exponen-

tial behavior e**”t. The only oscillatory part of the
full solution for W(t) = (¢1(t),2(t))T comes from the
phases e*™r! in (14), which are independent of dn(t)
and therefore of the modulation frequency (2. Indeed,
the approximate growing (unstable) solution arising from
(16) and (17) is (a(t),b(t))T ~ (1,—i)Te"t, leading
to (Y1,1%2)T = (wpf(t), f(t)) =~ (coswpt,—sinwpt)e‘*’”t
(where a term of order w”/w,  |c,| was neglected in
the component ¥y = f). Thus, the cosine factor in f(t)



oscillates periodically at frequency w, = nfl/2 # €2, and
is therefore not even a proper Floquet solution (unless
n = 2 accidentally). Therefore, the averaged ‘hamilto-
nian’ (16) should only be used to determine the expo-
nential envelope of the Floquet eigensolutions.

For example, in the Mathieu case (Eq.(8) in the main
text), ¢ = (dnar/2)d;1, so there is only one dominant
resonance which occurs for n = 1 at 2 = 2w, and with
the known growth exponent w” = w,dnas /4.

For the piecewise constant modulation (5), the Fourier
modes are ¢, = 0 for even n and ¢, = 2dny;/min for
odd values of n. Thus, there is an nfinite set of dom-
inant resonances at modulation frequencies 2 = 2w, /n
with n an odd number, with corresponding growth expo-
nents w” = wydnyr/mn, which agrees with the result (9)
obtained directly from the dispersion relation (7). There
are no dominant resonances corresponding to n even sim-
ply because there are no Fourier modes of even order for
the modulation (5), as we discovered by direct analysis
of (8).

Finally, for the Dirac-comb impulse modulation (11),

s 2U

the Fourier modes are ¢, = % = =%, independently of
p

n, and indeed, we see from (13) and (17) that w” = % =

wp|cn|

%n order to determine higher order resonances of the
modulated system, that is, resonances with growth ex-
ponents w’” which depend on higher powers of the small
amplitude on, as those mentioned in® for the Mathieu
equation, or those corresponding to (10) for the piece-
wise constant case, one should analyze higher orders in
the time-dependent perturbative expansion of the solu-

tion of (15).



Thanks for your attention!



