Introduction to Group Theory and Some
 Applications in Particle Physics
 (Lecture Notes)

Pavel Winternitz

Centre de recherches mathématiques et Departement de mathématiques et de statistique, Université de Montréal, CP 6128, Succ Centre-Ville, Montréal (Québec) H3C 3J7, Canada

Heble of Contents

References

I. Introduction
II. Elements of Abstract Group Theory

1. Definition of a Group Lecture 1
2. Examples
3. Discrete Groups
4. Definition of a Topological Space
5. Topological Groups
6. Compact and Locally Compact Topological Groups
7. Subgroups, Invariant Subgroups

Lecture 2
8. Cosets, the Factor Group
9. Isomorphisms, Homomorphisms, Automorphisms
10. Connected Groups
11. Parametrical Groups
12. Lie Groups and Lie Algebras
13. Structure Constants
14. Definition of a field, a vector space, an

Lecture 3 algebra
15. Associative Algebra, Lie Algebra
16. Derived Algebras, Subalgebras, Ideals
17. Lie Algebras of Low Dimensions over the field of Real Numbers
a) $\operatorname{dim} L=1$
b) $\operatorname{dim} L=2$
c) $\operatorname{dim} L=3$
18. Representations of an algebra, the Adjoint Representation
19. Solvable, Nilpotent and Abelian Algebras

Lecture 4
20. Simple and Semisimple Algebras
21. Levy Maltsev Theorm
22. Properties of Compact Lie Groups
23. Relation between Lie Groups and Lie Algebras (Discrete Subgroups, Locally Isomorphic Groups, Covering Groups, Universal Covering Groups
III. Semisimple Lie Groups and Algebras

1. Definition
2. The Cartan-Killing Form. Cartan's Criterion of Semisimpicicty.
3. Classification of Semisimple Lie Groups and Algebras. Formulation of the Problem.
4. The Maximal Commutative Subalgebra (the Cartan Subalgebra)
5. The Canonical Decomposition of an Algebra and
it's Properties
6. Orthogonality Properties with Respect to the
Cartan-Killing Form.
7. One-Dimensionality of the Root Spaces
Lecture 7
8. Properties of the System of Roots
9. The Cartan-Weyl Basis
10. Geometric Properties of the Root System
11. Simple RootsDynkin diagrams.
5. Local Isomorphisms for LowaDimensional Simple Lie Groups.
6. Example. Root Systems for Simple Lie Groups of Rank Two.
7. The Real Lie Algebras
8. Isomorphisms between Low-Dimensional Simple Real Lie Algebras.
9. Connection between Real and Complex Lie Groups
Lecture 9 and Lie Algebras. The Compact Real Form. Involutions
10. Construction of all Real Forms of a Complex Lie Algebra
11. Cartan Decomposition of a Lie Group and a Lie Algebra.
12. Gauss Decomposition of a Complex Group and of a Real One
13. Centre of a Simple Lie Group
IV. Group Representation Theory Lecture 10
I. Definition of a Representation. Irreducibility, Complete Reducibility.
14. Some Applications of Group Representation Theory in Physics
15. Fundamental Problems of Group Representation Theory
16. Contragradient Representations
17. Tensors, Multilinear Forms
18. The Regular Representation of a Group
19. Homogeneous Manifolds. The Group as a Homogeneous Lecture 11 Space.
20. Matrix Elements of Finite Transformations
21. Compact Iie Groups and their Classification
22. Schur's LemmasLecture1212. Global Theorem on the Representations ofCompact GroupsLecture 1314. Complex Extensions of Lie Algebras and ComplexLie Groups.
23. Complexification of a Real Group
Lecture 14
24. The Principle of Analytic Continuation
25. Analytic, Antianalytic and Real Representations
26. The Principle of Unitary Reduction
V. Representations of Compact Groups, in Particular the Unitary Groups $U(n)$ and $S U(n)$.
27. Complex Extension of the Group $U(n)$
28. Analytic Representations of $G L(n, C)$
29. The Weyl-Subgroup
30. Example: The Group SU(3). Weight Diagrams Lecture 15
31. The Gauss Decomposition for $G L(n, C)$
32. Lie's Theorem
33. The Highest Weight and the Maximal Eigenvector
34. Realization of Representations of the Group G on the Group G
35. Realization of Representations of the Group G on the Maximal Compact Subgroup U
36. Realization of Representations of the Group G on the Subgroup Z
37. Explicit Expression for the Gauss Parameters,
38. Fundamental Representations
Lecture 17
39. Young Diagrams
40. Tensors and Young Diagrams
41. The Method of Z-invariants
42. The System of Basis Invariants.
43. Remarks on the Symmetric Group
Lecture 18
44. Young Symmetrizers
45. Multiplicity of an Irreducible Representation in a General Tensor Representation
46. The Algebra of ZmMultipliers
47. Spectrum of Eigenvalues and the Basis Functions for $\operatorname{SU}(3)$
48. Separation of Multiple Points in the Spectrum Lecture 19of $\operatorname{SU}(3)$.
49. The Gelfand-Tseitlin Basis for $U(n)$
50. Characters of Irreducible Representations
51. Dimensions of Irreducible Representations of $\operatorname{SU}(n)$
52. Envelloping Algebras. The Universal EnvellopingAlgebre of a Lie Algebra.
53. Centre of the Universal Envelloping AlgebraCasimir Operators.
54. Construction of the Centre of the Universal Envelloping Algebra
Lecture 20
55. Casimir Operators for $U(n)$.
56. Eigenvalues of the Casimir Operators
57. Complete Set of Commuting Operators
VI. Unitary Irreducible Representations of Noncompect Groups
58. Definitions
59. Induced Representations
60. Application to the Group $\operatorname{SL}(n, C)$
61. The Triangular Decomposition for $S L(n, C)$ andthe Realization of Representations.
62. The Invariant Scalar Product. The Principal Lecture 21
63. Realization of the Principal NondegenerateSeries on the Unitary Subgroup.
64. Principal Degenerate Series
65. Realization of the Principal DegenerateSeries on the Unitary Subgroup.
66. Supplementary Nondegenerate Series of Lecture 22
Irreducible Unitary Representations
67. Supplementary Degenerate Series of Representations
68. Equivalence of Representations
69. Representations of $G L(n, C)$.
70. Remark on the $U(p, q)$ Groups.
VII. General Theory of Representations (for Groups HavingInvariant Abelian Subgroups).
I. Solvable Groups
71. The Levy-Maltsev Theorem
72. Representation Theory of General Lie Groups
73. Definition
74. Algebra of the Poincare' Group and its Invariants
75. The Poincare' Group in Physics
76. Classes of Irreducible Unitary Representations of the Poincare' Group.
77. Physical Meaning of the Operators and a Classification of the States of an Elementary Relativistic Quentum System.
IX. Irreducible Unitary Representations of the Lecture 24 Poincare Group
I. Reduction of the Representations of the Poincare' Group to Representations of the Little Groups
78. Realizations of the Individual Classes of Irreaucible Unitary Representations.
79. Time-like Representations.
80. Space-like Representations
81. Light-like Representations

Lecture 25
4. Null-vector Representations
X. Applications of the Representation Theory of the Poincare' Group.

1. Classification of Elementary Particles
2. Relativistic Kinematics

Reforexters

I. Elements of Abstruct Group Theory. Ine Grounc and Ife Algebras. General Topias.

2. P.M.Cohs. Lie Groups, Juiveraity Press, Cambriage, 1957.
3. M. Hamermesh, Group Theory and its Applicatiom to Physical Probiems. Addison-Wesley, Reading, Mass. 1962.
4. S. Helpason: Differential ceometry and Symetric Spaces. Acesemic Press, New York, 1962.
5. R. Hermann: Lie Groups for Phyelcists. We A. Benjemin, Nev York 1966.
6. R. Hemman: Vector Bundes in Niethematicel Physics, Vol. 1. W. A. Benjamin, Inco, New York, 1970.
7. Ro Hemman: Fourier Analysis on Groups and Pertiel Weve Analyeis, W. A, Benjemin, New York, 1970.

To No Jecobson: Life Algebras. J. Wiley, New York, 1962.
8. I. S. Pontwyatin Topological Groups. Goxdon and Breach, New Yoxk, 1966.
9. Jo Po Serre: Lie Alcebras and Lie Croups. W. A. Benjamin, New York, 2965.
10. Phe Tondeur: Introduction to Lie Groups and Transformetion Croups. Springer Verlag Berilns 1965.
11. N. J. Vileninin: Special Functions and the Theory of Group Representations Am. Math. Soc. Mransi. Providence, RoI. 1968.
12. D. P_{0} Zhelobenke, Lectures on Lie Groups, Dubne, 1965 (In Russimn oniy).

In the lectures use is made mainly or Rererences $12,8,7,2$ and 3 .
II. Semisimple Lie Groups and Algebres. Dynkin Diegrams.

1. E. Dyakin: The Structure of Semi-Simple Lie Aigebras, Am, Math. Soc. Trans1. No. 17 (1950).
2. E. Dynkin: Mawimal Subgroups of the Classical Groups, Am. Matho Soc. Tremsl. Sex. 2, 6 (2957), p. 245-378.
3. F. Gentmecher: Cenonicel Representetions of Automorphisms of a Complex Semisimpin Lie Group, Met. Sboraik 5, 101-146 (1939).
4. Fo Gantmecher. On the Clageification of Real Simple Lie Groupe. Mat. Sbormik 5: 217-249 (1939).
5. A. O. Berut, R. Receke on Non-Compect Groups. I. Classificetion of NonCompert Real Simple Lie Groups and Groups Containing the Lorentr Group. Proc. Roy. Soc. (London) A, 287, 519-531 (1965).
6. A. Raceh, Notes on Lie Groups. Princeton, N.J. (1951).
7. C. Fronsdal, Group Theory and Applications to Particle Physies. (Lectures in: Elementery Particie Physics and Field Theory Is W. A. Benjemins. New York, 1963).
8. R.E. Behrende J. Dreitiein, C. Fronscel and W. Lee: Simple Groups and strong Interection Symetries. Rev. Moc. Phys. 34 , 1 (1952).
9. A. Salam, The Formelism of Lie Goups (in Theoreticel Physies, IAEA, Viemne (1963).

III．Group Representwion Theory

Busides the peforences listed under $I_{\text {g }}$ see：
1．H．Bocrucre Representwtions of Groups，North Holiand，Amsterdam（1963）．
2．J．D．Taman，Special Fumetions，A Group Theoretic Approach． Wo A．Benfamin，New Yomik（2968）．
3．Wo Miller．Lie Theory and Special Functions．Academic Press，New York， 1968.
4．W．W．Mackey：The Theory of Woup Representations．（Lecture Notes，Dept． of Mathemetics University of Chicago（1955）．
5．G．W．Mackey：Induced Representations of Groups and Quantum Mechanics． W．A．Benfemin，New York（1970）．
6．A．J．Coleman：Induced and Subduced Representations（in：Group Theory and its Applications，Ed．E．Mo Loebl，Academic Press，1968）．
7．W．H．Klins：Induced Representation Theory and the Poincere＇Group． （Im：Lectures in Theoret，Physics XI D（Boulder），Ed． K．T．Mahantheppes W．E．Brittin，Gordon and Breach，N．Y．1969）。
 Grupperi。Arademie－Veriag，Berin（1957）（German）
9．M．A．Najmerix：Unitary Representations of Non－Compect Groups（Lectures et Sunmex School on High Energy Physios and the Theory of Elementery Pexticles．Ed．V．P．Shelest，Kiev，1967）（Russitan）

IV．The Poincarer Group and its Little Groups

1．E．Po Wigner．On Unitary Representations of the Inhomogeneous Lorente Group．Annals of Math。 40 ， 149 （1939）．
2．E．P．Wigner：Unitary Representations of the Inhomogeneous Lorentr Group Including Keflections． In：Croup Theoretricel Coneepts and Methods in Elementary Particie Physics edited by Fo Gursey，Gorden and Breach，New York． 1964.
3．V．Bergmank，E．P．Wigner，Group Theoretical Discussions of Relativistic Weve Equetions．Proc．Nat．Acad．Scio 34． 211 （1946）．
4．V．Bergmann Trpeducibie Uinitary Representations of the Lorente Group． Annels of Mieth 48， 568 （2947）．
5．V．Borgmenno On Unitary Ray Representations of Continuous Groups．Annels of Metro 29：（1954）。
6．PoAoM．Direc．Forms of Reiativistic Dynmics． Keq．Mod．Phys．22．392（1949）．
T．T．D．Newton：E．Po Wiguero Locelized States for Elementary Systems． Rev．Mod．Phys．21， 400 （1949）．
8．E．P．Wigner．Reletivistic Inveriance and Quantum Phenoment． Fer．Now．Phys．29， 255 （1957）．
9．InoM．Shipolov：A Group Theoretical Consideration of the Basis of Felativistic Quanturn Mechanics $I=V$ Zh．Eksp．Teor．Fiz．33， 861,1196 1208 （1957）；34，717（1957）；36，879（1959）（English transletion： Seriet Physics．JETP 6，664，919，929（1958）；7，493（1958）； 9，620（1959））．
20．To Do Hertor．The Inhomogereous Loreati Group．In：The Theory of Groupe in Clessical and Quentum physies，Vol．Io Edited by T．Kahen． OLifer mad Boyd．Edinburgh，2965．
11．W．Ruhi．Lectures on the Lorentz Group and Hamonic Analysis．New Yorko W．E．Bengeming（2969）．

12．M．A．Najmark．Linear Representations of the Lorentz Group．Pexgemon Press．Oxford 1964．
13．A．S．Wightman．Invarience in Relativistic Quantum Mechanics（in French）In：Dispersion Relations and Elementary Particles，edited by C．DeWitt and R．Omnes；Hermann，Paris 1960．
14．Ro Fo Streater．A_{0} S．Wightman，PCT，Spin and Statistics，and all that； Benjamin，New York 1964．
15．I．M．Gelfand，M．I．Graev，N．Ya，Vilenkin，Generalized Functions， Vol． 5 Integral Geometry and Representation Theory．Academic Press．New York，1966．
16．I。M．Gelfand，R．A．Minlos，Z．Ya．Shapiro．Representations of the Rotation and Lorentz Groups．Pergamon Press，Oxford， 1963.

Vo Relativistic Kinematios
1．J．Fo Boyce，R_{0} Delbourgo，A．Salam and J．Strathdee；Paridial Weve Analysis．Preprint IC／67／9．Trieste 1967.
2．H．Joos．On the Theory of the Representations of the Inhomogeneous Lorentz Group as the Basis of Quantun Mechanic Kinematics． Fortschx．©。 Physik 10，65（1962）。（German）
3．Po Moussa，R．Stora：Some Remarks on the Product of Irreducible Representations of the Inhomogeneous Lorentz Group．（In：Lectures in Theor．Phys．VIIA．Ed．W．E．Brittin，A．O．Barut，Boulder（1965）．
4．M．Toller：On the Group Theoretical Approach to Complex Angular Momentum and Signature．Nuovo Cim．54A， 295 （1968）．
5．Po Winternitiz。 The Poincare＇Group，its Iittle Groups and their Applications in Physics．（Lectures at the Summer School on Group Representation Theory and Quantum Theory，Dublin，Ireland，o 1969）。

INTRODUCTION TO GROUP THEORY AND SOME
APPLICATIONS IN PARTICLE PHYSICS
(Lecture Notes)

Esul Winternitw
Depamtment of Physics
University of Pittsburgh
Pittsburgh, Da。 25213

General Outline of the Course

I. Groups, Topological Groups, Lie Groups and Lie Algebras
II. Linear Representationg of Lie Groups
III. The Poincare Group and its Representations
IV. Application of the Representation Theory of the Poincare" Group and its Little Groups to Pariole Scattering.

General Rerierences

1．L．S．Fontryagin；Topological Groups，Gordon and Breach，Science Pubiishers Inco，NoY。1966。

2．N。 Y_{0} Vilenkin；Special Functions and the Theory of Group Representations，Amer．Math．Soc．Nonograph Trans．No．22， Providence，RoI。（1968）。

3．M．Hammermesh，Group Theory and Its Applications to Physical Problems，Adjison－Wesley Publishing CO．，Inc．， 1964.
4．N ．Jacobaon：Lie Algebras，Interscience Pubiishers，NoY。1962． Other keferences will be given in the process of the course．

Lectume 1

I. Introduction

The symmetry properties of the World in which we live in and their peplection in acientific theomies have played an outstanding pole in the development of natural sciences. The history of applications of symmetriess inyariance principles, conservation laws etc. in physics can be traced back to Axisweqle and Ptolemy, later to Galilei, Tyeho de Brahe, Kepler and Newton, not to mention the crucial role these comepts played in the aevelop ment of mavytic mechanics by Lie, Cartans Hamiton and others. A qualitatively new stage in the use of essentially group theoretical concepte sterted with the development of the speciel theory of relatioity, with its emphasis on a precise and profoun undecstanding or geonetrical space-time concepts. Indeed, an explicit consiaeration of the Gelilei group, consisting or zpace rotations and transations, time transiations end specisil Galilei wnampometione connecting inextial frames of zefference, mowing with respect to each other With rectilnear unform pelocity, entered into the game of ajsssical methenice at a melntively Late stage。 The Loxenta transfomations and the ourpeapondixg Lorenty groups on the other hand, played a crucial role wight from the very finet steps in the dewehopment of melativistic theory.

Group theory hes turned into a real working cool for phyaicjste spequily in the field of quantum physics. Indeed, the lineax character of the Hilbert space of weve functuns (or state wectors) rakes this spere patioulary suitsble for realzing tepresentations of symetry goupa.

Let us just brietily mention some of the difeqent aspetet of the applications of symetry principhes mad of group theory in physuas.

Namelys when the besteal physioul Laws and equatons ere siready known but theif solution presents aificicult and complicated problem, many simple, but mucis specific results can be obtained drectiy mom the symutupes of the equations, without obtaming expitat solutions. The fact thet essmataily all besic results of atomic spectroscopy follow from the symetw of the problem, mainly from the properties on the thitee-
 troncus book "Guoup Theomy and its Apptioation to the Quentum Mechenins of Atomic Spectre". Gtoup theory aso hejps to obtain exact selutions of kromm equations. welate genemat solutions to perticular ones. ete.

A second espect of group theory in physics, which meceives grew gitentions whenever a new field is developed, fouroshes gh present j m nucleai phystegs, elenentary particle physeos, quantum field theory and cther fields. Namelys Dhe wertmin fundamental symmety principies axe estabished from our experimental knowiadge or are shewn to follows yay,
 imposed as "Superinws of natume"。 We can then demand thet eni (unknown) dymmicat law are compthinde fith wheae yymetry or invarimnce principles, which thus serye as part of we criterofe for the voceptridity of sugemeted theory。

 guesses ma formulete nypotheses. the consequences or which cen then be teged meting emperinentel deta.

If these tectures, ghter some general mathematuen introductions

 the symetries of the space-time continum in which the stuaied procesems oecur gnd thus mepresent "winemutes" rather then specivie "dynantes"。 We shail, nowever, giso be interested in "dynamie" symuetries, specitie for particuler interactions, mather than broat ciasses orinterations. Thus in nonrelativistit quantun mechenics the group o(3) represents a geonetric symmetry group rov an mioitrexy spherically symmetwie potentiel T(f) : the toum-dimensional rotation group of 4 , on the other hard. pepaesents

II. Elemente of Abstrapte Girom Theory

1. Defintitign of a Group

An mbstract set of elements Gis cailed a group ir
 clement $g_{1} g_{2} G$, eqlisd the product of E_{1} and g_{2}. This product is mavelative; but in generminot commutative, i.e.

$$
g_{1} E_{2} E_{3}=\left(\tilde{S}_{2} E_{2}\right) g_{3}=E_{2}\left(E_{2} g_{2}\right)
$$

buty fin gerexfy,

$$
\mathrm{E}_{1} \mathrm{~g}_{2}{ }^{2} \mathrm{~g}_{2} \mathrm{E}_{1}
$$

2. An fantity element ex exists, swen that

$$
\operatorname{reg}_{\mathrm{g}}^{\mathrm{g}} \mathrm{ge}=\mathrm{g}
$$

\# For ench element geG therve exists on inverse element of E^{-1} such that

$$
\operatorname{gg}^{-1}=g^{-1} g=e
$$

Eroblem: Discuss the possibuity of having left end right yentity operatore

$$
\mathrm{e}_{2} \mathrm{E}=\mathrm{g} \quad \mathrm{ge}_{2}=\mathrm{g} \quad \mathrm{E}_{2} \mathrm{~F}_{\mathrm{f}} \mathrm{E}_{2}
$$

and lept and wight inverse operators

$$
5_{2}^{-1} E=e \quad 5_{2}^{-1}=e
$$

 sone is trum for mantrye element.

$$
\begin{aligned}
& e=\left(\begin{array}{ll}
1 & 2 \\
4 & 4 \\
1 & 2
\end{array}\right) \quad y=\left(\begin{array}{ll}
1 & 2 \\
\frac{1}{2} & \frac{1}{2} \\
2 & 1
\end{array}\right) \\
& \text { es }=\left(\begin{array}{ll}
1 & 2 \\
\downarrow & \downarrow \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
\downarrow & \downarrow \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
\downarrow & \downarrow \\
2 & 1
\end{array}\right)=a \quad a=\left(\begin{array}{ll}
4 & 2 \\
4 & 4 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 2 \\
\downarrow & 4 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)=
\end{aligned}
$$

 percmeturi $=$ an ancle a, $0 \leq a<2 \pi$

$$
\begin{aligned}
g_{a} g_{b} & =g_{a q \beta} \\
g_{0} & =e \\
g_{-b} & =\left\langle g_{a}\right\rangle^{-1}
\end{aligned}
$$

Wet us discuss erampe I and finte (or distretey groups if generel.
Digerete groups. The grdet of the group mumber of enenents.

 Anverse enemente to inverge elements).

Examper All groups of order two gre isonorphic:
Froof: Consider two Elementsa and s: a"e =a (By definition, since e ps the hatent
Tay: and $=\mathrm{g}^{2}=\mathrm{a}=\mathrm{a}=\mathrm{a}=$ (this is impowible, singe we whad have one element only.)

Thus: a.a $=e$
Isombinhe to the above group of permutations of two ehements ape e.

$y)=1, a=-1$ whe group operation is ordinury mintertest
Grink of oxdex 3: $a_{0} b_{2}$ e

$$
\begin{aligned}
& \text { thus } a b=e \\
& z^{2} \equiv a=a=e \text { impossione }=a^{2}=b \\
& a^{2}=e=a b=a^{-1}=a \text { imposibible) } b^{2} \equiv a
\end{aligned}
$$

 st the form or a group tatle:

Wreme two:

	e	e
e	e	a
a	a	e

order thwe:

	e	a	b
e	e	a	b
a	a	b	a
b	b	e	a

Pabden: Consider all groups of ordex 4.
 wo whian, $50(3)$ tis monemmatatye

In theas lectures ye shall conventrate mainiy on continuour grous.
 Figith twarmpatons

$$
g+g_{0} g \quad g+g_{0}
$$

wha for my two elements $g_{1} E G$, $g_{2} E G$ we can find a $G_{0} E G$, Buch that

for enatinuous groups this provides a method by whin jecet propertist

Detathon: Topological Space: a set of elements if a topological spacts is to sen subset $M O$ in the cormesponds a set \bar{M}, cailed the clasure of M swen thet
a) It M contains oniy one element $X \quad M$, then $\bar{M}=M$ (Loe. $w=$ y $)$
 at the union is the mion of the closure).
c) $\bar{M}=\bar{M}$ (epplying the operation of closure trice gives the gene tewuit as applying it once)。
 Ind weithbourhood, closeness, etc.

Returth The whon MUN of twe spaces M and N is the set of ent poimts dyme th War In IN (om both

Detantuon A grop oin a Topological Group in
2) 1 in an group
2) G is e toporagitai spame
3) The geap aperations in G we continuous in the topolusidn space 6
 on g_{2} and fr_{2} and g^{-1} depends continuousiy on g 。

Morv wreatachy：
 there exist neighboumoods u and V of E_{1} and E_{2} such thet MJ CW

2）get＝：for every neighbounhood V of a^{-1} there exists g Mesighboumbod of a such that $\mathrm{J}^{-1} \mathrm{C} V$ ．

To intmentue the concept af neighbourhood，let us made a few memaros．
Wet M be ar aroftramy subset of R 。
A porm of it is my element a $\varepsilon \mathrm{M}_{0}$

 A set 6 in the topological space R is open it R G is chosed：$\overline{\mathrm{R} \backslash \mathrm{G}}=\mathrm{R} \mathrm{G}$

$$
\pi=\tilde{u}_{2} U L_{b} U L_{e^{0}}
$$

A bese＝mompiste systen of neighborheods for R 。 Each opem asc I it a sajehbonome at every point of that open set．

 watce．
 towone mapying from one onto the othere

```
1) Finite cardinality
E) Countable - alefo - mapping onto integers
3) Alex}1\mathrm{ - m mapping onto seel mumbers
4) ALeq2 - meppung onto or ell meas velued
                                    functione or peel numbers
ets.
```

 to gnemel topological spaces.

Covencine A woliection of sets i in a space R is a covering of a sen fio t the the umiom or ail sets in \bar{z} contains M :

$$
M \subset \Sigma_{a} U \Sigma_{b} U U_{0} U \Sigma_{n}
$$

 sets ith poseinle to select a finite covering.

A topologicai space R fiz localy compet if every one of tha points pescysses nefghborhood, whose closure is compect.

Lecure 2

 to shm thether elevent concepts of group theory

Conader aroup a:
Notation: subsets A, B
Then $A B$ set of Elements ab with ach, beB A^{-1} set of elements a^{-1} where aed A^{m} derined by induction
$A^{-i n}=\left(A^{-1}\right)^{m}$
$A^{0}=\{e\}$

Wa have: $A G=G A=G$

$$
G^{-1}=G
$$

$A \in=E A=A$
 mespect to the ame operation of composition, as aefined din
 of G are thet dither one of the folowing ondutions is matisined:
(1) $\mathrm{azH} ; \mathrm{DEH} \Rightarrow \operatorname{ab}^{-1} \mathrm{EH}$

さ.e. $\mathrm{HH}^{-1} \mathrm{CH}$
(2) atM, DEH \Rightarrow abert, ${ }^{-3} \mathrm{EH}$ i.e. $\mathrm{H}^{2} \mathrm{CH}, \mathrm{H}^{-1} \mathrm{CH}$

Enuatignce relatsas a w b
An aqumatene reation must satisfy:
(s) Reviexivity a a
(b) Gymmetry $\& x b=b$ a
(c) Transitivity as b, buc $\Rightarrow a=0$

Mghtalence ciasses of elements:

Wet in be w subgroup of G :

 tot avery nely and aeG ; i.e. $a^{-1} N e C N$ for every aeG.
onvionsly: If 1 is an invamiant subgroup, then $a H=H a$ W. bhe lert mat might cosets coincide.

Equmb: $\quad E_{2}$ - the geoup of motions of an Euclidesn plane

$$
\left(\begin{array}{ccc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi & a \\
0 & 0 \chi & 1
\end{array}\right) \quad \begin{aligned}
& \operatorname{acting} \operatorname{on} \\
& 0
\end{aligned}
$$

Wroblem: Bhow that the translations

$$
\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

monstitute sumanent subgroup.

 ot the Group G by the normal subgroup N and is denctea G / N. Tout that G/N sa a group:
2) Associativity

$$
\begin{aligned}
& (A B) C=A(B O) \\
& (M a N D) N C=N a(N O N C)
\end{aligned}
$$

2) The iaentity is $E=\mathbb{N}$

$$
\text { Indeed } N A=\mathbb{N}(N a)=\mathbb{N a}=\mathrm{A}
$$

3) $A=N a \rightarrow A^{-1}=a^{-1} N$

Inaeed $A A^{-1}=N a a^{-I} N=N N=N=E$

Wery group has at least two invariant subgroups:
G and $\{e\}$
(the entire group and the identity element alone)

Definfion: a giongegroup has no other invariant subgroup
 Fran one onto the other exists, preserving the group operation:

$$
f^{\prime \prime}(x y)=f(x) f(x) \quad x, y \in G \quad f(x)=f(y) \in G
$$

Homphotritsmin A mapping of G into G is a homonomphismif it presurves the group opexstion: $g(x) g(y)=g(x y)$ 。The $\operatorname{set} g^{-1}\left(e^{\prime}\right)$ of all elemente gab mappea Snte the Adentity e cG" is the kernel of the homorphism.

Sequas: For bopologicul groups some of the above conceptr should we furber mperfiedg but we shal not go into that.
 Q: Prike g pixed element geG and put

$$
f_{g}(x)=\operatorname{gxg}^{-1}
$$

Fex evexy xaco

Further important concepts for topological groupe, to which we sheth wideng
 any two of its points can be connected by a contimuous curres betwetwe whe the spece.

Consuder a topologital group $G:$ if it is not connected it dempontas wam

by definition that sheet of G, connected to the iantity (thus, o de a subgroup of G)

 ELements $\sigma_{1} \xi_{0}$ with $g_{0} \varepsilon \quad$ oonstitute the sheet g_{1} " "similax" to $\varepsilon_{0} \sigma_{1}$ Is not group: since it does not contain the identity.

Disurete groups can be considered to be topological groupa tin mhen each sheet conersts of one point.

Examptes:

(1) Group (3): all Innear transformations leaving the quadmaty mom

$$
x^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

Anycerient

$$
g \mathrm{ge}(3) \rightarrow \mathrm{g}^{T} \mathrm{~g}=3 \quad \mathrm{~T} \text { denotes the traneposetimetry }
$$

$(\operatorname{det})^{2}=2=\operatorname{detg}= \pm 1$
Thus: $0(3)$ consists of two sheets:

$$
0\left(3^{\vdots}=0^{+\frac{1}{2}}+0^{-}\right.
$$

O^{+}oohas detg $=1, O^{-}$has det $g=-1$
(2) Consider the group $0(2,1)$, preserving the quadratim mom

$$
x^{2}=x_{0}^{2}-x_{1}^{2}-x_{2}^{2}
$$

Inveryent

$$
X_{j}^{0}=E_{i} X_{k} \quad E^{T} \underline{g}=I \quad I=\left(\begin{array}{rrr}
4 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

We have: det $g^{T g}=+(\text { detg })^{2}=4 I+\operatorname{det} \equiv \pm I$

$$
\begin{aligned}
& \left(E^{T} I E\right)_{00}=E_{C k}^{T} I_{k k}{ }_{k 0}=2 \\
& \mathrm{E}_{00} \mathrm{t}_{00}-\mathrm{g}_{20} \mathrm{t}_{10}-\mathrm{E}_{20} \mathrm{~g}_{20}=1+\mathrm{E}_{00} \geq 1045_{00} \leq-1 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \operatorname{sol}(2,2)_{0}=I_{p}^{4} \quad \text { with } \operatorname{det} \Lambda=1, \Lambda_{00} 21 \\
& I_{-1}^{1} \text { with det } \Lambda=-1, \Lambda_{00} \geqslant 1 \\
& I_{4} \downarrow \quad \text { with } \operatorname{det} \Lambda=I, \Lambda_{00} \leq-1 \\
& I_{2}{ }^{*} \text { with det }=-1, \Lambda_{00}=-2=
\end{aligned}
$$

 patem, of wheh oniy L_{+}^{4} - the proper ortrochronous Lonemte grove - fe subergup. Exackly the same dis true for the four-dimensional Loremtz group 0.3, 1%

We shell be mainlys but not exclusively, interested in conmected groupe (grovas conestating of one annected sheet).

Faremptricel fugups:

 peramernsed by a finfentumer of real parameters:

$$
E=g\left(t_{1}, \ldots, t_{n}\right)
$$

 atrement rectons of the group.

The matuplication new is:

$$
g_{3}=E_{1} g_{2}
$$

ioe.

$$
t_{1}\left(g_{3}\right)=F_{1}\left(t_{j}\left(E_{1}\right), t_{k}\left(g_{2}\right)\right) \quad i, f, k=1, \ldots, 0,
$$

and we here

$$
t_{i}\left(g^{-I}\right)=q_{i}\left(t_{j}(g)\right)
$$

If Is a topological group then $F=\left\{F_{i}\right\}$
and $\left\{\emptyset_{\dot{L}}\right\}$ are continuous functions.
 $\#_{i}$ and σ_{i} detemming the multiplication are analytic fumetions.

Therean (Hilberts problem V): Every parametric group is a Le eremp
We shall not give the proof. (Continuity implies analywesty th that
atse). However, a simple analogy is that equation

$$
f(x+y)=f(x) f(y)
$$

With $f(x)$ angiytic has $f(x)=e^{\alpha x}$ as only continuous solutiones and an and animyta functions.

Isie Groups and Lie Algebres

Having the concept of analyticity, we can introduce diffremtatang som and tonsider the tangential space in the unit point e (or in any arbownemy points ainces the group is a hamogeneous manifold).

Let wa define a onemprometer subgroup of a Lie zroup (chryempondina bo क. "dreetion" in an Euclidean space):

Ascumet There exists a neighborhood Ω of e in whioh the equation

$$
x^{2}=g
$$

has a solution $5^{2 / 2} 0 \Omega$ for gen.
Using this extraction of square roots mat the grour muthpitomstom wo esin contronew ejementa

$$
\operatorname{gg}^{x^{x}} \text { with } r=k\left(\frac{1}{2}\right)^{r} \ldots k \text { and } n \operatorname{sit} \operatorname{cog}
$$

maticfycig

$$
E^{x_{1}+Y_{2}}=g^{r_{1}} g_{2}^{r_{2}}
$$

Using e limping procedure, we construct

$$
\mathrm{g}^{\lambda} \quad 0 \leq \lambda<\infty, \mathrm{E}^{0}=e
$$

for arbitrary real nonnegative λ 。
If ゙ $\Omega \operatorname{containg} g$ it also contains $g^{-1}=\%$

$$
\Rightarrow g^{\lambda d \mu}=\mathrm{g}^{\lambda} \mathrm{g}^{\mu} \quad-\infty<\lambda<\infty
$$

We shall call such a family g^{λ} a one-parameter subgroup of Go
 e $\left(\mathrm{x}^{0}=\mathrm{e}\right)$

Loosely spearing: we can uniquely draw a line g^{λ} in any direction ${ }_{\mathrm{g}}{ }^{\circ}$

Example: G (n, R) : the group of all real nondegeneratemm motives:
Identity: $e=I=$
1.

1
(1
Define the "norm" of matrix g as:

$$
\|\mathrm{E}\|=\quad \sum_{i, j} \mathrm{~g}_{\mathrm{ij}}^{2}
$$

and the reighbowinod of e by the condition

$$
\|g m\| \mid<1
$$

One en a show that any ger cam be written as

$$
g=e^{a}=1+a+\frac{a^{2}}{2}+\ldots \frac{e^{n}}{n!}+0 .
$$

$$
\ln (1+x), X=g-1
$$

(Ix \|e 2 - convergence).
Th this from $i t$ is easy to smponentiate E.

$$
E^{1 / 2}=e^{1 / 2 a} \quad g^{\lambda}=e^{\lambda \theta}
$$

Expanding
"xpana

$$
e^{\lambda a}=I+\lambda a+\ldots
$$

 dfoferent onewpermeter subgroup g^{λ} we obtain all tangential wectore mat thes a tangertirin space A.

Let us see how group mutiplication reflects itself in the tomgembay gpace

$$
\begin{aligned}
& (I+\lambda a+\ldots)(I+\lambda b+\ldots)=I+\lambda(a+b)+\ldots 0 \\
& (1+\lambda c+\ldots)^{m}=I+\lambda m a+\ldots
\end{aligned}
$$

(We zre in whe mejghoorhood of $e=>|\lambda| \ll 1$)

Introducs the "commatator" of two elements hes, gew in the Erarp:

$$
k=g^{-l_{h}-1} g h
$$

The geonetrojoal meaning of k is that it is an operation necessary to "acise" the quadrangle fromed by the transformations

We have: $\quad g=e^{j e} h^{h b}$

$$
\begin{aligned}
& \therefore\left(+1+x b+\frac{x^{2} b^{2}}{2} j=I+n^{2}(a b-b a)\right.
\end{aligned}
$$

Tandat a^{2} wa wew parameter" we find that

$$
[s, b]=a b-b a
$$

w the vertar angentien to the commator k.

This matiox commutetor obvionsly staisifes

$$
[a, b]=-[b, a] \quad \text { antisymmetry }
$$

$$
[a[b c]]+[b[a a]]+[c[a b]]=0.0 \text { the } 1 \operatorname{ancoj} \text { fdentequp }
$$

We shaju can the Iinear space A with the commation operation $[$ d, b] tha Les algebra of the group G.

This concept can be generalized to an arbitimay Lie group. Actuatiy: we shell only be interested in "Iinear Lie groups" - those that cas bs papressnted by Iinear transformations in a linear vector space.

Thus: a Lie algebra is the differential or a Lie group. Ofyem a Nit group we car aiways construct a Lie algebra with commutars eatisfyins the antisymmetry condition and the Jacobi identity.

Thegrem: (Lie): A Lie algebra can always be integrated to give the maltiplication law for a Lie group in the neighborhood of the identity ghe multiplication law for the whole group is a more complicated problens tobe breated below.

Let us consider the Lie algebra A and introduce a basis eqwor $E_{y_{2}}$ (it is a finite algebra by definition) It is suficient to knem the comutetors tor the basis elements.

$$
\left[\varepsilon_{i} e_{j}\right]=c_{i j}^{k} e_{k} \quad \text { (summed over } k \text {) }
$$

 castants:

Thus - a complambed object - a Lie group, is to a mexe aterme determined by the structure constants $\sigma_{i j}^{k}$. It is ensy to prowe thet the
structure constants of a Lie algebra satisfy

$$
\begin{gathered}
c_{j, j}^{k}=-c_{j i}^{k} \\
c_{i n}^{m} c_{j k}^{n}+c_{k n}^{m} c_{i j}^{n}+c_{j n}^{m} c_{k i}^{n}=0
\end{gathered}
$$

Froblem: 1) Prove the above assertion
2) Consider all possible two and three-dimensionai lie aitgebtas.

Lecture 3

We have given the definition of a Lie algebra, starting from a Lie group. Let us now look at some purely algebraic concepts and properties. Most of todays lecture is contained in the book "Lie Algebras" by N. Jacobson, (Interscience Publishers, N.Y. 1962). We shall talk of algebras over fields

Definition: A field 0 is set of elements which is a commeative group with respect to group operation which we shall call addition $a+b$ and in which we introduce a further operation, which we call multiplication $a_{0} b$, satisfying:
(1) Associativity $a b c=a(b c)=(a b) \cdot c$
(2) Distributivity $(a+b) c=a c+b c$ $a(b+c)=a b+a c$
(3) The elements of \emptyset, different Irom zero in the additive group $(a+0=a)$ form a group with respect to multiplication
(4) Multiplication is commatative.

We shall only need two fields: the field of real numbers and the fifeld of complex numbers.

Definition: A linear vector space L over a field ϕ is a set of elements for which we introduce the concept of addition of vectors (elements) in L and multiplication of vectors in L by "numbers" from \varnothing. These operations must satisfy:
(1) $x, y \in R \Rightarrow x+y \in R$
(2) $x+y=y+x$
(3) $(x+y)+z=x+(y+z)$
(4) There exists OEL: $x+0=x$ for all $x \in L$
(5) $x \in L, \alpha \in \varnothing \Rightarrow \alpha x \in L$
(6) $x \in L, \alpha \beta \in \emptyset \Rightarrow \alpha(\beta x)=(\alpha \beta) x$
(7) $1 \cdot x=x$
(8) $0 . x=0$
(9) $\quad \alpha(x+y)=\alpha x+\beta y$
(10) $(\alpha+\beta) x=\alpha x+\beta x$

Definition: An algebra A (not necessarily associative) is a vector space over a field ϕ in which a bilinear composition (multiplication) a.b for a,beA is defiined, satisfying:

> (1) $\left(a_{1}+a_{2}\right) b=a_{1} b+a_{2} b$
> $a\left(b_{1}+b_{2}\right)=a b_{1}+a b_{2}$
(2) $a(a b)=(a a) b=a(a b) \quad \alpha \in \emptyset$

Definition: An assogiative algebra is an algebra in which the multiplicstion satistiles

$$
(a b) c=a(b c)
$$

Defingtion: A Lle algebra is an algebra in which the multiplication satisfies:

$$
\begin{array}{ccc}
a b=-b a & \cdots & \text { Antisymmetry } \\
(a b) c+(n a) b+(b c) a=0 & \cdots & \text { Jacobi identity }
\end{array}
$$

Thus: the differentiai of a Lie group, as introduced previousily, is indeed a Lie algebra where the multiplication $a \cdot b$ is actually the comutators $[a, b]$. Question: When is an associative algebra a Lie algebra?

Example:

The associative algebra of linear transformations of a finite dimensional linear vector space into itself.

We can always use an associative algebra to construct a Lie algebra: Let A be an associative algebra. If $x, y \in A$ then we define a Lie product (oso
a tomatatator) of x, y as

$$
[x, y]=x y-y x
$$

Oticumay the product $[x, y]$ satisfies all the conditions for a produce in a Lie shebere. This can be used to show that every Lie algebra is isomorght to a Lie aigebra of linear transformations so that each r Ginensorme Lie algebrt can be considered as a subaigebra of the generai Lit algebre of linear branstormations of an numbnaionel vector space. The dmention of a Lie algebra (or of an associetive algebra, ot
 vectors in the algebre (space). As usual e_{i} are independent if

$$
\sum c_{i} e_{i}=0 \text { inplies } c_{i}=0 \text { for all i }
$$

Where o, belong to the rield θ.
Any set of Lineariy independent elements ien form a basis for the Ivezur space (eafebra) and an arbitrary element can te written as

$$
a=\sum_{i=1}^{n} a_{i} E_{i}
$$

A $\mathrm{K}_{\mathrm{i}} \mathrm{ECk}^{\prime}$

Desinition: N C I is an ideal (invariant subalgebra) if

$$
\begin{aligned}
& {[n a] \in N \text { for all neL, aEL }} \\
& (1.0 \cdot[N L](N)
\end{aligned}
$$

Theorem: The derived algebra of a Lie algebra is an ideal Proof: Left as a probiem.

Definition: The centre C of a Lie algebra L is the get of all elements cef such that [ca]=0 for all acL.

Lie Algebras of Low Dimensions over the Field of Real Numbers
(2) Lim $L=1$ One element e: $L=\varnothing$ e

$$
\left[e_{s} e\right]=0 \ldots \text { denote } L_{I}
$$

(2) $\frac{\text { dim } L}{}=2$ Consider the derived algebra $L^{2}=I^{\prime}$
(a) $\operatorname{aim} L^{\prime}=0$, i.e. $L^{\prime}=0$

$$
\left[e_{1} e_{2}\right]=0 \quad \ldots \text { an Abelian (commutative algebra) }
$$

(b) aim $\mathrm{L}^{9} \% 0$

$$
L=\phi \varepsilon_{1}+\phi \epsilon_{2} \text { i.e. ecL } \Rightarrow e=\alpha_{1} e_{1}+\alpha_{2} e_{2}
$$

$0_{2}=60^{60}$

$$
L^{\eta}=\phi\left[e_{1} e_{2}\right] \Rightarrow \operatorname{dim} L^{\gamma}=1
$$

Chooge: E such that $L^{\prime}=\varnothing \mathrm{e}$

$$
\left[\in R^{x}\right]=K \Leftrightarrow \quad K<0
$$

$$
\left[A E_{i}\right]=e
$$

That shere ony ondy two two-dimensional Lie elgebras
(a) Abelian $\left[e_{1} e_{2}\right]=0 \ldots L_{1}+L_{1}$
(b) Nonmabelian $\left[e_{1} e_{2}\right]=e_{1} \ldots L_{2}$

(3) $\quad \operatorname{dim} L=3$

Introduce the basis e_{1}, e_{2}, e_{3} and consider the derived algebra $L^{2}=L^{\prime}$

$$
\text { (a) } L^{\prime}=0 \quad\left[e_{i}, e_{k}\right]=0 \ldots \text { an abelian algebra }
$$

Thus

$$
[e f]=0 \quad[f \mathrm{~g}]=0 \quad 1 \mathrm{~g}, \mathrm{e}]=0 \quad \quad L_{1}+\mathrm{L}_{1}+\mathrm{L}_{1}
$$

(b)

> dim $L^{\prime}=I, L^{\prime}=\emptyset e, L^{\prime} \subseteq C$ (the derived algebra is contained in the centre)

Fut: $\left.\begin{array}{rl} & L=\phi e+\phi f+\phi g \\ & L^{\prime}=\emptyset \mathrm{e}\end{array}\right\} \Rightarrow L^{\prime}=\emptyset .[f g]$
\Longrightarrow we can put [fig] =
Further: [ef]=[eg]=0

Thus:

$$
[f g]=e \quad[e f]=0 \quad[e g] \cong 0 \quad \because \quad L_{3,1}
$$

$\left(b_{B}\right) \quad \operatorname{dim} L^{\prime}=I, \quad L^{\prime}=\varnothing$ e $L^{\prime} \nsubseteq C$
$\mathrm{E} 0 \Rightarrow$ there exists an f such that $[e f] \neq 0$ and we can put: $[e f]=0$
and the algebra $\{\in, f i\}$ is an ideal.
We have: $[e f]=e$

$$
\begin{aligned}
& {\left[\hat{E}_{\mathrm{E}}^{n}\right]=\alpha e} \\
& {\left[\hat{\mathrm{f}}_{\mathrm{E}}^{n}\right]=\beta e}
\end{aligned}
$$

Put $g=\tilde{E}-\alpha \hat{I}+\beta e: \quad[e f]=\alpha e-\alpha e=0$

$$
[f \mathrm{f}]=\beta e-\beta e=0
$$

Thus:

$$
[e f]=e \quad[e, g]=0 \quad[f, g]=0 \quad \cdots \quad I_{2}+I_{1}
$$

$\left(c_{\alpha}\right)$ dim $L^{\prime}=2, L^{\prime}$ abelian
Put: $L=\phi_{i}^{2}+\phi_{i}^{2} \tilde{e}_{2}+\phi f^{\circ}$

$$
L^{\varphi}=\phi \mathrm{e}_{1}+\phi \mathrm{e}_{2}
$$

Thus: $\left[e_{2} e_{2}\right]=0$

$$
\begin{aligned}
& {\left[e_{k}^{n}\right]=\alpha_{k i} \tilde{e}_{i} \quad \quad i, k=1,2 \quad \operatorname{det} \alpha \neq 0} \\
& \text { Introduce: } e_{i}=\rho_{i s} \tilde{e}_{s} \\
& \operatorname{detp} \neq 0 \\
& \tilde{e}_{s}=\left(p^{-1}\right)_{s i} e_{i}
\end{aligned}
$$

We have: $\left[e_{1} e_{2}\right]=0$

$$
\begin{aligned}
{\left[\epsilon_{i} f i\right]=\rho_{i s}\left[\hat{e}_{s} f\right] } & =\rho_{i s}{ }_{s i r} \tilde{e}_{r}=\rho_{i s} \alpha_{s r^{\prime}} \rho_{r k}^{-1} e_{k}= \\
& =\left(\rho \alpha p^{-1}\right)_{i k} e_{k}
\end{aligned}
$$

A real $2 x 2$ matrix a can always be brought to one of the following standard forms by a similarity transformation pop ${ }^{-1}$ where ρ is a real matrix:

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right):\left(\begin{array}{ll}
1 & 0 \\
0 & h
\end{array}\right)-1 \leq h<1
$$

0

$$
\left(\begin{array}{cc}
p & -I \\
1 & p
\end{array}\right) \quad \text { N } \leq p<\infty
$$

The first corresponds to dim $L^{\prime}=1$, the rest give new algebras, namely:

$$
\begin{array}{lll}
\hline[e f]=0 & {[e g]=e} & {[f g]=f}
\end{array} \quad L_{3,2} \quad \begin{array}{lll}
\hline\left[e f^{n}\right]=0 & {[e g]=e} & {[f g]=e+f}
\end{array}
$$

Above, different values of h and p correspond to different (non isomorphic) zlgebras.

The Last algebra corresponds to the algebra of the Euclidean group E_{2} if $p=0$ 。
$\left(C_{\beta}\right) \operatorname{dim} L^{\prime}=2, L^{\prime}$ non abelian:
$[\mathrm{ef}]=e$
$[\mathrm{eg}]=\alpha e+B_{f}$
$[\hat{\mathrm{f}} \mathrm{g}]=\gamma \mathrm{e}+\delta \hat{\mathrm{f}}$
The Jacobi identity:

$$
\begin{aligned}
& \quad 0=[[\mathrm{ef}] \mathrm{g}]+[[g e] \mathrm{f}]+[[\mathrm{fg}] \mathrm{e}]= \\
& =\alpha e+\beta f-\alpha e-\delta e \mathrm{C}=\mathrm{B}=\delta=0
\end{aligned}
$$

This is impossible, since then dim $L^{\prime}=1$
(d) $\quad \operatorname{dim} L^{\prime}=3 \quad e_{1}, e_{2}, e_{3}$

$$
\begin{array}{rlr}
{\left[e_{i} e_{k}\right]=} & \varepsilon_{i k \ell} \ell_{2}= & \varepsilon_{i k \ell}= \\
& \varepsilon_{i k \ell} \text { totally antisymmetric } e_{m} & \text { tensor with } \varepsilon_{123}=1
\end{array}
$$

$\operatorname{din} L^{p}=3 \Rightarrow \operatorname{det} \alpha \neq 0$
Jacobi identity $\Rightarrow \alpha_{\hat{i} m}=a_{\mathrm{m} \ell}$

This induces a similerity transformation $\operatorname{\rho ap}^{-1}$ 。 However a symmetrit metriz a. axn be diagenaizzed.

Thus: $\left[e_{2} e_{2}\right]=e_{3} \quad\left[e_{2} e_{3}\right]=\alpha e_{1} \quad\left[\varepsilon_{3} e_{1} \mid=\beta e_{2}\right.$

$$
\begin{array}{|lll|}
{\left[e_{1} e_{2}\right]=e_{3}} & {\left[\varepsilon_{2} e_{3}\right]=e_{1}} & {\left[e_{3} e_{1}\right]=e_{2}} \\
{\left[\omega_{1} e_{2}\right]=e_{3}} & {\left[e_{2} e_{3}\right]=e_{1}} & {\left[e_{3} e_{1}\right]=e_{2}}
\end{array} \quad I_{3,6}
$$

The fret is the Lie plgebre of $O(3)$, the second of $O(2,1)$.
 of Lie migebres of dim $L=4,5$ and 6 exist in the literature).

Example from ebove: $L_{2}+L_{1}: L_{2}=\left\{e y^{4}\right\}, L_{1}=5$

Detintion: Representetion of Lic elgebra L: A homomphism of the mitebra LInto the Lie migebre of linear tranctormations of a vector space M over The conditione fox homomomphism are:

$$
\begin{aligned}
& \text { Lf }{ }^{2}{ }_{1} \rightarrow L_{1}{ }^{2}{ }_{2}+L_{2} \text {, then } \\
& \dot{W}_{1}+\Omega_{2}+L_{1}+I_{2} \otimes \alpha \ell_{1}+\alpha \ell_{2} \\
& {\left[\theta_{1}, \ell_{2}\right] \rightarrow\left[L_{1}, L_{2}\right]=L_{1} L_{2}-L_{2} L_{1}}
\end{aligned}
$$

It the homoromphism is an isomorphism (one-towone, onto), then the
 ail elamexte of che gigebra get mapped onto single element. Then the trextesentatiogictyoivizl。

Departion: The adoint representation of a Lie algebra L: Feproment

Examples：1）Algebra：$e, t \quad[e, t]=e$
In the adjoint rep，we have：$\ell \rightarrow x$ ad $\ell=$［xl］
Find the operators ede in the basis e ，f：

$$
\begin{align*}
& \text { ad } e \quad \Varangle=e \rightarrow e \text { ale }=[e e]=0 \\
& \mathscr{x}=f \rightarrow f \text { ide }=[f e]=-e \tag{*}\\
& x=e \rightarrow e \operatorname{adf}=[e f]=e \\
& \text { YR }=\mathrm{i} \rightarrow \mathrm{i} \mathrm{adf}=[\mathrm{ff}]=0
\end{align*}
$$

Thus：

$$
e+\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right) \quad \quad f+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Remark：in general we could have，say

$$
e-a d e=\left(\begin{array}{ll}
\alpha & B \\
\gamma & \delta
\end{array}\right)
$$

in an est basis．We can put

$$
\varepsilon=(1,0) \quad=(0, I)
$$

With usual matrix mutipifotion，we have：
（1 10 ）$\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)=(\alpha \beta)$ ，but ede $\equiv 0$ ，so that $\alpha=\beta=0$
$(01)\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)=(\gamma)$ ，but if ede $\equiv e$ ，so that $\gamma=-1, \delta=0$

2）The algebra of $\mathrm{sO}(3): \epsilon_{\mathrm{i}}, e_{2}, e_{3}\left[e_{1} e_{\mathrm{K}}\right]=\varepsilon_{i k l} e_{l}$

$$
\begin{aligned}
& \operatorname{mac}_{2}: x=e_{2} \quad e_{2} \operatorname{ta} \epsilon_{1}=\left[e_{1} e_{1}\right]=0 \\
& \mathrm{~J}=e_{2} \quad \epsilon_{2} a d \epsilon_{1}=\left[e_{2} e_{1}\right]=-e_{3} \quad \text { ide }=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \\
& \%=e_{3} \quad e_{3} \max _{1}=\left[e_{3} e_{1}\right]=e_{2} \\
& \begin{array}{l}
e_{2} \operatorname{ad\varepsilon _{2}}=\left[e_{1} e_{2}\right]=e_{3} \\
e_{3} \operatorname{sds_{2}}=\left[e_{3} e_{2}\right]=-e_{1}
\end{array} \quad \quad \operatorname{ade_{2}} \quad=\left(\begin{array}{ccc}
0 & 0 & +1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
& \text { 蝶を: }
\end{aligned}
$$

ade $_{3}$

$$
\begin{aligned}
& \operatorname{e}_{2 d e_{3}}=\left[e_{1} e_{3}\right]=-e_{2} \\
& e_{2} a d e_{3}=\left[e_{2} e_{3}\right]=e_{1} \\
& e_{3} \operatorname{ma}_{3}=\left[e_{3} e_{3}\right]=0
\end{aligned}
$$

$$
\operatorname{ade}_{3}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
+1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Problem: 1) Find the adjolnt representetions of all three-aimensional Lie algebras.
2) When is the adjaint mepresentation faithiul

When is it turivial
3) What is the kernel of the adjoint representation (wher it is a homomorphism)

Lecture 4

We have already defined the concept of an ideal, namely a subalgebra $N \subset L$ is an ideal if [NL] $\subseteq \mathbb{N}$.

Obviously, we have:
(1) The intersection of ideals is an ideal
(2) The sum of ideals is an ideal.
(3) The Lie product of ideals is an ideal.

The derived series of a Lie algebra:

$$
L \supseteq L^{\prime}=[L, L] \supseteq L^{\prime \prime}=\left[L^{\prime}, L^{\prime}\right] \supseteq \ldots L^{(k)}=\left[I^{(k-1)}, L^{(k-1)}\right] \supseteq \ldots
$$

The lower central series

$$
\begin{aligned}
L & \supseteq L^{2}=L^{\prime}=[I, L] \\
& \supseteq L^{3}=\left[I^{2}, L\right] \geq \ldots \\
& \supseteq L^{k}=\left[L^{(k-L}, L\right] \supseteq \ldots
\end{aligned}
$$

All terms in both series are ideals.

Definition: A Lie algebra is solvable if $L^{(h)}=0$ for some positive integer h.

Erample: An abelian algebra is solvable.

Problem: Which two and three-dimensional algebras are solvable and which are nilpotent?

Definition: A Lie algebra is nilpotent if $L^{k}=0$ for some positive integer k. Obviously, every nilpotent algebra is solvable, but not vice versa.

Example: $[e f]=e \quad$. solvable, but not nilpotent.

Definition: The Radical of a Lie algebra L is the maximal solvable ideal of Ls i.e. a solvable ideal, which conteins al solvable ideals of L.

Definition: Algebra L is simple if it has no ideals except 0 and L and if $\mathrm{L}^{\prime} \neq 0$ 。

Definition: Algebra L is semisimple if it has no non-zero solvable ideal (i.e. if the radical is equal to zero).

Theorem: An algebra L is semisimple if it has no non-zero abelian ideals.

Proof: We must show that if I has a solvable ideal it has an abelien ideal (the converse is obvious), Let Σ be a solvable ideal: $[\Sigma L] \subseteq L$

$$
\left.\begin{array}{l}
\Sigma^{(h)}=\left[\Sigma^{(h-1)}, \Sigma^{(h-1)}\right]=0 \\
\Sigma^{h-1} \neq 0
\end{array}\right\} \Rightarrow \Sigma^{(h-1)} \text { is e non-zero abelian } \begin{gathered}
\text { ideal. }
\end{gathered}
$$

We have thus introduced two distinct classes of algebras - semisimple and solvable - and the investigation of these classes is very important, in view of the existence of the following theorem:

Levi-Maltsev Theorem: Every Lie algebra L as a linear space can be considered to be the direct sum of two subspaces A and B 。 A is a semisimple subalgebra of L and B is a solvable subalgebra of L. B is the radical of L.

$$
L=A \subseteq B \quad[L, B] \subseteq B
$$

Remark: $L=A$ B means that every element $\ell \varepsilon L$ can be written as $2=a+b$ with $a \in A, b \in B$.

Thus, the structure of general Lie algebras can, to a large degree, be understood in terms of semisimple and solvable ones.

The corresponding statement for Lie groups is:

Theorem: Every connected Lie group is locelly isomorphic to the semidirect product

$$
G=R \cdot T
$$

where R is a semisimple connected group and T is a solvable connected group. Further - T is an invariant subgroup of G, so that

$$
G T G^{-1} \subseteq T \text {, in particular } R T R^{-1} \subseteq T
$$

Example: An Euclidean group:

$$
G=R, T
$$

R - rotations, T - translations. Here R, T is a semidirect product, i.e. $r_{1}, r_{2} E R_{s} \quad t_{1}, t_{2} E T \quad r t r^{-1} \varepsilon T$ 。

Definition: A group G is solvable if the sequence of subgroups $Q_{1}, Q_{2}, \ldots Q_{n} \ldots$ contains the trivial subgroups $\{e\}$. Here Q_{1} is the commutator group of G, i.e. the group consisting of all elements of the type aba ${ }^{-1} b^{-1}$, where acG, beG. Q_{n} is the commutator group of Q_{n-1}.

Schematically we have the following picture for Lie groups (and Lie Algebras):

In a moment we shall return to semisimple Lie algebras, but in order to be able to move more freely between algebras and groups, let us discuss some further properties of groups.

We have given a definition of a compact topological space. In a metric spece we can give a sfmpler definition: A set K in a metric space is compact if it can be covered by a finite number of spheres with equal radii $\varepsilon=0$ where ε can be arbitrarily smail.

If the space K lies in a Euclidean space, then it is a compact space if it is bounded and closed.

A metric space R is a set of elements in which we associate a distance $\rho(x, y)$ to each pair of points $x, y \in R$. The distance $\rho(x, y)$ is a real number, satisfying
(1) $\rho(x, y) \geq 0, \rho(x, y)=0$ iff $x=y$
(2) $p(x, y)=\rho(y, x)$
(3) $\rho(x, y)+\rho(y, z) \geq \rho(x, z)$ (The triangle inequality)

A locally compact space: each point of the space has a compact neighborhood. Otherwise: the space is essentially noncompact.

Theorem: Lie groups are either compact, or locally compact.
Proof: Each element is perametrized by a finite number of parameters and can thus be covered by a finite-dimensional sphere.

Example: Circle: compact
Straight line: noncompect

Properties of compact Lie groups:

1. Every compact Lie group of amension 1 is a circle. Thus any one-parameter subgroup of a Lie group is isomorphic to a circle。 2. A compact group is either a connected group, or it consists of a finite number of connected sheets.
2. If X is the Lie algebra of a compact group G, then there exists only a finite number of non-isomorphic groups having the same Lie elgebra. These are called locelly isomorphic groups.

From the point of view of physical applications the most important distinct properties of compact groups manifest themselves in the representation theory of these groups. This will be treated in detail in the second part of this course - here let us just note that all irreducible representations of
compact groups are finite-dimensional and unitary (or at least equivalent to unitary ones), that expansions of functions, defined over compact groups lead to sums, rather than integrals, etc. An example is Fourier analysis: functions defined on a circle can be expanded into series, on a line - into integrals.

The general picture for the classification of groups thet emerges is the following:

In the next lectures we shall give a classification of semisimple Lie groups and Lie algebras and investigate some of their properties. However, we still need some further preliminaries.

The adjoint representation of a Lie algebra: defined above.
Let G be a real connected Lie group and Lits Lie algebra and let us again consider the adjoint representation:

$$
\ell \in L \rightarrow a d \ell . y \equiv \hat{\ell} y=[\ell, y]
$$

Notation ℓ, y : elements of L
$\hat{\ell} . .$. an operator which can be written in the form of a matrix

$$
\hat{\imath}=\left(\begin{array}{cccc}
\cdots & \cdots & \cdots & \cdot \\
\cdots & \cdots & \cdot & \cdot \\
\cdots & \cdots & \cdots
\end{array}\right)
$$

The matrix is of order nxn where n is the dimension of the Lie algebra. The form of the matrix does of course depend on the choice of the basis.

Remark: This form of the adjoint representation differs by a sign from the one given in Lecture 3.

Properties:

(1) $\hat{\ell}[x y]=[\hat{\ell x}, y]+[\hat{x}, \hat{2} y]$
(a differentiation formula)
(2) $[\hat{2}, x]=[\hat{2}, \hat{x}]$

Both properties follow from the Jacobi identity.
So: the adjoint representation is a representation, the Iinear operators of which act in the gigebra itself.

If we can exponentiate such a representation we obtain the adjoint representation of the group G:

$$
\rho(g)=e^{x}
$$

Let G be a matrix group. Then:

$$
p(g) y=\operatorname{gyg}^{-1}
$$

for any yeL. Again the dimension of the adjoint representation is equal to the dimension of the group.

Thus: geG is represented by $\rho(g)$ acting on $y \in L$ according to the above formula.

This finite-dimensional representation should not be confused ith the regular representation of a group, which is in general infinite-dimensional and quite different (and will be treated in detail below).

Examples: (1) $O(3)$. adfoint representation is 3 dimensional
(2) $O(4)$ adjoint xepresentation is 6 dimensionel.
(3) GL (n, R) group of nxin nonsingular teal matrices. The basis for the adjoint representations of the algebra can be taken to be the operators $E_{\text {ij }}$ "

$$
E_{i j} y=\left[e_{i j}, y\right]
$$

$e_{i j}$ is a matrix consisting of zeros everywhere, except for a one at the intersection of the i 'th row and j^{\prime} th column.

Remark: In general the adjoint representation is not faithful. In particuiar, if G is abelian then $\rho(g)=1$ for all geG and the representation is trivial.

We heve given a definition of an ideal in an elgebra. An equivalent definition: Any subspace of an algebra X, inverinnt with respect to the adjoint representation, is an ideal.

Indeed $Y=$ ideel, $Y C X \Rightarrow[x, y] \in Y \quad x \in Y, y \in Y ;$
To each ideal Y in the elgebre, there corresponds an invariant subgroup H in the group:

$$
\mathrm{ghg}^{-1} \mathrm{eH} \text { for all hcH, geG. }
$$

The correspondence between ideals and invariant subgroups is not one-tomene: the group can have discrete invaxiant subgroups, not reflected in the algebra.

Centre X of an algebra: $\quad x c X$, leL $\quad[x \ell]=0$
...n centre is a commutative ideal.
Centre C in the group: $\quad c \in C, g \varepsilon G \Rightarrow g^{-1} c g=c$

- an abelian invariant subgroup.

Now we can return to the faithfulness of the adjoint representation:
(1) If $\hat{x}_{1}=\hat{x}_{2}$ then x_{1} and x_{2} can only differ by an element from the centre of L :

$$
x_{1} \div x_{2}+z
$$

(2) If $\rho\left(g_{1}\right)=\rho\left(g_{2}\right)$ the g_{1} and g_{2} (in the group) can onily diffiex by a factor from the centre of G.

$$
g_{1}=c g_{2}
$$

Lecture 5

We ended last lecture with some remarks on the adjoint representation. We came to the conclusion that the adjoint representation of an algebra is faitho ful if the algebre has no centre (no abelian invariant subalgebra). Referaing to the definitions of a samisimple algebre, we obtain:

Theorem: The dexived algebra of a semisimple algebra is identical with the algebre itself: $L^{\prime}=L$.

Further remarks on the relation between Lie Groups and Lie Algebras. We already know that given a Lie group, we can uniqueiy "difrerentiate" it to obtain a Lie algebra. We have also quoted one of Lie's theorems, telling us that a given Lie algebra can always be integrated, at least in the neighbowhood of the identity, to give a Lie group. Let us consides the emount of erbitrasiness in the integration.

Let D be a discrete invarient subgroup of the connected Lie group G_{0} Then D must be contained in the centre of G.

Proof: $\quad d_{0} \varepsilon D, g \in G \quad g q_{0} g^{-1} \varepsilon D$ $\left.\begin{array}{rl}g d_{0} g^{-1} \text { is (a) Connected } \\ (b) \text { Discrete }\end{array}\right\} \Rightarrow \operatorname{gd}_{0} g^{-1}=a_{0}$

Thus : D is a commutative invariant subgroup
\Rightarrow it is, by definition, in the centre.

Introduce the Fectox Group G of the group G by the discrete invariant subgroup D :

$$
G_{0}=\frac{G}{D}
$$

We identify all elements beionging to the same conjuacy elass $\mathrm{i}_{\mathrm{o}} \mathrm{e}_{\mathrm{ol}} \mathrm{g}_{1}$ i g_{2} if $g_{1}=g_{2}\left(o r d g_{2}\right)$ Each set of elements (each coset) is an element of the group G_{0} The fact thet G_{0} is a group is obvious:

1) $\left(g_{1} D \cdot g_{2} D\right) g_{2} D=g_{1} g_{2} g_{3} D=g_{1} D\left(g_{2} D g_{3} D\right)$
2) $g D \cdot D=g D \quad D$ is the identity
3) $g D g_{g}^{-1}=D \quad D g^{-1}$ is the inverse of $g D$

Examples: Take the group of complex, $n x n$, unimodular matrices $S L(n, C)$ and the subgroup of matrices λe. We have

$$
\operatorname{de} \lambda e=\lambda^{n}=1
$$

The group λe is an abelian invariant subgroup consisting of n elements. Consider $n=2: S L(2, C)$. Then $D=\{e,-e\}$. The Group $G_{0}=G / D$ is obtained by identifying g and $-g$. Thus:

Thus, we are "glueing" together individual "parts" of the group. A certain neighborhood of e is preserved: thus G and G_{o} have the same Lie algebra.

Let us now sketch the answer to the question: Given a Lie algebra L, how do you find all Lie groups having this algebra?

1) Find one such group G_{1}
2) If discrete invariant subgroups D exist, then take G_{1} / D, this group has the same algebra.
3) If G_{1} is not simply connected (ide. if there exists at least one closed cycle in G_{1}, which cannot be contracted to a point), then there exists a larger group G_{2}, such that $G_{1}=G_{2} / \hat{D}$.
4) Among all Lie groups with a given algebra I there exists one unique simply connected group \tilde{G} which cannot be further extended.
5) Take the maximal discrete invariant subgroup D_{O}. Then $G_{O}=\tilde{G} / D_{0}$ is a uniquely determined "minimal group". Go has no further discrete invariant subgroups.

Thus, we obtain the following picture:

We have a whole series of locally: isomorphic groups:

$$
G_{i}=\tilde{G} / D_{i}
$$

where D_{i} are discrete invariant subgroups. The largest group \tilde{G} is called the universal covering group. All these groups have the same algebra.

Example: $G=S U(n)$ is simply connected. The maximal discrete invariant subgroup is

$$
D_{o}=\left\{\varepsilon_{k} ; \varepsilon_{k}^{n}=i\right\}
$$

Find all subgroups $D_{i} C D_{o}$ and the series of factor groups

$$
G_{i}=\tilde{G} / D_{i}
$$

E.g.: For $n=4$ we have

$$
\begin{aligned}
& D_{0}=\{1, i,-1,-i\} \\
& D_{1}=\{1,-1\} \\
& \tilde{D}=\{1\}
\end{aligned}
$$

and

$$
\tilde{G}=\operatorname{SU}(n) ; G_{1}=\operatorname{SU}(n) / D_{4} \quad G_{2}=\operatorname{SU}(n) / D_{0}
$$

Semisimple Lie Groups and Algebras

We have already given the definitions of simple and semisimple groups and algebras. Note: A simple Lie algebra has no centre, a simple Lie proup may have a discrete centre.

Properties of a semisimple group:
(1) The adjoint representation of a semisimple group has no one dimensional invariant subspaces (they would correspond to an abelian invarient subgroup).
(2) The adjoint representation of a semisimple Lie group is completely reducible, i, e if the representation does leave a subspace invariant, then ell matrices of the representation can be brought to a blockdiagonal form:

This however means that a semisimple group is locally isomorphic to the direct product of simple groups. (This will be shown below).

Definition: A group G is reductive, if its adjoint representetion is completely reducible。

Thus we have:

Remerk: Every compact group is reductive.

Definition: The Cartan-Killing form is an essential concept in the study of semisimple groups.

Let L be a Lie algebra and put

$$
B(x, y)=\operatorname{Tr} \hat{x} \hat{y}=\operatorname{Tr}(a d x)(a d y)
$$

for $x, y \in L$.

Theorem (The Cartan Criterion): Algebra L is semisimple iff $B(x, y)$ is not degenerate (i.e. iff $B\left(x, y_{0}\right)=0$ for all xEL implies $y_{0}=0$).

Sketch of Proof:
(1) Let $B(x, y)=0$ for all $x \in L, y \in \mathbb{N} C L$. Then \mathbb{A} is an ideal, since $B(x,[y, x])=\operatorname{Tr} \hat{x} \hat{[y x]}=\operatorname{Tr} \hat{x}[\hat{y}, \hat{x}]=\operatorname{Tr}(\hat{x y} \hat{y}-\hat{x} \hat{x} y)=0$ i.e. $[y x] E N$.

It can be shown (not trivially), that \mathbb{N} has a one-dimensional subalgebra \mathbb{N}_{0} (also an ideal). This is an abelian ideal $\Rightarrow \mathrm{L}$ is not semisimple.
2). Let L not be semisimple \Rightarrow there exists an abelian ideal N. Choose a basis for L such, that the first vectors form a basis for N. Then

adl $=\left(\begin{array}{c|c}\because \therefore & 0 \\ \hdashline O & 0\end{array}\right) \quad$ for $n \in \mathbb{N}, \downarrow \varepsilon L$
so that Tr \{adn.adl\} $=0$
For details of proof: See Jacobson.

Example: $[e f]=0 \quad[e, g]=p e-\hat{f} \quad[f g]=e+p f$

$$
\text { Put: } \quad e=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) \quad f=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Then:

$$
\text { add }=\left(\begin{array}{rrr}
0 & 0 & p \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right) \quad \text { af }=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & p \\
0 & 0 & 0
\end{array}\right) \quad \operatorname{adg}=\left(\begin{array}{rrr}
-p & -1 & 0 \\
1 & -p & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$\begin{array}{ll}\text { Tr ade adf }=0 & \text { Ty add add }=2\left(p^{2}-1\right) \\ \text { Tr ade add }=0 & \text { Tr add adf }=0 \\ \text { Tr adf adf }=0 & \text { Ty adf adf }=0\end{array}$

$$
\left.\begin{array}{rll}
\text { Thus sade } & \perp & \text { add } \\
\text { add } & \perp & \text { add }
\end{array}\right\} \Rightarrow \text { not semisimpie }
$$

Remark: 1) Consider algebra L in a basis $\left\{e_{i}\right\} \quad i=1, \ldots n$
We have: $\quad\left[e_{i} e_{k}\right]=c_{i k}^{m} e_{m}$

$$
\operatorname{ade}_{k}=\left(\begin{array}{cccc}
c_{k 1}^{1} & c_{k 2}^{1} & \cdots & c_{k n}^{1} \\
c_{k 1}^{n} & c_{k 2}^{n} & \ldots & c_{k n}^{n}
\end{array}\right)
$$

the matrix ode ${ }_{k}$ consists of the structure constants $\mathrm{C}_{\mathrm{ks}}^{\mathrm{r}}$ 。

We can characterize the Cartan-Killing form by a symmetric tensor

$$
b_{i k}=B\left(e_{i}, e_{k}\right)=\operatorname{Tr}\left(a d e_{i}\right)\left(a d e_{k}\right)=\left(a d e_{i}\right)_{r s}\left(a d e_{k}\right)_{s r}=C_{i s}^{r} C_{k r}^{s}
$$

From here: $B(x, y)$ nondegenerate $\Leftrightarrow \operatorname{det}\left(b_{i k}\right) \neq 0$.
2) $B(\hat{x} y, z)+B(y, \hat{x} z)=0$
ie. - it follows from the Jacobi identity that \hat{x} is an antisymmetric operator with respect to the form $B(y, z)$,

Theorem: A semisimple group G is compact ii and only if the bilinear Cartan Killing form has a definite sign (is positive or negative definite). We shall not give the proof. Its essence is that we use $B(x, y)$ to introduce a positive definite scalar product on the algebra, make use of the antisymmetry of operator X with respect to this scalar product. This can then be used to show that the matrices of the regular representation are orthogonal matrices. Thus: we obtain a finite dimensional unitary representation. This is only possible for compact groups, as we shall show when considering group representations.

Thus: we have a simple algebraic criterion for a basically topologic concept of compactness.

Remark: Even when the sign of $B(x, y)$ is not definite we can use the Cartan Killing form to introduce an indefinite scalar product (indefinite metric). Then of course $B(x, x)=0$ does not imply $x=0$.

Let us note some further properties of semisimple Lie groups.

Definition: A linear operator D acting in the algebra L is called a differentiation, if

$$
D[\mathrm{x}, \mathrm{y}]=[\mathrm{Dx}, \mathrm{y}]+[\mathrm{x}, \mathrm{Dy}]
$$

Example: Action of the adjoint representation: $\hat{\ell} \cdot[x, y]=[\ell[x, y]]=-[y[\ell x]]=$ $x[y \hat{\imath}]]=[\hat{2} x, y]+[x, \hat{l} y]$.

Theorem: If L is semisimple, then every differention can be represented as an operatol i in the adjoint representation (for some leL).

Thus: $1 f$

$$
D[x, y]=[D x, y]+[x, D y] \text { then }
$$

there exists $\ell \in I$, such that $D x=a d \ell \cdot x$ for all x. (Every differentiation for a semisimple LiE Algebre is an "inner differentiation").

A similar property holds for Lie groups. An automorphism of a group is an isomorphism of a group onto itself, (i.e. : $g+\tilde{g}, g_{1} g_{2} \rightarrow \tilde{g}_{1} \tilde{g}_{2}, g^{-1}+\tilde{g}^{-1}$). Automorphisms of a group G themselves form a group Aut G. Consider the subgroups of this group connected to the identity and call it Aut ${ }_{0}$.

Theorem: If G is semisimple, then every connected automorphism is an inner automorphism, i.e.: every automorphism $g \rightarrow \tilde{g}$ contained in Aut G can be written as

$$
\mathrm{g} \rightarrow \mathrm{~g}_{\mathrm{O}} \mathrm{gE}_{0}^{-1}
$$

where $g_{0} \in G$ 。
In other words: any connected automorphism in a semisimple group is just a transformation to a new basis.

Classification of Semisimple Complex Lie Groups and Lie Algebras

We shall consider all Lie algebras over a complex field for which the Cartan-Killing form

$$
B(x, y)=\operatorname{Tr} \hat{x} \cdot \hat{y}
$$

is non-degenerate.
Below we shall also make some comments on Lie algebras orer a real field, the theory of which is somewhat more complicated.

Formulation of the Problem: Consider the algebra L, satisfying the ususl conditions on $x+y, \lambda x$ and. $[x, y]$ and the condition that $B(x, y)$ is non-degenerate. We wish to find a "canonical" basis for the algebra and write down all commutation relations for this basis.

Remembering that it was quite complicated to do this for all two and threedimensional algebras it is remarkable, that it can be done at all for so general
a class as all semisimple algebras of arbitrary finite dimensions. One of the reasons why this is possible is that for semisimple lie algebras the adjoint representation is faithful (the algebra has no centre), so that we cen always just consider a rinite dimensional matrix algebra.

We shall solve the problem in several steps.

I. The Maximal Commutative Subalgebra

1) Take an element $\ell_{0} \in I$ and consider the equation

$$
\operatorname{add}_{0} x=0
$$

for all x. This is an eigenvalue problem - namely we are looking for the eigenvectors of the matrix adi corresponding to the eigenvalue zero. For each matrix add the eigenvalue 0 has a definite multiplicity and clearly a minimal multiplicity of zero must exist.

Definituon: An element $2_{0} \in L$ is regular if ad l_{0} has the minimal possible multiplicity for zero as an eigenvalue.
(Many regular elements can exist, but in general not every element is regular).
 elgebra HoL.

Femarks: 1) The Cartan subalgebra depends on the choice of l_{0}. However, we shall show that all different Cartan subalgebras are isomorphic to each other.
2) The fact that the Cartan subalgebra is not simply a maximal commatative subalgebra, but one that contains a regular element, is crucial. An example of the importance of this fact is the conformal group of space-time, the Cartan subalgebra of which hes oniy three elements, although the maximal commutative subgroup has four-the translations in the Poincere' subgroup. (These remarks will become
clear to the uninitiated towards the end of these lectures.)
3) Consider all elements $h_{i} \varepsilon H$ in the adjoint representation (es matrices). Any set of commuting complex matrices can be simultaneously brought to the Jordan canonical form ("blocktriangular"):

Where all matrices have the same structure(same dimension of each block). We can now see that the eigenvalues are linear functions on the elgebra H:

$$
\begin{aligned}
& \alpha\left(h_{1}+h_{2}\right)=\alpha\left(h_{1}\right)+\alpha\left(h_{2}\right) \\
& \alpha(\lambda h)=\lambda \alpha(h)
\end{aligned}
$$

(since adding up matrices $\hat{h}_{1}+\hat{h}_{2}$ gives a matrix with elements $\alpha\left(h_{1}\right)+\alpha\left(h_{2}\right)$ on the diagonel of the first block, etc.)

Lecture 6

Wid have decine the Cartex subaigebre H C L where L is a semu
 the majomt represtatiticts by matrites or the type

(1)

$$
\begin{align*}
& a_{k}\left(h_{1}+h_{2}\right)=a_{k}\left(h_{2}\right)+a_{k}\left(h_{2}\right) \tag{12}\\
& \mathbb{a}_{\mathrm{E}}(\lambda h)=\lambda \mathrm{g}_{\mathrm{K}}(\mathrm{~L}) .
\end{align*}
$$

$$
\begin{equation*}
\mathbb{X H}_{\mathbb{X}_{\mathrm{i}}} C \mathbb{K}_{\mathrm{E}} \tag{3}
\end{equation*}
$$

Mota the form of in we see thet:

2. Each invariant subspace $X_{\alpha_{1}}$ contains at least one eigenvector, coriesponding to α_{i}, but aoes not necessarily consist of eigenvectors alone.
3. One of the eigenveiues must be equal to zero. Indeed: $\hat{h}_{i} x=\left[h_{i}, x\right]$; take $x E H$, then $\left[h_{i}, h\right]=0$ i.e. $\hat{h}_{i} h=0$

We can now write the whole space L as a direct sum of invarient subsperes:

$$
\begin{equation*}
L=X_{0}+\sum_{i} X_{0} \tag{4}
\end{equation*}
$$

mad by defimition $a_{i} \neq 0$ s since we have separated out the eifenvaiue o explicitly.

Examye: 3 x 3 matrices:

Fut: $\hat{h}=\left(\begin{array}{lll}\alpha & 0 & 0 \\ x & \alpha & 0 \\ 0 & 0 & B\end{array}\right)$
Find the eigenapaces: X_{a} and X_{B} :

Thus: $X_{a}=\left\{\begin{array}{l}a \\ b \\ 0\end{array}\right\} \quad X_{B}=\left\{\begin{array}{l}0 \\ 0 \\ 0\end{array}\right\}$

The twe dinensiomai invarient subspace X contains oniy one (indeperdent) eigenvector $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.

Femark: This paiy exaplifies the spliting of anear spae into inveriant Eubspaces with zespect to agiven operatow ho The picture for severel comuting operetors h_{i} is exactly the same. So fur, this aoes not exampiry
the algebra of a semi simple Lie group - it is just an intermediary step.

Terminology: 1) Call all non-zero eigenvalues oh) roots
2) Call the sum 4) = the canonical decomposition of the space L with respect to the Cartan subalgebra. H.
3) The invariant subspaces X_{α} are root spaces.

We shad actually show, that everything is much simpler, namely that the matrices h are actually diagonal (or at least simultaneously diagonalizable。)

Notice that each root space X_{α} is the maximal invariant subspace in which each operator \hat{h} has just one eigenvalue α. Thus in X_{a} (a space of lower dimension then L) we can write

$$
\left.\hat{h}\right|_{a}=\left(\begin{array}{cc}
\alpha(h) & \tag{5}\\
\alpha(h) & 0 \\
* & \alpha(h)
\end{array}\right)
$$

What ixpmife: 2) For sch rex (and only for such x) one can find a

$$
(\hat{h}-a)^{h} x=0
$$

(in other words: X_{0} is a generalized eigenspace and all tex α are generalized eicempectars.

Frame:

$$
\begin{aligned}
& \hat{h}=\alpha=\left(\begin{array}{lll}
a & 0 & 0 \\
x & a & 0 \\
y & z & a
\end{array}\right)-\alpha I=\left(\begin{array}{lll}
0 & 0 & 0 \\
x & 0 & 0 \\
y & z & 0
\end{array}\right) \\
& (\hat{h-a}) \\
& \left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)\left(\begin{array}{l}
0 \\
x a \\
y b
\end{array}\right)(\hat{h}-a)^{2}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
x+a
\end{array}\right)(\hat{h}-\alpha)^{3}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

2) There exists at least one (eigenvector) $x \in X_{\alpha}$ for which $k=1$:

$$
\hat{h x}=\alpha x
$$

This is an eigenvector for all matrices heH.
3) We have already stressed that $\hat{h}=0$ for all \hat{h} if reH. Thus:

$$
\begin{equation*}
H \subset X_{0} \tag{6}
\end{equation*}
$$

II. Some properties of the Canonical Decomposition.

We have decomposed the space L into subspaces, not however subalgebras.
We now wish to establish commutation relations between elements from various subspaces $X_{a}\left(i n c l u d i n g X_{0}\right)$

Basic Lemme:

$$
\begin{equation*}
\left[X_{\alpha}, X_{\beta}\right] \in X_{\alpha+\beta} \tag{7}
\end{equation*}
$$

Where $X_{\alpha+\beta}=\{0\}$ if $\alpha \beta$ is not a root (then elements from the two spaces
 $X_{\alpha \& \beta}$

Proof: Put $z=\left[x_{\alpha}, x_{\beta}\right], x_{\alpha} E X_{\alpha}=x_{\beta} \in X_{B}$
(a) Let x_{α} and x_{β} satisfy

$$
\hat{h x}_{\alpha}=\alpha x_{\alpha} \quad \hat{h} x_{\beta}=\beta x_{B}
$$

Then $\hat{h} z=\hat{h}\left[x_{0}, x_{\beta}\right]=\left[\hat{h} x_{\alpha},{ }^{x}{ }_{\beta}\right]+\left[x_{\alpha}, \hat{h} x_{\beta}\right]=(\alpha+\beta)\left[x_{\alpha} y_{\beta}\right]=(\alpha+\beta) z$
$\Rightarrow z=0$ or the eigenvalue oin z is $\alpha+\beta$
(b) Let $x_{o x}$ and x_{β} not be eigenvectors. Then we can prove by induction that

$$
\begin{equation*}
f_{h-}^{\left.\hat{n}-(\alpha+\beta)\}^{m} z=\sum_{k=0}^{m} C_{m}^{k}\left[\left(\hat{h}_{-\alpha}\right)^{k} x_{\alpha},(\hat{h}-\beta)^{m k} x_{\beta}\right], ~\right]} \tag{9}
\end{equation*}
$$

Since $(\hat{h}-\alpha)^{x_{x_{\alpha}}}=0$ and $(\hat{h}-\beta)^{s} x_{\beta}=0$ for some r and s, the $r, h . s$ of (9) is equal to zero for large enough m. Thus in this case re again heve $z=\left[x_{\alpha}, x_{\beta}\right] \in X_{\alpha+\beta}$ (or $z=0$). QED

In paxticular we haye:

$$
\begin{equation*}
\left[x_{0}, x_{\alpha}\right] \subset x_{\alpha} \tag{10}
\end{equation*}
$$

...each subspace X_{a} is invariant with respect to X_{0} (and also with respect to H)

Putting o $=0$ in (10) we have

$$
\begin{equation*}
\left[x_{0}, x_{0}\right] \subset x_{0} \tag{II}
\end{equation*}
$$

so thet X_{0} is subelgebra.
We already know that we haye

$$
x_{0} \in H C X_{0}
$$

where x_{0} is a regulax element. More important, we have:
Mearem I: $H \equiv \mathcal{K}_{0}$ - the Cartan algebra coincides with the root space X_{0} corresponding to the root 0 .
Proot: We sheal show that

$$
\begin{equation*}
\mathrm{B}\left(\left[x_{q}, x_{c}\right] y\right)=0 \tag{12}
\end{equation*}
$$

for all $x_{1}, x_{2} E x_{0}$ yeI. Since L is semisimple (12) implies that $\left[x_{1} x_{2}\right]=0$, thet is $\left[X_{0}, X_{0}\right]=0$. Thus: X_{0}, being a cormutative subelgebref is contained
in the maximal commutative subalgebra. Thus:

$$
\begin{equation*}
x_{0} \subset H \tag{13}
\end{equation*}
$$

Formulas (6) and (23) imply that $X_{0}=H$.
Now let us prove assertion (12).
a) ar ex $_{\alpha}=\frac{1}{f} 0$. In this case we actually have a stronger statement, namely $B(x, y)=0$ for all $x \in X_{0}$. Indeed: $x_{x y}^{n} X_{\beta} \in X_{\alpha+\beta}$ i.e.: $x x^{\circ} \circ x_{\beta}=x_{\alpha+\beta}$. It follows that the diagonal blocks of ry must be zero, so as to take one subspace into another (without mixing them). Thus

and.

$$
\operatorname{Tr} \hat{x y}=0 \text { i, e, } \quad B(x, y)=0
$$

fore ill rex ${ }_{0}$ y ex ${ }_{0}$.
This does not mean that $B(x, y)$ is degenerate, since $y \in X_{\alpha}$, not $y \in L$ (x is not orthogonal to L)
b) yen. This case is more complicated and we shall only indicate the proof.

Lemme Every inner differentiation in X_{O} is nilpotent:

$$
\begin{equation*}
\hat{x}^{n_{0}}=0 \tag{14}
\end{equation*}
$$

where $n_{0}=$ dimension of X_{0} and (14) holds for all $x \in X_{0}$. Proof of lemma: Write \hat{x} in triangular form:

$$
\left.\right|_{X_{0}}=\left(\begin{array}{cc}
v_{1}(x) \\
v_{2}(x) & \\
* & v_{n_{0}}(x)
\end{array} \quad \text { (in the subelgebrea } X_{0}\right. \text {) }
$$

and show that actually $v_{I}=\ldots=v_{n_{0}}=0$. Then apply the Engel theorem: If X is m linear algebra and all its elements are nilpotent: $x^{n}=0$, then the matrices of X in any irreducible representation can be simultaneously brought to twangier form:

$$
\hat{x}=\left(\begin{array}{cc}
\lambda_{I}(x) & 0 \\
w_{n} & \lambda_{n}(x)
\end{array}\right)
$$

in the whole algebra X.

Thus:

$$
B\left(\left[x_{1} x_{2}\right]_{,} y\right)=\sum_{i=1}^{n}\left[\lambda_{i}\left(x_{1}\right), \lambda_{i}\left(x_{2}\right)\right]_{i y}=0 \quad \text { QED }
$$

Finally we obtain the canonical decomposition as

$$
\begin{equation*}
X=H+\Sigma X_{\alpha} X_{0} \tag{15}
\end{equation*}
$$

III. Oxthogonality properties (with respect to the CartandKilling form).
2) $B \frac{\beta}{p}-\alpha \quad X_{\alpha} \perp X_{\beta}$
 is not oxthogonel to X_{α}.

Preote:

1) ${\underset{\alpha}{\alpha} \hat{X}_{\beta} X_{\gamma} \subset X_{\gamma+\alpha+\beta} \quad \alpha+\beta \neq 0}$
\Rightarrow The diagonel elements of $\hat{x}_{\alpha} \hat{x}_{\beta}$ are zero

$$
\operatorname{Ix} \hat{x}_{\alpha} \hat{x}_{\beta}=B\left(x_{\alpha}, x_{\beta}\right)=0
$$

2) $B(x, y)$ is not degenerate \Rightarrow there must exist an element $y_{\text {a }}$ not orthogonal to x_{α}. It follows from assertion 1 that y ean only be conteined in $X_{-\alpha}$. QED

Thus: $B(x, y)$ is non-degenerate on the peir ($X_{\alpha}, X_{-\alpha}$)... we shell call two such spaces dual to each other.

Coxalyexies: 2) dim $X_{\alpha}=\operatorname{dim} X_{-\alpha}$.
A root ($-\infty$) wists for every root α.
2) Teking $\alpha=0$ we find: The Cartan subelgebra H is orthogonel to all root spaces X_{α}. The form $B\left(h_{1}, h_{2}\right)$ is not degenerate on H.
Sixce \vec{h}_{i} are trianguiar matrices; we have

$$
B\left(h_{1}, h_{2}\right) \equiv \operatorname{Tr} \hat{h}_{1} \hat{h}_{2}=\sum_{\alpha} n_{\alpha} \alpha\left(h_{1}\right) \alpha\left(h_{2}\right)
$$

where n_{0} is the dimension of X_{α} (only the diagonal matrix elements of \hat{h}_{1} and \hat{h}_{2} figure in the trace of $\hat{h}_{2} \hat{h}_{2}$ for triangular matrices).
3) If h_{0} eH has only zero roots, then $h_{0}=0$ (since $B\left(h_{0}, h\right) \equiv 0$ for all heH)

Let us make use of the dual properties of roots and separate all roots into "positive" and "negative" ones. Let us introduce a basis in H, so that eac: het has coordinates $h=\left(\xi_{1}, \ldots, \xi_{r}\right)$.

Then

$$
\begin{equation*}
\alpha(h)=\alpha \xi_{I}+\ldots+\alpha_{r} \xi_{r} \tag{17}
\end{equation*}
$$

so that each root is given by set of real numbers

$$
\begin{equation*}
\alpha=\left(\operatorname{Re\alpha }_{1}, \operatorname{Im} \alpha_{1} \ldots, \operatorname{Re} \alpha_{r}, \operatorname{Im} \alpha_{r}\right) \tag{18}
\end{equation*}
$$

(we we cansidering an algebre over the field of complex numbers):
We introduce an ordering of the roots, saying $\alpha>\beta$ if
Rex $_{2} \geqslant \operatorname{ReB}_{1} ;$ if $\operatorname{Re\alpha }_{1}=\operatorname{Re}_{1}$ then $\alpha>\beta$ if $\operatorname{Im} \alpha_{1}>\operatorname{Im} \beta_{1} \ldots$...te.
In papticuiar α is a positive root $\alpha>0$ if the first non zero number in the get (18) is positive and α is a negative root $\alpha<0$ otherwise. Thus, we can write the canonical decomposition in a symmetric form:

$$
\begin{equation*}
X=E+H+E_{+}^{E} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{-}=\sum_{\alpha<0}^{\sum X_{\alpha}} \quad E_{+}=\sum_{\alpha>0 \alpha} X \tag{20}
\end{equation*}
$$

(separete sums over negative and positive roots, as defined above).
Obviousiy: Positive root + Positive root = Positive root
Negative root + Negative root = Negative root

It follows, thet although X_{α} or $X_{-\alpha}$ is in general not a subalgebra; the subspaces E and E_{+}are subalgebras (since we have shown $\left[x_{\alpha}, x_{\beta}\right] \subset x_{\alpha+\beta}$

Example: The algebrea of the general linear group $G L(n, C)$. The Cartan subaigebra H can be chosen as the subalgebra of all diagonel matrices of the ordero $\sqrt{2}$. As usual, denote $e_{i k}$ a matrix with a I on the intersection or the i th thow and k-th colurn, and all other elements zero:

$$
e_{i k}=\left(\begin{array}{lllll}
0 & k \\
i & \ldots & \ldots & \cdots & 0 \\
0 & & & & 0 \\
0 & \ldots & 1 & \cdots & 0 \\
0 & & & & 0
\end{array}\right)
$$

Thers het is

$$
h=\xi_{1} e_{11}+\ldots .+\xi_{n} e_{n n}
$$

Fuwther

$$
\begin{align*}
{\left[h_{i j j}\right]=\sum_{r} \xi_{r r}\left[e_{r r} e_{i, j}\right] } & =\sum_{r} \xi_{r}\left(\delta_{r i} e_{r j}-\delta_{r j} e_{i r}\right)- \\
& =\left(\xi_{i}-\xi_{j}\right) e_{i j} \tag{21}
\end{align*}
$$

Thus, ell rectors $e_{i j}$ are eigenvectors of h (the eigenspaces X_{α} are oneaimensional:) The roots are

$$
\begin{equation*}
a_{i j}=\xi_{i}-\xi_{j} \tag{22}
\end{equation*}
$$

In this case E_{*} consists of all upper triangular matrices, E_{0} of all Iower ones. Indeed:

Put i $<j$
$\operatorname{Then} a_{i j}=\left(\begin{array}{ccccc}1 & 2 & & i & j \\ 0 & 0 & 0 & \ldots 1 & \ldots-1 \ldots 0\end{array}\right)$ no that it is a positive root (the fiqus non-zero number is positive). However $e_{i j}$, $i<j$ is upper trienguramo

Remaro: $G L(\Omega, C)$ is not semisimple, however $S L(n, C)$ is. Thus...we should exclude $e=e_{11}+\ldots+e_{n n}$ from the basis.

All the general features which we have so far proved can be seen In this exnmple. Howeyer several new features appear:
I. The roots $\alpha_{i j}=\xi_{i}^{F}-\xi_{j}$ 妾have real coorainates:

$$
\begin{equation*}
a_{i j}=\left(0,0.00 \pm 10001_{j}, 0,00\right) \tag{23}
\end{equation*}
$$

2. All roots are different ($\left.\alpha_{i k}=\alpha_{r s} \Rightarrow 2=r, k=s\right)$;
al1 root spages are one-dimensional.
3. We can introduce $\omega_{1}=\xi_{1}-\xi_{2}, \omega_{2}=\xi_{2}-\xi_{3} \ldots \omega_{n-1}=\xi_{n-1}-\xi_{n}$ as independent roots. All roots $\alpha_{i j}$ are combinations of these.
4. Construct a matrix out of the basis vectome:

The whole gigebre, $\xi_{\text {p }}$ can be obtained by taking multiple commutators of $e_{i j+1}$ (elements in circles), similariy ξ_{z} by commuting $e_{k, k=1}$ (elements in squares).

We shall prove that these feetures are true in general, (for all semisimple gigebras).

Lecture 7

IV. The Root Spaces are Onemprmensional

Thus: there are actually no Jorcex eubustrixes In (I).

Proof: Take heH and define aparator \& (h)
$(\delta(h)$ is the "cisgonal parst" of openetor in)

We have
 is an innew differentution, (we hare not neary proved this) - so thet there exists an xex such thet

$$
\operatorname{th}(\mathrm{h})=\%
$$

$$
\theta_{a}=\left(\alpha_{0}=\alpha\right)_{0}=0
$$

Thus ail the roots of(9) $=0$ so that $6=0$.
Finally we obtain:

$$
\tilde{\mathrm{h}}=6(\mathrm{~h})
$$

so thet \hat{h} is diagonal.
Q.E.D.

Let us now establish the commtation xelations.
 Let us nomalize e_{∞} so thet

$$
\begin{equation*}
B\left(\varepsilon_{=\alpha} \theta_{\infty}\right) \equiv I \tag{24}
\end{equation*}
$$

 $E_{\alpha} C . I$

Remark: We are considexing $\mathrm{SL}(2,0)$ as threemimensionail mebma over a conples ficia.

Proot: We have

1) Let us show thet of fig of 0

Take the space enveloping all the spaces
 On the other hand we cem calculuts the triee of h_{t} dreecty $2 n$ the EDowe space:
where $n_{\beta+i \alpha \alpha}=d i m X_{\beta+k \sigma_{i}}$
Thus:

Introduce:

$$
e_{+}=\frac{e_{\alpha}}{\sqrt{\alpha\left(h_{\alpha}\right)}} \quad e_{0}=\frac{h_{\alpha}}{\alpha\left(h_{\alpha}\right)} \quad e_{-}=\frac{e_{\alpha \alpha}}{\sqrt{\alpha\left(h_{\alpha}\right)}}
$$

(we are in an algebraicaliy glosed fiela, so extrating square roots is no problem).

Obviously we have

$$
\begin{equation*}
\left[e_{+} e_{-}\right]=e_{0} \quad\left[\epsilon_{0} e_{\psi}\right]=e_{+} \quad\left[e_{0} e_{m}\right]=-\epsilon_{0} \tag{26}
\end{equation*}
$$

Q.E.D.

Corollary: Every semisimple complex Lie algebse containe an $E^{*}=\left\{e_{0}, e_{0}, e_{\text {w }}\right\}$ subelgebre, isomorphic to $\operatorname{SL}(2,0)$ (i, e. to the compley extension ot $\operatorname{su}(2)$).

Remark: Since (25) is true for exbltrexy β, we keme

$$
\begin{equation*}
B\left(h_{\alpha}\right)=8 a\left(h_{a}\right) \tag{7}
\end{equation*}
$$

where r is a retional number.

Theorem 4: All Root Spaces X_{c} are Oneminensiontio
Proof: Considex the subspace

$$
\left\{e_{-\alpha}\right\}+\left\{h_{\infty}\right\}+x_{0}+x_{2_{0}} \not{ }^{2}
$$

invariant under the subeigebra \hat{E}_{α}. Take the trace of h_{6}, mating in this space

$$
\begin{aligned}
& 0=\operatorname{Trh}_{\alpha}=\alpha\left(h_{\alpha}\right)\left\{-1+0+n_{\alpha i}+2 n_{2 \alpha}+3 n_{30}+\cdots p\right. \\
& n_{\alpha} \neq 0 \quad n_{k \alpha}=0 \quad k \geq 2, \underline{n_{\alpha}=1}
\end{aligned}
$$

Corollary: If a is a reot, then $k \alpha$ with $k>1$ is not moot. Thus, the only roots proportionsl to oxere- 0,0 , to

V. The System of Roots

 subalgebra, so that

The Cartanmiling form provides us with a seeler product (in general indefinde) and we denote

$$
\begin{equation*}
B(x, y) \equiv(x, y) \tag{29}
\end{equation*}
$$

 We have already noticed that we cy write:

Thus: a veator with the components $\left\{\mathrm{c}_{\mathrm{g}}\right\}$ in the Cowtar sigebre illoresponds
 Usualiy the number of roots in lasgex then the dixnension of i so thot they cannot ail be lineariy independent (e.e. a and wa me both raots).
 metrices h_{0} are diagongi) and ve asn now maite this meletion as

$$
\begin{equation*}
\left[h_{,} e_{0} j=\left(h_{p} 0\right) e_{u}\right. \tag{32}
\end{equation*}
$$

or for each of the basis veetors

$$
\begin{equation*}
\left[h_{i} e_{\alpha}\right]=\alpha\left(h_{i}\right) e_{\alpha}=\alpha_{i} e_{\alpha} \tag{32}
\end{equation*}
$$

We have shown that $\left[X_{\alpha}, X_{\beta}\right] \subset X_{\alpha \& \beta}$, in particular $\left[X_{\alpha,} X_{\alpha \alpha}\right] C X_{0}=H_{0}$ Thus, we must have

$$
\begin{equation*}
\left[e_{u}, e_{-\alpha}\right]=x_{x}(\alpha) h_{i} \tag{33}
\end{equation*}
$$

Let us show that with the correct normalisation or ea we can put the $r_{i}(\alpha)$ of (32) equal to the a_{i} of (30) se that (33) can also be written as

$$
\begin{equation*}
\left[e_{\infty}, e_{-\infty}\right]=\alpha_{i} h_{i}=\infty \tag{34}
\end{equation*}
$$

(where $\alpha \in H$ is a root (wector)) 。 Indeed, consider whe symmetrio tensor

$$
\begin{equation*}
\mathrm{b}_{\mathrm{AB}}=\mathrm{B}\left(e_{\mathrm{A}}, \varepsilon_{B}\right)=\mathrm{T}_{\mathrm{Y}} \hat{e}_{\mathrm{A}} \hat{e}_{\mathrm{B}}=C_{A R}^{S} C_{\mathrm{BS}}^{R} \tag{35}
\end{equation*}
$$

where $\left\{e_{A}\right\}$ is a basis of the algebre and we put

$$
\begin{aligned}
& \varepsilon_{A}=h_{i} \quad 2=A=\mathbb{1}, 00 x^{n} \\
& \varepsilon_{A}=\varepsilon_{Q} \quad r \in A \leq n
\end{aligned}
$$

(to each k corresponds one A), and $C_{A B}^{D}$ ane the original structure constants $\left.C_{i k}^{A}=0, C_{\alpha, \alpha}^{i}=\pi^{i}(\alpha), e t c\right)$
 normalize e ${ }_{-\alpha}$ 50 that

$$
\mathrm{b}_{\alpha-\alpha}=\mathrm{B}\left(e_{\alpha_{0}}, e_{-\alpha}\right) \equiv C_{\alpha, A}^{B} c_{\alpha \alpha \beta}^{A} \equiv 1
$$

The tensor $b_{A B}$ can be writter as

 nonsingular symmetric matrit $b_{\text {jis }} \equiv b_{k i}$ can be diagonelized wnd getualiy (by choosing approptiste leagthe for the poot wectors) prought to the form

$$
\begin{equation*}
b_{i K} \equiv \delta_{i K} \tag{36}
\end{equation*}
$$

We have:

$$
\begin{aligned}
& =-C_{i=0 ;}^{-\alpha} \quad \in \quad a_{i}
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
x^{x}(\alpha)=\alpha_{j} \tag{37}
\end{equation*}
$$

Let us now collect the results.

VI. The Cartanmeyl Basis

Theorem 5: In any semisimple algebra I we can choose a bosis consisting of elements of the Cartan subalgebre find the root vectors e_{0} a The commatation relations can be written as:

$$
\begin{align*}
& {\left[h_{\mathrm{j}} \mathrm{~g}_{\mathrm{h}}\right]=0} \\
& {\left[h_{i} e_{06}\right]=\alpha_{i} e_{0}} \tag{38}
\end{align*}
$$

$$
\begin{aligned}
& {\left[\varepsilon_{01} \varepsilon_{B}\right]=N_{0 . S} e_{O+B}}
\end{aligned}
$$

where $N_{0 \beta}=0$ in at B is not a root.
This theorem has already been prowen abore.

Remarks: 2) We hawe imposed $\left(e_{0} e_{=0}\right)=2$ but the norm (ess $\left.e_{0}\right)$ is still arbitrary.
2) We have shown that wy wemisimule complex ife ajebro consists of individuai E_{α} mgebres winch moe "gined" together

(each E_{0} is isomoxphic to the EIgenog of $\operatorname{SL}(2, C)$

We still have to determine the structure constants Ni_{0} and angestigate the system of roots $\{0\} \equiv \Sigma$

Obviousiy we have

$$
\begin{equation*}
\mathbb{N}_{B \alpha}=-N_{C A B} \tag{39}
\end{equation*}
$$

With an appropriate normalization of e_{0} we can achiere

$$
\begin{equation*}
N_{-\alpha-\beta}=-N_{\alpha \beta} \tag{40}
\end{equation*}
$$

To obtain $N_{\alpha \beta}$ explicitly is a simple, if somewhat tedious tasx. It is sufficient to consider the subaligebra \mathbb{E}_{a}, actixg on the space spanned by

$$
\begin{equation*}
e_{\beta+k n C} \quad-p \leq n \leq q \quad p, q \geq 0 \tag{42}
\end{equation*}
$$

(the finite range of n follows from the finuteress of the rumber of roots). Either by makine use of the representetion theory of $E_{\text {o }}$ (we have a finite dimensional representation of E_{0} in space (4i) or just by making fuil use of the Jecobi idextities ma other aigebridic properties of the system (38) we cmaz show that

$$
\begin{equation*}
M_{G B}^{2}=\frac{a(I+D)}{2}(0, q) \tag{42}
\end{equation*}
$$

For more complete procof and further informations see

1) N. Jacobson, Lie Aligebras
2) E. Bo Dynkin: Semisimpie Lie Algebres. Amo Mith. Soco

3) E. Bo Dynkin: Marimal Subgroups of the classinel Groups, Am. Math. Soc. Transi.Ser. 2, 6, 245-378 (1957) (Trudy Moskow. Mat. Obshchestra ! $39-266$ (2952)).

4）C．Fronsad：Group Theory and Appliestions to Penticle Physics，In：Elamentary Particle Physics and Fiela Theoxy， Brandeis Sunner Institute 2962；Ed．K。Wo－Fowa；W．A．Benjamin， InGo，$N_{0} Y_{0}(1965)$ 。

5）．The book I wollowing most closely is D．P．Zhelobenko，Lectures on Lie Groups，Dubne（1965）（in Russian）。

VII．Geometric Properties of the Root Sistem
We have

\mathbb{H}

○．o．finite system or roots．

Theorem 6：The matrix of scalmy products

$$
M=\|(\alpha, \beta)\| \quad \alpha, \beta \text { 臬 } \mathbb{E}
$$

consists of rotional numbers mat positive derimite．In pertichiam $(\alpha \infty)>0$ 。

Proof：
We have

$$
\begin{equation*}
B(h, h)=(h, h)=\sum_{\alpha} \alpha^{2}(h)=\sum_{\alpha}(h \alpha)^{2} \tag{45}
\end{equation*}
$$

Making use of（27）we can put

$$
(h a)=s_{0}(h, n)
$$

With rorational．Thus

$$
\begin{equation*}
I=(h, h)_{0} r_{\alpha}^{2} \quad \text { i.e. } \quad(h, h)=\frac{1}{\sum_{0}^{2}} \tag{44}
\end{equation*}
$$

Formula (44) shows that (h, h) is rational and positive。 Using (27) again, we have

$$
(\alpha, \beta)=F_{\beta}(\alpha a)
$$

so that. (α, β) is a rational number. Further, for any $h_{2} k \varepsilon H$ we have

$$
(h, k)=\sum_{a=\sim \infty 0 t s} a(h) a(k)
$$

In particular:

$$
(B, \gamma)=\left(h_{\beta} s h_{\psi}\right)=\sum_{\alpha} a\left(h_{\beta}\right) \alpha\left(h_{Y}\right)=\underset{\alpha}{ }(B C)\left(\gamma \alpha j_{0}\right.
$$

Thus

$$
\mathbb{M}=\mathbb{R N}^{T}
$$

where M^{T} means the transposed matrix end if any metrix is weal then RR^{T} is positive definite (A metrix M is positive datinite if the quadratic

$$
Q_{0} E_{0} D_{0}
$$

Remarks: 1) Relation (27), following from (25) can oe funther speciried. Since we now know that all $n_{0}=1$ we have

$$
\alpha\left(h_{\alpha}\right) \sum_{k=-p}^{q} x_{\beta+k \alpha} k=-B\left(h_{0}\right) \sum_{k=p}^{\pi} n_{B+k \alpha}
$$

Summing, we have

$$
0:\left(h_{a}\right) \frac{(-p+q)(p+q+1)}{2}=-B\left(h_{0 i}\right)\left(p+q_{0}+1\right)
$$

Thus : $\quad \frac{-2(\alpha, \beta)}{(\alpha, \alpha)}=-p+\alpha$
where $-p$ and $q(p, q \geq 0)$ are the mimimel and maximal numbera in in the series of roots $\beta+k 0$
2) Since $M=M^{T}$ in view of the sgmmetry of the scalar product $(\alpha \beta)=(\beta a)_{s}$ and since $M \mathbb{M}^{T}=M_{\text {s }}$ we obtain

$$
\begin{equation*}
M=M^{2} \tag{46}
\end{equation*}
$$

so that M is real projection matrim.

Theorex 7: The complea linegr envelope of it coineides with the entixe algebra H 。

Proof: We atready know that for semisimple aigebra we have

$$
[X, X \mid=X
$$

VII. Simple Roots

Definition: A simple root wis positive root that canot be written as the sum of eny other two positide poots.

Obviously any positive root can be wisten as a ineax compination of simple roots. What is moxe, we have

Theorem．8：Let π be the collection of simple soots \｛u\} (in some basis in H）．Then
（i）$\alpha, \beta \in \Pi \Rightarrow \beta$ is not a root。

（iii）The set $I I$ is a basis for H 。 If or is positive root then

$$
\begin{equation*}
0=\sum_{i=1}^{x} k_{i} \omega_{i} \tag{47}
\end{equation*}
$$

where k_{i} are non－negatiwe integers．

Proof：（i）Let $\alpha \sim \beta$ be e positive root．Then $\alpha=\beta+(0 ; \beta)$ is not a simple root．
 root．
（ii）It follows raom（i）theit any＂owtrong＂of roots obtained from B must start with B：

$$
B, \beta+\alpha, 0, \beta+q \alpha
$$

（since $\beta-\alpha$ is not a root）．Thus：$p=0$ in（45）and we heve：

$$
\begin{equation*}
\frac{2(a, b)}{(a \alpha)}=-0 \leq 0 \tag{48}
\end{equation*}
$$

（We already know that（ $\alpha \alpha$ ）＞ 0 ）．
（iii）Let us first prove by Enduction that the k_{i} in（47）sre non－negative integers．Any simple root ω_{i} can be written in roxm（4 $)$ 。 Let β and γ be positive roots and $\beta>\gamma$ so．Astume that（iid）is true for γ and take β f Π_{0} Then $B=\beta_{1}+\beta_{2} ; \beta_{i}>0$ ．We have $B>\beta_{i} \Rightarrow$ $\beta_{1}=\Sigma k_{1 i} \omega_{i}, B_{2}=\Sigma k_{2 i} \omega_{i}$ and we obtaini the result：

$$
\beta=\sum_{i=1}^{x}\left(k_{1 i}+k_{2 i}\right) \omega_{i}
$$

Now let us show that the simple roots are linearly independent. Assume the opposite:

$$
\Sigma \lambda^{\dot{j} \omega_{i}}=0
$$

and take a scalar product with $\omega_{j}, f=\mathcal{I}_{0} \ldots x_{0}$. We obtain a system or Inear equations for λ^{i} with real coefrifulents $\left(\omega_{i} \omega_{j}\right) \Rightarrow$ we gan proceed as if the λ^{i} were real (since $\operatorname{Im} \lambda$ and Red satisiy the same equations).
Call the positive $\lambda^{i} \ldots a^{i}$, the negative ones $\left(\omega^{j}\right)$ 。 We obtein

$$
s^{i} \omega_{i}=b_{w_{j}}^{j} \quad a^{i}=0_{s} \cdot b_{i}^{j}=0
$$

Put $h=a^{i} \omega_{i}=b^{j} \omega_{j}$. We harre

$$
(h, h)=a^{i_{b} j}\left(\omega_{i} \omega_{j}\right)
$$

The $\ell_{0} h_{0} s$ is $(h, h) \geq 0$, the $r_{0} h_{0} s_{0}$ is ≤ 0. Thus $h=0$ so thet $a^{i}=b^{j}=0$.

$$
\text { QoE. } D_{0}
$$

Thus we heve x linearly independent simple roots in the Cartan subeigebra H of any semisimple algebra and they forma e basis of H 。

Lecture 8

Example: $S U(3): T h e$ algebra has 6 roots in the roct eysten 2 :

$$
\alpha_{i j}=\xi_{i}-\xi_{j} \quad i, j=1,2,3 \quad i \frac{1}{F} j
$$

Positive roots: $a_{i j}$ for $i<j$
Simple roots: $\quad \omega_{1}=\xi_{1}-\xi_{2}=\sigma_{12}, \omega_{2}=\xi_{2}-\xi_{3}=a_{23}$

$$
a_{13}=\xi_{1}-\xi_{1}=\omega_{1}+\omega_{2} \cdots \text { positive, but not simple }
$$

Remaris: The root vectors e_{ω} generate \mathbb{E}_{+}since

$$
\left[e_{w_{1}} e_{\omega_{2}}\right]=N e_{\omega_{1}+\omega_{2}} N \neq 0
$$

Thus, the vectors e_{ω} and $e_{\text {ej }}$ generate the whole magere x_{0} It particular:

$$
\left[e_{w_{I}} e_{-\omega}\right]=\omega \subset H_{0}
$$

Fron here we can obtain the following assextions:

1. Given the systern II we obtain the algebre X we to an isomorphian.
 of two subsystems

$$
\begin{equation*}
n=n^{\circ} 4 n^{\prime \prime} \tag{49}
\end{equation*}
$$

then I decomposes into two subelgebrat:

$$
L_{1}=L^{r} \oplus \mathrm{I}^{\prime \prime}
$$

3. If we muitipiy eli elements of H by the some rat number we obtain an elgebre isomorpaic to Xio Thus
the syatem Il is onIy defined up to andatations.

 simple roots I is indecomposeble.

Since ail semisimple aigebrag can be obtanna ns dipact procucts of simple ones, it is surincient to ciussity Eit simple hie sigebrus.

TX. Classificetion of Simple ILe Algebros

Definition: The nuber of elemerts in T (equal to the dimemugr of the

Al we have to do in order to deacribe al simple Hie metebrge

 subspeces.

$$
\begin{equation*}
=\frac{2(\sin \beta)}{(\cos \theta)} \equiv \quad \arg \equiv 0 \tag{50}
\end{equation*}
$$

 conmeuratione or the systum il o hideed:

$$
\begin{equation*}
\left.Q_{0,6}{ }^{\circ}{ }_{B Q}=\frac{4(0, \theta)^{2}}{(0 \alpha)(\beta \beta)}=4 \cos \right)^{2} \& 4 \quad 4 \% 6 \tag{51}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
4 \cos ^{2} \theta=0,2,2 \pi 3 \tag{52}
\end{equation*}
$$

Bince (α, β) of hawe

$$
\begin{equation*}
\theta=\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{6} \tag{53}
\end{equation*}
$$

Let us now use notations, introduced by Innkin. A simple root is represexted by a circle and two simple roots with mele $0=\frac{\pi}{2}$ between them wre not consecteds with $0=\frac{2 \pi}{3}, \frac{3 \pi}{4}$ are $\frac{5 \pi}{6}$ are comented by 1,2 or 3 Lines respectivedy. Thus:
$0: 90^{\circ}$

120°

Perpoming a lot of quite tedious menipuletions we find thet the onivy

 ealied the "exceptional" curten aigebras.

The numbers move the circies denote the metare squmed lenghas or the indiviawel simple zoots（山乡w）。

Femaris：The foliowing rector aen be inferimedrom the Dymhin diagmems

2．There Tre Cistuiv 2 momorphisms betwety the hise ELEebras of 2 ow wank

$$
\begin{aligned}
& A_{2} \sigma_{1} C_{2} \\
& B_{2} C_{2} \\
& A_{3} D_{3}
\end{aligned}
$$

2．D_{2} does rot exst，D_{2} is represented oy two discammeted porm＊
and is thum mot zirivico Indect

$$
\begin{equation*}
D_{2} \pi_{2} A_{2} A_{y}\left(0 x_{2} B_{2}\right) \tag{85}
\end{equation*}
$$

wat the exceptionel ones

$$
E_{6}=E_{y}=E_{6}=F_{4}: \mathcal{F}_{2}
$$

Thus we hove ciassixied ain simple Lie digequs cin sico ail semisimple ones, which are fust airect mus of those ifsted mbofe。 We

 Lie algebras of the cigatigel Ijnear exoupso

Let us sumarive some of wheis propertims.

	Lie Group	Nunber of seal parwotars	Foperties of Mitwicea in Lis Oxomp	Property of Matrices in AL5ebora
A^{8}	$\begin{aligned} & \text { SL }(\text { nat } 1,0) \\ & \text { Specien } 1 \text { nnear } \\ & \text { groups } \end{aligned}$	$2(x+1)^{2}-2$	Conples mbtrices of Ordere $8+5$ with (et Gel	Compiex (xati) $(\mathrm{yt}$ 1) mataice
B_{n}	$50(2 \pi x+1,0)$ Specisi ortho goneit groups	$(2 \pi+2)(20)$	Complear arthoghal git $0^{2} 0=00^{2}=2$ det 0 I	Antisymumbric complex matroices or Order 2xfl: $x^{2}=-x$
C_{5}	$5 \mathrm{p}(2 \mathrm{n}, \mathrm{c})$ Complear symulaetio Exoup	$20(2 n+1)$	Complex Brwasetwe Ristwrece of ordes 2ni	Mitwores ar type $\left(\begin{array}{ll} A_{7} & A_{2} \\ A_{2} & -A_{1} \end{array}\right)$ $\mathrm{A}_{7}=\operatorname{complex}$ mentrices of ardeg nis $A_{g^{2}} A_{3}=y_{y}$
$D_{\text {Li }}$		$2 \mathrm{~m}(2 \mathrm{mc}-1)$	Same gs ${ }^{\text {g }}$	Serue ms $A_{i n}$

$$
2_{2}^{2}+2_{2}^{2}+0.0 z_{2}^{2} 2 n+1 \text { invarient }
$$

 Fiow

$$
\left(x_{y}\right)=g_{i x_{1} x_{i}} x_{k} \quad E_{i n}=-E_{E}
$$

invariant, ioe.

$$
(x y)=x_{1} y_{2} \leq x_{2} y_{2}+x_{3} y_{4}-x_{4} y_{3}+y_{0} 0 y_{2 x-2 y_{2}}^{y_{2}}-x_{2 x} y_{2 m-1}
$$

A symplectic metmo mextisties

$$
S_{2}^{T} \operatorname{TH}_{2}=\mathbb{T}_{2}
$$

where

$$
a_{2 n}=\left(\begin{array}{cc}
0 & I_{a} \\
a_{n} & 0
\end{array}\right)
$$

ALgera	E_{6}	E_{7}	E_{8}	$\mathrm{~F}_{4}$	G_{2}
Dimension	78	233	248	52	14

 we locely isomorphic:

$$
\begin{aligned}
& S L(2, C) \operatorname{BQ}(3,0) \text { Bp(2, } 0) \\
& S O(5,0) \operatorname{BL}(4,0) \\
& S L(4,0) \omega B O(6,0)
\end{aligned}
$$

Funther: SO(2, e) is Abeliam and thus mov semisimele

$$
\text { DO }(4,6) \pi \operatorname{sol}(3,0)(x) \operatorname{sol}, 3, c)
$$

Actualiy: $\mathrm{SL}(2,0)$ and $\mathrm{Sp}(2,0)$ wre efen chataly isomorphic

$$
S O(3, C)=S L(2, C) / D \quad D=\text { aficcetu } 2 \text { dimenciomgl centre }
$$

Thus: 1) One algebre of mank dis o

$$
A_{1}=B_{1}=C_{1}
$$

2) Three algebrss or menim :

$$
0-0 \quad A_{2}
$$

$$
\operatorname{Ex}=\mathrm{C}_{2}
$$ $0=0$

The system Tl of simple roots is represented fompietuly by the Dymin diagrams. Let us look at the mymem a or ja rocts for wigenve
 ones, they con be represented by wectorg in plane freme genereliy in a

 coobs $2 \mathrm{~m} 20^{\circ}$ 。

$w_{2}^{2}=2 w_{1}^{2}$ Asede betwers simple rocte $=13{ }^{\circ}$
6

$$
\omega_{2}^{5}=3 \omega_{1}^{2}
$$

Angle betweench anderg is 150°
 Weyl basis, check the "cmonicull" commtation ruite.
2) Optionaliy: do the same for the other classiceil alfutras.

Haring completed the clessuricetion and descmption of an complea simple Lie aigebxas. let us look at the weal simpie lice algebzew

The Req Ife Altebrea

We repert the whole procuture performed for complew algebres. Complitations come from the fect thet the fiela of real mumera is rot elemorican closed. so thet the problem of finaing efemvanes and efgempmetions of
 a matrois te the Jorden cranmacin formio

 the finm and completererion is due to fentrather fombumed in two Russian exticles, to my knowleăge now tumblitwd:

$$
\begin{aligned}
& \text { 2s 214.240 (1939) }
\end{aligned}
$$

 Symetric Spees, A.F. New Yown 1962.
Let us here list the results, then discuss them.

cayters Algebrs	Lie Group	Number of Feal Farameters	Froperties of Matriees of Lie Group	Properties of Marrices in Lie Algebras,	Remaxks
${ }_{n}$	SU(mat) Specigi Unitary Groups	$(0+1)^{2}-1$	Unthery: Unimodulam 	Real, antihermitean Trace $\mathrm{X}=0$	Compant.alexyes $\left.\left(z_{1}\right)^{2}+\ldots+12_{n+1}\right)^{2}$ invering
		$(m+1)^{2}=1$			
	$5 L\left(\mathrm{n}+\mathrm{H}_{9} \mathrm{~F}\right)$ Special Real Croups	$(a+1)^{2}-1$	Real. unimodular	Feal. Trace $\mathrm{X}=0$ order ($n+2$)	
		$(2 \pi)^{2}-1$	which commate with whe tranflewnata 		
	$\mathrm{R}_{\mathrm{k}}=80(\mathrm{k})=50(\mathrm{k}, \mathrm{k})$ Specind rex artho consil Eprops (Rotation groups)	$\frac{g(x-x)}{2}$	$\begin{aligned} & O_{0}=1,0 . \operatorname{cal} \\ & \text { det } 0=1 \end{aligned}$	Rnchy mathoic Real matwices of axder k	Compactu Learas $x^{2}+00+x^{2}$

Cartan Alpebris	Lee Group	Number ar Real Paxameteras	Propertines of Matrices of Lie Group	Froperties of Matrices in Lie Aligebres	Femaris
		$\frac{x(k-1)}{2}$	$\begin{aligned} & o^{\mathbb{I}_{p q}} 0=1_{p q} \\ & \text { atet } 0=1 \end{aligned}$		Iesues
	Cumbernion Orthom gornell groux	$\frac{2042}{2}$	orthernal. $00 *(2 \pi) \leq$ 80(2, 26 Leswe the anthermiten roma Anvas		Lesyes Tho complex forms invarimat
0_{n}	$\operatorname{sp}(2 n)=\operatorname{sp}_{u}(2 n)$ Doutary symplectic groups	$\frac{2 n(2 n+1)}{2}$	$\begin{aligned} & S p_{1}(2 n)=3 p(2 n, c h) \cup(2 n) \\ & s_{n} \mathbb{K}_{n, 0} S=x_{n, 0} \end{aligned}$		Compact
	$\operatorname{Sp}(2 n, R)-$ Real symplectic groups	$\frac{2 n(2 n+1)}{2}$	Ren हymplectic metrices or order in	$\begin{aligned} & \binom{A_{2} A_{2}}{A_{3}-A_{1}}^{A_{1}, A_{2} A_{3} A_{3}} \text { real order al } \\ & A_{2}, A_{3}=\text { symmetric } \\ & \hline \end{aligned}$	
	$\begin{gathered} \operatorname{Sp}(p, q)_{s} p+q=2 n \\ p q \neq 0 \\ \text { Pseudounitary } \\ \text { sympletic groups } \end{gathered}$	$\frac{2 n(2 n+2)}{2}$	$\begin{aligned} & \operatorname{sp}(p, q)<\operatorname{sp}(p+q, c) \\ & \operatorname{snd}(z \in i s r y \\ & s^{+} K_{p q} s=K_{p q} \end{aligned}$		$A_{i j}$ - complex matrices A_{11}, A_{13} order P $\mathrm{A}_{11}{ }^{,{ }^{\mathrm{A}}} 22$ ontihermitean $\mathrm{A}_{13}, \mathrm{~A}_{24}$ - symmetric

We shel not go into the derain ot the strutume of the

 the exceptione ones.

Above we have:

$$
\begin{aligned}
& I_{p, q}=\left(\begin{array}{cc}
+T_{i} & 0 \\
0 & -I_{q} \\
I_{\mathbb{Z}} & \left.=\left(\begin{array}{cc}
0 & I_{a} \\
-I_{0} & 0
\end{array}\right) \right\rvert\,
\end{array}\right.
\end{aligned}
$$

 Let us just 1 inst thert

1) $\mathrm{su}(2) \approx \mathrm{sO}(3) * \mathrm{Sp}_{\mathrm{q}}(2)$
$\operatorname{SL}(2, R) \propto \operatorname{SU}(1,1) \approx \operatorname{SO}(2, I) \approx \operatorname{Sp}(2, R)$
2) $S O(5) \approx S p_{i z}(4)$

So $(3,2)$ an $\mathrm{Sp}(2, R)$
$\operatorname{SO}(4,2) \times \operatorname{Sp}(2,2)$
3) $50(4) * \operatorname{so(3)(5)SO(3)} \approx \operatorname{su}(2)(3) \operatorname{su}(2)$
$S O(3,2) * S L(2,0)$
SO(2,2) $4 S L(2, R)$ g $E L(2, R)$
Sow(4) © SU(2) x $5 N(2, R)$
4) $\operatorname{su}(4) \times 50(6)$
$\mathrm{SL}(4, \mathrm{~F}) \approx \operatorname{SO}(3,3)$
$5 u^{*}(4) * 50(5,1)$

$\operatorname{su}(3,2)$ \% $50^{*}(6)$
5) $30^{*}(8) \approx 50(6,2)$

Lecture 9

In the previous lectures we have completed the classification of all complex semisimple Lie algebras and written down the commutation relations for these algebras in the Cartan-Weyi basis̃. In particular we heve shown that the total information about complex semisimple Lie algebras can be expressed in terms of the properties of simple roots.

We have also considered real semisimple Lie algebras and have shown how each complex elgebre splits into several different (non-isomorphic) real ones. So far we have only presented the results, let us now discuss the real Lie algebras.

Connection between Real and Complex Lie Algebras and

 Lie GroupsFormulation of the problem: Let L be a given semisimple complex Lie algebra. We wish to find all possible bases of i in which the structure constants are real numbers.

Obviously, if we take such a basis $\left\{e_{i}\right\}$ and consider its real envelope

$$
\sum_{i=1}^{n} c_{i} e_{i}
$$

where c_{i} are real numbers, we obtain a real semisimple Lie algebra.
One besis satisfying the above criterion has arready been found namely the Cartan-Weyl basis with the simple foots taken as a basis for the Cartan subalgebra H 。

Indeed, we have

$$
\begin{aligned}
& {\left[\omega_{i\rangle} e_{\alpha}\right]=\left(\omega_{i}, \alpha\right) e_{\alpha}} \\
& {\left[e_{\alpha}, e^{-}\right]=\alpha=\sum n_{i} \omega_{i}} \\
& {\left[e_{\alpha i} e_{\beta}\right]=\mathbb{N}_{\alpha \beta} e_{\alpha+\beta}}
\end{aligned}
$$

and all the structure constants are real.
The algebra L_{r}

$$
x=\sum_{i=1}^{x} \xi^{i} \omega_{i} \nless \sum_{\alpha} \xi_{0} x^{\alpha} e_{\alpha}
$$

with ξ^{i} and x^{α} real is a real form of algebra $L_{\text {s }}$ namely in this fashion we obtain the restrictions

$$
\begin{aligned}
& \mathrm{SL}(n, C) \rightarrow \mathrm{SL}(n, R) \\
& \mathrm{SO}(n, C) \longrightarrow \operatorname{SO}(n, R) \\
& \mathrm{Sp}(n, C) \longrightarrow \operatorname{Sp}(n, R)
\end{aligned}
$$

Thus, one solution of the abowe problem always existw. Another solution that is of great importance is:

The Compact Form of the Algebra L

The scalar length of a vector in the canonical basis is

$$
(x, x)=f_{i k} \xi^{j} \xi^{k}+\delta_{C \beta^{x}} \alpha_{K}^{\alpha}-\beta
$$

where $f_{i k}=\left(\omega_{i}, \omega_{k}\right)$

We already know that the metric tensor fik in the algebra H is positive definite.

Introduce

$$
\begin{aligned}
& C_{\alpha}=\frac{1}{\sqrt{2}}\left(e_{\alpha}+e_{-\alpha}\right) \\
& S_{\alpha}=\frac{1}{i \sqrt{2}}\left(e_{\alpha}-e_{-\alpha}\right)
\end{aligned}
$$

Obvious $\left(c_{\alpha}, s_{\alpha}\right)=0$ so that

$$
(x, x)=f_{i k} \xi^{i} \xi^{k}+\sum_{\alpha>0}\left\{\left(a^{\alpha}\right)^{2}+\left(b^{\alpha,}\right)^{2}\right\}
$$

where

$$
x=\sum_{i} \xi^{i} \omega_{i}+\sum_{\alpha>0}\left(a_{0}^{\alpha} \varepsilon_{\alpha}+b^{\alpha} s_{\alpha}\right)
$$

Thus, the "metric tensor" of (x, x) in the whole algebra I
is positive definite. It is easy to check that

$$
\left\{i \omega_{k}, i e_{\alpha}, i s_{\alpha}\right\}
$$

form the basis of a subeigebra with real structure constants. Let us call this algebra L_{u} and we have

$$
(x ; x)<0
$$

The group, corresponding to this algebra, will by a previous theorem, be compact.

Thus we obtain:

Theorem: Any semisimple complex group G has a compact real form

Namely:

$$
\begin{aligned}
& \mathrm{SL}(n, C) \rightarrow \operatorname{SU}(n) \\
& \mathrm{SO}(n, C) \rightarrow \operatorname{SO}(n, R) \\
& \mathrm{Sp}(n, C) \rightarrow \operatorname{So}_{u}(n)
\end{aligned}
$$

Example: $L=S L(2, c)$

$$
\begin{aligned}
& e_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad e_{0}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad e_{\infty}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& c=\sigma_{1}=e_{+}+e_{-}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{3}=2 e_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \\
& s=\sigma_{2}=\frac{e_{+}-e_{-}}{i}=\sigma_{4}\left(\begin{array}{cc}
0 & -i \\
+i & 0
\end{array}\right) \\
& x=i\left(\xi \sigma_{3}+a \sigma_{1}+b \sigma_{2}\right) \text { with } \xi_{9} a_{9} b \text { real is an Element of } I_{v}=\operatorname{SU}(2) .
\end{aligned}
$$

Quite similarly：$\quad S L(n, C) \longrightarrow S U(n)$

The picture we now have is the pollowing．Given a real semisimple Lie group G_{R} we can find its complex extension G_{C} and then restrict G_{C} to a real compact group U_{0} This is called Weyl＇s unitary trick：

$$
G_{R} \rightarrow G_{C} \rightarrow U_{0}
$$

Theorem：－The subgroup U is determined uniquely（upto nutomorphisms）as the maximal compact subgroup of G_{C} 。

Let us show how to find all real subaigebres V of L 。 If if is a real form of L then：
$I=V$ fiV
i．e．$z \varepsilon I \Rightarrow z=x+i y \quad x, y \varepsilon V$.
Introduce the operation of＂conjugation：

$$
z \not a(z) \equiv x-i y
$$

The real algebra V is invariant ander conjugation．

$$
\sigma(\mathbb{Z})=\mathbb{Z} \text { 曾 } \& E V
$$

Example：Take X as the $a i g e b r a$ of $S L(x, C):$

1）$\sigma_{1}(z)=z^{*}$（complex confugetion）
$\Rightarrow V=$ algebra of $\operatorname{SL}(\mathbb{Q}, R)$
2）$\sigma_{2}(z)=-z^{+}\left(z^{+}\right.$is the hermitean conjuggte of z）
$\Rightarrow V=L_{u}=$ gebebra of $\operatorname{SU}(x)$ 。

In general the mapping $z+\sigma(z)$ is an involution, i.e.:

$$
\begin{aligned}
\sigma\left(z_{1}+z_{2}\right) & =\sigma\left(z_{1}\right)+\sigma\left(z_{2}\right) \\
\sigma\left(\left[z_{1}, z_{2}\right]\right) & =\left[\sigma\left(z_{1}\right), \sigma\left(z_{2}\right)\right] \\
\sigma(\lambda z) & =\lambda^{*} \sigma(z) \\
\sigma^{2}(z) & =2
\end{aligned}
$$

Thus: the problem of finding all weal forms of I reduces to that of finding all (in some sense) different involutions.

Construction of All Real Forms of a Comeler Alyebres

$L_{u} C I$ is detexmined up to choice of a basis in L_{u} (up the inner automorphisms).

Theorem: Let σ be an involution of L, Ieaving the compact form L_{u} invariant;

$$
L_{u}=K \neq N
$$

where K and N are eigenspaces of σ, corresponding to elgenvaiues ± 1 (we have $\sigma^{2}=1$)。 Then $V=K+i N$ is a real form of L and aill feal forms of L can be obtained in this manner.

Thus: all we have to do is find ell involutions Learing I_{u}
invariant.

Theorem: Let σ be an involution conserving the form I_{u}. Then there exists a Cartan subalgebra HCIs invarient with respect to O o
(We drop the proof).

Example: $S L(n, c) \rightarrow$ maximal compact subgroup $S U(a)$. Cartan subelgebra: Ho..diagonal matrices of order n_{0} Put:

where the separation into +1 and -1 terms is arbitrary. Then

$$
\theta \quad \sigma(x)=-S^{-1} \Sigma_{2}^{+} s
$$

is an involution preserving guin). The invariant subspace is vel

$$
S^{-1}+s=-v
$$

The group corresponding to V is $S U(p, q)$.

Tartan Decomposition

$$
I=X+i X
$$

where X is a subalgebra, invariant under an involution (If X is a subalgebra, iX in general is not one. If $X=I_{u}$ then we ann "integrate" the Carton decomposition to obtain

$$
G=U_{0} R
$$

where U is the maximal compact subgroup and K is the supplementary subspace.

Example: $G L(n)=U(n) R(n)$ polar decomposition of matrix ge $G L(n)$

$$
R(n) \text { - positive definite hermitean matrices of order } n \text {. }
$$

For $\operatorname{SL}(2, C)$:

$$
\begin{aligned}
\binom{a b}{c d}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & a^{*}
\end{array}\right)\left(\begin{array}{ll}
x & s \\
s^{*} & x
\end{array}\right) \\
a d-b c=1 \quad|\alpha|^{2}+|\beta|^{2}=1 \quad 5=x e q 1
\end{aligned}
$$

Analogy: $z=e^{i \theta}|z| \ldots$ polar decomposition of complex numbers.

The Causs Decomposition of a Complex Grous G.

We have for a semisimple Lie sigebra

$$
L=E_{-}+H+E_{\phi}
$$

For the corresponding group we have

$$
G=\overline{Z_{-} D Z_{+}}
$$

Here $Z_{\text {_ }}, D$ and Z_{+}are Lie groups comresponding to the Lie algebras E_{-}, H and E_{+}. The bar means topological closure. In other worde not every geG can be written as

$$
E=z_{-} \delta z_{+}
$$

but such g do form a dense set in G.

Theorem：Every complex semisimple Lie Group allows a Gauss decomposition．

Remark：If G is a matrix group，then Z_{-}and $Z_{i f}$ can be considered to be lower and upper triangular matrices with ones on the main diagonal． The matrices D are diagonal．

The Gauss Decomposition For Real Lie Group G．

The algebra of G can be written as

$$
\mathbb{I}_{R}=K+i \mathbb{N}
$$

Where K and N are eigensubspaces of the imvolution O determining I_{R} in the first place．

Theorem：The real semisimple Lie Group G_{R} with the algedra I_{R} can be decomposed as

$$
G_{R}=\overline{Y_{-} F Y_{\phi}}
$$

where F is locally isomorphic to a direct product of an abelian group D_{0} and a compact one U_{K} with the algebra $K_{\text {。 }}$ Further $Y_{\text {w }}$ are subgroups of $Z_{ \pm}$in the complex group G_{0}

The Centre of a Simple ine Group

The centre of a simple Lie elgebra is (0) ，thus the centre of a simple group is discrete。

Theorem：The centre of a complex simple Lie group and of a compact real simple Lie group are finite。
（No proof given）．

Corollary: The universal covering groups of the groups mentioned above consist of Itinite numbers of indiridual sheets.

Indeed, if L is a simple somplex Lie aigebre and $C(L)$ is the centre of its universal covening group then it can be showr that the following table summarizes the relation between I and $C(L)$:

L	A_{n}	B_{n}	C_{n}	D_{n}	E_{6}	E_{7}	E_{8}	F_{4}	G_{2}
$C(L)$	Z_{n+1}	Z_{4}	Z_{2}	$Z_{1} x Z_{2}$	Z_{3}	Z_{2}	Z_{1}	Z_{1}	Z_{1}

where Z_{n} is the discrete group of divisoms of unity:

$$
\begin{array}{ll}
z_{n}=\{e\} \quad \lambda^{n}=1 & e=\operatorname{mit} m a t x i x \\
& =\operatorname{complex} \text { number }
\end{array}
$$

Thus:

$$
\begin{aligned}
& z_{2}=(+1,-1) \\
& z_{4}=\left(1, \frac{i}{i}-1,-i\right) \\
& z_{n}=\left\{e^{i \frac{2 k \pi}{n}}\right\} \quad 0 \leq k \leq n-1
\end{aligned}
$$

This table completes the clasification of simple complea lie ajebras, in that it indicates the number of difierent, locaily iscmorphic groups, corresponding to a given albebra.

For the compact groups it can be shom that:
$A_{n}: \quad S U(n+1)$ is simply connerted, so that it is it: own universal covering group.
$C_{n}: S_{p u}(2 n)$ is simply connected (and is it's own universel corexing geoup).
B_{n} and D_{n} : The groups $S O(2 n, R)$ and $S O(2 n+2, R)$ are not simply connected.

Let us construct the universal covering group ox sole R):
Consider the real vector $X=\left(x_{1}, 0.0 x_{i}\right)$
and introduce some abstract elements of an algebra:

$$
r_{1}, \ldots, \gamma_{2}
$$

Put: $\quad x=x^{i} \gamma_{i}$
and demand

$$
\left(x^{i} \gamma_{i}\right)^{2}=x_{1}^{2}+x_{2}^{2}+\ldots 0+x_{0}^{2}
$$

This implies the anticomutetion reletions:

$$
\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=2 \delta_{\mu \nu}
$$

All mowomials

$$
\gamma_{\mu_{1}} \circ \gamma_{\mu_{s}} \quad s \mathbb{L}
$$

form an algebra of dimension 2^{ℓ}, called a Clifiond algebra K (for $2=4$ the γ_{μ} are the Dirac γ-matrices)。 Consider the L -dimensional subspace $\mathrm{X} C \mathrm{~K}$

$$
x=x^{\frac{1}{2}} \gamma_{\mathrm{j}} \quad \operatorname{seX}
$$

Introduce left and right multiplication

$$
k \rightarrow k_{0} k \quad k \neq k k_{0}
$$

by k_{0}, for which detk $\psi_{0} 0\left(k_{0}\right.$ is a $2^{2} \not 2^{2}$ matrix)。 Let G_{K} be the group of all automorphisms

$$
k \neq k_{0} k k_{0}^{-1} \quad \operatorname{det}_{0} k^{k} 0
$$

Let $G_{X} \subset G_{k}$ be the subgroup, leaving X invariant:

$$
k_{0} x k_{0}^{-1}=x^{0}
$$

and let G_{X}^{0} be the sheet of G_{X}, connected to the identity. G_{X} Leaves the length $\left(x_{i} \gamma_{i}\right)^{2}$ invariant and it is easy to see that $G_{g x}$ is locally isomorphic to $S O(2)$ (it has the same namber of parameters, Ieaves the same quadratic form invariant)

Definition: $G_{x}=\operatorname{Spin}(\ell)$ is called the spinor group.
Theorem: The group $G_{X}^{0}=\operatorname{spin}(X)$ is simply connected. It is the universal covering group or $\operatorname{sof}(\mathrm{d})$ and we hare
$\operatorname{SO}(2 n+1)=\operatorname{spin}(2 n+1) / Z_{2}$ and $\operatorname{so}(2 n)=\operatorname{Spin}(2 n) / 0$ where $C=Z_{4}$ for $n=$ odd and $c=Z_{2} \times Z_{2}$ for $n=$ even.

The importance of knowing whether group is simply connected is due to the relation between simple conmectivity ma representation theory. Indeed, if we have a group o that is not simply connected, we can consider its universal covering group G ma the single-valued representations of G will prowide mulvivaued representations of G (eafo the half integer spin representations of SO(3)). A simply connected group has only single valued representations.

Remark: The properties of the real nomcompact Ine groups with respect to simple connectivity are much more complieated. E.g. Su(i, i) is a covering group of $O(2,1)$, not however uniwersal covering group. It can be shown that the universal covering group nas infinitely many sheets and thus an infinite dimensional discrete centre. We con thus consider not only single-velued and double-valued representations of o(z,I), but "arbitrary-valued" ones.

This completes our survey of some basimel properties of Lie Groups and Lie Algebras and we go over to the second part of the course, namely to a consideration of the theory of pepresentations.

Definition: A representation of a group G in a linear space E is a mapping

$$
\mathrm{g} \rightarrow \mathrm{~T}_{\mathrm{g}}
$$

of the group G into a group of linear transrormations of the space E, such that

$$
\begin{aligned}
& T_{g_{1}}=T_{2} T_{2} G_{2} \\
& T_{e}=I
\end{aligned}
$$

where I is the identity operator.
If G is a topologicai group then we demsad thet T_{g} depends continuously on g.

Definition: Two representations T_{G} and S_{g} are equivalent ip there exists a mapping A from the space of one to the space of the other such that:

$$
S_{g}=A T_{g} A^{-1}
$$

Definition: A subspace $E_{0} C E$ is caled invarisnt with yespect to the representation T_{g} if

$$
T_{g} E_{0} C E_{0}
$$

for ell geG.

Definition: A representation T_{g} is called irreducible if no nontripial invariant subspaces in E exist.

If a nontrivial invariant subspace E_{0} exists, then T_{g} is reducible.

A representation is called completely reducible if every invariant subspace E_{1} has a complementary invariant subspace E_{2} such that

$$
E=E_{1}+E_{2}
$$

i.e. the space E can be decomposed into a direct sum of invariant subspaces.

The space of a completely reducible representation can be decomposed into irreducible components.

Lectuxe 10

Some Applications of Group Representation Theory

Before we continue with our exposition of some general features of group representation theory, let us just give some examples of the mpplicetions of group representations in quantum physics.

1. Degeneracy of energy levels in nonarelativistic quantum mechanics.

Consider the Schrodinger equation

$$
\begin{equation*}
H \psi_{E}(x)=E \psi_{E}(x) \tag{2}
\end{equation*}
$$

and assume that the Hamiltonian H is invariant with respect to a certain group G. This means that for every element geG there exists an operator T_{G} acting in the space of wave functions ψ

$$
\begin{equation*}
T_{g} \psi_{E}(x)=\psi(x) \tag{2}
\end{equation*}
$$

and satisfying

$$
\begin{equation*}
\mathrm{T}_{\mathrm{g}}^{-1} \mathrm{H} \mathrm{~T}_{\mathrm{g}}=\mathrm{H} \tag{3}
\end{equation*}
$$

Obviously, if $\psi(x)$ satisfies (1), then so does $T_{g} \psi(x)$. Indeed:

If

$$
\mathrm{T}_{\mathrm{g}} \psi(x) \neq \epsilon \psi(x)
$$

for all g s then the energy level E is degenerate and we denote the eigenfunction $\psi_{E k}(x)$ 。 The operators T_{g} form a representation of the invraxinace group Go If the operators T_{g} transform ell functions $\psi_{\text {Ek }}(x)$ With Efised amongst each other leaving no subspace of functions $\psi_{\text {Ek }}$ fropriEnt, then
the representation is irreducible. The representation theory of G then provides us with a lot of information, e.g. it tells us what possible degrees of degenerecy can occur (namely it must coincide with possible dimensions of representetions of the group G), it provides us with a means or alassifying and labeling different functions, corresponding to the same energy, etco

If the functions $\psi_{E K}(x)$ correspond to a reducible representation of G_{0} then the group G daes not describe the degeneracy completely and either there exists a larger invaxiance group G Gior which the functions $\psi_{E k}$ do fransfom irreducibly, or we say that the degeneracy is mecidental.

Examples: Put

$$
\begin{equation*}
H=-\frac{I}{2} \Delta+V(x) \tag{4}
\end{equation*}
$$

If the potential is sphericely symmetria $V=V(x)$, then we miways have a "geonetric" invawiance group $G=50(3)$, leading to a degenerocy with mespect to the magnetic quantum number m in two special cases we have a higher degeneracy, than the one described by so(3), zamely for the Coulomit potantial $V(x)=I f$ when the group $G=S O 4)$, ind for the isotropte herrionic oscillator $V\left(x^{\circ}\right)=a \%^{2}$. when the group $G \equiv \operatorname{SU}(3)$.

2. Selection Rules pos Transitions Between Energy Lewels

We me interested in matrif elements of the type

$$
\begin{equation*}
m_{i j}^{U v}=\int \psi_{\psi \dot{L}} T \psi_{V j} d T \tag{5}
\end{equation*}
$$

where $\mu_{\mathrm{y}} \nu$ enumerate representations of the invariance group G and isf enumerate basis functions in each representation. If we know something about the transformation properties of the transition operetor T_{s} we ean use group representation theory to investigete (5), in paricuagr to inend when do we have $T_{\mathcal{L}, j}^{\mu V}=0$, etc.
3. Conseguences of Relativistic Invariance (or invariance of a theory with respect to any group).

Consider the quantum mechanics of a free particle. Experimental quantities are the moduil of scaler products of waye functions

$$
\left|\left(\psi_{f}, \psi_{i}\right)^{2}\right|
$$

The requirement of special relatipity is that such expemimental quantities (trensition probebilities, etco) should be invariant undex Lorente trensformations. Thus, a Lorente transformation

$$
x^{\prime}=A \operatorname{tex}
$$

cosresponds to

$$
\dot{\psi}\left(x^{\emptyset}\right) \equiv U(A, x) \psi\left(x^{\prime}\right)
$$

and $\psi(x)$ must then transform undex a. representetion of the inhomegeneous Lorentz group Poincare group).

Ey definition a physical gystem is elementary, if it transiomas according to an irreducible representation of the group. Thus: ciassification of imeducible representations of the Poincare ${ }^{\text {group is a }}$ classification of all possible elementary physical systems.
4. Classification of Particle States with Respect to the Regresentations of an Internal Symmetry Group, (e.g. $\operatorname{sU}(2), S U(3)$, etc. $)$.
5. Fartial Wave Analysis of Scattering Amplitudes and its Generelinetions.

Consider a function $f(x)$ on some homogeneous manifola X on which
a group G acts as

$$
T_{E} \mathbb{F}^{R}(x)=f(x E)
$$

It is often useful to find components of $f(x)$ with definite transformation properties with respect to G, e.g. to axpand $f(x)$ in texms of the basis functions of irreducible representations of G 。

Thus: we hase a lot of physical motypation ior performing a careful study of group representation theory.

The Basicel Problems or Group Representation Theory
For most physical applicatione we need a quite detailed knowledge about the Lie group of interest itself and about the group representetions. Basically: we have to know the following:
A. Knowledge gbout the Lie Group

1. Definition of the group, its stmuture (semisimple, solveble, etcols its isomorphisms, Local isomomphims, wowering groups, wiversay covering group, it's centre, its comnectivity properites, etco
2. The Lie migebra of the group, its unversel eaveloping agebres the invarients of the agebra lthe Casimir or Laplace opergtors).
 is obteined as the xoing of alil polynomiais in e_{i}. Two polymomis are considered eques to etch other if they amx be obtained from one another by a

 ring is a field if it has a multipliective identity aud an inverse for every $a_{i} \neq 01$.
b) The inveriants of the algebra, or the Casimis operetors, are the operators of the centre of the wniversal envelioping aigebre, ioe. polynomigis in e_{i} commting with all e_{i} (and thus with ali poiynomigis in e_{i})。
3. A complete study of the subgroup structure of the gitfen group, namely a classification of all continuous subgroups into equiralence classes. The Lie aigebras of the subgroups and their invariants, if such exist.
4. A systematic study of different possible parametrizations or the group, i.e. all possible ways of representing a general group element geG as a product of elements of subgroups of G and eventually as a product of elements of one paraneter subgroups.
5. A list of all homogeneous spaces X on which the group acts transitively. A systematie study of all (in some sense) types of coordinates in the space X, some of which, but not ail are related to verious chains of subgroups of G 。

Remark: A linear space X is a homogeneous manifold with respect to the group
 such that $y=g$ gis.
6. The left and right inverimnt measure on the group (the Heme meusures) in a general form and in dirferent forms, cormesponding to each parametrizetion. The invmonnt measures on each nomogeneous memifold.

Remark: Hame nas shown that tor an arbitrary Lie group fand eqen wor E Lerger class of topological groups) one can introduce invariant integration orer the groupsi.e. write

$$
\begin{equation*}
\int f(g) d L_{L}(g)=\iint_{0} g_{0} g \operatorname{dum}_{L}(g) \tag{6}
\end{equation*}
$$

and $\quad \int P(G) d \mu_{R}(g)=f\left(g g_{0}\right) d u_{R}(g)$
where $\mu_{L}(g)=\mu_{L}\left(g_{0} g\right)$ and $\mu_{R}(g) \cong \mu_{R}\left(G g_{0}\right)$ are the Ieft and roight invarimat measures. The measures are detemined uniquely, up to a constant factore
and for a large ciass of Lie groups, called "unimodular" groups, the Ieft and right invariant measures coincide.

Similariy, on homogeneous manifold we have a uniquely determined (up to a constant factor) invariant measure

$$
\begin{equation*}
\int f(x) d \mu(x)=\int f(g x) d \mu(x) \tag{8}
\end{equation*}
$$

B. Knowiedge about the_group yepresentations

1. A classification and explicit construction of ail unitary irreducible represeatations of the group, all finite dimensional representetions and usually also certain classes of non-umitaxy infinite dimensional representations (fior non-compact groups).
2. A consideration of various specific realizetions of the representation spaces. A systemetic approach to the probiem of classifying and finding ail possible different bases for the representations. This is directiy releted to the problem of finding all nonequivalent complete sets of comnting operators in the envelloping alebra of the Lise ulebea and is in part related to the classiffeation of all chains of subgroups of the given group.
3. An explicit construction of the ditferent complete sets of basis functions for each representation.
4. An explicit construction of the infinitesimal operators (es differential operators) and of their matrix elememts in each different besis for all representations.
5. An explicit construction of the matrix elements of the finite transformation operators in the different bases.
6. The construction of the operators reaining the tramsformations from one type of basis to mother (the overiap functions).
7. The reduction of useful reducible representations to ixreducible ones (eog. the regular representation, the quasi-xegular one). An investigation of representations thet are not irreducible, but no completely reducible.
8. The reduction of the representations or the group to representations of each of its subgroups.
9. The Clebsch-Gordan series, telling us which iryeducible representations of the group are contained in the direet product ois two ixreducibie representations and with which multipiditity
10. The Glebsmb-Gordan coetwichents of the group, connecting the basis functions or the irreducible representations contaimed in the direct product of two represertations, with the products of basis frunctions of these two representations. These coefficients should be obtained for each of the bases under consideration.
11. Formulae genemalizing classical Foumier analysis to non-Abelian and non-compact groups, i.e. formulae for the expansjon oriunctions defined on the group (or on homogeneous space) and square-integrable with respect to the corresponding invariant measure, in terms oi the matrix eiements of finite
 unitary representetions of the group. These expansions would be warious generelimations of the PLanchere formulz, they depend crucially not onigy on the group under consideration. but also on the chosen group representation basia.
12. Generalimations af whe above expansions to wian ciasses of functions and thus to non-unitary representations. Ansiytuic continuation of group representations.

This is by no means a complete list of the mathematical pioblems, important for physical applications.

The program, as listed aboye, has not zeally been fuifilled completely for any nommebelian group, not even for so(3). We shall trest some of the problems in general, fimst fox compact, then for noncompact groups. In the third part of this course we shall go over to the Poincare ${ }^{\text {g }}$ group and it's subgroups and little groups and treat their represertation theory in some detail.

We have alrewdy dexined mopresentation and the concepts of equivalence, of irreducibility and or complete reducibility. Let us introduce some further concepts.

Definftion:

Representation T_{g} and ${ }^{\prime}{ }_{T}{ }_{g}$ are contragradient to each othex, if nondegenerate bilinear from

$$
\begin{equation*}
(x, x) \quad x \in E \quad \hat{x}) \quad \hat{x} \tag{9}
\end{equation*}
$$

exicts. which is invariant in the following sense

Obriousiy we must hawe

$$
\operatorname{dime} \equiv \operatorname{dimE}
$$

We can consider E and \hat{E} as one space, we can choose a basis, in which ($x, \stackrel{x}{x}$) is diagonel. Condition (10) implies

$$
\begin{equation*}
{\underset{G}{T}}_{T_{g}}=\left(T_{g}\right)^{-1} \tag{21}
\end{equation*}
$$

(superscript T means transposed).

Definition: The Representation T_{g} is called a tensor product of two representations

$$
\begin{equation*}
T_{g}=A_{g} \times B_{g} \tag{12}
\end{equation*}
$$

if it acts in the tensor product of two spaces $E(A) \times E(B)$;

$$
T_{g} e_{i} \varepsilon_{\alpha}=\left(A_{g} e_{i}\right)_{0}\left(B_{g} \varepsilon_{\alpha}\right)
$$

Remaxk: We shall be considering representaiions both in finitedimensional and intinite-dimensional spaces. Strictly speaking, we should be more careful with some of the above definitions. In particuler, for infinite dimensional representations (of non-compact groups) we should specify the types of spaces in which the definitions make sense, $e_{0} g$. Banach speces. (A Benach space is a complete normed space; a normed space is a linear space R, in which every eiement $x \in R$ has a norm $|x|$, satisfying: (i) $|x| \geqslant 0,|x|=0 \leftrightarrow \%=0$ 。 (ii) $|\alpha x|=|\alpha||x|$ for $x \in R, a=$ complex number, (ilif) $|x+y| \leq|x|+|y|$ for $x, y \in R$. We shell mainly be wrining in a Hilbert space (a Hilbert space is a speciel case of a Banach space, in which we hawe a scalar product (x, y), satisfying the usual concitions (I) $(x, x)>0 \quad(x, x)=0 \Leftrightarrow x=0,(2)(y, x)=T x, y)$ (3) $\left\langle a x, y=\alpha(x, y)\right.$ (4) $\left(x_{y}+x_{2}, y\right)=\left(x_{1}, y\right)+\left(x_{2}, y y\right)$ and the norm $\left.| x \mid=\sqrt{[x, y\rangle}\right)$. We shail not go into the necessary refinements here.

Tensors

Let G be e linear group (a group of matrices in en n-dimensionsl space $E ; n<\infty)$. Introduce a basis $\left\{e_{i}\right\}$ in E. Then the action of esce on e_{i} can be considered as a transformation to a new basis:

$$
\begin{equation*}
e_{\frac{1}{2}}=g_{i}^{k} e_{k} \tag{13}
\end{equation*}
$$

A vector $x \in E$ can be written as

$$
x=x^{i} e_{i}=x^{p i} e_{i}^{i}
$$

Thus, the trace $x^{2} e_{i}$ is inveriant so that

$$
x^{p^{i}}=h_{k}^{i} k^{k}
$$

where

$$
\begin{equation*}
h=g g^{T}=\left(g^{T}\right)^{-1} \tag{14}
\end{equation*}
$$

We shail call tronsformations g cowariant (e.g. transformations of basis vectors), transfarmations g contravariant ($e_{0} g$. transformations of coordinates). Let us introduce multiplication in E, defining:

$$
\begin{equation*}
x, y=x^{I} y e_{i}^{j} e_{j} \tag{15}
\end{equation*}
$$

Thus we obtain the quantities $\mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{j}}$, twansforming as

$$
\begin{equation*}
e_{i}^{q} e_{j}^{q}=g_{j}^{k} g_{j}^{f} e_{k} e_{L} \quad \circ 0 g(G) \tag{26}
\end{equation*}
$$

Whereas the coorinates transform as:

$$
\begin{equation*}
x^{n i} x^{i}=h_{K}^{i} h^{j} x^{k} x^{k} \quad 00 g^{(G)} \tag{17}
\end{equation*}
$$

Definition:
 covawiant tensor of rank two, a quantity $t^{i j}$ transromming acourding to gab a contravariant tensor of rank two. Similariy we introduce cowemiant and contrevariant tensors of rank n anc mixed tensors of axbitwary zank:

In this manner we obtain finite-dimensional representations of the group G。

$$
\begin{equation*}
g \rightarrow A_{g} \quad g \rightarrow B_{g} \quad \text { and } g \rightarrow A_{g}\left(B_{g}\right. \tag{19}
\end{equation*}
$$

where

$$
\begin{array}{ll}
A_{g}=g(x) g(x) g & \text { p factors } \\
B_{g}=g(x) g(x) \ldots(x) & \text { q factors } \tag{20}
\end{array}
$$

Remark: It is sometimes convenient to consider certain muitilinear forms, instead of tensors. Thus, we can replace a covariant tensor of rank p by a form
where the x^{i} etc transform contraveroiantly. The operators T_{B}
form a representation of G (we consider the $g^{i} s$ as matrices the x° s as vector-columns). Obviously the coefficients or

$$
P^{\prime}=T_{g} P
$$

axe given by the tensor
so that this representation is equivalent to A_{g}.
Similarly, we have

$$
T_{g} P(x, y, \ldots o w)=P(x g, \ldots o w g)
$$

where $x_{g} y_{8} \ldots 0$ are written as rows and transform covariantly. This representation is equivalent to B_{g}.

Thus: instead of tensors we can consider linear functions of vector

Symmetries of the Tensors

Introduce an operator S the action of which is to permute some of the indices of a tensor:

$$
s t_{i_{1} \ldots i_{n}}=t_{j_{1} \ldots j_{n}}
$$

Since one matrix g acts on each tensor index separately a rearrangement of these matrices is irrelevant. Thus:

$$
S g=g S \quad g \varepsilon G .
$$

We can cinssify tensors according to their symmetry properties, which are invariant under the group G. If a tensor changes sign under the permutation or two indices it is antisymmetric with respect to these indices, if it stays invaroiant it is symmetric.

As we know the permutations of ill elements themselves form (discrete) group S_{m} - the symmetric group. For information on this group see e.g. Hammermesh.

The symmetry properties will be used to split the tensor representations into irreducible ones. We shall return to this in a future lecture。 Let us now make some more remarks, necessary to prove some powerful general theorems on the representations of compact groups.

We already know that the group Gitself is a homogeneous manifold with respect to left and right multiplication:

$$
\begin{aligned}
& g_{1}, g_{2} \varepsilon G \quad \text { there exist } g_{0} \varepsilon G \text { and } \tilde{g}_{0} \varepsilon G \text { such that } \\
& g_{1}=g_{0} g_{2} \quad g_{I}=g_{2} \tilde{g}_{0}
\end{aligned}
$$

Definition: Right regular representation R_{g} :

$$
R_{g_{0}} f^{\prime}(g)=f\left(g g_{0}\right)
$$

Iefot regular representation I_{g}

$$
\underline{E}_{E_{0}}(g)=f\left(g_{0}^{-1} g\right)
$$

Problem Cheak that R_{g} and I_{g} are indeed representations of g.

Lecture 12

Reference to previous lecture:
A. O. Barut, R. Raczka: Classification of non-compact real simple Lie groups and groups containing the Lorentw group. Proc. Roy. Soc. 287A, 519-532 (1965) (Essentially they reproduce Gantmakher's articles of 1939).

We already know that a group G is a homogeneous manifold with respect to left and right multiplication. Let us put $X_{0} \equiv G$ and prove thet:

Any homogeneous space X can be fitted in a standard manner into the space X_{0}, i.e. the group G is a universal homogeneous space.
a) Consider $x_{0} \in X$ and assume that the equation

$$
\begin{equation*}
x_{0} g=x \tag{1}
\end{equation*}
$$

has only one solution geG for every $x \in \mathrm{~A}_{\mathrm{K}}$. Then we can simply identify X

b) Let $x_{0} \in X$, and assume that g in (i) is not unique Consider a subgroup HCG such that

$$
\begin{equation*}
x_{0} h=x_{0} \quad h e E \tag{2}
\end{equation*}
$$

H is the stationary subgroup of G, comesponding to vector π_{0}. Let us establish the degree of nonmuniqueness in (1)。 Assume

$$
x=x_{0} g_{1}=x_{0} g_{2}, \quad g_{1} \neq g_{2}
$$

Then $x_{0}=x_{0} g_{2} g_{I}^{-1}$, i。e $g_{2} g_{1}^{-1} \varepsilon H$.
Thus, for each $x \in X$ we can choose g_{x} such that

$$
x=x_{0} g_{x}
$$

Then any transformation

$$
g=h g_{X} h \varepsilon H
$$

also transforms x_{0} into $x_{\text {o }}$. We thus split the group G into layers

$$
G_{X}=H_{X}
$$

Only the layer $G_{X_{0}}=H$ is a subgroup, since the others do not contain the identity ed

We can now write

$$
g=\operatorname{hg}_{X} \quad x \varepsilon X, h \in H, g \varepsilon C
$$

and. formally

$$
G=H X
$$

(to determine an element in G we must determine a vector mex and sh element her)

Instead of functions $f(x)$, xe we can consider functions $f(g)$, $g \in G$ which do not depend on h. Consider:

$$
g=h g_{x}
$$

and perform a right translation

$$
\begin{aligned}
& \quad g g_{0}=h\left(g_{x} g_{0}\right)=h g_{x g_{0}} \\
& \left(\text { since } x g_{0}=x_{0} g_{x} g_{0}=g_{x g_{0}}\right)
\end{aligned}
$$

Thus, the transformation $g \rightarrow g_{0}$ induces the transformation $x \rightarrow x_{0}$ Thus, we can replace $f(x)$ by functions $f\left(g_{0}\right)$ constant on the classes \tilde{G}_{x} : Thus:

$$
R g_{0} f(g)=f\left(g g_{0}\right) \text { and } f(g)=f(\mathrm{hg})
$$

Example: $G=O(3), X=$ two-dimensionel sphere。

Put:

$$
x=\left(x_{1}, x_{2}, x_{3}\right) \quad x^{2}=1
$$

Noxth Pole: $x_{0}=(0,0,1)$
$\mathrm{H}=$ rotation about $\mathrm{O}_{3}: \mathrm{g}_{3}(\psi)$
In Euler angles: $\quad g=g_{3}(\psi) g_{1}(\theta) E_{3}(\phi) \equiv \operatorname{hog}(\theta, \phi)$
where $h=g_{3}(\psi), g(\theta, \phi)=\dot{E}_{5}(\theta) g_{2}(\phi)$

The condition $f(g)=f(h g)$ obviousily implies thet $f(g)$ does not depend on ψ Thus: functions $f(f)$ in generem are expmaded in tems or

Remarks on Mitrix Elements of Finfte Rotations

Consider group G and an irreducible finite-dimensiongl
representation T_{g}. In a finite dimensional apece we ean aiways choose a basis

$$
\left\{e_{i}\right\} \quad i=1000 r
$$

and calculate the matrix elements or each operator I_{g}.

$$
T_{g}=\left\|T_{i j}(E)\right\|
$$

Consider the spece $I_{G} \equiv\left\{\mathrm{I}_{\mathrm{G}}(\mathrm{G})\right\}$ of all continuous functions on the group. Obviousiy $C_{T}=\left\{T_{i, j}(g)\right\} I_{G}$

We have: $\quad T_{i j}\left(g_{0}\right) \in L_{G} T_{i j}\left(g_{0} g\right) \in \mathcal{L}_{G}$

$$
T_{i j}\left(g_{0}\right)=T_{i 0}(g) T_{a j}\left(g_{0}\right)
$$

Thus: each row of T_{g} forme a swospace of L_{G} simparient wnder moght translations, ewch colum a subpace, invariant under lert trenslemions. Take: $\quad e_{j}(g)=M_{I j}(g)$

We heve

$$
e_{j}\left(g g_{0}\right)=I_{1, j}\left(g_{0}\right)=T_{I_{\alpha}}(G) T_{0 j}\left(g_{0}\right)=e_{\alpha}\left(g_{\alpha,}\left(E_{0}\right)\right.
$$

Thus: a) Elements of eeh row get twansermed gnongst emoh athew oniy
b) It T_{g} is irneducibie then the ef (E) Ine Inemy indeperdent (ox Tg_{g} would act in a spse of dower dimenshon)。

We obtain the foliowing pesurt;

Theorem: The roght reculaw appreseatation contains evervy pinite
 the number of rows in Thy (E) ioo.equet to the dinension of the $\frac{\text { representetiono }}{}$

II we can ano show the oppasite. nomely: an irredraidie components of the regulam representation ge gerexetco by wiow mig (E) in chosen besis, then we an easijy aetompose the reguinr repreantetuano

We would simply have to borsides aig ipeducible nonequivilent mepresentetions $\mathrm{E}^{(\mathrm{P})}(\mathrm{g})$ of G with m whing hrough some set and finct how the metron

The functions $E_{j j}^{2}(g)$ are cinged elementery harmonics of the group G, we shell show thet they satisfy equations like

$$
\Delta x(g)=\lambda f(g)
$$

where A is generaised Laplace operatom and that functicna f(g) ban be expanded in terms of elementary herrnomics.

Remaxk: Essentially all the special functions used 1 m mathematical physics are elementary hamonics of some group in some basib.

Compact Lhe Gpeups

We have already giwer durinitions of compact lie group and also topologicen mid gleebmencel groteria of compertaess.

Fow Whether the group is compact is to considem some panmetringuion or the
 Lie group is compact ifit this range - the "group valume" 4 Etinite.

Erampie:

$$
\text { a) } 50(3): 5=5_{22}\left(\operatorname { l i g } _ { 1 3 } \left(\theta \operatorname{seg}_{12}(\phi)\right.\right.
$$

The velume $0 \simeq \psi \& \overbrace{}^{7}$

$$
\begin{aligned}
& 0 \leq \theta \leq \pi \\
& 0 \leq \phi=2 \pi
\end{aligned}
$$

is finite; the group is compectu.

The group volume is determined by the bownds:

$$
0 \leq \psi<2 \pi, \quad 0 \leq \phi<2 \pi \quad 0 \leq \beta<\infty
$$

and is infinite: the group is nomcompect.
We elready know that the real orthogonai groups $0(x, R)$, the metrices of which are real mad sutishy $0^{T} 0=1$ are compent. Similarly the groups $\quad \mathrm{J}(\mathrm{n})$ of complex unitumy matrices setisfying $U^{+} U=1$ are compact.

Theorem: Any compact group G can be realizad as anbroup of ofry and
 proof here.

Problem: Show that $O(n) C U(m)$ and $U(n) \subset U(m)$. Fox given n find as smali as poselble mo

Corolimy: A ciessification of aly mapet Lie groups ds equivalent to a classificetion ot mil subrougs of ofor

Clessiricetion of Compent Lie Groups

Whenever we taik of a classinications we mem cisssitication up to isomoxphisms.

Definition: The group C is the dirent product of two suburoups G_{9} and G_{2} if there exists a faithrui sepresentathon g ot T_{g} such that

$$
T_{E}=\left(\begin{array}{cc}
\mathrm{Ig}_{1} & 0 \\
0 & \mathrm{TE}_{2}
\end{array}\right) \quad \mathrm{S}_{\mathrm{d}} \cos _{1} \mathrm{~S}_{2} \mathrm{EH}_{2}
$$

for all geg.

Fxample:

$$
U(n) \quad g=\left(\begin{array}{r}
\operatorname{detg} \\
0 \\
0
\end{array}\right) \quad g_{0} \quad \operatorname{detg}_{0}=I
$$

Definition: A group is indecomposeble if it ennot be written es a dinect product of subgroups.

All we have to do is give list of all indecomposelole groups. This we hare miready done. A group that is indecomposible hes mo nowaignt subgroups, ioe.it is simple. Thus, Wa obtam:

Theorem: Any compert connected indecomposabie we wnom is Iocsumy

 Thus: Any compret Lie group ie m direct product op compact sinple Lie groups and compect Abelian groups.

Remark: Nore genersily a goup (compact or roncompect) ts geduetrye Eroup if itw adjoint representotion is ompletely peduciohe. Thus. spery reductive froup is the direct product of sempimple Lie group and an Abelian one There is anemomone comespondence between complex rofutive Iie groups and conpact Lis groups. Eremy comples munctive group has a

Aberien Groups

A one-parpmeter compect Abenian group lo always isomorphie wo the
 forme an madiznensional torus. For $n=2$:

A noncompact Abelian group $e^{\text {g }}$ is isomorphie to the group or motions of a straight line。 The direct product of such groups forms an n dimensional space R^{n} 。

Theorem：Any connected Abelimn rie group is the direct product ail a torus and a Euclidean space

Let us now considex some general femturef or the prepescatmidon theory of compact groups．

Schuris Iemma

Let T_{g} and S_{g} be two irweducible monoequipalent finitemimensionsi representations of group G．Then：

$$
A T_{E}=S_{g} A
$$

then $A=0$ 。
2）If there exists an operator A ormutiag whin end operators T_{0}＂

$$
A T_{g}=T_{E} A
$$

then A is multiple of the unit operator：

$$
A \equiv \lambda I
$$

Proof: 1. Consider the representation spaces $\mathbb{E}(T)$ and $E(S)$ and let A provide a mapping

$$
E(T) \stackrel{A}{\rightarrow} E(S)
$$

Denote $E_{0}(\mathbb{T}) \subset E(T)$ the set of all vectors mapped by A into rere. $E_{0}(\mathbb{T})$ is an invariant subspace since

$$
A x_{0}=0 \Rightarrow A\left(T_{g} x_{0}\right)=S_{E}\left(A x_{0}\right)=0
$$

The representation is irreducibie $\Rightarrow E_{0}(T)=E(T)$ or (0)
However: if $A \neq 0$ then $E_{0}(T) \neq E(T) \Longrightarrow E_{0}(T) \equiv\{0 \%$. Now denote: $E_{0}(s) C E(S)$ the set of vectors ovtained by the twansicmmation $A_{0} E_{0}(E)$ is an invariant subspace, S_{g} is irreducible $\Rightarrow E_{0}(S)=E(S)$

Thus, the mapping A is a one-tome mapping $\Rightarrow d i n t(T) \equiv$ $\operatorname{dimE}(S) \Rightarrow A^{-1}$ exists \Rightarrow

$$
A T_{g} A^{-1}=S_{g}
$$

This means T_{g} and S_{g} are equiwaient, which is against the essumptions

$$
A=0 \quad Q_{0} E_{0} D_{0}
$$

2. Put $T_{g}=S_{g}$ and consider the mapping A:

$$
E \quad A \quad E
$$

Let λ be an eigenvalue or A and define $E_{0} C E$ ss the eigensubspace such that

$$
A x_{0}=\lambda I x_{0} \quad x_{0} E E_{0}
$$

$E_{0}=i n q a x i a n t$ subspace since

$$
A\left(T_{G} X_{0}\right)=T_{G}^{A x_{0}}=T_{G} \lambda I x_{0}=X I\left(T_{G} X_{0}\right)
$$

$\Rightarrow E_{0}=E$ so that

$$
A x=\lambda I X \quad x \in E \quad Q_{0} E_{0} D_{0}
$$

Corollary 1: Let T_{g} be direct sum of two representations U and V :

$$
T_{E}=\left(\begin{array}{cc}
U_{G} & 0 \\
0 & V_{E}
\end{array}\right)
$$

where U and V are irreducible and nonequiweleat. omen: the oniy operetors commuting with T are

$$
A=\left(\begin{array}{cc}
\lambda I_{1} & 0 \\
0 & M I_{\mathrm{E}}
\end{array}\right)
$$

 U_{g} and $\mathrm{V}_{\mathrm{g}}{ }^{\circ}$
 repioesentations is obrious.

Coroliery 2: The matrix elemente of an drepducione represemtetion

$$
T_{g}=\left\|T_{D_{2}}(\mathrm{E})\right\|
$$

form a system of ineary independent mantions on

From Schux's lemme we see that either $w=0$ or T is equivainent to $\mathrm{S}_{\mathrm{g}}{ }^{\circ}$ If $\mathrm{T}_{\mathrm{g}} \sim \hat{S}_{\mathrm{g}}$ then

$$
\omega=\lambda I \quad \text { Q. } \tilde{L}_{0} \mathrm{D} \text { 。 }
$$

Remark: Let T_{g} and S_{g} be contragradient: $S_{g}=T_{G}=\left(T T_{G}\right)^{T}=1$ then their tensor product acts in the space of square matriaes p:

$$
T_{g} x \mathbb{N}_{G} p=T_{G} p T_{E}^{m}
$$

This leaves

If p is the tensor product of two wectors w and y

$$
p_{i k}=x_{i x} y_{k}
$$

then the invariant is

$$
T x p=(x, y)=x_{2} y^{4} 00 x_{n^{2}} x^{3}
$$

ㅇ.. that bilinear fom which connects the two eantremeddemt representations.

Remarix: It is far from simple to generalize Schuris lemme from dintem dimensionel spaces to intinite-dinemsfonmi antss but it is posshone ard important. We shail oniy pewny to whis $2 n$ special oeses.

Lecture 12

One of the central problems of group representation theory is a generalization of Fourier analysis，namely the expansion of continuous functions $f(x)$ where $x \in X$ and X is some vector space in terms of some system of＂elementary＂functions．Let us here state without proof an important theorem．

The Stone－Weierstrass Theorem：Let X be a compact space nd let $\{F\}$ be a system of continuous functions of $x \in X$ satisfying the conditions：

1）\｛F\} is an algebra, closed under addition, multiplication and multiplication by a number

2）$\{F\}$ contains an identity
3）\｛F\} is symmetric under complex conjugation, i.e.if it contains $f(x)$ it also contains $f^{*}(x)$ 。

4）$\{F\}$ separates the points in X ，ioe．if $x_{1} \in X, x_{2} \varepsilon X_{1} x_{1}$ f x_{2} s then there exists an $f(x) \in F$ such that $f^{\prime}\left(x_{1}\right) \geqslant f\left(x_{2}\right)$ 。

Then the closure of $\{F\}$ coincides with all continuous functions on $X, i . e$ any continuous function $f(x)$ can be approsimated with arobitrary accuracy by functions contained in $\{F\}$ ．

Example：$X=[0,1],\{F\}=\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$

The application of the Stone－Weierstress theorem to group representation theory will be in the following．Consider a group G and a fixed chosen representation T_{g} 。 Consider the series

$$
1, T_{g}, T_{g}<T_{g}, T_{g}\left(T_{g}\left(T_{g}\right)\right.
$$

The matrix elements of these representations form an algebra. If G is a matrix group, we can choose.

$$
\mathrm{T}_{\mathrm{g}} \cong \mathrm{G}
$$

The "elementary harmonics" of a matrix group G can be constructed by considering
and reducing out ail the irreducible components. Ir G is compact, then any continuous function $f(g)$ aan be expanded in terms of the above system.

Global Theorem on the Representations of Compact Groups

Let G be a compact Lie group and

$$
s=\left\{T^{(2)}(g)\right\}
$$

the system of all it's irreducible representations. Let G be realized as a group of matrices. Then

1. All representations $T^{(l)}(\mathrm{E})$ are finitewdimensional and unitary (with an appropriate choice of a scalar product). 2. All representations $T^{(\ell)}(g)$ can be obtained from the tensor powers

$$
1, g, g(\mathrm{~g}, \mathrm{~g}, \mathrm{~g} \text { (9) }
$$

of the group G.
3. The system of matrix elements $\mathrm{T}_{1 j}^{(2)}(\mathrm{g})$ for all possible values of ℓ, i and f form a complete orthogonal system of functions on G with respect to the scalar product

$$
\left(f_{1}, f_{2}\right)=\int f_{1}(g) f_{2}(g)^{*} d g
$$

where $d g=d g_{L}=d g_{R}$ is the invariant measure on the group.
4. For fixed $\&$ the functions $\mathrm{T}_{\mathrm{fj}}^{(\mathrm{l})}(\mathrm{g})$ all have the same norm

$$
\left\|T_{i j}^{(\ell)}(g)\right\|=N_{\ell}=\frac{1}{\sqrt{d(\ell)}}
$$

where $d(l)$ is the dimension of the representation (the order of the matrix $\left.T^{(l)}\right)$. (The norm is defined as $\|f\|=\sqrt{(f, f)}$).
5. If the function $f(g)$ is square integrable, then the Fourier series

$$
f(g) \sim \sum_{i, j, j,} C_{i j}^{(\ell)} \mathbb{m}_{i j}^{(\ell)}(g)
$$

converges in norm. If $f(g)$ is smooth enough, then the Fourier series converges uniformiy.

Remarks:

1) The left and right invariant measures (Haar measures) are defined by the relations

$$
\begin{aligned}
& \int f\left(g_{0} g\right) \alpha_{L} g=\int f(g) d_{L} g \\
& \int f\left(g g_{o}\right) d_{R} g=\int f(g) \partial_{R} g
\end{aligned}
$$

The group volume for a compact group is finite and we can normalize

$$
\int d_{L} g=1, \quad \int d_{R} g=1
$$

For a compact group we have $\alpha_{L} g=\alpha_{R} g=d g$. In general for any Lie group $d_{L} g$ and $d_{R} g$ exist and are determined uniquely (up to a constant factor).

A group for which $\partial_{L} G=\partial_{R} g$ is called unimodular. All semisimple groups, all connected nilpotent Lie groups, all compact groups and many others are unimodular.

Proof that $d_{L} g=d_{R} g$ for a compact group:
We have: $\quad d_{L}\left(g_{0}\right)$ and $d_{I}(g)$ are both left inveriant measures

$$
\alpha_{L}\left(g g_{0}\right)=C\left(g_{0}\right) \alpha_{L}(g)
$$

$C\left(g_{0}\right)$ is a Jacobian, satisfying $C\left(g_{1} g_{2}\right)=C\left(g_{1}\right) C\left(g_{2}\right)$
We have

$$
f f\left(g g_{0}\right) d_{L}\left(g_{0}\right)=\int f\left(g g_{0}\right) C\left(g_{0}\right) d_{L}(g)
$$

so that: iff $C\left(g_{0}\right)=I_{\text {, }}$ then $d_{L} g=d_{R} g$ 。
However:

$$
\begin{aligned}
& \int d_{L}\left(g g_{0}\right)=C\left(g_{0}\right) \int d_{L} g \\
& I=C\left(g_{0}\right)_{0} 1 \quad C\left(g_{0}\right)=1
\end{aligned}
$$

We have

$$
d\left(g g_{0}\right)=d\left(g_{0} g\right)=d\left(g^{-1}\right)=d g
$$

(We shali not prove the above assertions).
2. We say that a function $f(g)$ is differentiable if the infinitesimal operators for left and right translations

$$
f(g)+f\left(g_{0} g\right), f(g)+I\left(g g_{0}\right)
$$

exist.
3. Convergence in norm means:

A sequence of elements x_{n} in a normed space R converges in norm to x if $\left|x-x_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ 。

In the proof of the global theorem use is made of the procedure of averaging over the group.

Let T_{g} be a representation of G in the Iinear space E. For each xeE introduce

$$
x_{0}=\int_{G} T_{g} x d g \quad \int_{G} d g=I
$$

(G must be compact:)
The vector x_{0} is invariant:

$$
T_{g} x_{0}=\int T_{g_{0}} T_{g} x d g=\int T_{E_{0} g} x d\left(g_{0} g\right)=x_{0}
$$

If there is no invariant vector xeE (exeept the vector 0), then

$$
\int \mathrm{T}_{\mathrm{g}} \mathrm{dg} \equiv 0
$$

Schur's lemma

$$
\int T_{g}\left(\hat{S}_{g} d g=0\right.
$$

if T_{g} and S_{g} are finite-dimensional, irreducible and nonequivalent.

Proof of Global theorem:

1) Unitarity of finite dimensional representations Let $f(x, y)$ be a bilinear form in the space of representation T_{g}. Let us average it over the group:

$$
f_{0}(x, y)=\int f\left(T_{g} x, T_{g} y\right) d g
$$

The form $f_{o}(x, y)$ is obviously invariant

$$
\begin{aligned}
& f_{0}\left(T_{E_{0}} x, T_{g_{0}} v\right)=\int f\left(T_{g} T_{0} \cdot T_{g} T_{0} v\right) d g= \\
& \int f^{\prime \prime}\left(T_{G E} \mathrm{EE}_{0}, T_{\mathrm{gE}_{0}} y\right) d g g_{0}=f_{0}^{(x, y)}
\end{aligned}
$$

In a finite dimensional space we can always choose a positiwe definite bilinear form, e.g.

$$
f^{\prime}(x, y)=x_{1} y_{I}^{*}+0.00 f_{n} x_{n} y_{n}^{*}
$$

(in a chosen basis). The stars mean complex conjugation If $f(x, y)$ is positive definite, then so is $f_{0}(x, y)$. Thus, for a finite dimensional representation of a compact group we can always construct a positive definite invariant bilinear form:

$$
\begin{aligned}
& (x, y)=f_{0}(x, y)=\left(T_{g} x, T T_{g} y\right) \\
& (x, x) \geq 0,(x, x)=0 \Leftrightarrow x=0
\end{aligned}
$$

Thus, every finite dimensional representation of a compact group has a positive definite invariant bilinear form and is thus unitary.
2) Orthogonality and normalization of matpoix elements. Consider two irreducible representations of G :

$$
g \rightarrow T_{g} \quad \text { and } g \not S_{g^{\circ}}
$$

Consider the matrix elements $\mathbb{T}_{g}=\left\|T_{i f}(g)\right\|\left\|_{g}=\right\| S_{\alpha \beta}(g) \|$. Let the basis in each representation be so chosen that the matrices $T_{i j}$ and $S_{\alpha \beta}$ are unitary. Consider the tensor product

$$
\pi_{g}=T_{g} \times \hat{S}_{g}
$$

where $\hat{S}_{g}=\left(S_{g}^{q}\right)^{-1}=S_{g}^{*} \quad$ (the representation is unitary). The matrix element can be written as:

$$
\langle i \alpha| \pi_{g}|j \beta\rangle=T_{i j}(g) S_{\alpha \beta}^{*}(g)
$$

a) If T_{g} and S_{g} are not equivalent, then it follows from one of the corollaries of Schur's lemma, that π_{g} has no invariants. Thus

$$
\int \pi_{g} d g=0
$$

i.e. in terms of matrix elements

$$
\int T_{i, j}(g) S_{\alpha R}^{*}(g) d g=0
$$

Thus: the matrix elements of two non-equiralent irreducible representations are mutuelly orthogonal.
b) Put $S_{g}=T_{g}$. Choose a basis mataix

$$
e_{s t}=\left(\begin{array}{ccc}
t \\
0 & \ldots & 0 \\
\cdots & \cdots & 0 \\
0 & \ldots & 2 \\
\cdots & 0 \\
\cdots & \ldots & 0 \\
0 & \cdots & \cdots
\end{array}\right) s
$$

and apply the averaging opermion. We obtain an invariant matrix

$$
\left\|e_{s t}^{0}\right\|_{i \alpha}=\int \pi_{\mathcal{E}} e_{s t}{ }^{d g} \|_{i \alpha}
$$

By Schur's lemma we must have

$$
\left\|e_{s t}^{0}\right\|_{i \alpha}=\| \|_{\mathrm{g}} \pi_{s t} \mathrm{dg}\| \|_{i \alpha}=\lambda(s, t) \delta_{i \alpha}
$$

Take matrices with zero trace, e.go:

$$
e_{s t} \text { for } s \not r t, e_{s s}-e_{t t}
$$

We find:

$$
\lambda(s, t)=0 \text { for } s \neq t, \quad \lambda_{s s}=\lambda_{t t}
$$

Finally:

$$
\int T_{i s}(g) T_{a t}^{*}(g) d g=\lambda \delta_{i \alpha} \delta_{s t}
$$

Thus: the matrix elements are muturixy orthogonal and all heve the same norm.
c) Calculate the norm.

For a unitary matrix we have $U U^{+x}=1$, ioe.

$$
\begin{aligned}
& U_{i k} U_{k \ell}^{+}=U_{i k} U_{i k}^{*}=\delta_{i k}, \text { in particuiar } \\
& \\
& \left.\sum_{j=1}^{d} U_{j j}(g)\right|^{2}=1 \quad \text { (no summation over i) }
\end{aligned}
$$

For our matrix elements:

$$
\sum_{j=4}^{d}\left|T_{i j}(g)\right|^{2}=I
$$

Integrate over the group:

$$
\int \sum_{j=1}^{d}\left|T_{i j}(g)\right|^{2}=\lambda d=\int d g=1
$$

Thus: $\lambda=\frac{1}{d}=N^{2}$ where d is the dimension of the representation.

$$
\int T_{i s}(g) T_{\alpha t}^{*}(g)=\frac{1}{d} \delta_{i \alpha} \delta_{s t}
$$

3. Fourier Series on the Group G.

Let G be a compact matrix group. Consider all tensor powers of G and let us separate out from among them a system of nonequivalent irreducible representations $E\left({ }^{\prime}(g)\right.$, where $\&$ runs through a discrete set. Introduce an orthogonal system of functions, consisting of the matwo elements

$$
e_{i j}^{\ell}(g)=\frac{1}{\mathbb{N}_{\ell}} E_{i j}^{\ell}(g)
$$

Take a function $f(g)$ and introduce a Fourier series

$$
f(g) \propto \sum_{\ell, \sum_{i}, j} C_{i j j}^{2} \epsilon_{j d}^{2}
$$

where

$$
C_{i j}^{\underline{2}}=\left(f, e_{i j}^{\dot{q}}\right) .
$$

Let $f(g)$ be continuous. It follows from the Stone-Weierstress theorem that there does exist a Iinear combination $\theta(g)$ of $e_{\frac{1}{\nu}}^{2}(g)$, which approximates f with arbitrary chosen accuracy:

$$
\max |f(g)-\theta(g)|<\varepsilon
$$

From here one can prove the "mean square convergence" of

$$
i_{i, j, \ell}^{C_{i j}^{(\ell)} T(l)}(g)
$$

to $f(g)$.

More precisely: An arbitrary function $f(g)$, $g \in G$ (G-compact), satisfying

$$
\int|f(g)|^{2} d g<\infty
$$

can be expanded into a Fouxier series:

$$
f(g) \sum_{l \in A}^{d_{i, j=1}^{d}} C_{i j}^{\ell} E_{i j}^{\ell}(g)
$$

where A is the complete set of all pair-wise nonequivalent irreducible unitary representations of G, d_{l} is the dimension of the representation (ℓ). We have

$$
C_{i j}^{(\ell)}=a_{\ell} \int f^{0}(g) E_{i j}^{\ell}(g) d g
$$

and the "mean square convergence" means that the Parceval identity holds:

$$
\int\left|f^{\prime}(g)\right|^{2} d g=\sum_{k \in A}^{d_{l}} \sum_{i, j=1}^{d_{i}}\left|0_{i, j}^{\ell}\right|_{0}^{2}
$$

For a proof see \mathbb{N}. J. Vilenkin, Special Functions and the Theory of Group Representations, Chapter 1 pargeraph 4.

4. Finite-dimensionality of Irreducible Representstions

We shall show that every irreducible representation T_{g} of a compact group G is contained amongst the system of "elementary harmonics" E^{ℓ}, introduced above. The E^{ℓ} were obtained from the tensor powers of the group G and are thus finite-dimensional by construction. We shail make use of the fact that every irreducible representation of a compact group is contained in the right regular representation.

In the proof we make use of a powerful technique, having many other applications, namely that of projection operators, which project out a chosen irreducible representation from an arbitrary reducible one.

Indeed, we already know that we can expand any function $f(g) \in D(G)$, where $D(G)$ is a Hilbert space of square-integrable functions over the group:

$$
f(g)=\sum_{l, i, j} C_{i j}^{2} \mathbb{E}_{i j}^{\ell}(g) ; C_{i j j}^{\ell}=d_{\ell} \int f(g) E_{i j j}^{\ell}(g) d g
$$

Now introduce an operator

$$
P_{i j}^{\ell}=d_{\ell} \int_{G} d_{\mathrm{g}} \mathrm{E}_{\mathrm{ij}}^{\ell *}(g) R_{g}
$$

where R_{g} is the right regular representation of G acting in $\mathrm{D}(\mathrm{G})$ 。 When acting on $f(g) \in D(G)$ the operator $P_{i, j}^{l}$ projects eut a set of functions, transforming according to the irreducible representation T_{G}^{d}. Indesd:

Put $g \tilde{E}=g^{\prime}$ and use $d g^{\prime}=$ d ${ }^{\text {g }}$ to obtain

$$
\begin{aligned}
P_{i j}^{\ell} f(g) & =d_{2} \int d g^{\prime} E_{i j}^{\ell *}\left(g^{-1} g^{\ell}\right) f^{f}\left(g^{0}\right)=d_{d} \sum_{p} E_{i p}^{\ell^{*}}\left(g^{-1}\right) \int d g^{\prime} E_{p j}^{\ell^{*}}\left(g^{\ell}\right) f\left(g^{\prime}\right) \\
& =\sum_{p} E_{p i}^{\ell}(g) c_{p j}^{\ell}
\end{aligned}
$$

Thus, $P_{i j}^{\ell} f(g)$ is a linear combinstion of the matrix elements of the irreducible representation E^{ℓ} with one fixed d 。 Operator $P_{i f}^{\ell}$ is a projection operator in the following sense:

$$
\begin{aligned}
& P_{i_{1} j_{1}}^{\ell_{1}} P_{i_{2} j_{2}}^{\ell_{2}} f(g)=P_{i, j}^{\ell_{1}} \sum_{p} C_{p j_{2}}^{\ell_{2}} E_{p_{i_{2}}}^{\ell_{2}}(g)=
\end{aligned}
$$

Now let T be some abstract irweducible representation of G 。 We know that $T_{g} \in R_{g}$. This means that there exists a subspace $G_{0} e G$, such that $D\left(G_{0}\right) C D(G)$ is a subspace of square-integrable frunctions, such thet T_{g} acts on $D\left(g_{0}\right)$ irreducibly. We have

$$
\begin{gathered}
R_{g} D\left(G_{0}\right)=D\left(G_{0}\right) \\
\text { i.e. } \quad f\left(G_{0}\right) \in D\left(G_{0}\right) \Longrightarrow R_{g} f\left(g_{0}\right) \equiv I\left(g_{0} g\right) \in D\left(G_{0}\right)
\end{gathered}
$$

Now put $f\left(g_{0}\right) \in D\left(g_{0}\right)$ and act upon it with our projection opergtor

Since $f\left(E_{0} \tilde{g}\right) \subset D\left(G_{0}\right), P_{i j}^{2}$ either project $D\left(G_{0}\right)$ into zero or into itself. In other words, since this space $D(G)$ is invariant and imeeducible, it can only contain one of the hamonies E^{2} and our chosen T must be equivalent to E .

To summarize: the ixreducible representations of a compact group are finite-dimensional, unitary and contained in the tensor powers, generated by the matrices geG。

5. Complete reducibility

Any unitary representation of a group G and thus any finite dimensional representation of a compact group is completely reducible. This follows immediately from the lemm:

Lemma: Let T be a unitary representation with the scalar produat (x, y) in the space X and let X_{1} be an invariant subspace of X. Then the orthogonal complement X_{2} of X_{1} is also invariant.

Proof: x_{2} is the orthogonal complement of x_{1}, i_{0}.

$$
(x, y)=0 \quad x \in X_{1}, y \varepsilon X_{2}
$$

Take $\mathrm{xex}_{2}, \mathrm{y}_{\mathrm{E}} \mathrm{X}_{1}$

$$
\left(T_{g} x, y\right)=\left(T_{g}^{-I_{g}} T_{g}, T_{g}^{-1} y\right)=\left(x_{s} T_{E}^{-1} y\right)
$$

However X_{1} is invariant $\Rightarrow T\left(g^{-1}\right) y \in X_{1} \Rightarrow r_{0} h_{0}$. is equai to zero \Longrightarrow

$$
\left(T_{E} X_{s} y\right)=0
$$

Thus, $\mathrm{T}_{\mathrm{g}} \mathrm{XeX}_{2} \Rightarrow \mathrm{X}_{2}$ is an invariant subspace。

$$
Q_{0} E_{0} D_{0}
$$

A succesive application of the lemma will reduce a reducible representation into irreducible components.

Remark: There are complications for infinite dimensional representations, even if they are unitary. In general one has to introduce the concept of a continuous direct sum, etc.

Thus, No Jordan matrices can occur in the representations of a compect group:

$$
z(t)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

Lecture 13

Example

As an example, let us consider the representation theory of the group $\operatorname{SU}(2)$. Everything to be said here is of course well known, we just wish to demonstrate some general results and prepare the ground for generalization to arbitrary compact groups.

SU(2): Group of second order matrices satisfying:

$$
\begin{equation*}
U^{+} U=U U^{++}=1 \quad \operatorname{det} U=1 \tag{I}
\end{equation*}
$$

1) The algebre of $\operatorname{SU}(2)$:

Any unitary matrix can be written as

$$
\begin{equation*}
U=e^{i t h} \tag{2}
\end{equation*}
$$

where hs is hermitean andtraceless

$$
\begin{equation*}
h=h^{*} \quad \operatorname{Trh}=0 \tag{3}
\end{equation*}
$$

We can use the Pauli matrices as a basis for the space h for $\operatorname{SU}(2)$:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{4}\\
1 & 0
\end{array}\right) \sigma_{2}=\left(\begin{array}{rr}
0 & -1 \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The algebra of $\mathrm{SU}(2)$ is spanned by $a_{k}=-1 \sigma_{k}(k=1,2,3)$ satisfying

$$
\begin{equation*}
\left[a_{i}, a_{k}\right]=\varepsilon_{i K l} a_{\ell} \tag{5}
\end{equation*}
$$

($\varepsilon_{\text {ikl }}$ is the totally antisymmetric third order tensor satisfying $\varepsilon_{123}=1$)

Introduce complex linear combinations of a_{i}, namely

$$
\begin{align*}
& e_{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \quad e_{-}=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right) \quad e_{0}=\frac{1}{2} \sigma_{3} \tag{6}\\
& {\left[e_{+}, e_{-}\right]=2 e_{0} \quad\left[e_{0} e_{+}\right]=e_{+} \quad\left[e_{0} e_{-}\right]=-e_{-}} \tag{7}
\end{align*}
$$

The algebra E of $S U(2)$ consists of the complex linear combinations of e_{+}, e_{-}, e_{0}

$$
a=z_{+} e_{+}+z_{-} e+z_{0} e_{0}
$$

with

$$
z_{m}=-z_{\alpha}^{\%} \quad z_{0}^{2}=-z_{0}^{\%}
$$

2) The diagonal basis element ε_{3} (or e_{0}) generates a one-parameter subgroup of $\mathrm{SU}(2)$ consisting of diagonal matrices

$$
\gamma=\left(\begin{array}{ll}
e^{-i \phi} & 0 \tag{8}\\
0 & e^{i \phi}
\end{array}\right)
$$

Introduce a matrix

$$
s=\left(\begin{array}{rr}
0 & 1 \tag{9}\\
-1 & 0
\end{array}\right)
$$

satisfying

$$
S^{-1} \gamma S=\left(\begin{array}{ll}
e^{i \phi} & 0 \tag{10}\\
0 & e^{-i \phi}
\end{array}\right)=\gamma^{-1}
$$

(it leaves a diagonal matrix diagonal and reshuffles the matrix elements)
Call S a Weyl element.
3) Consider a finite-dimensionel representation $u \rightarrow T_{u}$ Call A_{i} the operators, representing the infinitesimal operators $a_{i 1}$ in the representation space E :

$$
\begin{equation*}
\left[A_{i} A_{k}\right]=\varepsilon_{i k \ell} A_{\ell} \tag{II}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\left[E_{+} E_{-}\right]=2 E_{0},\left[E_{0} E_{+}\right]=E_{+},\left[E_{0} E_{-}\right]=-E_{-} \tag{12}
\end{equation*}
$$

Let us start out by first looking for a representation of the Lie algebra and only afterwards consider the question, whether this representation can be extended to a single-valued representation of the group.

Thus: We wish to find all irreducible realizations of the algebra E by linear operators E_{0}, E_{+}and E_{-}s satisfying (12)。

We know that any commuting set of unitary matrices T_{u} can be simultaneously diagonalized, in particuiar the matrices T_{γ}, representing the subgroup of matrices γ. In other words - we can always consider the matrix E_{0} to be diagonal.
4. Consider an eigenvector x_{λ} of E_{0} :

$$
\begin{equation*}
E_{0} x_{\lambda}=\lambda x_{\lambda} \tag{13}
\end{equation*}
$$

Lemma: If λ is an eigenvalue of E_{0} satisfying (13) then we also have

$$
\begin{align*}
E_{0} x_{-\lambda}=-\lambda x_{-\lambda}, E_{0} x_{\lambda+1} & =(\lambda+1) x_{\lambda+1} \\
E_{0} x_{\lambda-1} & =(\lambda-1) x_{\lambda-1} \tag{14}
\end{align*}
$$

where $x_{\lambda+1}$ and $x_{\lambda-1}$ can, in particuler, be noll vectors.

Proof: Consider the vectors

$$
\begin{equation*}
x_{\lambda+1}=E_{+} x_{\lambda} \quad x_{\lambda-1}=E_{-\lambda} x_{\lambda} \quad \text { and } x_{-\lambda}=x_{\lambda}^{s}=T_{s} x_{\lambda} \tag{15}
\end{equation*}
$$

where \mathbb{T}_{s} represents the element s in the group, so that $\mathbb{T}_{s}^{-1} \mathbb{T}_{\gamma} T_{s}=T_{\gamma}^{-1}$ from which follows

$$
\begin{equation*}
T_{s}^{-1} E_{0} T_{s}=-E_{0} \tag{16}
\end{equation*}
$$

Using (16) and the commatation relations (12), it is easy to check that the vectors (15) satisfy (14)。 Q.E.D. Corollary: If T_{u} is an irreducible representation, then the eigenvelues of E_{o} are nondegenerete and cen be written as a chain

$$
-\ell,-\ell+1, \ldots, \ell-1, \ell
$$

where ℓ is integer or helf-integer.
Proof: Define $\ell=\lambda_{\max }$ (the largest eigenvalue) and x_{ℓ} as the corresponding eigenvector. Then $\ell, k-1, l-2$ are also eigenvaires, and so is $-\ell$. (The quantity $-2-1$ is not an eigenvelue, since then $\ell+1$ would be one too, contradicting the assumption that ℓ is maximail)。Thus $\ell-(-\ell)=2 \ell$ is integex. None of the eigenvalues can be degenerate, if T_{u} is irreducible, since if two functions x_{1} and x_{2} corresponded to one eigenvalue $\lambda_{\text {, }}$ then the representation would have two invariant subspaces, the ones generated by applying E_{+}and E_{-}and powers thereof to x_{1} and x_{2} Q.E.D. We can choose a basis in E consisting of the eigenvectors of E

$$
\begin{equation*}
E_{i} x_{\lambda}=\lambda x_{\lambda} \quad \lambda=-\eta-2+1, \ldots, \ln 1, \ell \tag{17}
\end{equation*}
$$

Choosing an appropriate normalization of x_{λ} we can arrange that

$$
\begin{align*}
& E_{+} x_{\lambda}=(\ell-\lambda) x_{\lambda+1} \\
& E_{-} x_{\lambda}=(\ell+\lambda) x_{\lambda-1} \tag{18}
\end{align*}
$$

(Check that the operators thus defined satisfy the correct commatation relations).

We have obtained all representations of the algebra of $\operatorname{SU}(2)$, each one of them corresponding to a definite highest eigenvalue ℓ of E_{0} (we shall also call \& "the highest weight"). We must now find out whether representations T_{u} of the group exist, which correspond to the found representations of the algebra.
6. The generators as differential operators.

Consider the space R of homogeneous polynomials $f\left(x_{1}, x_{2}\right)$ of order $2 \hat{l}$ The monomials

$$
\begin{equation*}
Z_{\mu}=x_{1}^{\ell-\mu_{x_{2}} \ell+\mu} \quad \mu=-\ell,-\ell+1, \ldots \ell \tag{19}
\end{equation*}
$$

form a basis in $R_{\ell}\left(\operatorname{dim} R_{\ell}=2 \bar{\lambda}+1\right)$. It is easy to check that the differential operators

$$
\begin{equation*}
D_{4}=x_{2} \frac{\partial}{\partial x_{1}} \quad D_{-}=x_{1} \frac{\partial}{\partial x_{2}} \quad D_{0}=\frac{1}{2}\left(x_{2} \frac{\partial}{\partial x_{2}}-x_{1} \frac{\partial}{\partial x_{1}}\right) \tag{20}
\end{equation*}
$$

form a Lie algebra, isomorphic to that of $S U(2)$.

7. Realization of representations of the group

Consider

$$
g=\left(\begin{array}{ll}
\alpha & \beta \tag{21}\\
\sigma & \delta
\end{array}\right) \quad \operatorname{detg}=\alpha \delta-\beta \sigma=1
$$

i.e.ge $S L(2, C)$

The equation

$$
\begin{equation*}
T_{g} f\left(x_{1}, x_{2}\right)=f\left(\alpha x_{1}+\gamma x_{2}, \beta x_{1}+\delta x_{2}\right) \tag{22}
\end{equation*}
$$

determines a representation of $S L(2, C)$ in the space R_{2}. Restricting the group $\operatorname{SL}(2, C)$ to $\operatorname{SU}(2)$, i.e. considering only matrices (21), satisfy the additional conditions

$$
\begin{equation*}
|\alpha|^{2}+|\gamma|^{2}=|\beta|^{2}+|\delta|^{2}=1 \quad \alpha \beta^{*}+\gamma \delta^{*}=0 \tag{23}
\end{equation*}
$$

we obtain a representation of $\operatorname{SU}(2)$, which we denote D_{ℓ} or $\Delta^{2 \ell}$. The corresponding representation of the algebra D_{t}, D_{\ldots} and D_{0}, coincides with (20). The two-dimensional representation $D_{1 / 2^{\approx} \Delta^{2 \%} \text { is the group itself and }}$ (2) is spanned by the monomials

$$
x_{1} \text { and } x_{2}
$$

Representation $\Delta^{2 l}$ can be realized using symmetric tensoms of order $2 l$. Indeed, every polynomial fer $2 f$ can be written as:

$$
\begin{equation*}
f=t^{i_{1} \ldots i_{i}} x_{i_{1}}{x_{i}}^{i_{2}} \operatorname{lid}_{i_{k}} \quad\left(i_{3}=1,2\right) \tag{24}
\end{equation*}
$$

Where the tensor $t^{i}{ }^{i} 0^{i} \ell$ is totally symmetric. Thus $\Delta^{2 \ell}$ is the symmetric part of the tensor product of a terms

$$
g(x) g(x)
$$

8. Normalization of the basis:

The basis

$$
Z_{\mu}=x_{1}^{\ell-\mu_{x_{2}}} l
$$

is orthogonal, since $z_{\mu_{1}}$ and $z_{\mu_{2}}$ are both eigenvectors of E_{0} and thus

$$
\left(z_{\mu_{1}}, z_{\mu_{2}}\right)=0 \quad \text { for } \mu_{1} \neq \mu_{2}
$$

Consider the normalization. We can check that the vectors

$$
\begin{equation*}
e_{\mu}=\frac{2 \mu}{\sqrt{(\ell-\mu)!(l+\mu)!}} \tag{25}
\end{equation*}
$$

satisfy

$$
\left(e_{\mu}, e_{\mu}\right)=1
$$

9. Alternative realization of the representation D_{f}. The homogeneity condition on $f\left(z_{1}, z_{2}\right)$ is

$$
\begin{equation*}
f\left(a z_{1}, a z_{2}\right)=a^{2 l} f\left(z_{1}, z_{2}\right) \tag{26}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=z_{2}^{2 \ell} f\left(\frac{z_{1}}{z_{2}}, 1\right)=z_{2}^{2 \ell} \phi(z) \tag{27}
\end{equation*}
$$

and instead of the homogeneous functions $f\left(z_{2}, z_{2}\right)$ we can consider functions of one complex variable $\phi(z)$. We have

$$
\begin{align*}
& T_{g} f\left(z_{1}, z_{2}\right) \quad=f\left(\alpha z_{1}+\gamma z_{2}, \beta z_{1}+\delta z_{2}\right) \\
& =\left(\beta z_{1}+\delta z_{2}\right)^{2 \ell} f\left(\frac{\alpha z_{1}+\gamma z_{2}}{\beta z_{1}+\delta z_{2}}, 1\right)=\left(\beta z_{1}+\delta z_{2}\right)^{2 \ell}{ }_{\phi}\left(\frac{\alpha z_{1}+\gamma z_{2}}{\beta z_{1}+\delta z_{2}}\right) \tag{28}\\
& =\left(z_{2}\right)^{2 \ell}\left(\beta \frac{z_{1}}{z_{2}}+\delta\right)^{2 \ell} \phi\left(\frac{\alpha \frac{z_{1}}{z_{2}}+\gamma}{\beta \frac{z_{1}}{z_{2}}+\delta}\right)
\end{align*}
$$

Thus: the action of T in the space $\{\phi(z)\}$ is:

$$
\begin{equation*}
\mathbb{T}_{g} \phi(z)=(\beta z+\delta)^{2 l} \phi\left(\frac{\alpha z+\gamma}{\beta z+\delta}\right) \tag{29}
\end{equation*}
$$

Using the basis $z_{\mu}=z^{l-\mu}$, i.e

$$
\begin{equation*}
1, z, z^{2} \ldots z^{2 \ell} \tag{30}
\end{equation*}
$$

one can now calculate e.g. the matrix elements of T_{g}. We have obtained the following result:

Theorem: Any irreducible representation of $\operatorname{SU}(2)$ is given by one parameter ℓ, which is integer or half-integer. The operators of the representation are, given explicitly by (29). The dimension of the representation is (2l+1) and the representation of the algebre is

$$
\begin{equation*}
E_{+} z_{\mu}=(\ell-\mu) z_{\mu} \quad E_{-} z_{\mu}=(\ell+\mu) z_{\mu} \quad E_{o} z_{\mu}=\mu z_{\mu} \tag{31}
\end{equation*}
$$

The basis vectors $z_{\mu}, \mu=-l,-l+1, \ldots l$ are the powers $z^{l-\mu}, \mu=-l, \ldots,+l$ In particular, we have:

$$
\begin{equation*}
E_{+} I=0 \quad E_{-} 2^{2 l}=0 \tag{32}
\end{equation*}
$$

Schematically, we have

Remark: For every representation of the algebra (31) we have a singlevalued representation (29) of the group $S U(2)$. Had we been considering So(3) we would have found that only representations with $\ell=$ integer are single valued representations of $S O(3)$.

Complex Extension of Lie Algebras and Complex Lie Groups

In the $S U(2)$ example we considered a complex extension of the Lie algebra to E_{-}, E_{o}, E_{+}and we saw that as a complex algebra these operators generate $S L(2, C)$

$$
g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \quad \operatorname{detg}=1
$$

where $\alpha, \beta, \gamma, \delta$ are complex. $S L(2, C)$, as we know is compact. Howerer, if we restrict ourselves to representations depending analytically on the parameters (depending on a, \ldots, δ, not however expilcitiy on $a^{*}, \ldots \delta^{*}$), then we have \quad zimple correspondenee with the representation theory of $\operatorname{SU}(2)$.

Definition: A Complex Lie Group. A Lie group satisfying: (i) The Elements are parametrized by a finite number of complex parameters $t_{1} \ldots 0 t_{n}$ 。2) The group operations $\mathrm{g}_{1} \mathrm{~g}_{2}$ and g^{-1} are determined as complex analytic functions (of t_{i}, not depending on t_{i}^{*})。

In a complex Lie group any one-parameter subgroup $g \lambda$ can be continued to complex A. It follows that the Lie algebra is a complex Lie algebra. Given a real Lie algebra with a basis $e_{1,0,} e_{n}$

$$
\left[e_{i} e_{k}\right]=C_{i k}^{d} e_{i} \quad C_{i k}^{2}-r e a i
$$

we can complete it by adding the independent vectors:

$$
i e_{1}, \ldots, i e_{n}
$$

We have already discussed complex setisimple Lie groups and know that学
in general any complex lie group has several non-isomorphic real forms.

Example: $G L(n, C)$. In the neighborhood of the identity put $g=e^{x}, x \in X$ where X is the algebra of all complex nan matrices:

Consider two subspaces of X :

$$
\begin{aligned}
& X_{1} \text { - real non matrices : } x=x^{*} \\
& X_{2} \text { - antihermitean non matrices } x=-x^{+}
\end{aligned}
$$

Complex extension of $X_{1}=$ complex extension oi $X_{2}=X$
The corresponding groups are: $X_{1} \ldots G L(n, R)$

$$
X_{2} \ldots U(n)
$$

(We know there are other real forms).
If n is equal to one, then X corresponds to the group of all complex numbers (with respect to multiplication) $z=0 e^{i \varphi} ; p \neq 0 X_{I}$ corresponds to the group of all real numbers $x+0$ and X_{2} to the group of unimoduler numbers $e^{i \phi}$.

Schematically, in general

Lecture 14

Complerification of a Real Group

Let $G(R)$ bs seel metros group. In the neighborhood Ω or the identity we can use "canonical" coordinates bis provided by the wIfe algebra:

$$
\left.g=\exp \theta_{2} \epsilon_{2}+00 \theta_{2} \theta_{23}\right\}
$$

sind we can now continue andyticaiy to complex vance of in ion to the
 connected group $Q(R)$ and can ser pe to continue the complexificution out of R:

The group $G(C)$ does not depend on the choice of the basis eq and is culled the compleatitemion of $G(A)$.
A Simile extension is possible even when CiR) is mot a matrix stoup.

> We shell not prove the above statements.

Symbolically:

$$
G(R)=e^{X(R)} \rightarrow G(C)=e^{X(R)+1 X(R)}=e^{X(C)}
$$

The Principle of Analytic Continuation.
 space E. In "conical" coordinates

$$
T_{g} \equiv \exp \cdot\left\{\theta_{2} E_{2}+0 \cot _{n} E_{n}\right\}
$$

 of the group (C). Howerer fifterent paths for oxtending the neighborinood
 not necesmaily single Fglued.

We can degi with this difiveutty in wooways: ol Agrew to

 groupo Inceed, thes gnoup which is the univerisi covex mg group of all Lis grown with the same Lie nigebre cen omiy nave sixgiemvined repreqentationt.

 If (c) is choseri ms the miverser coraring group of ell comper extmaions

Symbeycany:

 xeducibinty of representetione.

ㅇxpme: $G(A) \equiv S u(2), \quad G(C)=\mathbb{S L}(2,0)$

$$
\mathscr{G} \cong\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \quad \text { detb } s=2
$$

$\delta \equiv \sin ^{*}=\gamma \equiv-\beta^{*} \Rightarrow \operatorname{gesin}(2)$

Represemtetions of su(2)

Defantions: Let Q(C) be a complex Ile group with parametere typoostro The representution $E \rightarrow T_{5}$ is:

Anaytics if it depends anaiyticolly on to.
Antranelytias if it depends malyticuly on tir
Reax, if it represents $0(0)$ es wren Lif group with paranetex

Example i: Let $G(C)$ be a matrix group:

$$
\begin{aligned}
& \text { Fepresentetion: gon is melytur } \\
& \mathrm{E} \rightarrow \mathrm{E}^{\text {in }} \text { is wntiansuytice } \\
& E+g(3) S^{*} \text { is resi }
\end{aligned}
$$

 Cauchy-Rieman condetrion:

$$
\begin{aligned}
& f(x, y)=u(x, y)+2 w(x, y) \quad \text { a and } w-r e z \\
& \left.\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}\right\rangle
\end{aligned}
$$

The representation of the additive group of complex numbers

$$
T_{\mathbb{E}_{0}} f(x)=f\left(2 * X_{0}\right)
$$

is malytic.

Remerk: the Cauchy-Rieman enelytiaity condithons are equivalent to the condition

$$
\begin{aligned}
& \frac{\partial z}{\partial z}=0 \\
\text { singe we have } & \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-\frac{2}{\partial y}\right) \\
& \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
\end{aligned}
$$

Intmitesiman Operatome

If $G(R)$ is a real Lie group, we can miculate the nitmiterimai operators in any representution according to the fomula:

$$
D(X)=\frac{2}{Z A}\left[T_{E} \lambda\right]_{\lambda=0}
$$

 thue have mapping $\% \rightarrow D(x)$ saticfyivg

$$
\begin{aligned}
& D(O x+B y)=\alpha D(x)+B D(y) \\
& {[D(x), D(y)]=D([x, y])}
\end{aligned}
$$

inse $D(x)$ in a representetion of the Lie sigebre of $G(R)$ 。

Now let $G(C)$ be complex group gind o T(g) an annilytic
pepresentetion. The above constructon is aiso vaid in this case and

 represented by two dipierential operators

$$
D(x) \text { and } D(x x)
$$

where

$$
\begin{aligned}
& D(x)=\frac{\partial}{\partial T}\left[T_{5}^{T T}{ }_{T}^{T}=0\right. \\
& D(I x) \equiv \frac{\partial}{\partial S}\left[T(\sigma]_{0 \equiv 0}\right.
\end{aligned}
$$

 emsyticir

$$
D(\underline{x})=L D(x)
$$

nad ambanaythc if

$$
D(2 \mathrm{~F})=-\mathrm{I} D(\mathrm{x})
$$

We can also introduce the limear combinations

$$
\begin{aligned}
& A(x)=\frac{d}{2}[D(x)=2 D(x)] \\
& A(x)=\frac{d}{2}[D(x) \neq 1 D(2 x)]
\end{aligned}
$$

and now we hove:

1) $A(x)$ is an menytic mepresentwiton
2) $\bar{A}(x)$ is mantisnglytic mepiresentatuon
3) $[A(x)=A(x)]=0$
4) $D(x)=A(x)+\bar{A}(x)$

Now let $G(C)$ be a complex group and is in $\mathrm{T}(\mathrm{g})$ an analytic representetion. The above construction is elso veild in this case and
 $h=$ th io and consider f^{T} and $g^{i 0}$ separately. Thus, every wector x is represented by two differential operators

$$
D(x) \text { and } D(i x)
$$

where

$$
\begin{aligned}
& D(x)=\frac{\partial}{\partial T}\left[T T_{T}\right]_{T=0} \\
& D(x x) \equiv \frac{\partial}{\partial \sigma}\left[T_{g}\right]_{0=0}
\end{aligned}
$$

 anglytic if

$$
D(i x) \equiv i D(x)
$$

and antieneiytza if

$$
D(\underline{x})=-1 D(x)
$$

We cem elso introduce the inear combinetions

$$
\begin{aligned}
& A(x) \equiv \frac{2}{2}[D(x)=1 D(X x)] \\
& \bar{A}(x) \equiv \frac{1}{2}[D(x)+1 D(2 x)]
\end{aligned}
$$

nad now we hewe:

1) $A(x)$ is $a n$ ancyutic representation
2) $\tilde{A}(x)$ is an minfensitic represemtation
3) $[A(x), \bar{A}(x)]=0$
4) $D(x)=\mathbb{A}(x)+\bar{A}(x)$

Hesudt: Eqexy real representation of the maplex algebsax (c) tan
 other antanayrut.

Examp: 1) the group of complex transjetscme:

$$
x_{x_{0}}\left(x(x, y)=f\left(x+x x_{0} y+y_{0}\right)\right.
$$

The intanterimai cperetor is

$$
D\left(x_{0}\right)=x_{0} \frac{b}{\partial x}+y_{0} \frac{\partial}{\partial y}=y_{0} \frac{y}{\partial z}+\bar{w}_{0} \frac{\partial}{3 z}
$$

2) Me group sL(2, ©

Let us tale the bratis

$$
=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\omega_{0}=\left(\begin{array}{cc}
-16 & 0 \\
0 & 1 / 2
\end{array}\right) \quad \omega_{i p}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

$$
\bar{E}_{\infty}=\bar{E}_{\infty}, \bar{E}_{d x}
$$

I.
but exmo

 "wrotted temsomaig

The Principle of Unftexy Reduction

$$
\begin{array}{ll}
\text { heri } & h \equiv\left(\begin{array}{ll}
a & 0 \\
y & 6
\end{array}\right) \\
\operatorname{asD} & d=\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)
\end{array}
$$

$$
\xi=\left(\begin{array}{ll}
\alpha & \hat{B} \\
\gamma & \delta
\end{array}\right) \quad \text { deq E } \bar{F} \mathrm{O}
$$

 - it

 EWe obsum:

1) \tilde{G} can be realized as a group of matrices
2) All irreducible analytic representations of the group \bar{G} are finite dimensional and are contained in the tensor algebra 3) Ail finite dimensional malytic representation of \vec{G} are completely reducible (or irreducible).

Complex Extension of the Group $U(n)$

We already know that if

$$
G \equiv U(n) \text { then } \tilde{Q}=G L(n, 0)
$$

and the algebra X of $G L(n, C)$ consists of all complex mann matrices. Choose the usual basis of \dot{X}, namely the matrices $e_{p q}$. They satisfy

$$
e_{p q}{ }_{x s}=\delta_{q p_{p s}} e_{p s}
$$

and

We know that

$$
\dot{X}=E_{+}+E_{0}+E
$$

where

$$
\left.\left.E_{q}=\left(e_{i j}, i<j\right) ; E_{0}=e_{i j}\right\} ; E_{=}=e_{i j}:<j\right\}
$$

E_{o} is commutative and corresponds to the diagonal subgroup

$$
\delta=\left(\begin{array}{cc}
\delta_{2} & \\
\delta_{2} & 0 \\
\delta_{2} & \\
0 & \delta_{n}
\end{array}\right)
$$

It is sometimes convenient to repiace the basis de if in Eoy

$$
\begin{aligned}
& E=e_{21}+\ldots \operatorname{tem}_{n \pi I}
\end{aligned}
$$

Then Eliminating e from the aigebra corgesponds to going orer to the group $\left.\left.S L(m, C)(o)^{\circ} S U, \pi\right)\right)$ 。

Anelytio Requesentations of GI (ta, C)

wet $g \rightarrow T_{t}$ be manelytic representation of the compley group GL(n, C) The genergtors fom wepresentation of the algebra of GL(n, C)

2) All opexators $E_{\text {gif }}$ can be simultancousiy wisgomais wed

Preof: 2) The first assertion is obwiaus

 De simultaneousiy diagonalized. Nour constare the subiroup of metwicea
$0\left(C l\left(i r_{0} C\right)\right.$

$$
\delta=\left(\begin{array}{cc}
e^{\lambda_{1}} & 0 \\
0^{\prime} \cdot \lambda_{n} \\
e^{n}
\end{array}\right) \quad \lambda_{1}=\operatorname{complex}
$$

The opergtoms T_{8} will be the analytic continuthon of a real analytic representation of a compect group. It follows, thet if the T_{g} are chosen to be diagonels, then T_{6} will also be diegonal.
3) Consider comon efgenvector of all opermtors T_{8} :

$$
T_{\delta} x=a(\delta) x
$$

We have:

$$
\begin{aligned}
& T_{60602}=2\left(0^{\circ} 8^{\circ}\right)_{x} \\
& a(8080)=0(80) 01900)
\end{aligned}
$$

 Limenelomed representetion) off the Abelim group D s wiso calded the gharacter of the Abwien group D. Such rapresentations of an Abelign group we just ordinamy ampantials.

Thus:

$$
\left.0:(\delta)=\operatorname{axy} 2 f \lambda_{1} C_{1}+\ldots+\lambda_{52} c_{12}\right\}
$$

Since we demand that the representation shourd be singlewalued we must have

$$
G_{2} \ldots 0_{n} \text { integer }
$$

Denoting the eigerfgiues of the matrizs 5 :

$$
e^{i \lambda k}=\delta_{k}
$$

we have

$$
a(\delta)=\delta_{1}^{C_{1}} C_{2} C_{200 D_{M 1}} C_{n}
$$

We howe thus shem that in the space of the malytue reprosentadion T there exista besis in which the matioces Tg mee aingonei

$$
a(6)=\delta_{1} 0_{2} \operatorname{cog}_{\mathrm{g}}^{\mathrm{C}_{1}} \quad 0_{i}=\operatorname{sinteg}
$$

In order to conetwet the representation theory. wemust

 integer eigenvelues.
B) In each in oducibie representation find the comor spectruni af

$$
x(\phi)=C_{1} \phi_{1}+c_{2} 2^{\phi} \ldots 0_{n} \theta_{n}
$$

corsesponcing to

The Weys Subgroup

The Weyl group wis g fimite subgoup of GL(is, C) consistiag of eill possible permutations of the coominate mase (of the baris). If We decide to keep the oxientotion of the axes (keep det $E=1$, thens we can wrum * צystem of matrices of the type

$$
S=\left(\begin{array}{cc}
1 & \\
1 & \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right) \quad \theta=\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Thefr products form the wey group xith ni parameters. The imporbace or中hesematrices is fin twit

$$
5^{-1} 5 s=6^{0}
$$

 permuted matwix elemente.

ADove we have show that if of (6) is ar eigervaime of tis, correspondimg to an eigenvector $\%$ comon to gil matrices Ty (tor all 0), then

Let us call the ser of intagers

$$
0=\left\{C_{\mathbb{L}} \ldots C_{\mathbb{L}}\right\}
$$

a spectral point.

 representation T_{g} of $G(x, C)$, then so 18
obtuned raon 0 by epemutmtion s.
Incered in

 the eigenvelues determined by C and by $C^{\text {s }}$ heve the seme multpifcthe

Remarts: The noncompact group GL(x,C) oxiy figures in an mixijicmy form = we wish to obtain aly representations of SUlat butwe ony study wery

Lectare 15

The equy $\operatorname{SU}(3)$

Fut the eamantore of v(3) into table:

Wc beve:

$$
\begin{aligned}
& X_{0}=\left[E_{21}, E_{31} E_{32}\right] ;\left[E_{32}: E_{21}\right]=E_{32},\left[E_{21}, E_{31}\right]=\left[E_{31}, E_{32}\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& E_{0}=H_{2} U_{2 e^{B_{3}}}
\end{aligned}
$$

Futbire

$$
g_{2}=t_{11}+\phi_{2} E_{2}+e^{E_{3}}
$$

Tic fave

$$
x(t)=a_{2} \theta_{2}+c_{2}^{4}+0_{5}^{4}
$$

(For true graup ys heve

$$
y(y=\sec \pm x t y)
$$

Reatricuing ommelres to $S U(3)$, we have det $g=1, i o \in T r H=0, i, e$

 to a common mditive constrnt.

Lemam: It $0=\left\{\mathrm{C}_{2}, \mathrm{C}_{2}{ }^{\circ} \mathrm{C}_{3}\right\}$ is a epectrel point, then the points

$$
C \& a_{i j} \quad i, j=1,2,3
$$

 chn aiso be eigenvectors. If the elpenvector th compesponds to the eigenvelue

Eroor:

We now heve two opewturons acing on the set ot points C, namety

$$
C+c^{5} \quad \text { and } 0 \rightarrow \operatorname{cta}_{\alpha_{3}}{ }^{\circ}
$$

Both the Weyl transtommtion and the adithon or aj presswe the sum of C_{2} " Sowe can notrainme

$$
C_{2}+c_{2}+C_{3}=x
$$

which determines a plane in the C_{1}, C_{2} and C_{3} space.

Al points of on r spectrum me on this plane. Project the ares onto this plane

 mormalimetion, too. The the whole specter will be in the griapointa of

Reverent the pouts me $e_{2}=\left(\begin{array}{ll}1 & 0\end{array}\right)$

$$
e_{2}=(0 \geq 0)
$$

$$
\varepsilon_{3}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

mad remember that: $a_{22}=\left(\begin{array}{lll}1 & -1 & 0\end{array}\right) \equiv-a_{2}$

$$
\begin{aligned}
& a_{23}=\left(\begin{array}{ll}
0 & 2-1
\end{array}\right)=-a_{32} \\
& a_{13}=\left(\begin{array}{ll}
1 & 0-1
\end{array}\right)=-a_{31}
\end{aligned}
$$

We hase: $\quad e_{1}+a_{21}=e_{2} \quad e_{2}+a_{12}=e_{1}$

$$
e_{2}+a_{32}=e_{3}-e_{3}+a_{23}=e_{2}
$$

$$
e_{3}+t_{13}=e_{1}, a_{1}+a_{31}=e_{3}
$$

 There ts ony f finte numbero of such points. Choose set of 0 , nemely ad

$$
C^{0} \equiv\left(x_{2}, m_{2} 2^{m_{2}}\right)
$$

It followe symuety (with respect to the Weyd group), thet

$$
\mathrm{am}_{\mathrm{H}} \geq \mathrm{mb}_{2} \geq \mathrm{m}_{3}
$$

 Wecturs sthen

$$
E_{22^{\xi}}=\Sigma_{25} \xi=E_{13} \xi=0
$$

 We must heve $E_{0}=E_{0}$ Thus: all the basse vectors of the mepresentetion cem

 a_{31} to C°.

Exrmples:

1) $0^{0}=(2,2,0)$ (The octet)

$(3,0,0)+0,21=(2,0,1)$
$(3,0,0)+2032=(2,0,2)$
$(3,0,0)+0,21=(2,2,0)$
$(3,0,0)+202 y=(1,2,0)$
$(3,0,0)+30,21=(0,3,0)$
$(3,0,0)+30,2+32$

2) $0^{0}(4,2,0)$ (A 27-pLet)

The bove emmplem indicute the rollowng meaut:

 Lfe on a hexagan in the plane C_{2} d $C_{2}+C_{3}=m$ gnd on a system of hergemes
 heraeons anduthes degenerge suto trianges (if one or the pointw mies on

We shat meturk to thit problems but at present we arop the proorio

Irqedreque Fepresertetions of U(n)

\&ow sul $)$

usse deccmpestrion o gready mentioned tbove.

The Guss Decompogition

Fow $G \equiv S L(2,0)$ Нe can write any matrix BS

$$
s=\left(\begin{array}{ll}
1 & \xi \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0_{5} & 0 \\
0 & 0_{2}
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right) \quad \text { aty } 8 \text { o } 0_{1}^{0} 2=1
$$

Now consider $G=G L(2, n)$ and consider three subgroups $Z_{-q} D$ and Z_{f} where

if bison that these matrices generate the migebras

$$
E_{-} E_{0} \text { and } E_{f}
$$

It is (supposedly) wellanown that if the diagonal subdeterminents of a

$$
g=\left(\begin{array}{ccc}
\mathrm{g}_{\mathrm{II}} & 0 & 0 \\
\mathrm{~g}_{\operatorname{In}} \\
\mathrm{g}_{\mathrm{nI}} & 0 & 0
\end{array} \mathrm{E}_{\operatorname{mn}}\right)
$$

are not equal to aero, ionoif

$$
\mathrm{A}_{\mathrm{i}} \neq \mathrm{F} 0 \quad \mathrm{i}=1,0,0
$$

mex

$$
\left.A_{2}=\mathrm{g}_{21} \quad \Delta_{2}=\left|\begin{array}{l}
\mathrm{g}_{12} \mathrm{~g}_{22} \\
\mathrm{~g}_{21} \mathrm{~g}_{22}
\end{array}\right| \quad A_{\mathrm{a}} \right\rvert\,
$$

then g and be written as

Where x_{0} and and are determined uniquely.
We can exalude a set $\theta \in G$ from the group, for which miemst one \$1 $=0$ o will not contwin the idenkity e and there exists neighborhood If of where is not containedin θ. Ereluding the set θ shich is or Lower dimension then G, we obtain parametrimetion of the group:

Lfe"s Theoxern
A well-known theorem, which as be cheoked direatly ist In w fraite-aimencionel space orer the field of omplea numbers every comutative

Sophus Lie generalized this theorem to some aissses of moncommatative operators. We shai nether prove wie's theorem, nam give fits
 Into the theory of solwable groups?

Thus, consicer the group if of trinuguta matrices:

$$
\bar{n}=\left(\left.\begin{array}{cccc}
h_{12} & h_{12} & \cdots h_{n n} \\
& h_{22} & \cdots h_{2 n} \\
0 & & { }_{2} & \\
& & h_{n n}
\end{array} \right\rvert\, \quad \text { det } h\right. \text { po }
$$

Special case of Ifeis theorem: In any infte-aimensionsi representation of the group i there exists ent least one non-zero vector wo whin is the exgenvector Ofen operetors of the grour E . Thus:

$$
\begin{aligned}
& \text { is } \Rightarrow T_{n} \\
& \mathrm{Th}_{\mathrm{h}} \mathrm{E}=\lambda(\mathrm{n}) \mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
\lambda\left(h_{2} h_{2}\right) & \equiv \lambda\left(h_{2} h\left(h_{2}\right)\right. \\
\lambda(0) & =1
\end{aligned}
$$

 rachuch to the fowm

When considering the right reguiax representation

$$
\operatorname{Rg}_{o} f(g)=\left(g_{0}\right)
$$

we saw that each row of the matrix

$$
T_{g}=\left\|T_{i j}(g)\right\|
$$

forms an invariant bubspace with respect to $P_{g o}$ and that the representation ${ }^{T} g$ can be realized in this subspace. Put $0=z_{0} \delta_{q}$ and find the first yow of $T_{G}=T_{z=0} T_{6} T_{z+}$

We obtain the fixst row as:

$$
\alpha(\delta), a(\delta) T_{12}(x), \ldots, u(\delta) T_{1 N}(x)
$$

where

$$
\alpha(\delta) \equiv \alpha_{1}(\delta) \quad z=a_{d}
$$

Thus: $T_{1 L}(g)$ depends on $\delta E D$ oniy, $T_{I K} h(s) k=2,000 N$ depend on δ in the seme simple manner and do not depent on w, at ail.

Mote: The Lie eigebre of the group Z_{q} is E_{q}, consisting of metrices

$$
x=\left(\begin{array}{ccc}
0 & v & * \\
0 & * \\
0 & * & * \\
0 &
\end{array}\right)
$$

with the basis $e_{i j} \quad i<j$.
We shail combine the infinitesimal and the global method.

The maximal eigenvector

For SU(2) we had a highest weight $\&$ and to each g comssponded one derinite eigenvector x_{0} Call it the marimel eigenvector.

More generaly: A marimal eigenvector of z representation T or G is non-zero solution x of the set of equations

$$
\mathrm{E}_{\mathrm{i}, \mathfrak{j}} \mathrm{x}=0 \quad \therefore<j
$$

 to the equmidou

$$
T_{2}{ }_{2} \equiv y^{4}
$$

 z_{q} 。
 thebrem thet there erists common efcenvector w 0 on Ths for whon

Hentworex

$$
\theta_{i} j^{2}=0 \quad \pm \leq J
$$

ancis \%lat an eigenvector:

$$
E_{i \mathcal{L}} X=\mathrm{M}_{\mathrm{i}} X \quad m_{i}=\mathcal{N}_{\mathrm{i} i}
$$

Using cancnical peraneters in the group, ioe。

$$
\delta_{k}=e^{\frac{j t_{k}}{}}=t_{1} \ldots t_{n} \operatorname{comp} 1 e x
$$

We have

$$
T_{\delta} x=0(\delta) x
$$

where

$$
\alpha(\delta)=e^{i m_{I} t_{1}+m_{n} m_{n} t_{n}}=\delta_{1}^{m_{1}}{\delta_{2}}_{0.0 \delta_{n}}^{m_{n}}
$$

It follows man the analyticity of a(of) foe. from the single-veluedness on the torus $\delta_{k}=e^{i t_{k}} \quad 0 \leq t_{k}<2 \pi$ thet $m_{1}, \ldots 0 m_{n}$ are integers. Consider the su(2) subalgebra

$$
E_{+}=E_{12} ; E_{0}=E_{12}-E_{22} ; E_{=}=E_{2 I}
$$

 teo. We have

$$
E_{0}{ }^{2 R}=\left(m_{2}-\pi_{2}\right) x
$$

We know that the highest weight for sule) ds monwigegetwe. Thus we

$$
M_{d} \underset{M}{ }
$$

 Weyt cans the set $\left(m_{1} \ldots \pi_{n}\right)$ the siggature.

We have proved the rollowing:

Theorea: For every analytic representation or the group G there exist an inverient of the subgroup $Z_{\text {q }}$:

$$
\mathbb{T}_{x^{x}} x=x
$$

ceined the meximal eigenvector, satisyying

$$
T_{6}(x)=x(6) x
$$

The eigenvalue is an exponential.

$$
\alpha(0)=\delta_{1}^{m_{1}} \ldots \delta_{n}^{m_{n}}
$$

$$
m_{1} \& m_{2} 2002 m_{n}
$$

Siminuiy we can define a minimal eigenvector of T as an invariant with respect to the subgroup Z_{0}.

Uniguenegs of the maximal Eigenvectox wet us show thet it T_{g} is irmeducible ther the meximel eigenvector x is unique (up to nomelization).

Wet x be marmar eigenvector in the space E of T and let E be

We have $\left.\quad{ }_{\mathrm{T}}^{\mathrm{E}}=\left(\mathrm{T}_{\mathrm{g}}^{\mathrm{T}}\right)^{-1}\right)$
rhese vectors sotisfy

$$
\text { (Ex) 形 } 0
$$

since otherwise we woud have

Irreducioivity of Timplies that the vectors T g generate the whole space E Thus $\left(E_{s} E\right)=0$ which contradicts the assumption that (x, $\%$) is nondegenerete。

Let us assume there are two highest weights in E, x_{1} and x_{2}.
Nomentre so thet

$$
\left(\varepsilon_{9} x_{1}\right)=1 \quad\left(e, x_{2}\right)=1
$$

Sines x_{2} and x_{2} are invariants of Z_{q}, so is $x_{1}-x_{2}$. Howerer

$$
\left(\varepsilon_{2}, x_{1}-x_{2}\right)=0
$$

$-x_{2}-x_{2}=0$
We obtein the theorem:

Theorem: If T_{g} is an irreaucible representation, then the maximal vector x is detemined unguedy up to nomalization. Thus, the highest weight is also detremmed uniquedy.

Qepidamy If two diferent repmesentations T anc $\frac{g}{}$ of G have difertent highest feights, then they are not equivalemb.

Lecture 16

Let us now consider realizations of \mathbb{T}_{g} in various spaces.

Realization on the Group G

Consider the right regular representation.

$$
\begin{equation*}
R_{g} f^{(g)} \approx t\left(g_{0}\right) \tag{1}
\end{equation*}
$$

For the metiog elements of any representation we have:

$$
\begin{equation*}
T_{i k}\left(g g_{0}\right)=T_{i 0}(g) T_{0 k}\left(g_{0}\right) \tag{2}
\end{equation*}
$$

Put

$$
\begin{equation*}
e_{i}=T_{i j}(E) \tag{3}
\end{equation*}
$$

(elements of the first row are chosen ge a besis). Then:

$$
\begin{equation*}
T_{E 0} e_{i}=T_{1 i}\left(g g_{0}\right)=\sum_{\alpha} T_{I \alpha}(g) T_{\alpha i}\left(E_{0}\right)=\sum_{0} e_{\alpha \alpha i} T_{\alpha}\left(g_{0}\right) \tag{4}
\end{equation*}
$$

Let us construct the basis vectors e_{i} explicitiy. Take a representetion T_{g} and denote it's maximal eigenvector e_{2}. Let ε be the minimal eigenvector of the contragradient representation T_{g}. Nomalize e_{1} (for fixped E) so thet

$$
\begin{equation*}
\left(\varepsilon_{81}\right)=1 \tag{5}
\end{equation*}
$$

The equation $(s, x)=0$ determines en $N \infty$ dimensional hyperplene in the space E. Choose the other basis rectors in this hyperpiane, so that

$$
\begin{equation*}
\left(\varepsilon, e_{k}\right)=0 \quad \text { for } 2 \leq k \leq N \tag{6}
\end{equation*}
$$

Now apply this bilinegr form to eq. (4) for $i=1$

$$
\begin{equation*}
\left(\varepsilon, T_{g} e_{1}\right)=T_{11}(g)=e_{1}(g) \tag{7}
\end{equation*}
$$

In terms of the Gauss parameters: $\quad G=2 \delta z_{d}$

$$
\begin{equation*}
e_{1}(\varepsilon)=\left(\varepsilon_{0} T_{2-} T_{\delta} T_{z+1} e_{1}\right)=\left(\hat{T}_{2-}^{-1} \varepsilon_{g} T_{\delta} e_{I}\right)=\left(\varepsilon_{,} T_{\delta} e_{1}\right)=\varepsilon_{1}(\delta) \tag{8}
\end{equation*}
$$

We also have $T_{0} e_{1}=0(\delta) e_{2}$, so that

$$
\begin{equation*}
e_{1}(\delta)=a(\delta) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
a(0)=b_{1}^{m_{1}} \ldots \delta_{n}^{m_{n}} \tag{10}
\end{equation*}
$$

ig the highest weight.
Let us express the parameters of δ in terms of those of B. Consider qgain the diagonel subdeteminants or g :

$$
|g|=\left|\begin{array}{cc|cc}
\left.\frac{g_{11}}{} \right\rvert\, & g_{12} & \cdots & \\
\hdashline g_{21} & g_{22} & \cdots & \\
\hline \cdots g_{2 n} \\
g_{n 1} & \cdots & \cdots & \ldots \\
g_{2 n}
\end{array}\right|
$$

One can use the expression $g=z_{0} z_{q}$ to cheok thet these subdeterminants are:

$$
\begin{equation*}
\Delta_{2}(g)=\hat{o}_{1} \quad \Delta_{2}(g)=\delta_{1} \delta_{2} \quad \Delta_{n}(g)=\ddot{o}_{2} \delta \delta_{2} \tag{11}
\end{equation*}
$$

Putemg

$$
\Delta_{0}=1
$$

We have

$$
\begin{equation*}
\delta_{k}=\frac{\Delta_{k}(g)}{\Delta_{k-1}(g)} \tag{12}
\end{equation*}
$$

We can now write the basis vector e_{1} as:

$$
\epsilon_{1}(g)=g_{11} m_{1}^{-m_{2}}\left|\begin{array}{ll}
g_{11} & g_{12} \tag{13}\\
g_{21} & g_{22}
\end{array}\right|^{m_{2}-m_{3}} \quad \ldots(\operatorname{detg})^{m_{n}}
$$

Where the exponents

$$
p_{2}=m_{2}-m_{2}, p_{2}=m_{2}=m_{3} \quad p_{n-1}=m_{n-1}-m_{88}
$$

catisfy

$$
\begin{aligned}
& p_{k}>0 \quad 2 \leq k \leq n-1 \\
& p_{n}=m_{n} \ldots 0 \text { arbitary }
\end{aligned}
$$

Ifi T_{g} is mpeducible, then all other basis vectors can be obtained by appiying right transiations to ϵ_{1} :

$$
\mathbb{R}_{\mathrm{g} 0} e_{1}(g)=\varepsilon_{1}\left(\mathrm{gg}_{0}\right)
$$

We obtain the thearem:

Theorem: An irreducible analytic representations T_{G} of the group $G=G L(n, C)$

$$
m_{1} \geq m_{2} \geq m_{3} \geq 0 . m_{n}
$$

where M_{i} are integers. The representation $T_{g}^{\text {af }}$ an be realized in a space E_{0}, spanned by the function

$$
e_{1}(g)=g_{11}^{m_{1}-m_{2}}\left|\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right|^{m_{2}-m_{3}} \quad \ldots(\operatorname{det} g)^{n}
$$

and all functions $e_{1}\left(\mathrm{gg}_{0}\right)$ obtained by right translations. The signature a determines the representation uniquely (up to equivalence). The action of the operetors T_{g} in the space E_{a} is given as

$$
T_{g O} f(g)=f^{0}\left(g g_{0}\right)
$$

and $\epsilon_{2}(g)$ is the maximal eigenvector of the reprosentation (invariant under $Z_{\text {ep }}$)

Remark: The restroiction to $\operatorname{SL}(n, C)$ commesponds to putting det g. We obtain ali amalytic irreducible representations of Go For $\operatorname{SL}(n, C)$ the signature is no longer unique wa has to be normailzed, e.g. by putting $m_{n}=0$ or $m_{2}+m_{2}+\ldots 0+m_{n}=0$. The space E_{0} for $S L\left(n_{9} C\right)$ consists of polynomiaic on the group. (For $G L(n, C)$ not necessamiy, since we can have man 0.)

Realization on the Meximel Compact Subgroup it

If we are interested oniy in the representations of the maximal compect subgroup $U=U(n)$, then we can make use of the principle of unitary restriction to obtain the following.
 equivelenee) by a set of integers

$$
m_{1} \geq m_{2} \geq 0 . \sum m_{n}
$$

and can be qealized in ainear space of fumetions $f(u)$, spanned by the function:

$$
e_{1}(u) \cong u_{11}-m_{2}\left|\begin{array}{ll}
u_{11} & u_{12} \tag{14}\\
u_{21} & u_{22}
\end{array}\right|^{m_{2}-m_{3}} \quad \ldots(\text { aet } u)^{m_{n}}
$$

and ell fumctions e_{1} (un ${ }_{0}$) obtsined by right translations. All imeeducible representations of $S U(n)$ are obtained here by setting det $u=1$. The operators of the representation act as

$$
F_{u_{0}} f(u) \cong f\left(u u_{0}\right)_{0}
$$

Remark: If we construct the space E_{a} as abowe by applying right transiations to $e_{1}(u)$ and then use aiso dert translations on the group U, then the space E_{0} gets extended to M_{0} spanned by ail matroix elements $T_{i j}(v)$. The representaion acting in this spece is reducible.

Reelizetion on the Group Z

Above the sigmature o did not entere explicitly into the formula
 space $E_{\text {ex }}$ Let us construct dipfexent realization in which the operators depend explicitiy on w Sine the weator is defined as the minimal
eigenvector of the oomtraradient representation the basis rectors

$$
e_{f}(g)=\left(E_{g} T_{g} e_{i}\right)
$$

do not depend on win the Gauss decomposition. Thus we have
 $=a(\delta) I_{12}\left(z_{q}\right)$ Finaliy

$$
e_{i}(\xi)=\alpha(\delta) e_{i}(x)
$$

where we put \mathscr{D}_{a} 를 $\mathrm{I}_{\text {。 }}$ The same must then be ture for gil elements of E_{a} so thet

$$
\begin{equation*}
f(g)=\alpha(\delta) i(z) \quad g=x_{\infty} \delta_{i} \tag{I5}
\end{equation*}
$$

Thus，to each function $\mathrm{f}(\mathrm{g})$ on the group G there corresponds a function $f(z)$ on the subgroup $Z=\left(Z_{\phi}\right)$ namely the restriction of $f(g)$ from Q to Z ． As ean be seen from（25），the correspondence between $f(x)$ and $f(g)$ is one－to－ one．

Denote R the obtained space of functions $f(z)$ and consider the action of T_{g} in this space。 We hawe $\mathrm{Tg}_{\mathrm{O}} \mathrm{f}(\mathrm{g})=\mathrm{f}\left(\mathrm{gE}_{\mathrm{O}}\right)$ 。Restricting $\mathrm{f}(\mathrm{g})$ to $f(z)$ ，we haye：

$$
\begin{equation*}
\operatorname{Tg}_{Q} f(z)=f\left({ }^{2} g_{0}\right) \tag{26}
\end{equation*}
$$

Put

$$
\begin{equation*}
25_{0} \cong=\cdots \tag{17}
\end{equation*}
$$

then

$$
\mathrm{TE}_{0} f(x) \equiv \alpha(b) x^{\alpha}(x)
$$

To find the multiplier of $\hat{\delta})=u\left(\mathcal{F}_{0} E_{0}\right)$ we notice thet δ is the diagonal part in the decomposition of zE_{0} 。 Using（9）and（23）we have：
（we have det zg \equiv det g）．
We have obtained：

Theorem：The irreducible representation with signature $\alpha=\left(m_{1}, \ldots o m_{n}\right)$ of G can be realiwed in the space of polynomials of the matrix

The operators of $g \rightarrow T_{g}$ are given explicitly ms

$$
\begin{equation*}
T_{g} f(z)=\alpha(z, g) f\left(\mathcal{F}_{g}\right) \tag{20}
\end{equation*}
$$

where the multiplier $\alpha(z, g)$ is

$$
\begin{equation*}
a(z, g)=\Delta_{1}^{p_{1}}(z g) \Delta_{2}^{p_{2}}(z g) \ldots \Delta_{n}^{p_{n}}(z g) \tag{2I}
\end{equation*}
$$

 matofr in the Geuss decomposition for zg. The maximal eigenvector is

$$
\epsilon_{i}(2)=1
$$

and the space R_{a} is spanned by the furctions

$$
f_{g}(z)=T_{g} \cdot I=\alpha(z, g)
$$

Por all geG.

Remari z: Fomule (20) simplifies in special cases:
a) $g=20 \mathrm{~m}$

Obriousiy $\quad a\left(z, z_{0}\right)=1$, so thet

$$
\begin{equation*}
T_{0} f(z)=f\left(z_{0}\right) \tag{22}
\end{equation*}
$$

b) $\mathrm{E}=\mathrm{\delta}$

$$
\left.T_{\delta} f(2)=f^{\prime}(2 \delta)=4 \delta\left(\delta^{-1} 2 \delta\right)\right]
$$

We haqe $\delta^{-\pi} \tilde{\delta} \in Z_{5}$ hence

$$
\begin{equation*}
T_{\delta} f^{\prime}(z)=\alpha(0) P\left(\delta^{-I_{z 0}^{0}}\right) \tag{23}
\end{equation*}
$$

Remarik 2: The realigation in the space $f(x)$ is convenient in that it involves minimal numer of wariables. For nw? this realization reduces to

Explicit Expression for the Gauss Parameters

Put

Cens
 $j_{2} 9000 f^{\circ}{ }^{\circ}$ Miming usefor standard mutiplication rules for determiments. We find

$$
\begin{equation*}
g_{12000 p-1 q}^{1200-1 p}=A_{p} \cdot 2_{1200 p-1 p}^{120}=A_{p} p_{p q} \tag{25}
\end{equation*}
$$

where A_{p} is a diagonal subdeterminant of |S\|。For peq we have:

$$
\begin{equation*}
\mathrm{g}_{1200 \mathrm{p}}^{220 \mathrm{p}}=\Delta_{\mathrm{p}} \tag{26}
\end{equation*}
$$

(in agreement with (II))。

For $p>q$ we get 0 mo. For $p \subseteq q$ we have

$$
\begin{equation*}
z_{p q}=\frac{A_{p q}}{\Delta p} \quad p!q \tag{27}
\end{equation*}
$$

where $\Delta_{p q}=\frac{12000 p-1 p}{E_{1200 p-1 q}^{12}}$.

Similarly:

$$
\begin{equation*}
s_{p q}=\frac{A^{i}}{E_{p}} p q \geqslant q \tag{28}
\end{equation*}
$$

where $\Delta_{p q}=g_{1200 .}^{120-1 p}$

We can now put:

$$
\begin{equation*}
f(2)=U\left(x_{\mu v}\right) \quad H, y=1,2,00 \pi_{9} \quad y e y \tag{29}
\end{equation*}
$$

and the transformation T_{g} of (20), representing gec, can be writen as:

$$
\begin{equation*}
T_{g}\left(q_{\mu v}\right)=\Delta_{1} D_{\Delta_{2}} p_{2} \sum_{n} p_{n}\left(\frac{A_{\mu v}}{\Delta_{u}}\right) \tag{30}
\end{equation*}
$$

where the subdeterminants $A_{p v}$ and A_{p} wre calculated for the matrix zg.
 transpormstion

$$
\bar{z}=\frac{\alpha z p y}{B z t \delta}
$$

for $x_{1}=2$ 。

Remari 2: For GL(2,0) for U(2) we hove fiso constmuted busis in the representation space, namely the monomials

$$
1, z, z^{2}, 0.0 z^{p} \quad P=2 d
$$

In the generai case we could also construct a complete set of ineariy independent basis vectors for each signature o, but we shal not go into thet here.

Lecture 17

Fundamental Representations

Let us consider a certain set of signatures, namely:

$$
\begin{align*}
& \Delta_{1}=\left(\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right) \\
& \Delta_{2}=\left(\begin{array}{lllll}
1 & 1 & 0 & \ldots & 0
\end{array}\right) \tag{I}\\
& \text { - } \\
& \Delta_{n}=\left(\begin{array}{lllll}
1 & 1 & 1 & \ldots & 1
\end{array}\right)
\end{align*}
$$

Theorem: Let E be an n-dimensional space in which $G=G L(n, C)$ acts as a group of linear transformations. Consider all completely antisymmetric tensors

$$
p^{i_{1} i^{\prime} 2^{i_{k}}}
$$

$$
k \leq n
$$

over E. They form an irreducible set and transform according to the irreducible representation of G with signature Δ_{k}.

Proof: Take a set of numbers

$$
x=\left(x_{1} \ldots x_{n}\right)
$$

transforming covariantly under G. In terms of matrices we have

$$
\left(x_{1}^{1}, \ldots, x_{n}^{\prime}\right)=\left(x_{1}, \ldots x_{n}\right) \quad\binom{g_{11} \cdots g_{1 n}}{g_{n 1} \ldots g_{n n}}
$$

The determinants

$$
e_{i_{1} i_{2}} \ldots i_{k}=\left|\begin{array}{llll}
w_{i} & \ldots & x_{i_{k}} \tag{2}\\
y_{i} & \ldots & y_{k} \\
i_{i} & & { }_{k} \\
w_{i_{1}} & \ldots w_{i_{k}}
\end{array}\right|
$$

formed out of k such "rows" of numbers provide a basis in the space of antisymmetric tensors. Take

$$
\delta=\left(\begin{array}{ccc}
\delta_{1} & & 0 \tag{3}\\
0_{2} & \ddots_{1} & \delta_{n} \\
0 & &
\end{array}\right)
$$

and act upon each row in (2). We obtain:

$$
\begin{equation*}
\mathbb{I}_{k} e_{i_{1} i_{2} \ldots i_{k}}=\mu e_{i_{1} i_{2} \ldots i_{k}} \tag{4}
\end{equation*}
$$

i.e. $e_{i_{\mathcal{I}} \ldots o \mathcal{I}_{k}}$ is an eigenvector of T_{δ}, corresponding to the eigenvalue

$$
\mu=\delta_{i_{I}} \delta_{i_{2}} \delta_{i_{k}}
$$

The antisymmetry implies that each set $i_{1}, 0 . \mathcal{I}_{k}$ appears only once so that all eigenvalues μ are different. Thus, one of the determinants (2) must be the maximal eigenvector. The only one of them invariant with respect to $Z=Z_{+}$is $e_{12^{\circ}} k$ with the weight

$$
\delta_{1} \delta_{2} \cdots \delta_{k}=\Delta_{k}
$$

Hence, since thexe is only one maximal eigenvector, the antisymmetric tensors transform irreducibly according to the representatio Δ_{k}. Q.E.D.

Young Patterns

We write the signature as

$$
\alpha=\left(m_{1}, \ldots m_{n}\right) \quad m_{1} \geq m_{2} \geq \ldots m_{n}
$$

and denote the corresponding representation D_{α} (or just α). Sometimes it is convenient to introduce a different set of integers:

$$
\begin{equation*}
p_{i}=m_{i}-m_{i+1} \quad i=1, \ldots, n, \quad m_{n+1}=0 \tag{5}
\end{equation*}
$$

and write

$$
\left[p_{1}, \ldots, p_{n}\right] \quad p_{i} \geq 0
$$

(in square brackets)。 Now p_{i} are arbitroary nonnegative integers. In these parameters the signatures of the fundamental representations will be

$$
\begin{align*}
\Delta_{1} & =[1,0, \ldots 0] \\
\Delta_{2} & =[0,1, \ldots 0] \tag{6}\\
& =[0,0, \ldots 1]
\end{align*}
$$

If the signature of a representation is

$$
\left(m_{1}, \ldots, m_{n}\right)=\left[p_{1}, \ldots, p_{n}\right]
$$

then the highest weight is

$$
\alpha(\delta)=\delta_{1}^{m_{1}} \cdots \delta_{n}^{m}=\Delta_{1}^{m_{1}}{\Delta_{2}}_{2}^{p_{2}} p_{n}
$$

where δ_{i} are the diagonal elements of δ and Δ_{i} are the corresponding subdeterminants. We know that in the realization of representations \mathbb{T}_{g} on the group G : the maximal eigenvector is

$$
\begin{equation*}
\epsilon_{1}(g)=\Delta_{1}^{p_{1}}(g) \Delta_{2}^{p_{2}}(g) \ldots \Delta_{n}^{p_{n}}(g) \tag{7}
\end{equation*}
$$

(see previous lecture).

Let us introduce the Young patterns. For each representation Δ_{k} we draw a pattern:

$$
\Delta_{\mathrm{k}} \quad \approx \quad \begin{array}{|}
\hline \\
\vdots \\
\hline
\end{array}
$$

consisting of k boses. The pattern indicates that Δ_{k} corresponds to a tensor $\mathrm{e}_{\mathrm{i}_{\mathrm{g}} \ldots 0 \mathrm{I}_{\mathrm{k}}}$ with k indices, that it is completely antisymmetric and can be obtained as the "antisymmetric product" of k vectors according to (2). Let us generalize to arbitrary signatures:

We have a rows (the bottom ones can be empty), getting shorter (or staying equal) as we go down. The numbers $\left(m_{1} \ldots m_{n}\right)$ are the lengths of the rows, the numbers $\left[p_{1}, \ldots 0, p_{n}\right]$, the differences between successive lengths.

Example:
$(8,5,2,1,0)=[3,4,0,1,0]$

The Young pattexnswill be used to study symmetry and antisymmetry properties of irreducible representations realized with the help of tensors.

We already know that all irreducible representations of any compact group can be realized in the class of tensors.

For $U(n)$ we shall consider the contravariant tensor;

$$
\begin{equation*}
t=t^{i_{1} \sum^{\ldots o i_{m}}} \tag{8}
\end{equation*}
$$

of rank $m_{\text {, }}$ and decompose the corresponding representations of G into irreducible ones:

Obviously an operator U_{s}, permuting the superscripts of t, will commute with any operator \mathbb{T}_{g} (since \mathbb{T}_{g} acts independently on each superscript). It follows from Schur's lemma, that equations like

$$
U_{s} t=\lambda(s) t_{0}
$$

can be used to obtain irreducible subspaces, (or subspaces that are multiples of on irreducible one). We shell show that we can get all irreducible representations in this fashion. Actually, we shall show that all operators P_{α}, projecting out irreducible representations with a given signature $\alpha=\left(m_{1}, \ldots, m_{n}\right)$ can be written as

$$
\begin{equation*}
P_{\alpha}=\sum_{s} c(s) U_{s} \tag{9}
\end{equation*}
$$

where the $c(s)$ are numbers. We have

$$
t_{\alpha}=P_{\alpha} t
$$

Where t_{a} transforms according to the irreducible representation α and

$$
\sum_{\alpha} P_{\alpha}=I
$$

Where I is the identity operator.
We could proceed by investigating the structure of the symmetric group π_{m}, but shall first consider a more direct method.

The Method of Z-invaroiants

Let $g \rightarrow T_{g}$ be a representation of G in a finite-dimensional space E. We know that T_{g} is completely reducible (unless it is irreducible), so that the space E can be decomposed into a direct sum of invariant subspaces

$$
E=E_{1}+\ldots+E_{k}
$$

In each space E_{i} we have one highest weight $\alpha_{i}=\alpha_{i}(\delta)$ and corresponding maximal eigenvector ω_{i} 。

Thus, we can decompose T_{g} into irreducible components by the followstre procedure:
I) Find all invariants of the group Z in the space E, i.e. all vectors that could be maximal eigenvectors.
2) Amongst these invariants find all eigenvectors ω_{i} :

$$
T_{\delta} \omega_{i}=\alpha_{i} \omega_{i}
$$

and enumerate all highest weights $\alpha_{i}(\delta)$.
Once we find w_{i} we can immediately obtain the whole space E_{i} by applying elements of Z^{-}to ω_{i} 。

Criterion: A finite dimensional representation of G is ixreducible if and only if it contains one and only one non zero invariant of the subgroup Z.

Thus: We shail consider contravariant tensors, transforming according to the representation

$$
\begin{equation*}
T_{g}=\stackrel{A}{\mathrm{~g}}(x) \hat{\mathrm{E}}(2) \ldots(x) \hat{\mathrm{g}} \tag{10}
\end{equation*}
$$

Instead of $t^{i_{1}} i^{i} 2^{\ldots o i} m$ we can use the multilinear form

$$
\begin{equation*}
\Phi(x, y, \ldots, w)=t^{i_{1} \ldots i_{m_{x_{1}}} y_{i_{2}} \ldots w_{i_{m}}} \tag{II}
\end{equation*}
$$

where $x, y, \ldots o w$ are cowariant vectors of dimension n

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \\
= \\
w=\left(w_{1}, \ldots, w_{n}\right)
\end{gathered}
$$

We can write these vectors as rows, their transformation is right multiplication by g. Thus:

$$
\begin{equation*}
T_{g} \Phi(x, y, \ldots w)=\Phi(x g, y g, \ldots w g) \tag{12}
\end{equation*}
$$

 ${ }^{\Phi} \mathrm{m}^{\circ}$

Our aim is to decompose T_{g} acting in Φ_{m} into irreducible components.

Consider zeZ acting on x :

The oniy Z-invariant in the space Φ_{1} is

$$
\omega_{1}(x)=x_{1}
$$

More generally, the subdeterminants

$$
\begin{align*}
& \omega_{1}=x_{I} \\
& \omega_{2}=\left|\begin{array}{l}
x_{1} x_{2} \\
y_{1} y_{2}
\end{array}\right| \tag{13}\\
& \omega_{n}=\left|\begin{array}{c}
x_{1} \ldots x_{n} \\
w_{1} \ldots w_{n}
\end{array}\right|
\end{align*}
$$

are Z-invariants. We already know that the determinants

$$
\left|\begin{array}{ccc}
x_{i_{I}} & \ldots x_{i_{k}} \\
w_{i_{I}} & \ldots w_{i_{k}}
\end{array}\right|
$$

form a basis in the spaces of antisymmetric tensors of order k and that
the Z-invariants ψ_{k} are the maximal eigenvectors for the corresponding representations. The highest weight Δ_{k} corresponding to ω_{k} is

$$
\Delta_{k}=\delta_{1} \delta_{2} \ldots \delta_{k} \quad k=1, \ldots, n
$$

No other totally antisymmetric tensors can be constructed, out of n-dimensional vectors.

However, more general symmetries cen be considered. Thus, any vector of the type

$$
\begin{equation*}
\omega=\omega_{\omega_{1}^{2}}^{I_{1}}{ }_{\omega_{2}}^{p_{2}} \ldots{ }_{\omega_{n}}^{p_{n}} \tag{14}
\end{equation*}
$$

is a Z-invariant. Note that ω is a muitilinear form of order

$$
\begin{equation*}
m=p_{1}+2 p_{2}+3 p_{3}+\ldots+n p_{n} \tag{15}
\end{equation*}
$$

Applying T_{δ} we find

$$
T_{\delta} \omega=\alpha \omega
$$

with

$$
\begin{align*}
\alpha & =\Delta_{1}^{p_{1}} \Delta_{2}^{p_{2} \ldots \Delta_{n}}= \\
& =\delta_{2}^{m_{2}} \delta_{2}^{m_{2}} \ldots \delta_{n}^{m} m_{n}
\end{align*}
$$

where

$$
\begin{equation*}
p_{i}=m_{i}-m_{i+1}, i=1, \ldots, n \quad m_{n+1}=0 \tag{17}
\end{equation*}
$$

(This is of course just an alternative way of viewing the formulas, obtained previousiy)。

The rank of the tensors under consideration is obviously

$$
m=m_{1}+m_{2}+\ldots+m_{n}
$$

where m_{i} are the entries in the signature

$$
\left(m_{1}, m_{2}, \ldots, m_{n}\right)
$$

The representation with signature α will in general figure several times in e decomposition, since we cen choose different orderings of the vectors $x, y, \ldots 0$ when writing the system of determinants ω_{i}. This, however is the only arbitrariness in the problem. Indeed, we have

Lemma on Z-invariants: Any multilinear form, invariant with respect to the group Z can be wroitten as a linear combination of the monomials

$$
\omega=\omega_{1} \ldots \omega_{n} p_{n}
$$

with ell possible orderings of the arguments in the detexminants $\omega_{1}, \ldots, w_{n}$ and with ald possible exponents p_{i}, satisiying $p_{1}+2 p_{2}+\ldots n p_{n}=m$, where m is the rank of the form.

Proof: A (classical) proof of this (classical) theorem is given by Weyl in his (classical) book:
H. Weyl: The Classical Groups
(Priznceton University Press, Princeton, 1946)

From the lemma one can readily obtain the fundamental theorem:

Theorem: The space Φ_{m} of all tensors of rank n can be split into the direct sum of irreducible subspaces

$$
E_{\sigma}\left(m_{1}, \ldots, m_{n}\right)
$$

in which the maximal eigenvectors are the monomials

$$
w_{0}^{!}=\omega_{1}^{m_{1}-m_{2}} \omega_{2}^{m_{2}-m_{3}}{ }_{0} \omega_{n}^{m_{n}}
$$

The index σ runs through all possible substitutions of the vector arguments $x, y, \ldots o w$ into the determinants $\omega_{1}, \ldots ., \omega_{n}$ 。 The multiplicity with which the representation (m_{1}, \ldots, m_{n}) occurs in the space m_{m} is equal to the number of linearly independent monomials

$$
\cdots \omega_{1}, \omega_{\sigma_{2}}, \ldots, \omega_{\sigma_{k}}
$$

with fixed exponents $m_{1} \ldots \ldots, m_{n}$. Those and only those signatures appear, for which

$$
m_{1}+m_{2}+\ldots+m_{n}=m \quad m_{i} \geq 0
$$

Actually, the complete information on the reducibility of tensors is contained in this theorem (we do not give the proof). However, we shall still look at the symmetries of the tensor representations.

Let us return to the Young Tableaux.
Consider a table of boxes, corresponding to a given signature

$$
\alpha=\left(m_{1}, \ldots, m_{n}\right) \quad m_{1} \geq m_{2} \geq m_{3} \ldots \geq m_{n} \geq 0
$$

with the properties:

1) The lengths of the rows decrease or stay constant in the downward direction.
2) The total number of boxesm is equal to the rank of the tensor under consideration.
3) For the group $U(n)$ the number of rows is less or equal to n.

Example:

$$
\alpha=(7,5,4,0)=[2,1,4,0]
$$

(If n is a fixed known number, then we do not have to draw the empty rows, otherwise they are essentigl).

Besides the round and square brackets symbolisms, we use the symbolism of totally antisymmetric tensors (of fundamental representations). Thus:

$$
\begin{equation*}
\alpha=\left(m_{1} \ldots m_{n}\right)=\left[p_{1}, \ldots, p_{n}\right]=\Delta_{1}^{p_{1} \Delta_{2} p_{2} \ldots \Delta_{n}^{p_{n}}=\delta_{1}^{I_{\delta}} m_{2} \ldots \delta_{n}^{m} m_{n}, m_{n}} \tag{18}
\end{equation*}
$$

Consider the basis invariants $\omega_{1} \ldots \omega_{n}$ of (13) and write them in box form:

$$
\omega_{p}=\left|\begin{array}{cc}
x_{1} x_{2} & x_{p} \tag{19}\\
y_{1} y_{2} & y_{p} \\
\ldots & m_{0} \\
v_{1} v_{2} & v_{p}
\end{array}\right| \equiv\left[\begin{array}{c}
x \\
-y^{x} \\
\vdots \\
\vdots \\
v
\end{array}\right] \equiv\left[\begin{array}{|c}
\frac{x}{y} \\
\vdots \\
\hline v
\end{array}\right]
$$

An aroitrary ordering of the arguments x, y, \ldots in the determinants ω_{i} in the product

$$
\omega=\omega_{1}^{m_{1}-m_{2}} \ldots \omega_{n}^{m_{n}}
$$

can be represented on the Young pattern, egg.

$$
\omega=\omega_{1} w_{2} \omega_{3}=x_{1}\left|\begin{array}{ll}
y_{1} & y_{2} \\
z_{1} & z_{2}
\end{array}\right|\left|\begin{array}{l}
s_{1} 2^{s} 3 \\
t_{1} t_{2} t_{3} \\
u_{1} u_{2} u_{3}
\end{array}\right|=
$$

s	y	x
t	z	
y		
y		
y		

Let us consider some examples.

Example 1.
One row only:

(m boxes).
The corresponding maximal eigenvector is

$$
\omega=[x][y] \ldots[w]=\omega_{I}^{m}
$$

The maximal eigenvector is totally symmetric under all permutations. Thus, the representation

$$
\alpha=\Delta_{I}^{m}
$$

is realized in the class of totally symmetric tensors of order m. The only totally symmetric Z-invariant is w_{1} 。 It follows that in the decomposition of a general tensor the symmetric tensor representation Δ_{2}^{m} occurs once and only once.

Example 2:

One column only

The representations $\Delta_{m}=\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$, as we know, correspond to totally enti-
symmetric tensors. The representation Δ_{n} can also occur only once in the decomposition.

Erample 3: For $m=3$ we can consider eog.
$\alpha=$

corresponding to $3!=6$ maximal eigenvectors ω{1}, ω_{2} :
ω

$=$| y | x |
| :--- | :--- |
| z | |
| | |

$\omega^{\prime}=$| x | z |
| :--- | :--- |
| y | |

$w^{\mathrm{in}} \mathrm{m}$| x | y |
| :--- | :--- |
| x | |

$\dot{\omega}=$| z | x |
| :--- | :--- |
| y | |

$\omega^{*}=$

y	z
x	

$\omega^{\prime \prime}=$

However a permutation of arguments within a column just changes the sign of the tensor, so we may consider only the upper row. Further, the corresponding vectors Bre not independent. Indeed:

$$
0=\left|\begin{array}{lll}
x_{1} & x_{1} & x_{2} \\
y_{1} & y_{1} & y_{2} \\
z_{1} & z_{1} & z_{2}
\end{array}\right|=x_{1}\left|\begin{array}{ll}
y_{1} & y_{2} \\
z_{1} & z_{2}
\end{array}\right|-y_{1}\left|\begin{array}{ll}
x_{1} & x_{2} \\
z_{1} & z_{2}
\end{array}\right|+z_{1}\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|
$$

Thus:

$$
\omega-\omega^{\prime \prime}+\omega^{\prime}=0
$$

Finally two of the maximal eigenvectors $\omega=\omega_{1} o \omega_{2}$ are linearly independent so that the representation

$$
\alpha=\Delta_{1} \Delta_{2}
$$

figuxes twice in the decomposition of $T^{i j k}$.

Remark: The rank of the tensor m figured crucially in all examples, the order of the group n (we are considering $U(n)$ did not figure at all. We shall show that this is true in generai.

Tecturelis

Remarks on the Symmetric Group

We shall use the symmetric group S_{m} (the group of permutations of n elements). Denote an element of S_{m} by the symbol:

$$
s=\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{m} \tag{I}\\
s\left(i_{1}\right) & s\left(i_{2}\right)_{001 s}\left(i_{m}\right)
\end{array}\right)
$$

where $s(i)$ is a function of an integer argument i and runs through all values $x=1,2, \ldots m$ in some order. The multiplication law is:

$$
\left(\begin{array}{ccc}
i_{1} \ldots & i_{m} \tag{2}\\
k_{1} \ldots & k_{m}
\end{array}\right)\binom{k_{1} \ldots k_{m}}{s_{1} \ldots s_{m}}=\binom{i_{1} \ldots i_{m}}{s_{1} \ldots s_{m}}
$$

The number of elements in S_{m} is ($m!$)。
We can now consider a representation of the group S_{m} in the space of multilinear forms Φ_{m} 。

$$
\begin{equation*}
\tilde{\Phi}\left(u_{1} \ldots u_{m}\right)=5 \Phi\left(u_{1}, u_{2} \ldots u_{m}\right)=\Phi\left(u_{s_{1}}, u_{s_{2}}, \ldots u_{s_{m}}\right) \tag{3}
\end{equation*}
$$

The coefficient tensor of in is obviously:

$$
\begin{equation*}
\hat{t}^{v_{1} v_{2} \cdots v_{m}}=t^{v_{s_{1}}} v_{s_{2}} \cdots v_{s_{m}} \tag{4}
\end{equation*}
$$

Example:

$$
s=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

$$
\tilde{v}^{v_{1} v_{2} v_{3} v_{4}}=t^{v_{4} v_{3} v_{2} v_{1}}
$$

We already know that

$$
\begin{equation*}
\left[\mathrm{T}_{\mathrm{g}}, \mathrm{~S}\right]=0 \text { for all geG } \tag{5}
\end{equation*}
$$

It can be shown that all Iinear operators A, commuting with all operators T_{g}, can be written as

$$
\begin{equation*}
A=\sum_{s} a(s) s \tag{6}
\end{equation*}
$$

Young Symmetrizers

Consider a Young pattern and introduce a standard numbering of the boxes:

$$
(m=18)
$$

Put one vector $x_{9} y, \ldots$ in each box.
Denote: pora permutation, acting horizontally, ioe interchanging two objects (vectors) in one row.
qua permutation, acting vertically, i.e. interchanging vectors in one column.

The operator

$$
\begin{equation*}
Y=\sum(\pm q)_{p} \tag{7}
\end{equation*}
$$

is called a Young symmetrizer. The sum is taken over all possible p and q. The sign of a term is " + " if q is an even permutation, " $=$ " of q is odd.

We can write:

$$
\begin{equation*}
Y=\hat{Q P} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{P}=\sum p \\
& \hat{Q}=\sum(\psi q) \tag{9}
\end{align*}
$$

Here \hat{P} is a horizontal "Symmetrizer", \hat{Q} a vertical "Antisymmetrizer".
It can be shown, that if we normalize y properly, putting

$$
\begin{equation*}
d=\frac{I}{\mu} Y \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
d^{2}=d \tag{11}
\end{equation*}
$$

i.e. d is a projection operatox.
(See M. Hammermesh, Group Theory, for proofs and further details).

Remark: In general \hat{P} and \hat{Q} do not commute.

If we perform a permutation s in the space ${ }_{m}$, then any Young symmetrizer Y acting in this space, gets transformed into

$$
Y_{s}=s Y s^{-1}
$$

We can construct a central symmetrizer, averaged over the symmetric group:

$$
\begin{equation*}
\varepsilon=\frac{1}{\mu^{2}} \sum_{s} \operatorname{sYs}^{-1} \tag{12}
\end{equation*}
$$

The normalization is such that

$$
\begin{equation*}
\varepsilon^{2}=\varepsilon_{0} \tag{13}
\end{equation*}
$$

A central symmetrizer, being an averaged quantity, commutes with any permutation S_{0}. In particular all central symmetrizers, constructed using different Young patterns, commute amongst each other:

$$
\begin{equation*}
\varepsilon_{1} \varepsilon_{2}=\varepsilon_{2} \varepsilon_{1} \tag{14}
\end{equation*}
$$

Notation: We shall write

$$
Y_{\alpha^{s}} d_{\alpha} \text { and } \varepsilon_{\alpha}
$$

to stress that the symmetrizers depend on the Young diagram α (on the representation which we are considering).

Theorem: The tensors

$$
\begin{equation*}
\tau_{\alpha}=\varepsilon_{\alpha} t \tag{15}
\end{equation*}
$$

form a maximal subspace in Φ_{m} in which the representation is a multiple of an irreducible representation with signature

$$
\alpha=\left(m_{1}, m_{2}, \ldots, m_{n}\right) .
$$

An arbitrary tensor can be written as a sum of projections:

$$
\begin{equation*}
t=\sum \tau_{\alpha} \tag{16}
\end{equation*}
$$

where the sum is over ail α satisfying

$$
m_{1}+m_{2}+\ldots+m_{n}=m \quad m_{i} \geq 0
$$

The tensor

$$
\begin{equation*}
t_{\alpha}=T_{\alpha} t \tag{17}
\end{equation*}
$$

transforms according to an irreducible representation with signature o and equivalent symmetrizers sY \mathbf{s}^{-1} project out equivalent irreducible spaces. The normalization μ_{α}, figuring in the central symmetrizer

$$
\begin{equation*}
\varepsilon_{\alpha}=\frac{1}{\mu_{\alpha}^{2}} \cdot \sum_{s} s Y_{\alpha} s^{-1} \tag{18}
\end{equation*}
$$

is

$$
\begin{equation*}
\mu_{\alpha}=\frac{m!}{k_{\alpha}} \tag{19}
\end{equation*}
$$

where $k_{\alpha}=k\left(m_{1}, \ldots m_{n}\right)$ is the multiplicity of the signature α in space $\Phi_{m}{ }^{\circ}$

Remark: We obviously have

$$
Y p=Y \quad q Y= \pm Y
$$

(the sign depends on the parity of the permutation q).
Example: Consider a third rank tensor $t^{i j k}$ and act upon it with the various symmetrizers. We know that the possible independent Young petterns are:

$$
\alpha_{1}{ }^{2} \begin{array}{|l|l|l|}
\hline 3 & 2 & 1 \\
\hline
\end{array} \alpha_{2} \begin{array}{|l|l|l|}
\hline \frac{1}{2} & \alpha_{3} n & 2 \\
\hline 3 & 1 \\
\hline
\end{array} \quad \alpha_{4}{ }^{2} \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline
\end{array}
$$

We have

$$
t_{\alpha}^{i, j k}=d_{\alpha} t^{i j k k}=\frac{1}{u_{\alpha}} Y_{\alpha} t^{i j k}
$$

Thus:

$$
\begin{aligned}
t_{\alpha_{1}}^{i j k}= & \frac{1}{6}\left\{t^{i j k}+t^{k i j}+t^{j k i}+f^{i k j}+t^{j i k}+t^{k j i}\right\} \\
t_{\alpha_{2}}^{i j k}= & \frac{1}{6}\left[t^{i j k}+t^{k i j}+t^{j k i}-t^{i k j}-t^{j i k}-t^{k j i}\right\} \\
t_{\alpha_{3} j k}= & \frac{1}{3}[1-(23)][1+(12)] t^{i j k}= \\
& \frac{1}{3}\left\{t^{i j k}+t^{j i k}-t^{i k j}-t^{k i j}\right\} \\
t_{\alpha_{4} j k=}= & \frac{1}{3}[1-(12)][1+(23)] t^{i j k}= \\
& \frac{1}{3}\left\{t^{i j k}+t^{i k j}-t^{j i k}-t^{j k i}\right\}
\end{aligned}
$$

and

$$
\sum_{\alpha} d_{\alpha} t^{i j k}=\sum_{\alpha} t_{\alpha}^{i j k}=t^{i j k}
$$

Remark: When we speak of a certain symmetry of a tensor t_{α} we have in mind that t_{α} satisfies

$$
Y t_{\alpha}=t_{\alpha}
$$

This does imply that t_{α} is antisymmetric with respect to columns

$$
q t_{\alpha}= \pm t_{\alpha}
$$

but does not in general imply that it is symmetric with respect to rows:

$$
p t_{\alpha} \hat{\tau}_{\alpha} t_{\alpha}
$$

(This can be seen in the above example.)

We shall not prove the above fundamental theorem. The idea of the proof is to show that the space E_{α} of tensors $t_{\alpha}=Y_{\alpha} t$ is invariant and contains only one maximal eigenvector $\omega(\alpha)=Y \gamma$, where γ is a certain vector in Φ_{m}. Further one can show that the subspace $\tau_{\alpha}=\varepsilon_{\alpha} t$ contains all marimal eigenvectors with signature α and that $t=\sum_{\alpha} \tau_{\alpha}$.

We still have to settle the question of degeneracy, i.e. how many times does each signature a occur in the given tensor $t^{i} 1^{\ldots i_{m}}$ 。

The picture we have is the following:
Let us represent the irreducible space E_{α} by a line:

The extreme left point corresponds to the maximal eigenvector $\omega_{0}(\alpha)$, the other points are reached by applying the lowering operators. All representations corresponding to the same α form a maximal subspace $M(\alpha)$ and we can represent it by a rectangular diagram with $k=k(\alpha)$ rows, while

The group G acts horizontally, the group of permutations S vertically. It can be shown that Ω_{α} - the space of all tensors, obtained from the maximal eigenvector by all permutations, is an irreducible space with respect to S. We can denote the representations of G by the symbol $\alpha(G)$, those of S by $\alpha(S)$ and we have a "reciprocity" relation:

$$
\begin{aligned}
& \text { Multiplicity of } \alpha(G)=\text { dimension of } \alpha(S) \\
& \text { Multiplicity of } \alpha(S)=\text { dimension of } \alpha(G)
\end{aligned}
$$

Without proof we give a recursion formula for the multiplicity

$$
\begin{equation*}
k\left(m_{1}, m_{2}, \ldots m_{n}\right)=\sum_{i=1}^{n} k\left(m_{1}, m_{2}, \ldots m_{i}-1, \ldots m_{n}\right) \tag{20}
\end{equation*}
$$

Thus: multiplicity in Φ_{m} in terms of multiplicity in Φ_{m-1}. Only those $k\left(m_{1} \ldots m_{n}\right)$ figure, which are admissable, i.e. the m's must not increase to the right and the lengths of all Young columns are less or equal to than n.
Examples:

$$
\begin{aligned}
& m=1 \quad k(I)=1 \quad(I)=[I]=\Delta_{I} \\
& m=2 \quad k(1,1)=k(1,0)=1\} \quad \Delta_{1} * \Delta_{1}=\Delta_{1}^{2}+\Delta_{2} \\
& k(2,0)=k(1,0)=1\} \text { or } \square \otimes \square=\square+\square \\
& m=3 \quad k(1,1,1)=k(110)=k(1,0,0)=I \\
& k(3,0,0)=k(2,0,0)=k(1,0,0)=i \\
& k(2,1,0)=k(2,0,0)+k(1,1,0)=k(1,0,0)+k(1,0,0)=2 \\
& \Delta_{1} \times \Delta_{1} \times \Delta_{1}=\Delta_{3}+\Delta_{1}^{3}+2 \Delta_{1} \Delta_{2} \\
& \text { or } \\
& \square \otimes \square \otimes \square=\square+\square \square+\square+\square \\
& m=4 \quad k(1111) \quad=k(1110)=k(1100)=k(1000)=1 \\
& k(4000)=k(3000)=k(2000)=k(1000)=1 \\
& k(2200)=k(2100)=k(2000)+k(1100)=k(1000)+k(1000)=2 \\
& k(2110)=k(2100)+k(1110)=k(2000)+k(1100)+k(1100)= \\
& =k(1000)+k(1000)+k(1000)=3 \\
& k(3100)=k(3000)+k(2100)=k(2000)+k(2000)+k(1100)=3
\end{aligned}
$$

Thus: $\square \otimes \square \otimes \square \square=\square+\square \square+2 \square+3 \square+3 \square \square$
(Remark: For $\operatorname{SU}(3)$ the signature ($1, \mathcal{I}, \mathcal{I}, I$) is excluded, since the coiumn has 4 boxes and $4>3$).

This completes the construction of irreducible representations of the group $G(G L(n, G)$ or $U(n))$ using three different methods - realizations on the group G, on the subgroup Z and on the class of tensors.

A problem which we have so f ar solved only for $n=2$ is that of finding a basis for each irreducible representation α. We are looking for a natural basis, in which ail operators representing the subalgebra E_{o} and the subgroup D are diagonal

$$
\delta \rightarrow \mathbb{T}_{\delta}=\left(\begin{array}{cc}
\alpha_{1}(\delta) & 0 \tag{21}\\
\alpha_{2}(\delta) & \\
0 & o_{N}(\delta)
\end{array}\right)
$$

For $\operatorname{SU}(2)$ all the $\alpha_{i}(\delta)$ where simple eigenvalues, so that there was no multiplicity problem。

Let us now consider the question of a basis and this multiplicity problem for $U(n)$.

The Algebra of Z-multipliers.

Return to the realization of an irreducible representation in the class of functions $f(z), z \in Z=Z_{+}$. We have

$$
\begin{equation*}
T_{g} f_{\mu v}\left(z_{\mu v}\right)=\alpha(z, g) f\left((z g)_{\mu v}\right) \tag{22}
\end{equation*}
$$

where

$$
z=\left(\begin{array}{ccccc}
1 & z_{12} & z_{13} & \cdots & z_{1 n} \tag{23}\\
1 & z_{23} & & z_{2 n} \\
& 1 & \cdots &
\end{array}\right)
$$

$$
\begin{align*}
& \alpha(\mathrm{z}, \mathrm{~g})=(\mathrm{zg})_{11}^{m_{1}-m_{2}} \quad\left|\begin{array}{ll}
(\mathrm{zg})_{11} & (\mathrm{zg})_{12} \\
(\mathrm{zg})_{2 I} & (\mathrm{zg})_{22}
\end{array}\right|^{\mathrm{m}_{2}-\mathrm{m}_{3}} \quad \ldots(\text { det } g)^{m_{n}}= \\
& =\Delta_{1}^{p_{1}}(\mathrm{zg}) \Delta_{2}^{p_{2}}(\mathrm{zg}) \ldots \Delta_{\mathrm{n}}^{\mathrm{p}_{n}}(\mathrm{zg}), \tag{24}\\
& \left(z_{g}\right)_{\mu \nu}=\frac{\Delta_{\mu \nu}(z g)}{\Delta_{\mu}(z g)} \tag{25}
\end{align*}
$$

and

$$
\Delta_{\mu v}=E_{12 \ldots \mu-I v}
$$

is the indicated subdeterminant of $\|\mathrm{g}\|$ 。
The space R_{α} of functions $f(z)$, in which the irreducible representation acts can be characterized by a system of "indicators" $I_{1} \ldots . I_{n-1}$, where

$$
\begin{align*}
& I_{1}=\sum_{k=1}^{n} z_{2 k} \frac{\partial}{\partial z_{2 k}} \equiv z_{2 k} \frac{\partial}{\partial z_{I k}} \tag{26}\\
& I_{2}=z_{3 k} \frac{\partial}{\partial z_{2 k}} \tag{27}\\
& I_{n-1}=z_{n k} \frac{\partial}{\partial z_{n-1 k}} \tag{28}
\end{align*}
$$

It is easy to check that

$$
\begin{equation*}
I_{1} \Delta_{1}(z g) \stackrel{1}{F} 0 \quad I_{1} \Delta_{k}(z g)=0 \quad k=2, \ldots, n \tag{29}
\end{equation*}
$$

(The operator I_{1} acting on Δ_{2}, Δ_{3} etc. replaces the fifst row by the second one, so that the determinants have two identical rows and are thus equal to zero). Since Δ_{I} depends linearly on $z_{I k}$ we have

$$
\begin{equation*}
I_{2}^{2} \Delta_{I}=0 \tag{30}
\end{equation*}
$$

In general

$$
\begin{align*}
& I_{k} \Delta_{I}=\ldots I_{k} \Delta_{k-I}=I_{k} \Delta_{k+1}=\ldots=I_{k} \Delta_{n}=0 \tag{31}\\
& I_{k} \Delta_{k} \neq 0 \quad I_{k}^{2} \Delta_{k}=0
\end{align*}
$$

We already know that the space R_{α} is spanned by the functions

$$
\alpha(z, g)=\Delta_{1}^{p_{1}} \Delta_{2}^{p_{2}} \ldots \Delta_{n}^{p_{n}}
$$

It follows that if $f(z) \in R_{\alpha}$ then

$$
\begin{equation*}
I_{\alpha}^{I_{\alpha+1}} f(z)=0 \quad \alpha=1,2, \ldots n-1 \tag{32}
\end{equation*}
$$

This is called the indicator system and we have $n-1$ equations for $\frac{n(n-1)}{2}$ variables \Rightarrow infinitely many solutions.

Theorem: The space R_{∞} of the irreducible representation of G coincides with the class of solutions of the indicator system. We drop the proor.

Remark: Actually, we have

$$
I_{\alpha}=E_{\alpha \alpha+1}
$$

where $E_{\alpha \alpha+1}$ is the operator representing the generators

$$
e_{\alpha \alpha \alpha 1}=\left(\begin{array}{c}
\alpha+1 \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\cdots \cdots \cdots \cdots \\
1 \\
\vdots
\end{array}\right)
$$

in Z.

In the realization on the group we also have

$$
I_{\alpha}^{p_{\alpha+1}}{ }_{f}(g)=0
$$

and we must add the condition for $f(g)$ not to depend on z_{-}:

$$
E_{i k} f(g)=0 \quad i=k
$$

and the condition

$$
E_{i j} f(g)=m_{i} f(g)
$$

(i,e. the homogeneity condition $f(\delta g)=\alpha(\delta) f(g)$)

Thus we have a space R_{α} of functions $f(z)$, being solutions of the indicator systems. We wish to ind a basis in R_{o}, consisting of weight vectors

$$
\begin{equation*}
T_{\delta} \mathcal{F}^{f}=\gamma(\delta) f^{0} \tag{33}
\end{equation*}
$$

and to enumerate all the weights $\alpha(\delta)$. We know how T_{g} acts for any g. In particular for $g=\delta$ we have

$$
\begin{equation*}
\left.T_{\delta} f^{\prime} z\right)=\alpha(\delta) f^{\prime}\left(\delta^{-1} z \delta\right) \tag{34}
\end{equation*}
$$

Where

$$
\alpha(\delta)=\delta_{I}^{m_{1}} \ldots \delta_{n}^{m_{n}} \text { is the highest weight. }
$$

Let us fix the maximal eigenvector e_{1}, corresponding to the highest weight $\alpha(\delta)$, putting

$$
\begin{equation*}
\epsilon_{1}=1 \tag{35}
\end{equation*}
$$

and obtain the other eigenvectors.

Definition: The polynomial $B(z)$ is a weight multiplier on Z if it is an eigenvector with respect to the transformation $z \rightarrow \delta^{-1} z \delta$ i.e.

$$
\begin{equation*}
\theta\left(\delta^{-I} z \delta\right)=\mu(\delta) \theta(z) \tag{36}
\end{equation*}
$$

If $\theta(z)$ is a solution of the indicator system, then $\theta(z) \in R_{\alpha}$ and we have

$$
\begin{equation*}
T_{\delta} \theta(z)=\alpha(\delta) \theta\left(\delta^{-1} z \delta\right)=\alpha(\delta) \mu(\delta) \theta(z) \tag{37}
\end{equation*}
$$

i.e. $\theta(z)$ is an eigenvector corresponding to the eigenweight

$$
\begin{equation*}
\gamma(\delta)=\mu(\delta) \alpha(\delta) \tag{38}
\end{equation*}
$$

Similatily, it follows from (34) that any weight vector in R_{α} is a Z multiplier.

Thus: We have vectors $\hat{\theta}(z) \in R_{\alpha}$ acting as multipliers on the group and multipliers $\mu(\delta)$, acting in the weight space:

Remember that the highest weight is

$$
\alpha(\delta)=\delta_{1}^{m_{1}} \ldots \delta_{n}^{m_{n}} \quad m_{1} \geq m_{2} \geq \ldots m_{n} \ldots \text { integers }
$$

It can be shown that

$$
\mu(\delta)=\delta_{1}^{k_{1}} \delta_{2}^{k_{2}} \ldots \delta_{n}^{k_{n}}
$$

so that the action of $\mu(\delta)$ on $\alpha(\delta)$ corresponds to the addition:

$$
\mathrm{m}_{\mathrm{i}} \rightarrow \mathrm{~m}_{\mathrm{i}}+\mathrm{k}_{\mathrm{i}}
$$

The multipliers $\theta(z)$ and $\mu(\delta)$ can be used to construct a basis in R_{α} and to obtain all weights and their multiplicities.

Let us again consider the special case of $\operatorname{SU}(3)$.

Spectrum and Basis for the Group SU(3)

In this case we have

$$
z=\left(\begin{array}{ccc}
1 & z_{12} & z_{13} \\
0 & 1 & z_{23} \\
0 & 0 & 1
\end{array}\right)
$$

The elements of z are weight multipliers in R_{α} 。
Indeed

$$
\delta^{-1} z \delta=\left(\begin{array}{ccc}
1 & \delta_{1}^{-1} z_{12} \delta_{2} & \delta_{1}^{-1} z_{13^{\delta}} \\
0 & 1 & \delta_{2}^{-1} z_{23^{\delta} 3} \\
0 & 0 & 1
\end{array}\right)
$$

so that $z_{i k}$ is a weight multiplier corresponding to a multipiier

$$
\mu_{i k}=\delta_{i}^{-1} \delta_{k}
$$

i.e.

$$
\mu_{12}=\delta_{1}^{-1} \delta_{2}, \quad \mu_{23}=\delta_{2}^{-1} \delta_{3} \quad \mu_{13}=\delta_{1}^{-1} \delta_{3}
$$

and

$$
\mu_{13}=\mu_{12} \mu_{23}
$$

Consider a representation $\alpha=\left(m_{1}, m_{2}, m_{3}\right)$, say $\alpha=(7,3,0)$ and the space $R_{\alpha}=R_{\left(m_{1} m_{2} m_{3}\right)}$. In particular:

$$
R_{(7,3,0)}
$$

The signature is

$$
\alpha=(7,3,0)=[4,3,0]=\Delta_{1}^{4} \Delta_{2}^{3}
$$

Let us find the corresponding multipliers:
The vector Δ_{1} corresponds to two multipliers:

$$
\Delta_{1}=\delta_{1} \leftrightarrow\left\{z_{12}, z_{13}\right\}
$$

(first row in z)
The bivector Δ_{2} corresponds to two other multipliers

$$
\Delta_{1}=\delta_{1} \delta_{2} \leftrightarrow\left\{z_{23}, \hat{z}_{13}=\left(\begin{array}{cc}
z_{12} & z_{13} \\
1 & z_{23}
\end{array}\right)\right\}
$$

Let us show how the multipliers act.
The weight diagram, which we already know how to construct is:

Let us first discuss just this example:

1) Consider $z_{12}: \quad \mu_{12}=\delta_{1}^{-1} \delta_{2} \quad k_{1}=-1, k_{2}=1, k_{3}=0$

Thus we can let

$$
1, z_{12}, z_{12}^{2}, z_{12}^{3} \text { and } z_{12}^{4}
$$

act on α (because Δ_{1}^{4} figures in α). Higher powers are forbidden.

We get
$\left(m_{1} m_{2} m_{3}\right) \rightarrow\left(m_{1}, m_{2}, m_{3}\right)+n\left(k_{1}, k_{2}, k_{3}\right)$
i.e. $\quad(7,3,0) \rightarrow(6,4,0) \rightarrow(5,5,0) \rightarrow(4,6,0) \rightarrow(3,7,0)$

Thus, we reach fiure points along the horizontal. Each has multiplicity one
2) Consider z_{23} : $\mu_{23}=\delta_{2}^{-1} \delta_{3} \quad k_{1}=0, k_{2}=-1 \quad k_{3}=1$

We have:

$$
1, z_{23}, z_{23}^{2}, z_{23}^{3}
$$

(No higher powers, since Δ_{2} figures in the power 3: Δ_{2}^{3}).

$$
(7,3,0) \rightarrow(7,2,1) \rightarrow(7,1,2) \rightarrow(7,0,3)
$$

We have four points with multiplicity one.
3) Along the line $\alpha \rightarrow \alpha^{*}$ we use

$$
\begin{array}{ll}
z_{13}^{k} \hat{z}_{13}^{\ell} & 0 \leq k \leq 4 \\
& 0 \leq \ell \leq 3
\end{array}
$$

Draw an auxiliary diagram:

Points (k, l) on a line $k+l=$ const. correspond to the same eigenvalue \Rightarrow The multiplicities are:

$k+2:$	multiplicity	$k+2:$	multiplicity
0	1	4	4
1	2	5	3
2	3	6	2
3	4	7	1

From here we can easily show, that the multiplicities are constant along each hexagon.

Lectuse 19

Now get us geturn to general repreaentations of Su(3) and considew
the epecturn amd the besis in Ba $_{0}$ 。
We me congidering the spectal group

```
detcs=1
```

so we cun memblise the socroture $\left(m_{1} m_{2} m_{3}\right)$. Indeed Iet us put $m_{3}=0$ nan wrate:

$$
\alpha=[0, q]=A^{2} \Delta^{q}
$$

Here $\Delta=4$ mepresents the vector mepresmatetion. $Z=A_{2}$ the bivector, When in the pathrulas case of Suls) happens to be duan to 4 . (Tn taris of Youns petweme we beve:

 5emice am nonomiant:

$$
\begin{aligned}
& \text { E23: } \operatorname{cabb}_{23}=2_{23}^{b} 2_{5}^{b} \\
& 0 \leq E \leq p, 0 \leq b+c \leq q, b \neq 0
\end{aligned}
$$

 hrghest the the InWet wetchtho The mitiplierm in the serien generate the mutuplectues
where

$$
I=2_{3} \ldots k_{0}=I_{0} k_{0} k_{0,0 k_{0}} k_{0}-k_{0002,1}^{|p-q|+I \text { entroses }}
$$

$$
S_{0} \equiv \min (P, 9)+L_{0}
$$

Proof: Dropped for lack of time.
Graphic pilustration:
enion:
The seroes S_{0} acta Elong the line ou*, S_{12} Ebove this line, S_{23} below it.

Coroliamy: To construct the weight diagrams it is suriveient to find all the vertices of the iargest hexagon which an of course degenergte into a triangle). Comnect the verrices ns shown below

The mattiplicitues of eigenvelues on the outmost figure is i, it increases by steps of one we were pargilel to the line ax* till we hit the triangle, where the multiplicity reaches itw maximum yalue $k_{0}=\min (p, q)+i_{0}$ Beyond the triangie the multiplicity again decreases to 1 by steps of one

Examples:

$$
\text { rector (}=\text { quask })
$$


```
bivector (= antiquark)
```


> octet

Separation of multiple points in the spectrum

The weight vectors corresponding to degenerate (multiple) weights in the spectrum obriousiy cannot be characterized by the weight they correspond to and must be enumerated differently.

The weights themselves were obtained by considering the representation

$$
g+T_{g}
$$

and reducing it to the subgroup of diagonal matrices of:

We cen perform such a reduction by steps, ide. first reduce the group G to a subgroup G_{o}, where

$$
E_{0}=\left(\begin{array}{c:c}
2 & 0 \\
\hdashline 0 & 0 \\
00 & \delta_{3}
\end{array}\right) \quad(\operatorname{det} a) \delta_{3}=1
$$

for all $G_{0} \in G_{0}$ ．We can then restrict ourselves to the case when a is diagonal．This makes it possible to use the highest weights for the representations of G_{0} to label eigenvectors．

Let us firset consider an auxiligary problem，namely the reduction of $U(3)$ to $U(2)_{0}$

We drop the condition det $g=1$ and the normalization of the signature $\left(m_{1}, m_{2}, m_{3}\right)$ 。

Remark：In the language of Young patterns the restriction $U(3) \rightarrow S U(3)$ corresponds to deleting ail columns of length 3 （n for $S U(n)$ ）：

（each such coium corresponds to factor $\Delta_{n}\left(\Delta_{3}\right.$ for $\left.\operatorname{Su}(3)\right)$ in the highest weight

$$
\alpha=\Delta_{1}^{p_{1}} p_{2} \ldots \Delta_{n}^{p_{n}}
$$

however $A_{n}=$ det $g=1$ 。
Trke $G=U(3), G_{0} \sim U(2)$, ioe。

$$
g_{0} E G_{0} \rightarrow G_{0}=\left(\begin{array}{l|l}
a & 0 \\
0 & 0 \\
001
\end{array}\right) \quad \text { aEU(2) }
$$

Problem：
Consider a representation of G given by the signature $\alpha=\left(m_{1}, m_{2}, m_{3}\right)$ ． We wish to restrict G to G and find all signatures of the representations of G_{o} realized in the space R_{α} ．Thus，we are looking for a decomposition

$$
\left.\alpha\right|_{G_{0}}=\beta_{0}+\beta_{1} \ldots+\beta_{s}
$$

Where β_{f} are the highest weights（the signatures）of irreducible representations of σ_{0}

Solution: We must find the z-invariants of the subgroup Z_{0} :

$$
z_{0}=\left(\begin{array}{lll}
1 & x & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad z_{0} \varepsilon Z_{0}
$$

In $R_{c:}$ we have

$$
T_{0} f_{0}^{\prime}(z)=f^{\left(z z_{0}\right)}
$$

Thus, the maximal eigenvectors must satisfy

$$
\omega\left(z z_{0}\right)=\omega(z) \quad z_{0} \varepsilon Z_{0}
$$

An arbitrary zeZ can be written as

$$
\begin{aligned}
z=\left(\begin{array}{lll}
1 & z_{12} & z_{13} \\
0 & 1 & z_{23} \\
0 & 0 & 1
\end{array}\right) & =\left(\begin{array}{lll}
1 & 0 & t_{1} \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & \zeta & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)= \\
& =\left(\begin{array}{lll}
1 & 0 & z_{13} \\
0 & 1 & z_{23} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & z_{12} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Thus $\omega\left(z z_{0}\right)=\omega(z)$ if $\omega(z)$ does not depend on ζ but only on t_{1} and t_{2}.

$$
\omega=\omega\left(t_{1}, t_{2}\right)
$$

The maximal eigenvector for G was $\omega_{0}=1$. This will certainly be a maximal eigenvector for a subgroup, so
$\omega_{0}=1$
is one solution of our problem. The other solutions can be obtained by applying certain Z-multipliers

$$
\omega_{1}=\omega_{1}\left(t_{1}, t_{2}\right) \text { to } \omega_{0}
$$

The Z-multipliers $t_{1}=z_{13}$ and $t_{2}=z_{23}$ correspond to the multiplier

$$
\mu_{1}=\delta_{1}^{-1} \delta_{3} \text { and } \mu_{2}=\delta_{2}^{-1} \delta_{3}
$$

in the weight space. For the subgroup $U(2)$ we must put $\delta_{3}=1$. Thus the application of μ_{1} and μ_{2} corresponds to decreasing the number m_{1} and m_{2} in the signature by steps of one

We obtain the theorem:
If we reduce the representation $\alpha=\left(m_{1}, m_{2}, m_{3}\right)$ of $U(3)$ to $U(2)$, then we always have the signature

$$
\beta_{0}=\left(m_{1}, m_{2}\right)
$$

for $U(2)$ and further ail signatures obtained as

$$
=\mu_{1}^{k_{1}}{ }_{\mu_{2}} 2_{\beta_{0}}=\left(m_{1}-k_{1}, m_{2}-k_{2}\right)
$$

Putting $a=\left(m_{1}, m_{2}, m_{3}\right)=[p, q, r]=\left[m_{1}-m_{2}, m_{2}-m_{3}, m_{3}\right]$ we have

$$
0 \leq k_{1} \leq p \quad 0 \leq k_{2} \leq q
$$

The spectrum of the subgroup $U(2)$ in a representation of $U(3)$ is simple (there is no multiplicity problem).

In other words:
All signatures $\left(l_{1}, \ell_{2}\right)$ of $U(2)$ will figure once and only once, for which

In terms of Young patterns:
We obtain the reduction $U(3) \geqslant U(2)$ for a given representation of $u(3)$, by:
a) Eliminating the third row
b) Taking the obtained diagram and gradually decreasing the length of each row till its length coincides with the length of the following row in the $U(3)$ diagram.

Example:

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| | | | |
| (2) | | | |

$\left.(5,3,2)\right|_{U(2)}=(5,3)+(4,3)+(3,3)+$

$$
(5,2)+(4,2)+(3,2)
$$

Thus a basis for representation of $U(3)$ (or $S U(3)$ can be characterized by a pattern

$$
\begin{aligned}
& \gamma=\left(\begin{array}{ccc}
m_{1} & m_{2} & m_{3} \\
\ell_{1} & \ell_{2} \\
s_{1}
\end{array}\right) \quad \begin{array}{c}
m \geq \ell_{1} \geq m_{2} \geq \ell_{2} \geq m_{3} \\
\ell_{1} \geq s_{1} \geq \ell_{2}
\end{array} \\
& \text { caitlin pattern). }
\end{aligned}
$$

Here m_{1}, m_{2} and m_{3} are fixed and determine the representation (or its highest weight), whereas l_{1}, l_{2} and s_{1} run through all possible values and characterize the highest weights of the representations of the subgroups in the chain of groups

$$
u(3) \supset u(2) \supset u(1)
$$

The generalization to $U(n)$ is now straightforward.

The Gelfand-Tseitiin Besis for U(n)

Reduction $U(n) \supset U(n-1)$.
Choose the basis in such a way that the relevant $U(n-1)$ subgroup is realized by the $U(n)$ matrices

Consider an irreducible representation of $U(n): \alpha=\left(m_{1}, \ldots, m_{n}\right)$. We can again show that in the reduction of α to $U(n-1)$ we have

1) The signature

$$
\beta_{0}=\left(m_{1} \ldots m_{n-1}\right)
$$

is always contained in of $\mid \cup(n-1)^{\circ}$
2) The other signatures can be obtained by applying the z multipliers in the last column of

$$
z=\left(\begin{array}{ll}
& z_{i n} \\
z_{n-\ln } \\
00 \ldots 0 & I
\end{array}\right)
$$

and $z_{k n}$ corresponds to the weight $\delta_{k}^{-1} \delta_{n}=\delta_{k}^{-1}$, so that the reduction $\alpha \mid U(n-1)$ contains each signature

$$
\beta=\left(m_{1}-s_{1}, \ldots m_{n}-s_{n}\right) \quad s_{i} \geq 0
$$

once and only once (subject to the condition that β is indeed a signature, i。e. satisfies the usual ordering conditions).

Theorem: The restriction $\left.\left(m_{1} m_{2} \ldots m_{n}\right)\right|_{U(n-1)}$ contains all signatures $\left(l_{1}, l_{2} \ldots l_{n-1}\right)$ for $U(n-1)$ once and oniy once, for which:

$$
m_{1} \geq l_{1} \geq m_{2} \geq \ldots \ldots \ell_{n-1} \geq m_{n} .
$$

The Gelfand-Tseitlin Basis:
Consider the reduction

$$
U(n) \partial U(n-1) \partial \ldots \partial U(1)
$$

and classify a basis so that

The largest boxes correspond to irreducible representations of $U(n-1)$, the smaller ones to $U(n-2)$, ete, down to $U(I)$.

Each basis vector corresponds to a pattern

$$
\gamma=\left(\begin{array}{c}
m_{1} \ldots \ldots m_{n-1} m_{n} \\
\varepsilon_{1} \ldots i_{n-2}{ }_{n-1} \\
s_{1} \ldots s_{n-2} \\
u_{1} u_{2} \\
v_{1}
\end{array}\right)
$$

with

$$
\begin{gathered}
m_{1} \geq d_{1} \geq m_{2} \geq \ell_{2} \ldots 0 \ell_{n-1} \geq m_{n} \\
2_{1} \geq s_{1} \geq \ell_{2} \geq s_{n-2} \geq \ell_{n-1} \\
u_{1} \geq v_{1} \geq u_{2}
\end{gathered}
$$

Again $m_{1} 00.9 m_{n}$ are fixed, all other signatues (of the subgroups) mun through all admissable falues.

Thus: a rector e_{γ} is basis vector if it iz contained in the representation of $U(n-1)$ with signature $\left(\ell_{1} \ldots \ell_{n-1}\right)$, in that of $U(n-2)$ with signature $\left(s_{1} \circ s_{n-2}\right)$, etc.

Remarks: The chain of subgroups $U(n) \supset U(n-I) \supset J U(1)$ is called an enumerating cone. Its choice is not unique. The cone corresponding to the chain

$$
g=(\lrcorner \neg)
$$

leads to the Gelfand-Tseitilin basis. The eigenvector e_{γ} corresponds to the weight (the eigenvalue):

$$
r(\delta)=\delta_{1}^{v_{1}}\left(u_{2}+u_{2}\right)-v_{1} \ldots \delta_{n}^{\left(m_{1}+m_{2}+\ldots+m_{n}\right)-\left(l_{1}+l_{2} \ldots+l_{n-1}\right)}
$$

The number of parameters determining γ, if we exclude the signature ($m_{1} \ldots m_{n}$) is

$$
I+2+\ldots+n-1=\frac{n(n-1)}{2} .
$$

equal to the number of parameters in the group Z. The basis vectors e_{Y} can be given expicicitly, but we shall not do that.
2) We could have chosen different cones, e.g. by fitting the subgroups into the group differently. For $U(3)$ the possibilities are

$$
\begin{aligned}
& \left(\begin{array}{c|c|c}
x & x & x \\
\hdashline x & x & x \\
\hline x & x & x
\end{array}\right) \quad\left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right)
\end{aligned}
$$

Mathematically all these schemes are equivalent, but their physical interpretations can be quite different. Thus in the eightfold way the first three diagrams correspond to the splitting out of isotopic spin (I-spin), the next two to so-called U and V spin.

It is an interesting mathematical problem (with a lot of physical content) to construct the operators connecting different bases with other and this can be done quite simply in terms of z-multipliers.
3) The Gelfand-Tseitiln basis is mathematically very simple and pretty, unfortunately it is not always that basis which is of physical interest. Thus, for $\operatorname{SU}(3)$ in particle physics it is directly relevant, since the $S U(2)$ in the chain corresponds say to isospin and the $U(1)$ specifically to the third projection. However, already in SU(6) we are interested in the subgroup:

$$
\operatorname{sU}(6) \supset \operatorname{sU}(3) \times \operatorname{sU}(2)
$$

rather than in the Gelfand-Tseitiin chain, containing $S U(5)$, etc.
For $\operatorname{SU}(3)$ applications in low energy nuclear physics (the shell model), or in a quantum mechanical treatment of the harmonic oscillator, we are interested in an $O(3)$ subgroup corresponding to angular momentum and this $O(3)$ has nothing to do with the SU(2) of isospin.
4) Similar Gelfand-Tseitin bases axist for the other classical groups - the orthogonal and sympletic ones.
5) For non compact groups there is a much greater variety of possible subgroup chains. E.G. for U(2,1) we can consider two obviously non-equivalent chains $U(2,1) \supset U(2) \supset U(1)$ and $U(2,1) \supset U(1,1) \supset U(1)$, as well as others.

Characters of Irreducible Representations

Let us, without elaborating, introduce a concept useful in many applications, namely the character of an irreducible representation (see Weyl's book).

$$
X(\delta)=\operatorname{Tr} T_{\delta}
$$

Thus: the character of T_{g} is the sum of all weights of T_{g}, each entering as many times as is its multiplicity.

Weyl derived two different expressions for $X(\delta)$:
(1)

$$
X(\delta)=\frac{D\left(l_{1}, \ell_{2}, \ldots, l_{n}\right)}{D(n-1, n-2, \ldots 0)}
$$

where:

$$
\begin{aligned}
& \ell_{1}=m_{1}+(n-1) \\
& \ell_{2}=m_{2}+(n-2) \\
& \ell_{n-1}=m_{n-1}+1 \\
& \ell_{n}=m_{n}
\end{aligned}
$$

and

$$
D\left(\imath_{1}, \ell_{2}, \ldots \ell_{n}\right)=\left|\begin{array}{ccc}
\ell_{1} \ell_{2} & \ell_{n} \\
\delta_{1} l_{1} & \ldots & \delta_{1} \\
\ell_{1} \ell_{2} & \ell_{n} \\
\delta_{2}^{\delta_{2}} & \ldots . \delta_{2} \\
\delta_{n} & & \ldots \\
\delta_{n} & \ell_{n}
\end{array}\right|
$$

(2)

$$
\begin{aligned}
& X(\delta)=\quad{ }_{m_{1}},{ }^{\sigma_{1}+1},{ }^{\sigma} m_{1+1-1} \\
& \sigma_{m_{n}}-(n-1) \sigma_{m_{n}} \\
& \sigma_{m}(\delta)=\sum_{s_{1}+\ldots+s_{n}=m} \delta_{1}^{s_{1}} \ldots \delta_{n}^{s_{n}}
\end{aligned}
$$

Dimensions of Irreducible Representations of SU(n)

Using Weyls formulas we can derive an expression for the dimension of the representation

$$
\alpha=\left(m_{1}, \ldots, m_{n}\right)
$$

namely

$$
\operatorname{dim} \alpha=\frac{\sum_{j\left(l_{i}-l_{j}\right)}}{\left.\frac{\pi\left(l_{i}^{0}-l_{j}^{0}\right)}{i<j}\right)}
$$

where

$$
\begin{aligned}
& \ell_{j}=m_{j}+(n-j) \quad j=1 \ldots n \\
& l_{j}^{0}=n-j
\end{aligned}
$$

The simplest way of understanding this formula is in terms of Young diagrams. Indeed, the method is the following: draw the Young pattern corresponding to α and eliminate all columns of length n (for $\operatorname{SU}(n)$). Write the numbers $l_{i}^{0}=n-1, n-2 \ldots, 2,1,0$ next to the pattern. Then $l_{j}=\left(l_{i}^{0}+\right.$ length of row $)$ Write dim α as a fraction with $l_{1} \circ l_{2} \ldots l_{n}$ and
 $\ell_{i}^{0}-\ell_{j}^{0}, i<j$, in the denominator.
Examples:
A. $\mathrm{SU}(3)$

$$
\ell_{1}^{0}=2, l_{2}^{0}=1, \quad l_{3}^{0}=0
$$

$$
\begin{aligned}
& l_{1}=2+1=3 \\
& l_{2}=1+0=1 \\
& l_{3}=0+0=0
\end{aligned}
$$

$$
\operatorname{dim}(1,0,0)=\frac{3.1 \cdot 3-1)}{2.1(2-1)}=3
$$

2) $\begin{aligned} & 2 \\ & 1 \\ & 0\end{aligned} \square \quad \operatorname{dim}(2,1,0)=\frac{4.2:(4-2)}{2.1 \cdot(2-1)}=8$
3)

4)

$$
\operatorname{dim}(3,2,0)=\frac{5.3}{2.1} \cdot 2=15
$$

B. $\underline{\operatorname{SU}(6)}$
1)

$$
\operatorname{dim}(1,0,0,0,0,0)=\frac{6 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \frac{2 \cdot 3 \cdot 4 \cdot 5 \cdot}{1 \cdot 2 \cdot 3 \cdot 4 \cdot} \frac{1.2 \cdot 3 \cdot 1 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 1}=6
$$

2)

$$
\operatorname{dim}(2,1,0,0,0,0)=\frac{7 \cdot 5 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \frac{2 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} \frac{2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3 \cdot} \frac{1 \cdot 2}{1 \cdot 2} \frac{1}{1}=70
$$

3)

$$
\operatorname{dim}(2,1,1,1,1,0)=\frac{7.5 \cdot 4 \cdot 3 \cdot 2}{5.4 \cdot 3 \cdot 2 \cdot 1} \frac{2.3 .4 \cdot 5}{1.2 .3 .4} \cdot \frac{1.2 .3}{1.2 \cdot 3} \frac{1.2}{1.2} \cdot \frac{1}{1}=35
$$

Remark: The reduction of a group to subgroups, as we see, plays a fundamental roie in group representation theory. In physies this reduction corresponds to the breaking of a symmetry. Thus: We have e.g, an SU(3) symmetry, then we introduce medium strong interactions reducing the $\mathrm{SU}(3)$ symmetry to an $\mathrm{SU}(2)$ one.

Casimir Operators

Above we have used the highest weights of a group and of its subgroups to separate multiple points in a spectrum (to remove a degeneracy). In physics this is usually done by introducing a complete set of commuting operators (a complete set of observables).

The corresponding problem in representation theory is: given a representation $g \rightarrow T_{g}$ find all functions of the operators T_{g} (or of their generators), which commute with all operators $\mathrm{T}_{\mathrm{g}}{ }^{\circ}$

These operators are called Casimir operators, or Laplace operators, or Beltrami operators.

Definition: Envelloping Algebra.

Let M be a set of matrices, not necessarily an aigebra. Add to M all products of elements $m_{1} \mathrm{EM}$ and all linear combinations of products. We obtain an algebra $U(M)$, called the envelloping algebra.

Example: The Pauli matrices σ_{1}, σ_{2} and σ_{3} do not form an associative algebra (with respect to multiplication), since $\sigma_{1}{ }^{2}=e$. Add de \Rightarrow we get the envelloping migebra.

The Universal Envelloping Algebra of a Iie Algebra

Let X be an abstract Lie algebra(over the field of complex or real numbers). We know the commutators of all elements $x, y \in X$:

$$
[x, y]
$$

We can define a new operation - multiplication: xy- so that

$$
[x, y]=x y-y x
$$

It is sufficient to do this for the basis vectors:

$$
e_{1}, e_{2}, \ldots e_{n}
$$

and write all products

$$
e_{i_{1}} e_{i_{2}} \ldots e_{i_{3}}
$$

remembering that

$$
\left[e_{i}, e_{j}\right]=e_{i} e_{j}-e_{j} e_{i}=C_{i j}^{k} e_{k}
$$

We obtain an infinite-dimensional algebra $A(X)$, called the universal envelloping algebra of X. A general element of $A(X)$ can be written as

$$
t^{(s)}=t^{i_{1} i^{\circ o i_{s}}} e_{i_{1}} e_{i_{2}} \ldots e_{i_{s}}
$$

The tensor $t^{i_{1} \ldots i^{\prime}}$ can be taken to be symmetric (a tensor which is antisymmetric with respect to a pair of indices can be reduced to a lower order tensor in view of the commutation relations for e_{i}). If we have a representation of the Lie algebra X

$$
e_{i} \longrightarrow E_{i}
$$

we can continue it to a representation of the envelloping algebra $A(X)$:

$$
e_{i_{1}} e_{i_{2}} \ldots e_{i_{s}} \longrightarrow E_{i_{1}} E_{i_{2}} \ldots E_{i_{s}}
$$

The obtained representation is itself a finite-dimensional, envelloping aigebra for the given representation of the Lie algebra X (since each E_{i} is a finite-dimensional matrix) (at least for finite dimensional representations of X).

The Casimir operators:
Consider a commutative subalgebra $C(X)$ of $A(X)$

$$
C(X) \subset A(X)
$$

such that the elements

$$
C_{i} \in C(X)
$$

commute with ali elements of $A(X)$ 。 We cail $C(X)$ the centre of the envelioping algebra $A(X)$ of the Lie algebra X 。

Consider a representation of the algebra:

$$
\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{E}_{\mathrm{i}}
$$

An element $c_{i} \in C(X)$ gets represented by an operator K_{c}

$$
c \rightarrow K_{0}
$$

If T_{g} is irreducible, then it follows from Schur's lemmat that K_{c} is a multiple of the identity operator:

$$
K_{e}=\lambda(s) I_{0}
$$

The operators K_{c} are called the Casimir operators for the representation ${ }^{T} g^{\circ}$

Lecture 20

Construntion of the Centre of an Envelloping Alebra

Put

$$
C=c^{i_{1} \ldots i_{s}} e_{\mathcal{L}_{1} \ldots e_{i_{s}}}
$$

and let

$$
\left[c, e_{i}\right]=0 \quad i=1,2, \ldots n
$$

This is a system of equations for the tensor $c^{i_{1} \cdots \dot{D}^{\circ}}$. However, let us use a more giobal approach, using the adjoint representation of the algebra and the group. The representation

$$
e_{i} \rightarrow E_{i} \quad E_{i} e_{j}=\left[e_{i}, e_{j}\right]
$$

is the adjoint representation of X 。 Exponentiating, we get the adjoint representation of the group:

$$
g \rightarrow \rho(g)
$$

acting in the algebra X.

$$
\rho(g) e_{j}=\rho_{j}^{s}(g) e_{s} .
$$

The monomials

$$
e_{i_{1}} \ldots e_{i_{s}}
$$

transform according to the tensor product

$$
\rho(\mathrm{g})(\mathrm{R}) \rho(\mathrm{g})(\mathbb{y}) \cdot \sigma \rho(\mathrm{g}) \quad \text { (s factors) }
$$

since it is easy to check that:

$$
E_{i}\left(e_{i_{1}} \ldots e_{i_{s}}\right)=\left[e_{i}, e_{i_{1}} \ldots e_{i}\right]
$$

We obtain the rule:
In order to find all elements of the centre of the universal
envelloping algebra of the Lie algebra X, it is sufficient to find all
symmetric tensors over X, invariant under the adfoint representations of the group $p(g)$.

Let us simpify fiurther. Consider z row-wector

$$
u=\left(u_{1}, u_{2}, \ldots u_{n}\right)
$$

transforming covariantly。
We have

$$
E_{i j} e_{j}=\left[e_{i}, e_{j j}\right]=e_{i j}^{k} e_{k}
$$

Thus:

$$
E_{j} u_{j}=\sigma_{i j}^{k} u_{K}
$$

Take a symmetric tensor $C^{\mathcal{I}^{\ldots i} s}$ and construct the polynomial:

$$
\phi(u)=c^{\underline{p}_{1} \ldots i^{i}} s_{i_{i}} \ldots u_{i_{1}}
$$

The invariance of $\phi(u)$ corresponds to

$$
\phi\left(E_{i} u\right)=0
$$

Or in terms of the adjoint representation of the group

$$
\phi[\rho(g) u j=\phi(u)
$$

We obtain a simpler rule:
In order to find all elements of the centre of $A(X)$ it is sufficient to find all solutions of the equation:

$$
\phi(\rho u)=\phi(u)
$$

where $\phi(u)$ is a homogeneous polynomial of a covariant vector $v=\left(u_{1}, u_{2}, \ldots u_{n}\right)$ and $p \equiv p(g)$ is the adjoint representation of G, acting on X_{0} Once we have $\phi(u)=\phi\left(u_{1} \ldots u_{n}\right)$, then

$$
\xi=\phi\left(e_{1}, e_{2}, \ldots e_{n}\right)
$$

is an element of C (remember that $C^{i} \underline{p}^{\circ 0 i}$ is a symmetric tensor).

Example: Consider SO (3):

$$
\begin{array}{lll}
{\left[a_{1} a_{1}\right]=0} & {\left[a_{2} a_{1}\right]=-a_{3}} & {\left[a_{3} a_{1}\right]=a_{2}} \\
{\left[a_{1} a_{2}\right]=+a_{3}} & {\left[a_{2} a_{2}\right]=0} & {\left[a_{3}\right]=-a_{1}} \\
{\left[a_{1} a_{3}\right]=-a_{2}} & {\left[a_{2} a_{3}\right]=a_{1}} & {\left[a_{3} a_{3}\right]=0}
\end{array}
$$

We replace these commutation relations by the transformations of a row vector

$$
\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right)
$$

Thus:

$$
\begin{aligned}
& A_{1}\left(u_{1} u_{2} u_{3}\right)=\left(\begin{array}{ll}
0 u_{3}-u_{2}
\end{array}\right) \\
& A_{2}\left(u_{1} u_{2} u_{3}\right)=\left(\begin{array}{ll}
-u_{3} & 0 \\
u_{1}
\end{array}\right) \\
& A_{3}\left(u_{1} u_{2} u_{3}\right)=\left(\begin{array}{ll}
u_{2}-u_{1} & 0
\end{array}\right)
\end{aligned}
$$

Thus: The action of A_{i} on $\left(u_{1} u_{2} u_{3}\right)$ corresponds to infinitesimal rotations about the axes $\mathrm{Ou}_{1}, \mathrm{Ou}_{2}$ and Ou_{3}, respectively \Rightarrow the adjoint representation coincides with rotations in the ($u_{1} u_{2} u_{3}$) space. Now consider the equation

$$
\phi(\rho u)=\phi(u)
$$

We know that the oniy independent quantity that is invariant under rotations in a three dimensional space, namely

$$
u^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}
$$

Thus we have

$$
\phi(u)=F\left(u^{2}\right)
$$

Whese F is an sxibitwry function.
It follows that the centre of the enveloping algebsa for $0(3)$ consists of ail operators

$$
F(\Delta), \quad \Delta=a_{2}^{2}+a_{2}^{2}+a_{3}^{2}
$$

Thus, 0 (3) has only one independent Casimir operator

$$
\Delta=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}
$$

Adjoint Representation for a Matris Group
For a matris group, we have

$$
\rho(g) x=g \times g^{-1}
$$

Indeed, for the aigebra we have

$$
(1+\operatorname{ta}) x=e^{t a} x e^{-t a}=(I+t a) x(1-\operatorname{ta})=x+t[a x]
$$

so that

$$
\hat{a x}=\left[a_{8} x\right]
$$

Remamk: $\operatorname{dim}_{p}(\mathrm{E})=\operatorname{dim} G=$ finite。 Donot confuse with the regular pepresentation which is infinite dimeneional

Consider the group $G=G L(n, C)$ (or $G=G L(n, R))$. It can be easily shown that all polynomiais satisfying

$$
p(x)=p\left(x_{\underline{g}}\right)=p\left(g g^{-\bar{I}}\right) \quad g \in G
$$

can be expanded in terms of powers of the traces

Casimim operators for U(n):

Using the eomutation relations for $e_{\text {in }}$ we can cheok thet the operators

$$
C_{I}=e_{i j} \quad C_{2}=e_{i j i} e_{j i} \quad C_{n}=e_{i_{1} i_{2}} e_{i_{2} i_{3}} e_{i_{n} i}
$$

form a complete basis of the centre C.
From here we can directiy obtain the theorem: All Casimir operators for the group $U(n)$ in any representation can be obtained as functions of
the n Casimir operators K_{s} :

$$
\begin{aligned}
& K_{1}=E_{i_{i}} \\
& K_{2}=E_{i_{1} i_{2}} E_{i_{2} i_{1}} \\
& K_{n}=E_{i_{1} i_{2}} E_{i_{2} i_{3}} \ldots E_{i_{n} i_{1}}
\end{aligned}
$$

Remark: For $\operatorname{SU}(n)$ we must exclude K_{I} 。

Eigenvalues of the Casimix operators

Consider an irreducible representation $\alpha=\left(m_{1} \ldots m_{n}\right)$ of $U(n)$. From Schur's lemma we have

$$
K_{i}=k_{i} I
$$

for all Casimirr operators. We are interested in the relation between k_{i} and $m_{i f}$ (the eigenvalues of the Casimir operators and the highest weight)。

Consider the maximal eigenvector $\omega_{\text {. }}$ By definition (of ω) we have

$$
E_{\psi} \omega=0
$$

We also know that

$$
E_{i i} \omega=m_{i} \omega \quad i=1,2, \ldots n
$$

For the linear Casimir operator $K_{1}=E_{1 I}+E_{22}+\ldots+E_{n n}$ we hare

$$
k_{1}=m_{1}+m_{2}+\ldots+m_{n}
$$

The quadratic Casimir operator is

$$
K_{2}=\sum_{i s i} E_{i j j} E_{f i}+\sum_{i} E_{i i}^{2} * \sum_{i<j} E_{i j} E_{j i}
$$

The finist term ennihilates ω 。 Commute the entries in the last term:

$$
E_{i j} E_{j i}=E_{j i} E_{i j}+E_{i i}-E_{j j} \quad i<j
$$

Thus:

$$
k_{2}=\left(m_{1}^{2}+m_{2}^{2}+\ldots+m_{n}^{2}\right)+\sum_{i<j}\left(m_{i}-m_{j}\right)
$$

In generai

$$
k_{s}=\left(m_{1}^{s}+m_{2}^{s}+\ldots+m_{n}^{5}\right)+x(m)
$$

where $X(m)$ is a polynomiel of lower order than s. It is not difficuit to construct $X(m)$ explicitiy, but let us leave it at that.

Complete Set of commuting operators

A complete set of commuting operetoms can be constructed in the following manner. Take the Gelfandwseitlin "numbering cone", i.e. the set of subgroups:
$U(n) \geqslant U(n-1) 2 \ldots \partial U(1):$

A complete set of commuting operators, which removes all degeneracies, consists of the Casimir operators of the group U(n) and those of all subgroups

$$
U(n-k), k=1,00, n-1
$$

Notation:

$$
\begin{aligned}
& U(n): K_{I n}: K_{2 n} \ldots K_{n n} \\
& U(n-1): K_{I n-1} \ldots K_{n-1, n-1} \\
& U(1): K_{n 1}
\end{aligned}
$$

The diagonal subgroup T is autometicaliy ineluded as

$$
\begin{aligned}
& K_{n-1}=E_{11}+\ldots+E_{n-1, n-1} \\
& K_{I_{n-2}}=E_{11}+\ldots+E_{n-2, n-2} \\
& K_{11}=E_{11}
\end{aligned}
$$

Let us hereby tinish our exposition or whe representation theory of compact groups (and of the analytic representations of non-compact ones). There are of course many important questions, which we have not even mentioned, like the reduction of direct products of representations (ClebschGordan series and coefficients), the transformation mitriees (the Wigner D-functions for $U(n)$ and many others.

We have actually already considered representations of non-compact groups, hewewer only enalytic representetions. A consideration of more generai finite dimensional representations containing anslytis and antianaytic
paris would be very similar. Indeed all above considerations can be directiy generalized to arbitrary "real" representations.

Instead of one signature α we shall have two

$$
\begin{aligned}
& \alpha=\left[p_{1}, p_{2}, \ldots p_{r}\right] \\
& \beta=\left[q_{1}, q_{2} \ldots q_{r}\right]
\end{aligned}
$$

and in the space of functions over the subgroup Z we have

$$
T_{g} f(z)=\alpha(z, g) \beta(z, g) f(z g)
$$

where $\alpha(z, g)$ and $B(z, g)$ thenselves form an anglytic and an antianalytic one-dimensionel representation of the subgroup Z. Let us now consider unitary representations of noncompact groups.

Unitary Representations of Non-Compaet Groups

In this chapter we concentrate oniy on one sexies of noncompact groups, nameiy $S L(n, C)$ and wish to consider, in some sense, , II representations. The methods are a straightfownard generaization of the method of highest weights used for analytic representations. They can be and indeed have been directly applied to all semisimple groups. We shall also devote one lecture to more general Lie groups.

References:

1) I.M. Gelfand, MoA。Najmark: Unitary Representations of Classical Groups (In Russizn or German)
2) M. A。 Najmark, Unitary Representation of Noncompact Groups. (Lectures at Summer School on High Energy Physics and the Theory of Elementary Particles, Ed. VoP. Shelest, Kiev, 1967) (In Russian).

1. Definitions:

A representation of a Lie group G is a mapping $g \rightarrow \mathbb{T}_{g}$ of a group element onto a group of linear operators acting in a linear space E. The mapping satisfies
2) $T e=I$
2) $\mathrm{T}_{\mathrm{E}_{1}}: \mathrm{T}_{\mathrm{E}_{2}}=\mathrm{T}_{\mathrm{g}_{1} \mathrm{~g}_{2}}$
3) T_{g} depends continuously on g

The representation is finite dimensional or infinitely dimensional depending on whether E is finite or infinitely dimensional.

A representation is irreducible if there are no closed invariant subspaces in E, except for $\left\{0\right.$) end $\mathbb{E}_{\text {, (}}$ (to make this meaningful we must have some topology on E for infinite dimensioneil spaces). A representation is unitary if there exists a positive definite scaiar product (x, y) for $\mathrm{x}, \mathrm{y} \in \mathrm{E}$, invariant under ail transfomations of the group:

$$
(x, y)=\left(T_{g_{x}}, T_{g_{y}}\right)
$$

2. Induced Representations

The method we are using is directiy related to Mackey's theory of induced sepresentations, which we shail come back to.

In this particular case (or complex semisimple groups) what is going on is the following:

We have a group G and a subgroup K. Consider a representation $k \rightarrow V_{k}$ of the subgroup K in space L. Consider a set F of vector functions $f^{\prime}(g)$ defined over the group G and with values in L, satisfying

1. F is a linear space with respect to the addition of the functions $f(g)$ and multiplication by a number.
2. $f(k g)=V_{k} f(g)$ for $k \varepsilon K$, geG (some sort of homogeneity or corariance condition).
3. Fis invaxiant under right translations, ioedif $f(E) \in F^{\prime}$ then $f\left(\mathrm{gg}_{0} / \mathrm{EF}\right.$ for all g, gote

Define an operator Tg_{0} abting in F as

$$
\begin{equation*}
g_{0} f(g)=f\left(g_{0}\right) \quad g_{0} \in G \tag{1}
\end{equation*}
$$

The mapping $g \rightarrow T_{g}$ is a representetion of G since

$$
\begin{aligned}
& T_{g_{1}} T_{g_{2}} f(g)=I_{g_{1}} f_{g}\left(g_{2}\right)=T_{g_{1}} \phi(g)=\phi\left(g_{1}\right)=T\left(g_{1} g_{2}\right) \\
& (\phi \mid g)=f\left(g_{2}\right) \in F \text { by mbove mondition 3). }
\end{aligned}
$$

 representetion of G induced by the repiesentation $k \rightarrow V_{k}$ of the subgroup $K C G$ 。

Netation:

$$
\mathbb{T}_{\mathrm{g}}^{\sqrt[V]{V}}
$$

3. ADPLicatron to the Group SL(1,0$)$

Trike G to be $S L(n, C)$ and $K C$ as the group of upper trianguiar matrices:

$$
k=\left(\begin{array}{ccc}
k_{11} & k_{12} 000 k_{2 n} \\
& k_{22^{k}} 23^{\circ} k_{2 n} \\
0 & \ddots & \\
& & k_{n n}
\end{array}\right)
$$

Let us take the representation T_{k} of K to be one-dimensional, given by a complex vaiued function $\alpha(k)$, desined on K, such that

$$
\begin{align*}
& \alpha(e)=1 \tag{2}\\
& \alpha\left(k_{1} k_{2}\right)=\alpha\left(k_{1}\right) \alpha\left(k_{2}\right) \tag{3}
\end{align*}
$$

The condition $f(\mathrm{~kg})=V_{k} f(g)$ now is

$$
\begin{equation*}
f(k g)=\alpha(k) f(g) \tag{4}
\end{equation*}
$$

In this case F consists of complex falued functions $f^{\prime}(g)$ (since I. is one-dimensional), satisfying

1) Fis a Linear space
2) $f^{\prime}(k g)=a(k) f(g) \quad k \in K, g \varepsilon G$
3) If $\mathrm{I}(\mathrm{g}) \mathrm{EF}$ then $\mathrm{f}\left(\mathrm{gg}_{0}\right) \in \mathrm{F}$ g, $\mathrm{g}_{0} \varepsilon G$.

The representation is given by the formula:

$$
\begin{equation*}
\frac{T}{g_{0}}(\bar{G})=f^{0}\left(g_{0}\right) \tag{5}
\end{equation*}
$$

It is easy to show thet a(k) can only depend on the diagonal elements $k_{\text {pid }}$ (the condition det $k=1$ can be used to eliminate one of the $k_{i p_{i}}$) Actualiy (2) and (3) can be used to show theit

$$
\begin{equation*}
\alpha(k)=\left|k_{22}\right|^{m_{2}+\sigma_{2}} 2_{k_{22}}^{-m_{2}} \ldots \ldots .\left|k_{m m}\right|^{2^{+\sigma} n_{k n}^{-m}} \tag{6}
\end{equation*}
$$

where m_{k} are integers, σ_{k} complex numbers.
This chntinuotion ectusiny Leade nis. 25 we ghell see, to, irseducible representations of $\operatorname{SL}(n, C)$ 。
4. The triangular decomposition

We shail use a slight modification of the Gauss decomposition which we have been using, nemely we shall write

$$
\begin{equation*}
g=k z \quad k \in K, z \in Z \tag{7}
\end{equation*}
$$

Where 2 is the group of nilpotent lower triangular matrices:

$$
Z=\left(\begin{array}{ccc}
1 & & \\
z_{21} & 1 & \\
z_{31} & z_{32} & 1 \\
1 & 0 & \\
z_{n 1} & z_{n 2} & w_{n 3} \\
z_{n} & 1
\end{array}\right)
$$

Similatily as previously denote

$$
\binom{p_{1} p_{2} \cdots p_{m}}{q_{1} q_{2} \cdots q_{m}} \quad \begin{aligned}
& p_{1}<p_{2} \ldots \& p_{m} \\
& q_{2}<q_{2} \ldots<q_{m}
\end{aligned}
$$

a subdereminant of g s constructed out of the elements $g_{i k}$ on the intersections of rows $p_{2} \circ p_{n}$ and columns $q_{1} \ldots q_{n}$. Then:

These fommlae make sense if the denominatoms are non*ero. Thus we can represent "almost" all in form (7), namely we have to exclude a manifold of lower dimension.

$$
\text { For } f(g) \varepsilon \bar{F}, g=k z \text {, we have (in view of (4)): }
$$

$$
\begin{equation*}
f(g)=f(k z)=0(k) f(z) \tag{10}
\end{equation*}
$$

similanly as for the analytic representations considered previously.

$$
\begin{align*}
& \left.k_{p q}=\frac{\left(\begin{array}{l}
p q+1.0 . n \\
q q+1000
\end{array}\right.}{\left(\frac{q+1 q+20 . n}{q+1 q+2 \ldots 0 n}\right)}\right) \quad p \leq q \tag{8}\\
& q_{\mathrm{pq}}=\binom{p \mathrm{p}+1 \ldots 0 n}{q p+1 \ldots .0 n} \tag{9}\\
& \left(\begin{array}{ll}
p & p+1000 n \\
p & p+2000 n
\end{array}\right)
\end{align*}
$$

Since $a(k)$ is fixed, (10) allows us to replace $f(g) \in F$ by
$f(z) \in F$, defined over the subgroup Z.
In this realization we put

$$
\begin{gather*}
T_{g_{0}} f(z)=\phi(z) \tag{11}\\
g=k z \quad g_{0}=k^{\prime \prime} z_{g_{0}} \quad k, k^{\prime \prime} \varepsilon K, z, z_{g_{0}} Z \tag{I.2}
\end{gather*}
$$

Then we have

$$
\begin{aligned}
& T_{g_{0}} \hat{f}(g)=f\left(g_{0}\right)=f\left(k_{g} z_{g}\right)=\alpha\left(k^{\prime \prime}\right) f_{g}\left(z_{g}\right)
\end{aligned}
$$

Thus:

$$
\begin{equation*}
\left.T_{g_{0}} f(z)=\phi(z)=\alpha(k)^{-1} \alpha\left(k^{\prime \prime}\right) f_{g_{0}}\right)=\alpha\left(z^{-1} I_{K^{\prime \prime}}\right) f^{\prime}\left(z_{g}\right) \tag{13}
\end{equation*}
$$

However: $\quad k z g_{0}=k^{\prime \prime} g_{0}$ so that

$$
z g_{0}=k^{\prime} k^{\prime \prime} z_{g_{0}}=k^{\prime} k_{g_{0}}
$$

Finally:
with

$$
\begin{equation*}
T_{g} f(z)=\alpha(k) f(z) \tag{14}
\end{equation*}
$$

Example: $S L(2, C)$:

$$
\begin{aligned}
& \mathrm{zg}=\mathrm{kz} \mathrm{~g} \\
& \left(\begin{array}{ll}
1 & 0 \\
z_{21} & 1
\end{array}\right)\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)\left(\begin{array}{ll}
k_{11} & k_{12} \\
0 & k_{22}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\left(z_{g}\right)_{21} & 1
\end{array}\right) \\
& \left.g_{11}=k_{11}+k_{12} f_{g}\right)_{21} \quad z_{21} g_{11}+g_{21}=\left(z_{g}\right)_{21} \\
& \mathrm{~g}_{12}=\mathrm{k}_{12} \quad \mathrm{z}_{21} \mathrm{~g}_{12}+\mathrm{g}_{22}=\mathrm{k}_{22}
\end{aligned}
$$

The matrices Z and g are given, we solve for k and z_{g}.

$$
\begin{array}{ll}
k_{12}=g_{12} & k_{11}=\frac{1}{g_{12} 2_{21}+g_{22}} \\
k_{22}=g_{12} z_{21}+g_{22} & \left(z_{\mathrm{E}}\right)_{21}=\frac{g_{11} z_{21}+g_{21}}{g_{12}{ }_{21}{ }^{+g_{22}}}
\end{array}
$$

Thus, the getion of T_{g} on $f(z)$ in (14) is the following:

1) The argument s undergoes a generalized fractionaiinear transfommation
2) The function $f\left(z_{g}\right)$ is mutiplied by the multiplier $\alpha(k)=\alpha, \bar{a}, g)(k$ depends on the transformation g, the point z and on the representation we are considering).
5. The Invariant Scalar Product. The Principal Nondegenerate Series

Let us restrict outseives to unitary representations of $\operatorname{SL}(n, C)$. We must then choose such a space of functions F, that we can introduce an invariant scaiar product. Let us first introduce an invariant measure on Z.

Put

$$
x_{p q}=x_{p q}+i y_{p q}, p s q, x_{p q}, y_{p q} \text { reai }
$$

It an be shown that the left (and right) invariant measure is

$$
\begin{equation*}
\dot{\alpha}_{\mu}(z)=\underset{\substack{p, q \\ p>q}}{\prod_{p q}} \dot{d}_{p q} d y_{p q} \tag{25}
\end{equation*}
$$

Let us now consider the space of functions $f(x)$ satisfiying

$$
\left.\int|f(z)|^{2} \alpha ; x\right)<\infty
$$

(Integration from $-\infty$ to ∞ with respect to all $x_{p q}$ and $y_{p q}$). This space is Hilbert space, denoted $L^{2}(\mathrm{Z})$ with the scaiar prounct

$$
\begin{gather*}
\left.\left(f_{1}, \mathcal{I}_{2}\right)=\int f_{1}(z) \overline{f_{2}(z)} d \mu_{Z}\right) \tag{16}\\
f_{1}, f_{2} E L^{2}(z)
\end{gather*}
$$

Consider the representation:

$$
\begin{align*}
& \mathrm{T}_{\mathrm{g}} \mathrm{f}(\mathrm{z})=(\mathrm{k}) \mathrm{f}\left(z_{\mathrm{g}}\right) \tag{17}
\end{align*}
$$

where $m_{2} \ldots m_{n}$ are integers, $\sigma_{2}, \ldots \sigma_{n}$ are complex numbers. To find out which representations are unitary with respect to the scalar product (26) we must put

$$
\left(f_{1}, f_{2}\right)=\left(T_{g} f_{1}, T_{g} f_{2}\right)
$$

This condition poses a restriction on σ_{k}, namely:

$$
\begin{equation*}
\sigma_{k}=i \rho_{k}-2(k-1) \quad k=2,3, \ldots, n \tag{18}
\end{equation*}
$$

We shall prove this below for $\mathrm{SL}(2, C)$ oniy. The result is:
The principal nondegenerate series of unitary irreducible representations of $S L(n, C)$ is determined by two sets of numbers: the integers m_{2}, \ldots, m_{n} and the real numbers $\rho_{2}, \ldots, \rho_{n}$ 。 The representations are then given by formulae (17) and (18)。

We have not yet proved irreducibility. The way to do that is to use Schux's lemma and show that any bounded linear operator in $L^{2}(z)$, commuting with all operators ${ }_{T}$ is a multiple of the identity. Example:

SL($2, C$) (Iocally isomorphic to the hemogeneous Lorentz group $0(3,1)$).
Take: zez $\quad z=\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right) \quad z=x+i y$

$$
f(z)=f(x, y)
$$

$L^{2}(z)$ is the space of functions:

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|f^{(}(x)\right|^{2} d x d y<\infty
$$

Put

$$
g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \quad \alpha \delta=\beta \gamma=1
$$

Representations of the principal series：

$$
\begin{equation*}
T_{g} f(z)=|\beta z+\delta|^{m+\sigma}(\beta z+\delta)^{-m} f\left(\frac{\alpha z+\gamma}{\beta z+\delta}\right) \tag{19}
\end{equation*}
$$

$\left(\right.$ since $\left.k_{22}=\beta z+\delta, z_{g}=\frac{\alpha z+\gamma}{\beta z+\delta}\right)$.

Here m is integer，$\sigma=-2+i p, \rho=r e a l$ 。Unitarity：$d x=d x d y$

$$
\begin{aligned}
& \int T_{G^{\prime \prime} I^{\prime \prime}}^{T g^{f} 2} d z=\int|\beta z+\delta|^{m+\sigma}(\beta z+\delta)^{m} I_{I}\left(\frac{\alpha z+\gamma}{\beta z+\delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int|\beta z+\delta|^{\delta+\sigma^{*}} f_{1}\left(\frac{\alpha z+\gamma}{\beta z+\delta}\right) \overline{f_{2}\left(\frac{\alpha, z+\gamma}{\beta x+\delta}\right)} d z
\end{aligned}
$$

Put $\frac{\alpha z+4}{\beta z+3}=u_{0}$ We can cheek that

$$
d z=\left|\frac{d z}{d u}\right|^{2} d u
$$

（See Appendix in MoA。Najmark：Linear Representations of the Lorentr Group）．
We here：$\quad \frac{d z}{\partial u}=(\beta z+\delta)^{2}$ so that

$$
\int \operatorname{T}_{g} f_{1}(z) \overline{T_{g} f_{2}(z) d z}=\int|\beta z+\delta|^{\sigma+\sigma^{k} \psi_{f_{1}}(u) f_{2}(u) d u}
$$

Thus：the representation is unitary，if゙ $\sigma+0^{*}+4=0 \Rightarrow 0=-2+i 0$ 。

Remark: 1) For $S L(n, C)$ the terms $-2(k-1)$ in (18) are necessary precisely in order to cancel the Jacobian of the transformation $z+g^{\circ}$
2) Formula (19) aiso gives the finite dimensional
representations of $\operatorname{SL}(2, C)$.

$$
\begin{equation*}
T_{g} p(z)=(\beta z+\delta)^{M}(\overline{\beta z+\delta})^{N} p\left(\frac{\alpha z+\gamma}{\beta z+\delta}\right) \quad M, N \ldots \text { onon-negative } \tag{20}
\end{equation*}
$$

if we put

$$
\begin{aligned}
-\frac{m}{2}+\frac{i p}{2}-I & =M \\
\frac{m}{2}+\frac{i p}{2}-I & =N
\end{aligned}
$$

Loe。

$$
\begin{aligned}
& i p=M+N+2 \\
& m=-M+N
\end{aligned}
$$

In particuiar the analytic mepresentations correspond to $N=0$, i.e. $i p \equiv M+2 m=-M_{0}$
6. Reslization of the Principal Nondegenerate Sexies On the Unitary Subgyoup

Instead of using functions defoined over the group G or the nilpotent subgroup Z, we can consider functions over the maximal compact subgroup U, in our case $\mathrm{SU}(\mathrm{n})$ 。

Put

$$
\begin{equation*}
\bar{\Gamma}=\operatorname{SU}(n) \bigcap K \tag{21}
\end{equation*}
$$

Obviously: $\gamma \varepsilon \Gamma$ iffi

$$
\gamma=\left(\begin{array}{lll}
e^{i \phi_{1}} & & \tag{22}\\
& e^{i \phi_{2}} & 0 \\
0 & \ddots & \\
& e^{i \phi_{n}}
\end{array}\right)
$$

and det $\gamma=I$

$$
\begin{equation*}
\phi_{1}+\phi_{2}+\ldots+\phi_{n}=0 \tag{23}
\end{equation*}
$$

Lemma: Every matrix gesL (n, C) can be written as

$$
\begin{equation*}
g=k u \quad k \varepsilon K \quad u \in S U(n) \tag{24}
\end{equation*}
$$

If we also have $g=k^{\gamma} u^{\gamma}$, then $k^{\prime}=k \gamma, u^{\prime}=\gamma^{-1} u$, $\gamma \in \Gamma$ 。

Proof: Take $k^{-1} g$: the Iast row in g is multiplied by $k_{n n}^{-1}$, the Iast but one row in g is replaced by a linear combination of itself and the last row, etc. This is the same procedure as the orthogonalization of a set of vectors and we can use it to orthonormalize the rows of $\mathrm{k}^{-1} \mathrm{~g}$. Hence $k^{-1} g=u$ can be taken to be unitary, so that $g=k u$. Further:
 $r=\gamma$. Thus

$$
k^{\eta}=k \gamma \quad u^{\prime}=\gamma^{-1} u
$$

Q.E.D.

On the group G we have $f(k g)=\alpha(k) f(g)$, so that

$$
f(g)=f(k u)=\alpha\left(k^{\prime \prime}\right) f^{\prime}(u)
$$

similarly as we had

$$
f(g)=f\left(k^{\prime} z\right)=\alpha\left(k^{\eta}\right) f(z)
$$

Thus:

$$
\begin{equation*}
\left.f^{\prime}(z)=\alpha^{-I}\left(k^{\prime}\right) \alpha\left(k^{\prime \prime}\right) f(u)=\alpha^{\prime} k^{\prime-1} k^{\prime \prime}\right) f^{\prime}(u)=\alpha(k) f^{\prime}(u)^{\prime} \tag{25}
\end{equation*}
$$

Also $\quad f(\gamma u)=\alpha(\varphi) f(w) \quad \gamma \varepsilon \Gamma$

In view of (17), we have

$$
\alpha(r)=e^{-i\left(m_{2} \phi_{2}+\ldots+m_{n} \phi_{n}\right)}
$$

since $k_{\ell \ell}=\gamma_{\ell \ell}=e^{i \phi_{\ell}} \quad \ell=2,3, \ldots, n$.

Expliaitly calculating Jacobians, we can check that

$$
\int\left|f^{\prime}(z)\right|^{2} d \mu(z)=\int|f(\omega)|^{2} d \mu(u)
$$

where du(u) is the invariant measure on the Group U.
It fiollows that (25) gives an isometric mapping of $L^{2}(z)$ onto $L_{\alpha}^{2}(u)$: the space of all functions on U, satisfying (26) and

$$
\int|f(u)|^{2} d u(u)<\infty
$$

Representations of the principal nondegenerate series are given by the formula

$$
\begin{equation*}
\mathbb{T}_{g} f^{\prime}(u)=\alpha(k) f\left(u_{g}\right) \tag{27}
\end{equation*}
$$

where k and u_{g} are given by the formula

$$
u g=k u_{g}
$$

Proof:

$$
\begin{array}{ll}
T_{g_{0}} f(g)=T_{E_{0}} \alpha\left(k^{\prime}\right) f(u)=\alpha\left(k^{\prime}\right) T_{g_{0}} f(u) & g=k^{\prime} u \\
T_{g_{0}} f(g)=f\left(g g_{0}\right)=f\left(k^{\prime \prime} u_{g_{0}}\right)=\alpha\left(k^{\prime \prime}\right) f\left(u_{g_{0}}\right) & g g_{0}=k^{\prime \prime} u_{g o}
\end{array}
$$

Thus: $T_{0} f_{0}(u)=\alpha\left(k^{-I_{k "}}\right) f\left(u_{g_{0}}\right)$
Finally: $\quad T_{g} f(u)=\alpha(k) f\left(u_{g}\right)$
$u g=k u_{g}$

The non-uniqueness in $g=k u$ is irrelevant, since if $g=k ' u^{\prime}=k u$, then

$$
\alpha\left(k^{\prime}\right) f^{\prime}\left(u_{g}\right)=\alpha(k \gamma) f\left(\gamma^{-1} u_{g}\right)=\alpha(k) \alpha(\gamma) \alpha\left(\bar{\gamma}^{-1}\right) f\left(u_{g}\right)=\alpha(k) f\left(u_{g}\right)
$$

The realization of representations of G in the space $L^{2}(u)$ is convenfent for solving the problem of the reduction of the representation $g \rightarrow T$ to the subgroup $U=S U(n)$. The representation $T_{g} \mid u$ will definitely be reducibie since ail irreducible representations of $S U(n)$ are finite-dimensional. Let us find the irreduaible representations of $\operatorname{SU}(n)$, contained in the reduction T_{g} iu.

We have:

$$
\begin{aligned}
\mathbb{T}_{u_{0}} f(u) & =\alpha(k) f\left(u_{u_{0}}\right) \\
u u_{0} & =k u_{u_{0}}
\end{aligned}
$$

Put:

$$
\begin{aligned}
k=e, u_{u_{0}} & =u_{u_{0}} \text {, then } \\
& T_{u_{0}} f(u)=f\left(u_{0}\right)_{0}
\end{aligned}
$$

Consider an irreducible representation of U :

$$
\begin{aligned}
u+c^{v}(u) \quad v= & \text { set of numbers, e.g. the signature of } \\
& \text { a representation. }
\end{aligned}
$$

Choose such a basis, that $c^{\nu}(\gamma)$ is diagonal:

$$
C_{j k}^{v}(\gamma)=\delta_{j k} \omega_{j}(\gamma)
$$

The corresponding basis is called canonical and w fi) are the weights of the representation. Since $C^{V}(u)$ are the operators of a representation, we have

$$
C_{j l}^{v}\left(u_{0}\right)=\sum_{s} C_{j s}^{v}(u) C_{s j}^{v}\left(u_{0}\right),
$$

in particular

$$
\begin{aligned}
& C_{j \ell}^{v}(\gamma u)=\omega_{j}(\gamma) C_{j \ell}^{v}(u) \\
& C_{j \ell}^{v}(u \gamma)=C_{j \ell}^{v}(u) \omega_{\ell}(\gamma)
\end{aligned}
$$

For $\operatorname{SU}(n)$ we already have expansion formulae, following from the Stone-Weierstress theorem, namely the Peter-Weyi theorem: Any function $f_{1}(u) \in L_{\alpha}^{2}(u)$ can be expanded in terms of the matrix elements of the impeducible representations of $\operatorname{SU}(\mathrm{n})$):

$$
\begin{equation*}
f(u)=\sum_{v j l} b_{j h}^{v} C_{j l}^{v}(u) \tag{28}
\end{equation*}
$$

We have
and

$$
x(\gamma u)=\alpha(\gamma) f(u)=\alpha(\gamma) \sum_{\nu_{j l}^{\nu}} b_{y l}^{v} C_{j \ell}^{v}(u)
$$

$$
f^{\prime}(\gamma u)=\sum_{v j \ell} b_{j l}^{v} C_{j l}^{v}(\gamma u)=\sum_{v_{j} j_{k}} b_{j k j}^{v}(\gamma) C_{j \ell}^{v}(u)
$$

so thet

$$
\begin{equation*}
\left[\alpha(\gamma)-\omega_{j}(\gamma)\right] b_{j \ell}^{y}=0 \tag{29}
\end{equation*}
$$

ioe。

$$
b_{j l}^{v} \neq 0 \text { only ii } a(\gamma)=w_{g}(\gamma)
$$

The functions

$$
\mathrm{C}_{j 1}^{v}(u), C_{j 2}^{v}(u), \ldots C_{g m_{v}}^{v}(u)
$$

form a canoniaal basis for an irreducible representation $u \rightarrow c^{\nu}(u)$ 。 Let $q_{q^{\prime}} \ldots q_{p_{v}}$ be those numbers，amongst $I_{9} \ldots m_{v}$ ，fror which

$$
\omega_{j}(\gamma)=\alpha(\gamma)
$$

$\left[a(y)\right.$ as opposed to $0(k)$ depends oniy on the integers $\left(m_{2}, \ldots 9 m_{n}\right)$ in the ${ }^{\prime \prime}$ signature＂of $\left.S L(n, C)\right]$ 。

We have

$$
\begin{aligned}
& \mathbb{T}_{\gamma} C_{j \ell}(u)=C_{j \ell}(u \gamma)=C_{j \ell}(u) \omega_{\ell}(\gamma) \\
& T_{\gamma} C_{j \ell}(\gamma u)=\alpha(\gamma) C_{j \ell}(u)
\end{aligned}
$$

It fiollows that there are p_{V}－functions

$$
c_{j q_{1}}^{v}(u), c_{j q_{2}}^{v}(u) \ldots C_{j g_{p_{v}}}^{v}(u)
$$

in the space of the representation $u \rightarrow C^{v}(u)$ with weight $\alpha(\gamma)$ 。
Thus，p_{v} is the multiplicity of the weight $a(y)$ in $u \Rightarrow C^{V}$（u）（note that a（y）is fust a weight，not necessarily a highest ox jowest one）． We obtain：

Theorem：The reduction $u \rightarrow T$ of the ixqeducible unitary representation $g \rightarrow \mathbb{T}_{g}$ of the principal nondegenerate series for the group $\operatorname{SL}(\mathrm{n}, \mathrm{C}$, to $\mathrm{SU}(\mathrm{n})$ is given by the formuia

$$
T_{g} f^{\prime}(u)=\alpha(u) \tilde{L}^{\prime}\left(u_{g}\right)
$$

and contains an irreducible representation $u \rightarrow C^{N}(u)$ as many times as is the multiplicity of the weight $\alpha(\gamma)$ in this representation.

Example: $\quad S L(2, C) \supset S U(2)$.

We have:

$$
\gamma=\left(\begin{array}{cc}
e^{i \phi_{1}} & 0 \\
0 & e^{i \phi_{2}}
\end{array}\right) \quad T_{\gamma} f_{z}=e^{-i \phi_{2} m} f^{i\left(e^{i}\left(\phi_{2}\right)\right.}
$$

Take a representation $T_{\ell}(u)$ of $\mathrm{SU}(2)$, with the highest weight ℓ. This is contained in the representation $(m, 0)$ of $S L(2, C)$, if m is a weight in $T_{\ell}(u), i, e_{\text {。 }} f^{\prime \prime}$

$$
\operatorname{me}(-2 l,-2 l+1, \ldots, 2 l-1,2 l) \quad(l=\text { integer or half-integer) }
$$

in other words if $|\mathrm{m}| \leq 22$. (For $\mathrm{SU}(2)$ we have

$$
T_{u} f(z)=(\beta z+\delta)^{2 l}\left(\frac{(z+y}{\beta z+\delta}\right)
$$

Since for $\operatorname{SU}(2)$ the multiplicity of any weight, in particular the weight $-m$ (i.e. $e^{-i \phi m}$) is $p_{v}=1$, each representation of $S U(2)$ with $\left.\ell \geq \frac{m}{2} \right\rvert\,$ (and with \& integer or helfointeger simultaneously with $\left|\frac{m}{2}\right|$ is contained. in $T_{g} \mid u$.

7. Principal Degenerate Series

Let us consider further representations of $\operatorname{SL}\left(n_{,} C\right)$. Take n and split it into positive integers:

$$
n=n_{1}+n_{2}+\ldots+n_{r}
$$

$2 \leq r<n \quad n_{i}>0, i=1, \ldots o r$.

$$
g=\left(\begin{array}{c}
g_{I 1} \cdots g_{I r} \\
\ldots \ldots \\
g_{r 1} \cdots g_{r r}
\end{array}\right)
$$

Here $g_{p q}$ are matroices with n_{p} rows and n_{q} columns, so chosen that $\operatorname{det} g=1$ 。

Consider the subgroups of matrices

Where $k_{p q}$ and $z_{p q}$ are the same type of matrices as $g_{p q}$ and $I_{n_{k}}$ is a unit matrix of omder n_{k}.

Lemma: Almost any matroix g can be waititen as

$$
\begin{equation*}
g=k z \tag{30}
\end{equation*}
$$

where $\operatorname{keK}_{n_{1} \ldots n_{r}} \quad, \quad \operatorname{ze}_{n_{1}} \ldots n_{r}$
We shal not give a proof, nor even write the matrix elements of k and z in terms of g explicitly, but refer to the original articles. The formulae are very similar to those in the nondegenerate case.

Representations of the principal degenerate series are constructed like the non-degenerate ones.

Take a one-dimensional representation of $K_{n_{1}} n_{2} \ldots n_{r}$

$$
k \rightarrow \alpha(k)
$$

and a set F of functions $f(g)$, satisfying
(1) F is a linear space
(if) $f(\mathrm{~kg}) \equiv \alpha(\mathrm{k}) \mathrm{f}(\mathrm{g})$ keK
(iii) f(g) $\mathcal{I} \Rightarrow f\left(g_{0}\right) \in F$ for g and $g_{0} \in G$
(f(g) is a mapping of the group manitold g onto the space of complex numbers).
A zepresentation of G in the space F is given by

$$
\begin{equation*}
T_{g_{0}} f(g)=f\left(g_{0}\right) \tag{31}
\end{equation*}
$$

Since we hawe:

$$
f(g)=f^{n}(k z)=\alpha(k) m(z) \quad k E K_{n_{2} \ldots n_{Y}} \quad z E Z Z_{n_{1} \ldots n_{r}}
$$

we cen consider functions on the subgroup $Z_{n_{1} \ldots n_{r}}$ only. Then

$$
\begin{equation*}
T_{g} f(x)=\alpha(k) f(\dot{z}) \tag{32}
\end{equation*}
$$

where

$$
z g=k z z_{g} \quad k e K_{n_{1}} \ldots n_{r} ; z_{g}^{e 7} n_{n_{1}} \ldots n_{r}
$$

and $\alpha(k)$ depends only on the determinante of the matrices $k p o$

Unitary Representations of the principal degenerate series are constructed in the Hilbert space $L^{2}\left(Z_{n_{2}} \ldots n_{r}\right)$ of integrable functions over $Z_{n_{1} \ldots o n_{r}}$ satisfying

$$
\int\left|f^{\prime}(z)\right|^{2} d \mu(z)<\infty
$$

where $\mu(z)$ is the invariant measure on $Z_{n_{1}} \ldots n_{r}$ i。e。

$$
d \mu(z)={\underset{p}{p}, \prod_{q}^{n}=1}_{\prod_{q}}^{d x} x_{p q} d y_{p q} \quad, \quad z_{p q}=z_{p q}+i y_{p q}
$$

and oniy these $z_{p q}$ figure which are matrix elements of the matrices $z_{i, j} E z_{n_{1}} \ldots n_{t}$. The sceiar product is

$$
\begin{equation*}
\left(\hat{r}_{1}, \hat{r}_{2}\right)=\int f_{1}(z) \overline{r_{2}(z)} d \mu(z) \tag{33}
\end{equation*}
$$

Putting: $\Lambda_{j}=$ Det $k_{j j}$ we have

$$
\begin{aligned}
\alpha(k)=\left|n_{2}\right|^{m_{2}+i \rho_{2}-\left(n_{1}+n_{2}\right)} \Lambda_{2}^{-m_{2}}\left|\Lambda_{2}\right|^{m_{3}+i \rho_{3}-\left(n_{1}+2 n_{2}+n_{3}\right)} \Lambda_{3}^{-m_{3}}{ }_{0} \\
\left|\Lambda_{r}\right|^{m_{r}+i \rho_{r}-\left(n_{1}+2 n_{2}+2 n_{3}+n_{3}+\ldots 2 r_{Y-1}+n_{r}\right)} \Lambda_{\Lambda_{r}}^{-m_{r}}
\end{aligned}
$$

and it can be checked that this choice of the exponents ensures unitamity (invariance of (33)). Here

$$
\begin{array}{ll}
\rho_{2}, \ldots, \rho_{r} & \text { are real } \\
m_{2}, \ldots, m_{r} & \text { are integer }
\end{array}
$$

and $n_{1}, n_{2}, \ldots: n_{1}$ are positive integers satisifying

$$
n=n_{1}+\ldots+n_{r^{\prime}}
$$

Thus: we have as many degenerate representations as we have "splittings" of n 。

Examples:
$\mathrm{n}=2: \quad(\mathrm{SL}(2, \mathrm{C}))$: No splitting \Rightarrow no degenerate series (in the above sense)
$\mathrm{n}=3: \quad(\operatorname{SL}(3, \mathrm{C}): 3=2+1, \quad$ two degenerate series (equivalent)
It can be shown that ail representations of the principal degenerate series are irreducible.

Example: Take $S L(n, C)$ and put

$$
n=n_{1}+n_{2} \quad n_{1}=n-1, n_{2}=1
$$

This is called the maximal degenerate representation:
We have $Z_{n_{1} \ldots n_{r}}=z_{n-1,1}$

$$
z=\left(\begin{array}{cccc|c}
I & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\ldots & \ldots \ldots & \ldots & 0 \\
0 & \ldots & 1 & 0 \\
\hline z_{1} & z_{2} & z_{n-1} & 1
\end{array}\right)
$$

$$
\begin{aligned}
& f(z)=f\left(z_{I} \cdots z_{n-I}\right) \\
& \mathbb{T}_{g} f\left(\ldots \tilde{x}_{p} \ldots\right)=\sum_{i=1}^{n-1} E_{j n} z_{j}+\left.g_{n n}\right|^{m+i p-n}\left(\sum_{j m 1}^{n-1} g_{j n} n_{j}+g_{n n}\right)^{-m} x \\
& f\left(\begin{array}{ll}
\cdots \quad & \sum_{j=1} g_{j p^{2}} Z_{j}+g_{n p} \\
& \sum_{j=1}^{n m p} g_{j n} z_{j}+g_{n n}
\end{array}\right. \\
& \begin{array}{lll}
0 & 0 & 0 \\
& &
\end{array}
\end{aligned}
$$

Remark: Thus, the degenerate representations are given by smaller number of numbers m_{i}, ρ_{i} then the nondegenerate ones. In the language of Casimir operetors this would mean that only some of the Casimir operators are independent, The eigenvalues of the rest are equal to zero or functions of the non-zero ones.
8. Realization of the Principal Degenerate Series on the Unitary Subgroup

Introduce the subgroup

$$
\Gamma_{n_{I} \ldots n_{r^{*}}}=\operatorname{su}(n) \bigcap K_{n_{1} \ldots n_{r}}
$$

of matrices

$$
\gamma=\left|\begin{array}{llll}
u_{n_{1}} & & & \\
& u_{n_{2}} & & \\
& \imath_{1} & \\
0 & & \ddots & \\
& & u_{n_{r}}
\end{array}\right| \quad \operatorname{det} \gamma=1
$$

where U_{n} is a unitary matrix of order p. We have

$$
\begin{gathered}
g=k u \\
\operatorname{kek}_{n_{1}} \ldots n_{r}, \operatorname{uESU}(n)
\end{gathered}
$$

If $g=k u_{1}=k_{I} u_{I}$, then

$$
\mathrm{k}_{1}=\mathrm{k} \mathrm{\gamma}^{-1}, u_{1}=\gamma u \quad \gamma \in \Gamma \mathrm{n}_{1}, \dot{\mathrm{~h}}_{\Upsilon}
$$

Further: proceed as for nondegenerate representations, replecing

9. Supplementary Nondegenerate Series of Irreducible Unitary

Representations.

The group $S L(n, C)$ has further irreducible unitary representations the supplementary series. Obviously - they must be constructed in different Hilbert spaces.

Example: Consider first $S L(2, C)$ and a space L of functions $f(z)$ falling of at infinity in such a fashion that the integral

$$
\int A\left(z_{1}, z_{2}\right) f_{1}\left(z_{1}\right) \overline{f_{2}\left(z_{2}\right)} d z_{1} d z_{2}
$$

converges absolutely for all $f_{1}, f f_{2} \in L$ and for $A\left(z_{1}, z_{2}\right)$ to be specified. Here

$$
d z_{1}=d z_{1} d y_{1} ; d z_{2}=d x_{2} d y_{2} \quad z_{1}=x_{1}+i y_{1} \quad z_{2}=x_{2}+i y_{2}
$$

The scalar product is introduced as

$$
\begin{equation*}
\left(f_{1}, f_{2}\right)=\int A\left(z_{1}, z_{2}\right) f_{1}\left(z_{1}\right) \overline{f_{2}\left(z_{2}\right)} d z_{1} d z_{2} \tag{37}
\end{equation*}
$$

In general we can write

$$
\mathrm{T}_{g} f(z)=|\beta z+\delta|^{m+i p-2}(\beta z+\gamma)^{-m_{f}}\left(\frac{\alpha z+\gamma}{\beta z+\delta}\right)
$$

(with p-complex)
and $A\left(z_{1}, z_{2}\right), 0$ and m must be chosen that (37) is invariant under T_{g}. It can be shown *hat an invariant scalar produce is obtained if

[^0]\[

$$
\begin{equation*}
m=0 \quad \rho=i \sigma \quad(\sigma=\text { real }), A\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|^{\sigma-2} \tag{38}
\end{equation*}
$$

\]

Fow the representation to be unitary the invariant scalar product must be positive definite. This will be so if:

$$
\begin{equation*}
m=0 \quad \rho=i \sigma \quad 0<\sigma<2 \tag{39}
\end{equation*}
$$

It can be shown that the representations of the supplementary series are irreducible. The space L of functions $f(z)$ can be constructed explicitiy. Return to the general case of $S L(n, C)$. Introduce a set of matrices:

Representations of the supplementary series:

$$
\begin{gather*}
T_{g} f(z)=\alpha(k) f\left(z_{g}\right) \tag{41}\\
\alpha(k)=\left|k_{22}\right|^{m_{2}+\tilde{\sigma}_{2} k_{22} m_{2}} \quad\left|k_{n n}\right|^{m_{n}+\tilde{\sigma}_{n}-m_{n n}}
\end{gather*}
$$

$\tilde{\sigma}_{k} \ldots$ complex.

Write the invariant scalar product as

$$
\begin{equation*}
\left(f_{1}, f_{2}\right)=\int A(z, \dot{z} z) f_{1}(z) \overline{f_{2}(\dot{z} z)} d \mu(z) d \mu(\hat{z}) \tag{42}
\end{equation*}
$$

where $d \mu(\dot{z})=\prod_{p=1}^{\tau} d x_{p} d y_{p} \quad z_{p}=z_{p}+i y_{p}$

The kernel $A(z, z z)$ must be determined.
The functions $f(z)$ lie in a linear space L, satisfying
a) for $f_{I}, f_{2} E L$ (42) converges absolutely.
b) L is invariant under T_{g} of (41)。

It can be shown that the invariance of the scaiar product has quite definite implications for the n_{k} and σ_{k} of (41) and for $A(z, z z)$. The results can be stated as follows:

Theorem: The unitary representations of the supplementary nondegenerate series can be constructed in a Hilbert space L of functions $f(z)$ with a scalar product

$$
\left(f_{1}, f_{2}\right)=\int A(\dot{z}) f_{1}(z) \overline{f_{2}(\dot{z} z)} d z d z
$$

where

$$
A(\dot{z})=\prod_{j=1}^{\tau}\left|\dot{z}_{j}\right|^{2\left(\sigma_{j} "-1\right)} \quad 0<\sigma_{j}^{\prime \prime}<I \quad j=1, \ldots, \tau
$$

The operators of the representation are

$$
\begin{aligned}
& T_{g} f(z)=\alpha(k) f\left(z_{g}\right) \quad z g=k z g
\end{aligned}
$$

$$
\begin{aligned}
& x\left|\mu_{q}\right|^{m i+i \sigma_{q}^{\prime}-\sigma_{q}^{\prime \prime}} y_{q}{ }^{m_{q}^{\prime}}
\end{aligned}
$$

where $\beta(k)=\left|k_{22}\right|^{4}\left|k_{33}\right|^{8} \ldots\left|k_{n n}\right|^{4 n-4}$
and

Thus, a representation of the supplementary nondegenerate series is given by $n-\tau+1$ integers

$$
\tau\left(0 \leq \tau \leq \frac{n}{2}\right), m_{1} \ldots m_{n-2 \tau}, m_{1}^{\prime} \ldots m_{\tau}^{\prime} \quad \text { integers }
$$

and n real numbers
with

$$
\rho_{1} \ldots \rho_{n-2 \tau}, \sigma_{1}^{\prime} \ldots \sigma_{\tau}^{\prime}, \sigma_{1}^{\prime \prime}, \ldots \sigma_{\tau}^{\prime \prime} \quad \text { reai }
$$

$$
0<\sigma_{p}^{\prime \prime}<1 \quad p=1, \ldots, \tau
$$

10. Supplementary Degenerate Series of Representations

These representations are given by an integer $\tau>0$ and a partition

$$
n=n_{1}+n_{2}+\ldots+n_{r}
$$

where the last 2τ numbers are $n_{p}=1$ for $p=r-2 \tau+1, \ldots r$. The representations are realized in the space

$$
f(z) \quad z \varepsilon Z_{n_{1}} \ldots n_{r} .
$$

We shall not go into this here.

11. Equivalence of representations

It can be dhown that two representations, belonging to different series are never equivalent. Representations of the same series are equivalent if the sets of pairs:

$$
\begin{array}{lll}
\left(m_{1} \rho_{1}\right) \ldots & \left(m_{n} \rho_{n}\right) \\
\left(m_{1}^{\prime} \rho_{1}^{\prime}\right) \ldots & \left(m_{1}^{\prime} \rho_{n}^{\prime}\right)
\end{array}
$$

can be obtained from each other by a permutation of pairs and this permatation does not take us out of the given series.
12. Representations of GL(n, C)

Same as those for $\mathrm{SL}(\mathrm{n}, \mathrm{C})$, except that the "signatures" $\left(m_{1}, \ldots m_{n}\right)$ and ($\rho_{1} \ldots, \rho_{n}$) should not be normalized.

13. Representations of $U(p, q)$

These have also been studied by Gelfand and Graev and also by others, using similar methods as for $S L(n, C)$. The main difference is that $U(p, q)$ groups have further series of representations, namely discrete representations.

Reference: Mo I。Graev: Am. Math. Soc. Transl. 66, I (1968).

General Theory of Representations

I. Solvable Groups

Definition: (a) The group T is solvable if the adjoint representation can be brought to triagonel form:

$$
g \rightarrow \text { adjg }=\widehat{e^{x}}=\left(\begin{array}{ccccc}
\rho_{11}(t), & 0 & 0 & \cdots & 0 \\
\rho_{21}(t), & \rho_{22}(t), & 0 & \cdots & 0 \\
& & \ddots & & \\
\rho_{n 1}(t) \ldots \ldots \ldots \ldots p_{n n}(t)
\end{array}\right)
$$

(The adjoint representation of the Lie aigebra is

$$
x \rightarrow \operatorname{adj} x=\hat{x} \quad \text { where } \hat{x} y=[x, y])
$$

(b) The group T is solvable if the set of derived groups

$$
T, T^{\prime}, T^{\prime \prime}, \ldots, T^{(n)}
$$

terminates with

$$
T(n)=\{e\} \quad \text { for some finite } n \geq 0 \text {. }
$$

Here T^{\prime} consists of all commutators

$$
\mathrm{k}=\mathrm{g}^{-1_{\mathrm{h}}-l_{\mathrm{gh}}} \quad \mathrm{~g}, \mathrm{~h} \in \mathrm{~T}
$$

and their products. $T^{\prime \prime}$ is similarly constructed from T^{\prime}, etc.

It follows from Lie's theorem that any representation of a solvable group can be brought to a triagonal form.
II. The Levy-Maltsev Theorem

Consider an arbitrary Lie group G and its adjoint representation

$$
g \rightarrow \rho(g) .
$$

G is reductive, if $\rho(g)$ is completely reducible.

If G is not reductive, then the matrices $\rho(g)$ can be brought to the form

$$
\begin{aligned}
& =\left(\begin{array}{cc}
r(g) & 0 \\
* & t(g)
\end{array}\right)
\end{aligned}
$$

The space X where $p(g)$ acts can thus be split into the direct sum of two subspaces

$$
X=A+B
$$

where Bis an invanient subspace

$$
\rho(g) B \subset B
$$

The Levy-Maltsev Theorem: Any Lie algebra X can be represented
as a sum of two subalgebras

$$
\begin{equation*}
X=A+B \tag{1}
\end{equation*}
$$

where A is semisimple and B is solvable. B is the maximal solvable ideal in X and we have

$$
\begin{equation*}
[A, B] \subset B \tag{2}
\end{equation*}
$$

Corollary: Any connected Lie group G is locally isomorphic to the semidirect product

$$
\begin{equation*}
G=R \cdot T \tag{3}
\end{equation*}
$$

of a semisimple connected group R and a solvable group T. is a radical, i.e. a maximal solvable invariant subgroup, so that

$$
\begin{equation*}
\operatorname{RTR}^{-1} \subset T \tag{4}
\end{equation*}
$$

Example: The group of transformations of a Euclidean space E_{n} :

$$
G=R \cdot T
$$

where R is the group of rotations about a fixed point, namely the origin, and T is the group of translations:

$$
\begin{aligned}
& g=r t=t^{\prime} r \\
& r t r^{-1}=t^{\prime}
\end{aligned}
$$

III．Representation Theory of General Lie Groups
We shall use the semidirect product decomposition of the Lie group G

$$
\begin{equation*}
G=R \cdot T \tag{5}
\end{equation*}
$$

and apply the theory of induced representations．
Mackey＇s theory of induced representations，more general then it＇s predecessor due to Gelfand and Nafmark，tells us how to get all irreducible unitary representations of G ，given those of T and R ．

We shall only consider a simple case，namely when T ，in general solvable，is actually Abelian．Let us restrict ourselves to unitary repsesentations，constructed in some Hilbert space H ．

Let us go through several steps．
I）Consider the subgroup T and use it to induce representations． Being Abelian，T has only one－dimensional irreducible representations：

$$
\begin{equation*}
t \in T \quad t \rightarrow U_{t} \quad U_{t}^{T}=\alpha(t) \xi \quad \xi \varepsilon L \tag{6}
\end{equation*}
$$

Here L is some space，in general larger than the Hilbert space H and ξ is a generalized eigenvector of the generators of T ．In this case，we even know that：

$$
\begin{equation*}
\alpha(t)=e^{i\left(\lambda_{1} t_{1}+\ldots \lambda_{n} t_{n}\right)}=e^{i \lambda t} \tag{7}
\end{equation*}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ labels the representations of T and also labels the vectors $\quad \xi=\xi(\lambda)$ 。

We are interested in induced representations，so now we must construct a set F of functions $f(g), g \varepsilon G$ ，with values in $L: f(g) \varepsilon L_{\text {。 }}$ 。

As we know, F must be a linear space, be invariant under right transformations g_{0} and must satisfy a homogenity condition

$$
\begin{equation*}
f(t, g)=\alpha(t) f(g) \tag{8}
\end{equation*}
$$

Let us inspect this condition.

```
We can write an element \(g\) of \(G=R . T\) as
```

$$
\begin{equation*}
g=(r, t) \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
e^{-1}=\left(r^{-1},-r^{-1} t\right) \text { and } e=(1,0) \tag{10}
\end{equation*}
$$

The condition $\mathrm{rtr}^{-1}=\mathrm{t}$ ' corresponds to the multiplication law

$$
\begin{equation*}
\left(r_{1}, t_{1}\right)\left(r_{2}, t_{2}\right)=\left(r_{1} r_{2}, t_{1}+r_{1} t_{2}\right) \tag{11}
\end{equation*}
$$

In this notation an element of \mathbb{T} is ($1, t$), an element of R is ($r, 0$). We have

$$
\begin{equation*}
(r, t)=(1, t)(r, 0) \tag{12}
\end{equation*}
$$

The homogenity condition (8) is

$$
\begin{equation*}
f\left(t^{\prime} g\right)=f\left(\left(1, t^{\prime}\right),(r, t)\right)=\alpha\left(t^{\prime}\right) f(r, t) \tag{13}
\end{equation*}
$$

Using (12) and (13), we find:

$$
f(g)=f((r, t))=f((1, t)(r, 0))=\alpha(t) f((r, 0))
$$

i.e.:

$$
\begin{equation*}
f(g)=e^{i \lambda t} f(r) \tag{24}
\end{equation*}
$$

According to the general method sketched previously, we now consider representations of G :

$$
\begin{aligned}
g=(r, t) & \rightarrow U(r, t) \text { where } \\
U\left(r_{0}, t_{0}\right) f((r, t))= & f\left((r, t)\left(r_{0}, t_{0}\right)\right)=f\left(\left(r r_{0}, t+r t_{0}\right)\right)= \\
& e^{i \lambda\left(t+r t_{0}\right)} f\left(r r_{0}\right)
\end{aligned}
$$

On the other hand

$$
U\left(r_{0}, t_{0}\right) f(r, t)=U\left(r_{0}, t_{0}\right) e^{i \lambda t} f(r)=e^{i \lambda t_{U}} U\left(r_{0}, t_{0}\right) f(r)
$$

Finally we obtain

$$
U\left(r_{0}, t_{0}\right) f^{\prime}(r)=e^{i\left(\lambda_{1} r t_{0}\right)} f\left(r r_{0}\right)=e^{i\left[\lambda_{1}\left(r t_{0}\right)_{1}+\ldots+\lambda_{n}\left(r t_{0}\right)_{n} f_{f}\left(r r_{0}\right)\right.}
$$

In particular

$$
\begin{align*}
& U\left(1, t_{0}\right) f(r)=e^{i\left(\lambda_{1} t_{0}\right)} f(r) \\
& U\left(r_{0}, 0\right) f(r)=f\left(r r_{0}\right) \tag{16}
\end{align*}
$$

so that the functions $f(r)$ should be labelled by the index λ.
To proceed further it is convenient to make use of the concept of a "little group" and to consider functions over a different manifold than the group R, on which the group R also acts transitively.

We already know that if we have a Lie group R acting transitively on a space Λ, then Λ can be "inserted" into R. Indeed, consider a standarod point λ_{0} and a general point $\lambda_{\text {。 }}$

$$
\lambda_{0} \varepsilon \Lambda, \lambda \in \Lambda
$$

We then always have at least one $r \in R$, such that

$$
\begin{equation*}
\lambda=\lambda_{0} r_{\lambda} . \tag{17}
\end{equation*}
$$

If there is only one such $r \lambda$, then Λ and R can be identified. If there is more than one r_{λ}, then we put

$$
\lambda=\lambda_{0}^{r_{1}}=\lambda_{0} x_{2}
$$

Then

$$
\begin{equation*}
\lambda_{0}=\lambda_{0} r_{2} r_{1}^{-1} \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
r_{2} r_{1}^{-1}=h e_{H} \tag{19}
\end{equation*}
$$

where H is defined to be the little group of λ_{0}, $i_{0} e_{0}$ that subgroup of R, which leaves a chosen vector λ_{0} invariant.

For each vector λ let us choose one representative element $r_{\lambda} \in G$, satisfylng (17). Every element of R, taking λ_{0} into λ, can be written as $h r_{\lambda}$. We thus obtain family of left cosets

$$
\begin{equation*}
R_{\lambda}=H r_{\lambda} \tag{20}
\end{equation*}
$$

An arbitrary element of the group R can be written as

$$
x=h r
$$

Where r_{λ} determines a coset and n an element of the coset. Symbolicaily we write

$$
\begin{equation*}
R=H \Lambda \quad \text { and } \Lambda=R / H \tag{2i}
\end{equation*}
$$

Thus, the homogeneous manifolds Λ appear as factor spaces of the group R with respect to a subgroup H, leaving a certain vector λ, invariant. A function over the group can be written as $f(r)=f^{\prime}\left(h r_{\lambda}\right)$. If it satisifies an invariance condition, like $f(h r)=f(2 r)$ or more generally $f(h r)=V_{h} f(r)$ where V_{h} is a linear operator, giving a representation $h \rightarrow V_{h}$ and transforming different functions $f(r)=f\left(h x_{\lambda}\right)$, corresponding to the same λ, amongst each other then we can establish a connection between functions on; the group R and functions on the space λ. Thus

$$
\begin{equation*}
f(r)=f\left(h r_{\lambda}\right)=V_{h} f\left(r_{\lambda}\right)=V_{h} f_{i}^{0}(\lambda) \tag{22}
\end{equation*}
$$

where the subscript i indicates that we have in general many functions $f(\lambda)$, corresponding to one $\lambda_{\text {e }}$
2) Let us now oonstruct the homogeneous spaces Λ (homogeneous with respect to the semisimple subgroup R of G, in a manner close to that originally applied by Wigner for the Poincare' group.

Return to the representations of the group T of (6). We have a Fector $\xi(\lambda) \varepsilon L$, we know how it transforms under U_{t}, representing T. Let us see how U_{r}, representing R acts on $\xi(\lambda)$ 。
Put

$$
\begin{equation*}
r \rightarrow U_{r} \quad U_{r} \xi(\lambda)=\eta(\lambda) \tag{23}
\end{equation*}
$$

and see how U_{t} acts on $n(\lambda)$.

$$
\begin{align*}
U_{t} \eta(\lambda)= & U_{t} U_{r} \xi(\lambda)=U_{r} U_{t}, \xi(\lambda)=U_{r} e^{i \lambda t^{\prime}} \xi(\lambda)= \\
& e^{i \lambda t^{\prime}} n(\lambda) \tag{24}
\end{align*}
$$

with

$$
\begin{equation*}
m^{-1} t r=t^{\prime} \tag{25}
\end{equation*}
$$

We can formally put
i.e. replace the transformation of the coordinates t_{i} by a transformation of the exponents $\lambda_{1} \ldots \lambda_{n}$

$$
\begin{equation*}
\lambda^{\prime}=r \lambda r^{-1} \tag{26}
\end{equation*}
$$

Remark: If G is a group of matrices then (25) and (26) can be understood literally, if we suitably arrange the t_{i} into a matrix t (we know that the t_{i} correspond to one parameter subgroups of T) and the exponents λ_{i} into
 $\operatorname{Tr} \lambda^{\prime} t=t_{i} \lambda_{i}$.

Thus: We have a space Λ of points $\lambda_{1}=\left(\lambda_{1} \ldots \lambda_{n}\right)$ and the group R realizes transformations in $\Lambda_{\text {。 }}$

If the group R acts transitively in Λ, i,e. Λ is a homogeneous maniroid. then we can proceed. If not, then either Λ can be decomposed into transitive subspaces $\Lambda_{s}, i e^{\circ}$ into individual "layers", as in the figuxe:

or Λ cannot be thus decomposed. This last case is called the "ergodio case", is the most difficult one and we shall not go into it at all. Thus, let us decompose A into subsets Λ_{S} on which R does act transitively. It is then clear (at least intuitively) that the space H of the representation can be decomposed into a direct (continuous)
sum of irreducible subspaces

$$
H=\int \Theta H_{s} d_{s}
$$

Each of the subspaces H_{s} is spanned by the vectors $\xi\left(\lambda_{s}\right)$ with λ_{s} in Λ_{s} 。
Each of the transitive subsets Λ_{s} is called an orbit and its structure, as a manifold, depends on the group R.

From now on we consider each orbit separateiy, dropping the subscript s. The vector $\xi(\lambda)$ is a vector function on the orbit Λ. Since the eigenvalues are, in general degenerate, we write a further subscripts

$$
\xi=\xi_{i}(\lambda)
$$

where i labels all eigenvectors of the generators of T_{1} corresponding to one λ.

Example: The Proper Ortochronous Poincare' Group:
T is the group of translations, R the homogeneous Lorentz group. The set λ is the set of momenta $\lambda=\left(p_{0}, p\right)$, the subscript i will be a spin projection and the orbits are (for each fixed value of m^{2}):

1) The upper and lower sheets separately of the hyperboloid

$$
\begin{array}{ll}
p^{2}=m^{2}>0 & \text { a) } p_{0}>0 \\
& \text { b) } p_{0}<0
\end{array}
$$

2) The one sheeted hyperboloid

$$
\mathrm{p}^{2}=\mathrm{m}^{2}<0
$$

3) The upper and lower halfs of the light cone

$$
\begin{array}{ll}
p^{2}=m^{2}=0 & \text { a) } p_{0}>0 \\
& \text { b) } p_{0}<0
\end{array}
$$

4) The vertex of the cone:

$$
p^{2}=m^{2}=0
$$

$$
p_{\mu}=0 \quad \mu=0,1,2,3
$$

3. We already know how the operator U_{t} and U_{r} act on $\xi(\lambda)$. Indeed:

$$
\begin{align*}
& U_{t} \xi(\lambda)=e^{i \lambda t} \xi(\lambda) \\
& U_{r} \xi(\lambda)=A(r, \lambda) \xi\left(\lambda_{r}\right) \tag{28}
\end{align*}
$$

where

$$
\lambda_{r}=r \lambda r^{-1}
$$

and $A(x, d)$ is an operator, acting on the subscripts i only. Now we can make use of the homogeneity of Λ to "insert" it into the group R, as discussed above. Indeed, write $x=h{ }_{\lambda}$ as in (20), where heH and H is the iftis group of 在, We introduce the functions $\xi\left(x^{\circ}\right)$, putting

$$
\xi(h r)=\xi(x)
$$

and thus

$$
\xi(r)=\xi\left(h r_{\lambda}\right)=\xi\left(r_{\lambda}\right)=\xi(\lambda)
$$

We now have

$$
U_{r} \xi\left(r_{\lambda}\right)=A(r, \lambda) \xi\left(r_{\lambda} r\right)
$$

Putting

$$
\begin{equation*}
r_{\lambda} r=h r_{i n} \tag{29}
\end{equation*}
$$

we have

$$
\begin{equation*}
U_{r} \xi\left(r_{\lambda}\right)=A(r, \lambda) \xi\left(r_{\mu}\right) \tag{30}
\end{equation*}
$$

Remark: The procedure of inducing is thus applied twice, First, the inducinc group is the abelian group \mathbb{T}, secondly the inducing group is the Iittie group H。
4. We still have to specify what are the operators $A(r, h)$ acting on the subscript i, when

$$
\begin{equation*}
\xi(\lambda)=\left\{\xi_{i}(\lambda)\right\} \tag{31}
\end{equation*}
$$

Lecture. 23

Obviously we have:

$$
\begin{aligned}
& U_{r_{1} r_{2}} \xi\left(r_{\lambda}\right)=A\left(r_{1} r_{2}, \lambda\right) \xi\left(r_{\lambda} r_{1} r_{2}\right) \\
& U_{r_{1} r_{2}} \xi\left(r_{\lambda}\right)=A\left(r_{1}, \lambda\right) A\left(r_{2}, \lambda r_{1}\right) \xi\left(r_{\lambda} r_{1} r_{2}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
A\left(r_{1} r_{2}, \lambda\right)=A\left(r_{1}, \lambda\right) A\left(r_{2}, \lambda r_{2}\right) \tag{32}
\end{equation*}
$$

Let us again fix a definite "reference" vector $\lambda_{0} \in \Lambda$ and denote R_{0} its ifttie group

$$
\begin{equation*}
\lambda_{0} r_{0}=\lambda_{0} \text { for all } r_{0} \in R_{0} \tag{33}
\end{equation*}
$$

Consider r_{2} and $r_{2} \in R_{0}$. Then

$$
\begin{equation*}
A\left(r_{1} r_{2}, \lambda\right)=A\left(r_{1}, \lambda\right) A\left(r_{2}, \lambda\right) \tag{34}
\end{equation*}
$$

We wiso have

$$
A(\ell, \lambda)=1
$$

Thus: The operators

$$
\begin{equation*}
U\left(x_{0}\right)=A\left(r_{0}, \lambda_{0}\right) \tag{35}
\end{equation*}
$$

form a representation of the little group $R_{0}{ }^{\circ}$
However, we still have to relate $A(r, \lambda)$ for arbitrary r and λ to $U\left(r_{0}\right)$
Let λ_{0} and λ be given, then again choose (and $\left.f i x\right) x_{\lambda}$ such that

$$
\lambda=\lambda_{0}{ }^{r} \lambda
$$

(transitivity of Λ implies that at least one such r exists). We have

$$
A\left(r_{\lambda} r^{r} \lambda_{0}\right)=A\left(r_{\lambda}, \lambda_{0}\right) A\left(r, \lambda_{0} r_{\lambda}\right)=A\left(r_{\lambda}, \lambda_{0}\right) A(r, \lambda)
$$

Put

$$
\begin{equation*}
B(x)=A\left(x, \lambda_{0}\right)_{0} \tag{36}
\end{equation*}
$$

Then:

$$
\begin{equation*}
A(r, \lambda)=B^{-1}\left(r_{\lambda}\right) B\left(r_{\lambda} r\right) \tag{37}
\end{equation*}
$$

We can always wroite (see (29))

$$
\begin{equation*}
r_{\lambda} r=r_{0} r_{\mu} \quad \mu E \Lambda \tag{38}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
B\left(r_{\lambda} r\right)=A\left(r_{0} r_{\mu}, \lambda_{0}\right)=A\left(r_{0}, \lambda_{0}\right) A\left(r_{\mu}, \lambda_{0}\right)=U\left(r_{0}\right) B\left(r_{\mu}\right) \tag{39}
\end{equation*}
$$

so that (37) becomes

$$
\begin{equation*}
A(r, \lambda)=B^{-1}\left(r_{\lambda}\right) U\left(r_{0}\right) B\left(r_{\mu}\right) \tag{40}
\end{equation*}
$$

and we finally obtain:

$$
\mathrm{U}_{\mathrm{r}} \xi(\lambda)=\mathrm{b}^{-1}(\lambda) U\left(r_{0}\right) b(\mu) \xi(\mu)
$$

where we have put

$$
b(\lambda)=B\left(r_{\lambda}\right)
$$

We can further simplify by introducing a new basis

$$
e(\lambda)=b(\lambda) \xi(\lambda)
$$

and replacing U_{r} by operators V_{r} of an equivalent representation

$$
V_{r}=b(\lambda) U_{r} b^{-1}(\lambda)
$$

We then have:

$$
\begin{array}{ll}
V_{t} e(\lambda)=e^{i \lambda t} e(\lambda) \\
V_{r} e(\lambda)=U\left(r_{0}\right) e(\mu) & r_{\lambda} r=r_{0}^{r_{0}^{2}} \mu
\end{array}
$$

We have show the following:

Theorem: All inqeducible unitary representations of the group $G=R_{0} T$ can be realized by means of the formulae

$$
\begin{aligned}
& V_{t} e(\lambda)=e^{i(\lambda, t)} e(\lambda) \\
& V_{r} e(\lambda)=U\left(r_{0}\right) e(\mu)
\end{aligned}
$$

where e(λ) are vector-valued functions on the homogeneous manifold A and U(re are representations of the stationary subgroup \mathcal{F}_{0}, definned for some point λ_{0} eho For given r and λ we can determine $r_{0} \in R_{0}$ and uef from tine reletions

$$
r_{\lambda} x=x_{0}^{r} x_{\mu}
$$

(We nave $\lambda=\lambda_{0}{ }^{r} \lambda, x=r_{0}^{r} \lambda^{r} ; \lambda_{0}$ is a chosen figed point).

Femark: A representation of G is thus specified by:
a) Chamacterizing the "orbit" Λ, ioe the homogeneous space orer which we construct representations.
b) Specifying the representation of the stationamy subgroup \vec{R}_{0} learing a chosen vector λ_{0} EA, characterizing the orbit, fnveriant.

References:

I) G. W. Mackey: The Theory of Group Representations. (Lectures at University of Chicago, Summer 1955).
2) Wo Ho Klink, Lectures in mooret. Phrsios XTD (Boulder)

Ed. K。 T. Mahanthappa, W.E.Brittin, Gordon find Breach, N.Y. 2969。
3) Ro Herman: Lie Groups for Physicists, Benjamin, NoY. 1966 .

We now proceed to the final part of this series of lectures, namely the representation theory of the Poincare' Group. We shail first talk about the group as such, then about its representations.

```
The Poincare' Group
```


I. Definition

Consider a foux-dimensional real rector space

$$
\begin{equation*}
x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \varepsilon X \tag{I}
\end{equation*}
$$

with an indefinite samer product

$$
\begin{align*}
& (x, y)=x_{0} y_{0}-x_{1} y_{i}-x_{2} y_{2}=x_{3} y_{3}=g^{\mu y_{x_{H}} y_{\psi}} \tag{2}\\
& g^{\infty}=1 \quad g^{i i}=-1 \quad i=1,2,3 \quad \text { (no summation), } \\
& E^{H \nu}=0 \quad \mu \neq v
\end{align*}
$$

The transtrormation

$$
\begin{equation*}
x_{\mu}^{\prime}=\Lambda_{\mu}^{\nu} x_{\nu}+a_{\mu} \tag{3}
\end{equation*}
$$

is galied a Lorentz Transformation if it leafes the interwai \boldsymbol{r}^{2} between twe points $\%$ and y invariant:

$$
\begin{equation*}
\tau^{2}=g^{\mu \nu}\left(x_{\mu}-y_{\mu}\right)\left(x_{v}-y_{v}\right)=\text { invarimnt } \tag{4}
\end{equation*}
$$

It is easy to check that the condition (4) is satisfied ift and only if A_{j}^{v} is a $O(3,2)$ matrix, ioe. if

$$
\begin{equation*}
\Lambda^{T} g \Lambda=g \tag{5}
\end{equation*}
$$

A Lorentz transformation is homogeneous if $a_{\mu} \equiv 0, \mu=0, \bar{i}, 2,3$, inhomogeneous othexwise。

It is easy to check that the Lorentz transformations form a group, called the Inhomogeneous Lorenta Group, or the Poincare' Group. Denote an element Of the group

$$
\begin{equation*}
g=(n, a) \tag{6}
\end{equation*}
$$

Multiplication is

$$
\begin{equation*}
(\Lambda, a)\left(\Lambda^{p}, a^{p}\right)=\left(\Lambda \Lambda^{p}, a+\Lambda a^{p}\right) \tag{7}
\end{equation*}
$$

the daentity element is

$$
\begin{equation*}
e=(1,0) \tag{8}
\end{equation*}
$$

ned the inverae is

$$
\begin{equation*}
g^{-1}=\left(\Lambda^{-1},-\Lambda^{-1} g\right) \tag{9}
\end{equation*}
$$

Thus, the Poincare' group is an example of a more general structure - a semidipeet product of emisimple group (the homogeneous Lorentr group), With an Abelian group (the group of translations in the vertor spage X).

A convenient way of writing Lorente transformations mes metrig groux is to introduce five-dimensional matrices

$$
L=\left(\begin{array}{ll}
\Lambda & 2 \tag{10}\\
0 & 2
\end{array}\right)
$$

where $\$ is an $0(3,1)$ matrix and a is a four-vectors written as gavium. The matrices L act on five-dimensional vectors (columns), written as

$$
\binom{X}{I}
$$

The Poincare' group contains the homogeneous Lorentz group A, the translations a and the discrete elements:

$$
\begin{array}{ll}
I_{s}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & -1 \\
-1
\end{array}\right) & \text { spmee replections (11) } \\
I_{t}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)
\end{array}
$$

end

$$
I_{s t}=I_{s} I_{t} \quad \text { Space tine inverstingo }
$$

Tering the determinent of the lett and gight hand of (5) we fond

$$
\begin{equation*}
\operatorname{det} \Lambda= \pm \tag{13}
\end{equation*}
$$

waking the co-component, we find

$$
\begin{equation*}
\Lambda_{0}^{0} \geq 1 \quad \text { or } \quad \kappa_{0}^{0} \leq-1 \tag{14}
\end{equation*}
$$

Thus, we can split the homogeneous Lorenta group (and filso the Pelncare' Eroup), into fous connected components:

$$
I_{\phi}^{A}: \operatorname{det} \Lambda=+I, \operatorname{sgn} \Lambda_{0}^{0}=+I_{0} \text {. This component contains the faentity of }
$$

the group, is itself a subgroup and is called the proper ortochronous Lorentz group

$$
\begin{array}{lll}
I_{-}^{t}: & \operatorname{det} \Lambda=-I, \operatorname{sgn} \Lambda_{0}^{0} \equiv 1 & \text { Containe } I_{s} \\
I_{+}^{+}: & \operatorname{det} \Lambda=+1, \operatorname{sgn} \Lambda_{0}^{0}=-1 & \text { Contains } I_{s t} \\
I_{-}^{+}: & \operatorname{det} \Lambda=-1, \operatorname{sgn} \Lambda_{0}^{0}=-1 & \text { Contains } I_{t}
\end{array}
$$

We already know that the proper ortochronous Lorentz group is the group SO(3,1), ioe. a simple group which is one of the real noncompact forms corresponding to the Cartan algebra B_{2}. We know thet it is locally isomorphic to $S L(2, C)$ which is simply connected and is thus the universel corering group of the Lorentz group. We also know that the complex extensions of $S O(3,1)$, namely $S O(4, C)$ is only semisimple, not simple.

II. Algebres of the Poincaie ${ }^{\text {Group and its Invaniants }}$

Let us mestrict ourseives to the proper ortochroncus Poincare ${ }^{\text {E }}$ Eup (ioe exclude the discrete operators I_{s} and I_{t}) and consider infinitesimad transfomations of the type

$$
x_{\mu}^{p}=\Lambda_{\mu}^{v} x_{v}+z_{\mu}
$$

Let us wio

$$
\begin{equation*}
x_{\mu}^{\nu}=\left(\delta_{\mu}^{\nu}+\varepsilon_{\mu}^{v}\right)_{v}+a_{\mu} \tag{25}
\end{equation*}
$$

Here $\varepsilon_{\mu}{ }^{\psi}$ and α_{μ} ne first order infinctesimals. From the invaniance of the guedratic foxm F^{2} we meadily obtain

$$
\begin{align*}
& \varepsilon_{\psi}^{\mu}=0 \quad \text { for } \mu=v \quad \mu, v \equiv 0, i, 2,3 \\
& \varepsilon_{0}^{i}=\varepsilon_{i}^{0} \quad \varepsilon_{k}^{i}=-\varepsilon_{i}^{k} \quad\{, k=1,2,3 \tag{16}
\end{align*}
$$

Together with the a we thus have 10 parameters. Writing a geneagl element Qf the Posncare group in some representation as

$$
\begin{equation*}
U(\Lambda, a)=\exp \left[i a_{\mu} P_{\mu} i \frac{T}{2} e_{\mu v} J_{\mu \nu}\right] \tag{27}
\end{equation*}
$$

where F_{y} and $j_{\mu v}$ are the generators, and are hermitime operators in any unitury representation of the group, we can dipectiy from the multiplication Law (T) obtain the familiar commatation relatione:

$$
\begin{gather*}
{\left[P_{\mu}, P_{\nu}\right]=0} \\
{\left[M_{\mu \nu}, P_{\lambda}\right]=i\left(g_{\nu \mu} P_{\mu}-E_{\mu h} P_{\nu}\right)} \tag{18}\\
{\left[M_{\mu \nu}, M_{\rho \sigma}\right]=i\left(g_{\nu \rho} M_{\mu \sigma}+g_{\mu \sigma} M_{\nu \rho}-g_{\mu \rho} M_{\nu \sigma}-g_{\psi \sigma} M_{\mu \varphi}\right)}
\end{gather*}
$$

We shall also use a three dimensional notation, putting:

$$
\begin{aligned}
& \vec{M}=\left(M_{23}, M_{31}, M_{12}\right) \quad \vec{N}=\left(M_{O L}, M_{02}{ }^{9} M_{03}\right) \\
& E=\left(P_{0}, \vec{P}\right)
\end{aligned}
$$

The physical interpretation 2 these operators is thet:

$\mathrm{M}_{\text {SK }}$	i, $k=1,2,3$ are generators of spece rotations
$M_{\text {ok }}$	$k=1,2,3$ sre generators of pure Lorentz transtormetzons
$\mathrm{P}_{\underline{\text { P }}}$	$i=2,2,3$ me genermtoms of space transiations
P_{0}	is the generntor or time translavion.

Note, that under finite Loxenty transformetions the genergeros pu and womens form as a vector and as a tensor, mesperispeyy

$$
\begin{align*}
& U^{-2}(A, O) P_{\mu} U\left(A_{9} O\right)=A_{\mu}^{V} F_{W} \\
& U^{-1}\left(\Lambda_{,} O M_{M U} U(\Lambda, O)=\Lambda_{N}^{P} A_{N O}^{C}\right. \tag{19}
\end{align*}
$$

We know the role that Schur's iema plays in gepresentatyon theomy and thus we are very interested in the Casimir opergtores of the Peincere' group, $i_{c} \in \operatorname{in}$ all operators from the envelioping gigebra of the ine afgebra, thet commute with sill generators.

It is a simple matter to check that the operetors

$$
\begin{equation*}
P^{2}=g^{\mu v} P_{y} P_{v}=P_{0}^{2}-P^{2} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
W^{2}=g_{\mu \nu} W^{\mu} W^{\nu} \tag{21}
\end{equation*}
$$

Where

$$
\begin{equation*}
W^{\mu}=\frac{1}{2} \varepsilon^{\mu \nu p \sigma_{P}} V_{\rho \sigma} \tag{22}
\end{equation*}
$$

($\varepsilon^{\mu v \rho \sigma}$ is the totally antisymmetric tenson with $\varepsilon^{0.23}=1$) are aiways nveriants of the group (are Casimir operators). It is somewhet less obvious that in generel these are the only invariants. We shall show below that in many specific cases there are however additional invarionts.

An mportant feature or the Pauli-Lynbansi vectore W is that it is SyWeroinat under transiations

$$
\begin{equation*}
\left[P_{i, ~}, W_{V}\right]=0 \tag{23}
\end{equation*}
$$

and also that

$$
\begin{equation*}
g^{H W_{p} P_{v}}=0 \tag{24}
\end{equation*}
$$

2.e. oniy three components are actuainy independent.
II.

The Poincarel Group in Physics
The outstanding role of the Poincare" group bebomes cieat som som we demand that the physical theory we are considering is compatiole with the special theory of relativity. In such a theory all frames of meterence that can be obtained from a given frame by a Lorentz transtomation axe equipalent for the description of a physical system, ioe the same observation made on a. system in two such frames must give the same zesult.

In classical physics this relativity principle is satistied by demending that all equations of motion should have the some form in equivalent irames of reference.

In quantum physics the situation is much more complicated, since stwotily speaking no consistent quantum theory compatibie with special relativity exists. However, the relativity principle requires that experiments conducted in different systems lead to the obserqution of the sane probability for a given result. This leads dixectiy to restrictions imposed upon wave functions.

Indeed let us consider the quentum mechanics oi a free particie. The roquinements of relativity can be imposed on the equstions of motions ${ }^{n}$.e. one en write equations invariant under Loxenta trensiommations jike, say, the Derac equation. On the other hand the comrect transtomation properties ean be imposed directly upon the wave functions.

Erpemimenteiny measurable quantities, like transition probabilities, Sn a qumtur theory are given by the moduli of scalar procuctu of wave functions $\left|\left(\psi_{p} \psi_{i}\right)^{2}\right|$. The requisement of special relativity is now that the values of such quantities should be invariant under Lowenter transiomations.

Thus, i the coerdinates are subjected to a Larenta transpometion the wawe function is transformed according to

$$
\begin{equation*}
U(n, a) \psi(X)=\psi\left(X^{9}\right) \tag{25}
\end{equation*}
$$

(this ie a definition of the operator U(A, a)), satistying

$$
\begin{equation*}
\left|\left(U(A, a) \psi_{f}, U(A, a) \psi_{i}\right)^{2}\right|=\left|\left(\psi_{f}, \psi_{i}\right)^{2}\right| \tag{25}
\end{equation*}
$$

 groups connected to the identity operator, pepresented by a unit operatore then condition (26) is equivalent to

$$
\begin{equation*}
\left(U\left(A_{g} a\right) \psi_{f^{a}}, U\left(A_{g}, \dot{z}\right) \psi_{\underline{L}}\right) \equiv\left(\psi_{\underline{I}}, \psi_{\underline{L}}\right) \tag{27}
\end{equation*}
$$

The condition that set of transformations leading stepwise from one freme of feference to another one should be equivalent to a direct transformation between the two frames leads to the condition

$$
\begin{equation*}
U(\Lambda, a) U\left(\Lambda^{p}, a^{q}\right)=e^{\dot{L} \phi\left(\Lambda_{g} g_{,} A^{p}, a^{p}\right)} U\left(\Lambda \Lambda^{p}, g+\Lambda a^{p}\right) \tag{28}
\end{equation*}
$$

Where $\phi\left(A, A_{,} A^{\prime} a^{\prime}\right)$ is a real phase。 Specifically for the Foincare' group it can be proved that the phase-pactor in (28) can be repiaged by ti aro -i so thet

$$
\begin{equation*}
U\left(A_{\nabla} \sigma_{2}\right) U\left(A^{8} a^{\nabla}\right)= \pm U\left(\Lambda A^{\vee}, a+\Lambda a^{\vee}\right) \tag{29}
\end{equation*}
$$

(See Waneris or Bargmann's articles, or the review by T. D. Newton)

It follows s that the ware-functions admissibie in a relativistic theory themstorm under single-valued or double-yalued wnitary wepresentations of the Poincere group. If $\phi($ in (28) is an aroitremy real phase then we aire considering untary say pepresentritons on projestive pepresentations. For the Polveare" group this is not necessary.

We shail accept as a definition thet we cail a physical systen
 ar ix eductbie repaesentation of the Poincare" group. The cissitidation of
 tesir, oormesponding to a classirication of all possible eiementary physical systems.

To summarise, in elementary parivicle physios we consider a pree (non-interacting) particie to be sn eiementary melativistio quantum meoheniaal system described by a ware functions transtorming unaer a unitary inseducpbie representation of the Poincepe ${ }^{\prime}$ group.

It showld be stressed that the signiticance of the representations ow the Poincare ${ }^{\circ}$ group in particle physict is by no means limited to the
 Aoms basis for the relativistic kinematios of reamtions amongst pertioles. When we have to consider many-particie states, transtoming according to Reducible representations.

TV. GHasese of Irqeducibie Unitary Representations of the Pojncare' Group We have wheady mentioned that the invariant operators P^{2} wnd W^{2}, commite whe will the generetors of the Porncere greup. It follows from Behtur tewaz, which is applicable in this case, that the reeessary and
 thet ayy operator emmuting with all the generators must bs the matiple withe unit operabow. Thus al fumetions belonging to the Hipert space of an in weducible representation must be elgenfunctions of the operetore p^{2} and ${ }^{2}$ annesponding to one and the same evigenvanue.

The problem on citssifying al inowuctalus zemementations of
 of drvemembs of the group.
 the group, nameny

$$
\begin{align*}
F^{2}=P_{H} P^{\mu} & =m^{2} \tag{29}\\
W^{2}=W_{\mu} W^{\mu} & =-m^{2} s(s+2) \text { for } m^{2} \neq 0 \\
& =-p^{2} \quad \text { for } m^{2} \equiv 0 \tag{30}
\end{align*}
$$

The irreducible representations of the Peincare group differ principaliy from one another depending on whether the vector F_{μ} is timelike $\left(m^{2}>0\right)$, spacelike ($\left.m^{2}<0\right)$, Lightike $\left(m^{2}=0\right.$, but not eil components of P_{H} are equal to zero) or a null-vector ($\mathrm{m}^{2}=0, P_{\mu}=0 \mu=0,1,2,3$). Thus, we shall distinguish and discuss below four classes of irreducible unitary representations of the Poincare group, which we shan call.
a) Timelike representations
b) Spacelike representations
d) Lightilke representations
d) NuII representations

The additionel invariants which appear in the individual ciewses Qif representations, will be discussed together with the other properties of these presentations in the following paragraphs.

V. Physical Meaning of the Operators and a Clessification of the Stetes or an Eiementary Relativistic Quantum System.

According to the above definitions an elementary relutivistic quantum system is described by a wave function, transforming aceording to an irreducible unitary representation of the Poincare' group. Such awere fiunction will cleariy be the eigenfunction of the operators P^{2} and W^{2}, corgesponding to definite Faiues of m and s (or p), as well as the additional invariant operators. We shall identify the invariant m with the mass of the system (e.g. an elementary particie) and s with its spin. Thus the values of the inveriants of the Fonncare' group specify the type of particie we are considering.

The infinitesimal operators of the group can now be identified with the quantum mechanical operators of linear momentum" $\left(P_{i}, i=2,2,3\right)$, energy (E_{0}) anguiar momentum ($M_{i k}, i, k=1,2,3$), centre of inertia $\left(g_{\mu}=M_{\mu} P^{\nu}\right)$ 。

We are interested not only in the "type" of particle under consideration; but also in its "state", e.g. in its momentum and in the orientation of its spin. To do this we associate a particle in a specipic state not only with a certain irreducible unitary representation of the Poincare' group, bat with a basis function of such a representation. This leads us to the problem of constructing and classifying all possible bases of imeducible unitary representations of the Poincare' group.

A conyenient and physically meaningful way of constmucting a basis of a representation is to consider the algebra of the group generators and its envelloping algebra (i.e. all powers of the generators). Using these operators We construct a complete set of commuing operators (commting with each others but not with all generators of the group). The tomplete set of common eisenfuctions of these operators, compesponding to a definite set of whes of the group invarient, can then serve as the basis of a representation

The choice of the complete set of commuting opergtors is, of course. not unique, and there are many physically non-equivaleat possibilities. A classification of the difierent possible complete sets of commuting operators has not been prowided for the Poincare' group.

The basis most commonly used in particie physics consists of the common eigenfunctions of the innear momenta P and of one of the spin projections, say W_{3} (naturaly, the basis functions, like ail other functions, in the space carrying the representation, are eigenfunctions of the invariants P^{2} and W^{2})。 Thus eg. for $m^{2}=0$ this basis, which we shall call canonieal, satisfies the equations

$$
\begin{align*}
P_{\mu} \psi_{\mathrm{ms} \xi, \mathrm{p} \lambda} & =\mathrm{p}_{\mu} \psi_{\mathrm{ms} \xi, \mathrm{p} \lambda} \\
\mathrm{~W}_{\mathrm{K}} \psi_{\mathrm{ms} \xi, \mathrm{p} \lambda} & =\mathrm{c}_{\mathrm{K}} \lambda \psi_{\mathrm{ms} \xi, \mathrm{p} \lambda} \\
\mathrm{p}^{2} \psi_{\mathrm{ms} \xi, \mathrm{p} \lambda} & =\mathrm{m}^{2} \psi_{\mathrm{ms} \xi, \mathrm{p} \lambda} \tag{32}\\
\mathrm{~W}^{2} \psi_{\mathrm{ms} \xi, \mathrm{p} \lambda} & =-\mathrm{m}^{2} \mathrm{~s}(\mathrm{~s}+1) \psi_{\mathrm{ms} \xi, \mathrm{p}}
\end{align*}
$$

Here ξ is a parameter, indicating a possibie degenergey
which is lifted by considering the additional invariants of the Poincare" gioup, when they exist. The subscript k tells us which component or conbingtion of components of the spin W_{k} we are diagonalizing. The coefiticient C_{k} will be specified.

Clearly, when using the canonical basis, we sie treating a subgroup of the Poincare' group preferentially, namely the translations generated by P_{μ} and a one-dimensional rotation generated by W_{k}. This basis corresponds to the reduction of the Poincare' group to the subgroup T_{4} \% 0(2).

$$
\begin{equation*}
P_{+}^{4} \mathrm{~T}_{4} \times 0(2) \tag{32}
\end{equation*}
$$

A different basis, which is aiso of great use in physies, coriesponds to the reduction of the Poincare" group to the (homogeneous) Lorentr group and one of its subgroups, e.go:

$$
\begin{equation*}
P_{+}^{4} \partial I_{+}^{4} \partial 0(3) 20(2) \tag{33}
\end{equation*}
$$

(at least for representations of the group aigebray)。
The complete set of commuting operators consists of the casimir operatoms of each group in the chain of subgroups, foe the invariants of the homogeneous Lorentz group, the square of the thiee dimensionel angular momentum
and one of its projections.
The corresponding "angular momentum basis functions" satisfy the equations (for $m^{2}>0$):

$$
\begin{align*}
& \mathrm{F} \phi_{\mathrm{ms} \xi_{0}, \mu \lambda \mathrm{MM}_{3}}=\frac{1}{2}\left(1+\lambda^{2}-v^{2}\right) \phi_{\mathrm{ms}}, \forall \lambda M_{3} \\
& G \varnothing_{\mathrm{ms}}, v \lambda \mathrm{MM}_{3}=v \lambda \emptyset_{\mathrm{ms} \xi,}, v \lambda M_{3} \\
& M^{2} \phi_{m s \xi, v \lambda M M_{3}}=M(M+1) \varphi_{m s \xi}, v \lambda M M M_{3} \tag{34}\\
& \mathrm{M}_{12} \emptyset_{\mathrm{ms}} \xi_{,}, \nu \lambda \mathrm{MM}_{3}=\mathrm{M}_{3} \emptyset_{\mathrm{ms}}^{5, v \lambda M M_{3}} \\
& P^{2} \emptyset_{m s \xi, \nu \lambda M M_{3}}=m^{2} \phi_{m s \xi}, \nu \lambda M M_{3} \\
& W^{2} \phi_{m s \xi}, \cup \lambda M M_{3}=m^{2} s(s+1) \varphi_{m s \xi}, \forall \lambda M M_{3}
\end{align*}
$$

Here we have

$$
\begin{align*}
& F=+\frac{1}{2} M_{\mu \nu} M^{\mu \nu}=\left(\dot{N}^{2}-\mathbb{N}^{2}\right) \tag{35}\\
& G=\frac{1}{4} \varepsilon^{\mu \nu \rho \sigma} M_{\mu v} M_{\rho \sigma}=\frac{\operatorname{Miv}}{N}
\end{align*}
$$

Secture 24

Irreducible Unitary Representations of the Poincare' Group

Let us proceed with a systematic exposition of the representation theory of the Poincere' group. The treatment follows the original work of Wigner, which has been reviewed and extended in numerous articles and books. References:

1. E. P. Wigner. On Unitary Representations of the Inhomogeneous Lorentz Group. Ann. of Math. 40, 149 (1939).
2. Yu. M. Shirokov. A Group Theoretical Consideration of the Basis
of Relativistic Quantum Mechanics I-V.
Soviet Physics JETR 6, 669, 919, 929 (1958)
3. 493

2, 620
(1959).
3. H. Joos: Fortchr. $\mathrm{Z}_{\text {. Physik 10, } 65 \text { (1962). }}$
4. T. D. Newton: The Inhomogeneous Lorentz Group in the Theory
of Groups in Classical and Quantum Physies. Vol. 1, Ed. T. Kaham. Oliver and Boyd, Edinburgh, 1965.

The method is identical with the one discussed in a previous lecture for an arbitrary Lie group with an Abelian invariant subgroup, namely the method of induced representations.

1. Reduction of the Representations of the Poincare' group to Representations of Iittle Groups.

Let us first start by using the Abelian subgroup of translations, to induce representations. Thus, let us choose a basis for the representations, consisting of eigenvectors of the translations. Since this does not in general specify the eigenvectors completely, we shall also demand that they
are eigenvectors of a further operator W_{k} (a spin projection). Thus we heve

$$
\begin{array}{rlr}
\mathrm{P}^{2} \psi_{m s \xi, p \lambda} & =m^{2} \psi_{m s \xi, p \lambda} \\
W^{2} \psi_{m s \xi, p \lambda} & =-m^{2} s(s+1) \psi_{m s \xi, p \lambda} \quad m^{2} \neq 0 \\
& =-\rho^{2} \psi_{m s \xi, p \lambda} & m^{2}=0 \tag{1}\\
P_{\mu} \psi_{m s \xi, p \lambda} & =p_{\mu} \psi_{m s \xi, p \lambda} & \\
W \psi_{m s \xi, p \lambda} & =C \quad \lambda \psi_{m s \xi, p \lambda}
\end{array}
$$

The number m and s (mass and spin) characterize the representations, sometimes an additional invariant exists, so we may have an additional label ξ. The meaning of ρ^{2} for $\mathrm{m}^{2}=0$ will be specified below. The state vectors (basis functions) are also labeled by a four-vector, the momentum $p=\left\{p_{\mu}\right\}$ and a spin porjection λ, also to be specified. The meaning of the subseript and proportionality coefficient C_{K} is discussed below.

In agreement with the general theory we can immediately write the operators representing translations in the representation $(\Lambda, a) \rightarrow U(\Lambda, a)$

$$
\begin{equation*}
U(I, a) \psi_{m s \xi, p \lambda}=e^{i p_{\mu} \mu_{\mu}} \psi_{m s \xi, p \lambda} \tag{2}
\end{equation*}
$$

We know that $U(A, O)_{\text {ms }}$, $p h$ will again be an eigenvector of P_{μ}, corresponding to a different eigenvalue of the momentum p_{μ}. Thus

$$
\begin{equation*}
U(\Lambda, 0) \psi_{m s} \xi_{, p} \lambda=\sum_{\lambda^{\prime}} Q_{\lambda^{\prime} \lambda}(\Lambda, p) \psi_{m s \xi, \Lambda p} \lambda^{\prime} \tag{3}
\end{equation*}
$$

Here $Q_{\lambda}{ }_{\lambda}(\Lambda, p)$ are matrix elements of an operator acting on the "degeneracy labels" only, i.e. on the spin projection. As in the general theory, we shall relate them to the representations of certain little groups.

The operators $Q(\Lambda, p)$, depending on the Lorentz transformation Λ and on the value p of the momentum, at which they are applied, can be evaluated conveniently, using Wigner "boosts"。

Thus, let us choose a "reference vector" p_{R} which we fix. We must now split the manifold $\{p\}$ into layers on which the Lorentz group
acts transitively, i.e. into individual "orbits". Consider a proper orthchronous Lorentz transformation Λ and put

$$
p_{\nu}=\Lambda_{\nu}^{\mu}\left(p_{R}\right)_{\mu}
$$

By definition the operator A preserves the "length"

$$
p^{2}=p_{R}^{2}=m^{2}
$$

so each value of m^{2} will correspond to an orbit.
Further, if $m^{2}>0$ or $m^{2}=0$ but, $p_{\mu} \neq 0$ for $a l l \mu$, then the sign of p_{0} is an invariant as well. There are no further invariants and we obtain the orbits

Timelike:
1a) $p^{2}=m^{2}>0 \quad p_{0} \geq m \quad m>0$
1b) $p^{2}=m^{2}>0 \quad p_{0} \leq-m$
Spacelike:
2) $p^{2}=m^{2}<0$

Lightlike:
3) $p^{2}=0$
$B_{\mu} \neq 0$ for at least one $\mu=0,1,2,3$
Null Vector
4) $\mathrm{p}^{2}=0$ $p_{\mu}=0$, for all μ.

For each orbit we must choose a different reference vector P_{R} and there will be big difference, depending on whether P_{R} is timelike, spacelike, lightlike or nullvector.

Consider a chosen orbit and fix P_{R}. Any p in the same orbit can be obtained from p_{μ} by a Lorentz transformetion. Choose a specific fixed Lorentz
transformation $L(p)$ (a Wigner "boost"), putting: .

$$
\begin{equation*}
p_{\nu}=L(p)_{\nu}^{\mu}\left(p_{R}\right)_{\mu} \tag{4}
\end{equation*}
$$

and choose $L(p)$ such that

$$
\begin{equation*}
\psi_{\mathrm{ms} \xi, \mathrm{p} \lambda}=\mathrm{U}(\mathrm{~L}(\mathrm{p}), 0) \psi_{\mathrm{ms} \xi, \mathrm{p}_{\mathrm{R}} \lambda} \tag{5}
\end{equation*}
$$

Such an operator $L(p)$ is called a "rotationless boost": it takes p_{R} into p and $U(L(p), 0)$ leaves the spin labels unchanged (i.e. it corresponds to the identity element in the representation of the relevant little group).

Now consider the little group of the reference vector:

$$
R_{\mu}^{\nu}\left(p_{R}\right)_{v}=\left(p_{R}\right)_{\mu}
$$

For such a specific Lorentz transformation we have:,

$$
\begin{equation*}
U(R, 0) \psi_{m s} \xi, p_{R}{ }^{\lambda}=\sum_{\lambda} Q_{\lambda^{\prime} \lambda}\left(R, p_{R}\right)_{m s} \xi, p_{R^{\prime}} \lambda^{\prime} \tag{6}
\end{equation*}
$$

Thus the operators $Q\left(R, p_{R}\right)$ realize a representation of the little group R and $Q_{\lambda} \lambda^{\prime}\left(R, p_{R}\right)$ are simply the corresponding matrix elements.

Now let us reduce a general $U(\Lambda, 0)$ to rotationless boosts and little group transformations.

Put

$$
\begin{equation*}
\Lambda=L(\Lambda p) R(\Lambda, p) I^{-I}(p) \tag{7}
\end{equation*}
$$

where L is a rotationless boost and this is a definition of $R(\Lambda, p)$. We have

$$
\begin{equation*}
R(\Lambda, p) p_{R}=L^{-1}(\Lambda p) \Lambda L(p) p_{R}=L^{-1}(\Lambda p) \cdot \Lambda p=p_{R} \tag{8}
\end{equation*}
$$

Thus $R(A, p)$ is an element of the little group R, leaving p_{R} invariant. Let us denote the matrix elements of the little group transformation $R(\Lambda, p)$ by the symbol

$$
D_{\lambda^{\prime} \lambda}(R(\Lambda, p))
$$

A general transformation of the homogeneous Lorentz group is now represented by the operator $U(A, O)$, acting on the basis functions as

$$
\begin{align*}
U(\Lambda, 0) \psi_{m s \xi, p \lambda} & =U(L(\Lambda p), 0) U(R(\Lambda, p), 0) U\left(I^{-1}(p), 0\right) \psi_{m s \xi, p \lambda}= \\
& =U(I(\Lambda p), 0) \sum_{\lambda^{\prime}} D_{\lambda^{\prime} \lambda}(R(\Lambda p)) \cdot \psi_{m s} \xi_{,} p_{R} \lambda^{\prime} \tag{9}
\end{align*}
$$

and finally

$$
\begin{equation*}
\mathrm{U}(\Lambda, 0) \psi_{\mathrm{ms} \xi, \mathrm{p} \lambda}=\sum_{\lambda^{\prime}} D_{\lambda^{\prime} \lambda}\left(R(\Lambda, p) \psi_{\mathrm{ms} \xi,} \Lambda \mathrm{p} \lambda^{\prime}\right. \tag{10}
\end{equation*}
$$

An arbitrary element of the Poincare' group can be written as

$$
\begin{equation*}
U(\Lambda, a)=U(1, a) U(\Lambda, 0) \tag{11}
\end{equation*}
$$

so that (IO) and (II) completely specify the action of the operator representing the transformation (Λ, a) in the considered representation.

The results of this paragraph lead us to a theorem, which we shall only state, referring for the proof e.g. to the review article by T. D. Newton.

Theorem: A unitary irreducible representation of the Poincare' group is completely specified by giving:
a) A real number m^{2}, corresponding to the mass of the elementary physical system, together with the reference vector p_{R} satisfying $p_{R}^{2}=m^{2}$ 。
b) A unitary irreducible representation of the little group leaving p_{R} invariant.

2. Realizations of the Individual Classes of Irreducible Unitary

 Representations.We shall now discuss the individual classes of representations introduced previously. To do this we must in each case specify the reference vector p_{R}, the corresponding little group and the representations of this Iittle group. We must also specify the boost $L(p)$ and the additional invariants ξ 。

1. Time-like Representations

The reference wector p_{R} for timelike representations satisfies $p_{R}^{2}=m^{2}>0$ and can be chosen as

$$
\begin{equation*}
p_{R}=-(\pm m, 0,0,0) \tag{12}
\end{equation*}
$$

where $m=+\sqrt{p_{R}^{2}}>0$. The sign of the energy component $\left(p_{R}\right)_{0}= \pm m$ is an invariant of the group for timelike representations (we are not considering discrete operations, like time reversal, here), so that this class of representations contains two subclasses, corresponding to $\varepsilon=\operatorname{sgnp}_{0}= \pm 1$.

The little group of yrector (12) is clearly the three-dimensional rotation group $O(3)$. Indeed, to understand the physical meaning of this $O(3)$ group consider the components of the spin operator W, when acting in the subspace $p=p_{R}$ i.e. for particles in their rest frame:

$$
\begin{equation*}
W=-p_{0}\left(0, M_{23}, M_{31}, M_{12}\right) \tag{13}
\end{equation*}
$$

Thus, for particles at rest the space components of the relativistic spin operator W are simply the generators of space rotations, satisfying

$$
\begin{equation*}
\left[M_{23}, M_{31}\right]=i M_{12},\left[M_{31}, M_{12}\right]=i M_{23^{\prime}}\left[M_{12}, M_{23}\right]=i M_{31} \tag{14}
\end{equation*}
$$

The irreducible unitary representations of $0(3)$ are, of course, well known, being characterized by the eigenvalues

$$
\begin{equation*}
W^{2}=-p^{2}\left(M_{23}^{2}+M_{31}^{2}\right)=-m^{2} s(s+1) \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
s=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \tag{16}
\end{equation*}
$$

(the representations corresponding to s integer are one-valued, to s halfinteger twomvalued). These representations are finite-dimensional, since $O(3)$ is a compact group, the dimensionality being $2 s+1$.

Thus, the basis functions of timelike representations $\psi_{m s \varepsilon, p}$ are characterized by a real non-zero mass m, a finite integer or half-integer spin s, a positive or negative sign ε of the energy p_{0} and further by the fourmomentum p and spin projection λ 。 These representations, corresponding to a real elementary particle state, have extensive applications in physics.

To specify the basis functions completely, it is sufficient to give the values of these functions in the reference frame (for $p^{2}>0$ this is the rest frame) and then to specify the boost operators.

Indeed, let us for brevity of writing drop the invariant quantum numbers mse in the wave functions and use the physical "ket" notation, putting

$$
\begin{equation*}
\psi_{\mathrm{mse}, \mathrm{p} \lambda}=|p \lambda\rangle \tag{17}
\end{equation*}
$$

In the reference frame let us choose $\mid \mathrm{p} \lambda>$ such that

$$
\begin{equation*}
\left.M_{12}\left|p_{R} \lambda>=\lambda\right| p_{\mathrm{R}} \lambda\right\rangle \tag{18}
\end{equation*}
$$

and naturally elso

$$
\begin{align*}
& P_{\mu}\left|p_{R} \lambda>=\left(p_{R}\right)_{\mu}\right| p_{R} \lambda> \tag{19}\\
& \left.p^{2}\left|p_{R^{\prime}} \lambda=m^{2}\right| p_{R^{\prime}}\right\rangle \\
& W^{2}\left|p_{R} \lambda>=-m^{2} s(s+1)\right| p_{R} \lambda> \tag{20}
\end{align*}
$$

The wave function (basis function) in an arbitrary frame can be expressed as

$$
\begin{equation*}
|\mathrm{p} \lambda>=\mathrm{U}(\mathrm{~L}(\mathrm{p}))| p_{R^{\prime}} \lambda \tag{21}
\end{equation*}
$$

with

$$
\begin{equation*}
L(p)_{V}^{\mu}\left(p_{R_{i}}\right)_{\mu}=p_{V} \tag{22}
\end{equation*}
$$

When p and p_{R} (two vectors of the same orbit, in this ase both timelike) are given, (22) does not specify $L(p)$ completely but only up to a little group transformation (in this case an $O(3)$ rotation).

We shall, give the expressions for three different boosts here, which correspond to different parametrizations of the vector p (and respectively to the reductions of the group $O(3,1)$ to $O(3), O(2,1)$ and to the Euclidean group in two dimensions E_{2})。

Indeed the components of a timelike vector $p\left(p^{2}=m^{2}\right)$ can be written as

$$
\begin{align*}
& p= \pm p^{2}(\operatorname{ch} \alpha \operatorname{sh} \alpha \sin \theta \cos \psi, \operatorname{sh} \alpha \sin \theta \sin \psi, \operatorname{sh} \alpha \cos \theta) \tag{23}\\
& p= \pm p^{2}(\operatorname{ch} \alpha \operatorname{ch} \beta, \operatorname{ch} \alpha \operatorname{sh} \beta \cos \psi, \operatorname{ch} a \operatorname{sh} \beta \sin \psi, \operatorname{sh} \alpha) \tag{24}\\
& p= \pm p^{2}\left(\operatorname{ch} \gamma+\frac{1}{2} r^{2} e^{-\gamma}, r e^{-\gamma} \cos \psi, r e^{-\gamma} \sin \psi, \operatorname{sh} \gamma+\frac{1}{2} r^{2} e^{-\gamma}\right) \tag{25}
\end{align*}
$$

With P_{R} given by (i2) it is easy to check that the corresponding boosts can be given as

$$
\left.I^{-}(p)=\left(\begin{array}{lll}
\operatorname{ch} \alpha \operatorname{ch} \beta & ,-\operatorname{sh} \beta \cos \psi & ,-\operatorname{sh} \beta \sin \psi \tag{26}\\
\operatorname{ch} \alpha \operatorname{sh} \beta \cos \psi, & -\operatorname{ch} \beta \cos ^{2} \psi-\sin ^{2} \psi, & (1-\operatorname{ch} \beta) \sin \psi \cos \psi \\
\operatorname{ch} \alpha \operatorname{sh} \beta \sin \psi, & (1-\operatorname{ch} \beta) \sin \psi \cos \psi, & -\operatorname{sh} \beta \cos \psi \sin ^{2} \psi-\cos ^{2} \psi,
\end{array}\right)-\operatorname{sh} \alpha \operatorname{sh} \beta \sin \psi\right)
$$

$$
L^{0}(p)=\left(\begin{array}{lll}
\operatorname{ch} \gamma+\frac{1}{2} r^{2} e^{-\gamma},-r \cos \psi & ,-r \sin \psi & ,-\operatorname{sh} \gamma+\frac{1}{2} r^{2} e^{-\gamma} \\
r e^{-\gamma} \cos \psi,-1 & , 0 & , r e^{-\gamma} \cos \psi \\
r e^{-\gamma} \sin \psi, 0 & ,-1 & , r e^{-\gamma} \sin \psi \\
\operatorname{sh} \gamma+\frac{1}{2} r^{2} e^{-\gamma},-r \cos \psi & ,-r \sin \psi & ,-\operatorname{ch} \gamma+\frac{1}{2} r^{2} e^{-\gamma}
\end{array}\right)
$$

We shall call a, θ, ψ spherical coordinates on the hyperboloid $p^{2}=m^{2}, \alpha, \beta, \gamma$ hyperbolic coordinates and γ, r, ψ horospheric coordinates. Their ranges are

$0 \leq \alpha<\infty$	$0 \leq \theta<\pi$	$0 \leq \psi<2 \pi$
$-\infty<\alpha<\infty$	$0 \leq \beta<\infty$	$0 \leq \psi<2 \pi$
$-\infty<\gamma<\infty$	$0 \leq r<\infty$	$0 \leq \psi<2 \pi$

As shown by Boyce, Delbourgo, Salam and Strathdee the unitary operators acting on the basis functions can be written as

$$
\begin{align*}
& U\left(L_{p}^{+}\right)=e^{-i \psi M_{12}} e^{-i \theta M_{31}} e^{i \psi M_{12}} e^{-i \alpha M_{03}} \\
& U\left(L_{p}^{-}\right)=e^{-i \psi M_{12}} e^{-i \beta M_{01}} e^{i \psi M_{12}} e^{-i \alpha M_{03}} \tag{30}\\
& U\left(L_{p}^{0}\right)=e^{-i \psi M_{12}} e^{i r \pi_{1}} e^{i \psi M_{12}} e^{-i \gamma M_{03}}
\end{align*}
$$

where $\pi_{I}=-M_{01}+M_{3 I}$.

The boosts were so chosen that the basis functions in an arbitrary system (obtained by applying the boost operators to the basis functions in the reference system)

$$
\begin{align*}
& \left.\left|\mathrm{p} \lambda>^{+}=U\left(L^{+}(P)\right)\right| p_{R^{\prime}} \lambda\right\rangle \\
& \left|\mathrm{p} \lambda>^{-}=U\left(L^{-}(p)\right)\right| p_{R^{\prime}} \lambda \tag{31}\\
& \left.\left|p \lambda>^{0}=U\left(L^{0}(p)\right)\right| p_{R^{\prime}} \lambda\right\rangle
\end{align*}
$$

setisfy

$$
\begin{align*}
& \text { Wo }\left|p \lambda>^{+}=\lambda \varepsilon \sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}\right| p \lambda>^{+} \tag{32}\\
& W_{3}\left|p \lambda>^{-}=\lambda \varepsilon \sqrt{p_{0}^{2}-p_{1}^{2}-p_{2}^{2}}\right| p \lambda>^{+} \tag{33}
\end{align*}
$$

$$
\begin{equation*}
\left(W_{0}-W_{3}\right)\left|p \lambda>0=-\left(p_{0}-p_{3}\right)\right| p \lambda>0 \tag{34}
\end{equation*}
$$

Thus, e.g. the functions

$$
\begin{equation*}
\psi_{m s \varepsilon, p \lambda}=\left|p \lambda>^{-}=U\left(L^{-}(p)\right)\right| p_{R^{\prime}} \lambda> \tag{35}
\end{equation*}
$$

are eigenfunctions of the operators

$$
\begin{equation*}
P^{2}, W^{2}, P_{\mu} \text { and } W_{3} \tag{36}
\end{equation*}
$$

The basis functions (35) transform under transormations of the Poincare' group according to (2), (10) and (11) where $D_{\lambda^{\prime} \lambda}(R(\Lambda, p))$ are matrix elements of the Wigner rotation functions. The action of the infinitesimal operators $M_{\mu \nu}$ can easily be calculated.

2. Spacelike Representations

For spacelike representations the reference vector satisfies $p_{R}^{2}=m^{2}<0$ and we choose it in the form

$$
\begin{equation*}
p_{R}=\left(0,0,0, \sqrt{-p_{R}^{2}}\right) \tag{37}
\end{equation*}
$$

The root is taken to be positive and its sign has no invariant meaning. Spacelike representations do not have any additional invariant.

The little group of vector (37) can directly be seen to be $0(2,1)$, i.e. the three-dimensional homogeneous Lorentz group acting in the $\left(p_{0}, p_{1}, p_{2}\right)$ space. Indeed, the spin operator W, when acting in the subspace $p=p_{R}$, reduces to

$$
\begin{equation*}
W=-\sqrt{-p_{R}^{2}}\left(M_{12}{ }^{,} M_{02},-M_{01}, 0\right) \tag{38}
\end{equation*}
$$

Thus, for particies in the reference frame (37) the surviving components of the apin operator W satisfy the algebra:

$$
\left[M_{22}: M_{20}\right]=1 M_{01}\left[M_{20}: M_{02}\right]=-4 M_{12}\left[M_{01} N_{12}\right]=1 M_{20}
$$

The Cesimir operator of this $O(2,1)$ group can be written as

$$
\begin{equation*}
W^{2}=-n^{2}\left(M_{12}^{2}-M_{20}^{2}-M_{01}^{2}\right)=-m^{2} s(s+1) \tag{39}
\end{equation*}
$$

Since $O(2,1)$ is a non-mompact group, ail ite irreducible unitery nopresentations, except the trivial one, are incinite dimensional.

The fureaucible qepresentstions of $0(2,1)$ cen be characterized by two mumbexs

$$
\begin{equation*}
X=(s, z) \tag{40}
\end{equation*}
$$

Fhere s is an arbitrawy compiex number and $s=0$ or $\frac{2}{2}$ The representation theory of this group must be treated separately; here we shall just give a minssiticetitu of the unitary mepresentations:
(a) Unitamy representations of the fisst principal series

$$
X=\left(-\frac{2}{2}+i q, 0\right),-\infty<q<\infty \quad q-r e z i
$$

Hese

$$
\lambda=0, \pm 2 \pm 2,00
$$

(b) Unitary representations of the second principal sexies

$$
\begin{aligned}
& Y=\left(-\frac{1}{2}+i q, \frac{1}{2}\right)-\infty<q<\infty \quad q-x \operatorname{col} \\
& x= \pm \frac{1}{2},+\frac{3}{2} ; 00
\end{aligned}
$$

(c) Unitary representations of the supplementary series

$$
\begin{array}{ll}
x=(s, 0)-1<s<0 & s-r e a l \\
\lambda=0, \pm 1, \pm 2 \ldots
\end{array}
$$

(d) Unitary representations of the discrete series

$$
X=(s, \varepsilon) \quad s-\varepsilon=\text { negative integer }
$$

Depending on the sign of λ we have two types

$$
\begin{aligned}
& D^{s+}: \lambda=-s,-s+1,-s+2, \ldots \\
& D^{s-}: \lambda=s, s-1, s-2, \ldots
\end{aligned}
$$

(e) The trivial representation

$$
x=(0,0)
$$

The basis functions of space-like representations are thus characterized by an imaginary mass $m^{2}<0$ and by a generaily complex value of the spin s. The spin projection λ takes either an infinite or semi-infinite number of values. These representations do not have direct applications in the quantum mechanics of relativistic free particles (unless we consider "tachyons" moving at superlight velocities). However, they play a very important role in relativistic partial wave analysis.

Again we can construct basis functions making explicit use of the Wigner boost operators. Indeed we can again construct the wave function $\mid \mathrm{p}_{\mathrm{R}} \lambda>$ in the reference frame (which is now, however, not the rest frame of a particle). The basis function in an arbitrary frame is obtained by applying the boost operator as in (21) and (22) again using the L_{p}^{+}, I_{p}^{-}and I_{p}^{0} boosts of (26) - (28) and (30).

The components of a spacelike vector p are then expressed as

$$
\begin{align*}
& p=\sqrt{-p^{2}}(\operatorname{sh} a, \operatorname{ch} a \sin \theta \cos \psi, \operatorname{ch} a \sin \theta \sin \psi, \operatorname{ch} a \cos \theta) \\
& p=\sqrt{-p^{2}}(\operatorname{sh} \alpha \operatorname{ch} \beta, \operatorname{sh} \alpha \operatorname{sh} \beta \cos \psi, \operatorname{sh} \alpha \operatorname{sh} \beta \sin \psi, \operatorname{ch} \alpha) \tag{41}\\
& p=\sqrt{-p^{2}}\left(\operatorname{sh} \gamma-\frac{x^{2}}{2} e^{-\gamma},-r e^{-\gamma} \cos \psi,-r e^{-\gamma} \sin \psi, \operatorname{ch} \gamma-\frac{r^{2}}{2} e^{-\gamma}\right)
\end{align*}
$$

with

$-\infty<\theta<\infty$	$0 \leq \theta<\pi$	$0 \leq \psi<2 \pi$
$-\infty<\alpha<\infty$	$0 \leq \beta<\infty$	$0 \leq \psi<2 \pi$
$-\infty<\gamma<\infty$	$0 \leq r<\infty$	$0 \leq \psi<2 \pi$

The basis function

$$
\psi_{\mathrm{ms}, \mathrm{p}^{\lambda}}=|E \lambda\rangle^{-}=U\left(L^{-}(p)\right)\left|p_{R^{\lambda}}\right\rangle
$$

is again an eigenfunction of P^{2}, W^{2}, P and W_{3} and satisfies

$$
W_{3}\left|p \lambda=-=-\lambda \sqrt{p_{0}^{2}-p_{1}^{2}-p_{2}^{2}}\right| \mathrm{p} \lambda=-
$$

These functions transform according to the given general formulas where the functions $D_{\lambda \prime \lambda}\left(R\left(\Lambda_{s} p\right)\right)$ are now the finite transformation matrix elements of $0(2,1)$.

3. Lightlike representations

We can choose the reference vector for lightlike representations as

$$
\begin{equation*}
P_{R}=(w, 0,0,+w) \quad w \neq 0 \tag{43}
\end{equation*}
$$

Here whas no invariant meaning, but its sign has, so that we obtain two different subclasses of representations for $w>0$ or $w<0$.

The little group of vector P_{R} in (43) is isomorphic to the group E_{2}, i.e., the group of motions of a Euclidean plane. When acting on the subspace determined by P_{R}, the spin vector W reduces to

$$
\begin{equation*}
W=-w\left(+M_{12}, M_{23}+M_{02}, M_{31}-M_{01}, M_{12}\right) \tag{44}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\Pi_{1}=-M_{01}+M_{31} \quad \Pi_{2}=-M_{02}-M_{23} \tag{45}
\end{equation*}
$$

We obtain the algebra of E_{2} :

$$
\left[M_{12}, \pi_{1}\right]=i \pi_{2},\left[\pi_{2}, M_{12}\right]=i \pi_{1},\left[\pi_{1}, \pi_{2}\right]=0
$$

Obviously, M_{12} generates rotations and Π_{1}, Π_{2} are isomorphic to generators of translations.

The Casimir operator of this algebra is:

$$
\begin{equation*}
w^{2}=w^{2}\left(-\Pi_{l}^{2}-\Pi_{2}^{2}\right)=-p^{2} \tag{46}
\end{equation*}
$$

Here ρ^{2} is clearly an invariant of the Poincare group, whereas $\frac{\rho^{2}}{w^{2}}$ only of the group E_{2}.

The unitary irreducible representations of E_{2} are of two types.
(a) Principal series:
ρ real, $0<\rho<\alpha$
$\lambda=0, \pm 1, \pm 2, \ldots$
or

$$
\lambda= \pm \frac{1}{2}, \pm \frac{3}{2}, \ldots
$$

(b) Discrete series

$$
\rho=0
$$

Representations (b) are not "faithful" since $\Pi_{1}=\Pi_{2}=0$ in them and they are all one-dimensional, since M_{12}, as the only surviving operator, becomes the Casimir operator. Thus

$$
\begin{equation*}
M_{12} \Psi_{\circ O \varepsilon} p_{R} \lambda \quad \lambda \psi_{\circ O \varepsilon} p_{R}{ }^{\lambda} \tag{47}
\end{equation*}
$$

where $\lambda=0, \pm \frac{1}{2}, \pm 1, \ldots$ labels the one-dimensional representations, (remember that we are not considering discrete operations like space inversion).

It follows from (44) that for these lightlike representations with $\rho=0$ we have

$$
\begin{equation*}
W_{\mu}= \pm \lambda P_{\mu} \tag{48}
\end{equation*}
$$

and λ is an additional invariant of the Poincare group (when both the mass p^{2} and spin W^{2} are equal to zero). These are the representations corresponding to physical particles of mass zero and (48) shows that for such particles the spin vector must be parallel or antiparallel to the linear momentum vector (so that the special theory of relativity implies that e.g. the neutrino must have a definite helicity). Note, that for a massive particle the statement, that the spin is parallel to the momentum is not Lorentz invariant and can only hold in a definite coordinate system.

The basis functions for light-like representations can again be obtained using the same boosts as for time-like and space-like representations. It is however, convenient to apply them to the vector

$$
\begin{equation*}
P_{R}^{\prime}=(w, o, o,-w) \tag{49}
\end{equation*}
$$

obtaining

$$
\begin{align*}
& P=w e^{-a}(1, \sin \theta \cos \psi, \sin \theta \sin \psi, \cos \theta) \tag{50}\\
& =w e^{-\alpha}(\operatorname{ch} \beta, \operatorname{sh} \beta \cos \psi, \operatorname{sh} \beta \sin \psi,-1) \\
& =w e^{-\gamma}\left(1+r^{2}, 2 r \cos \Psi, 2 r \sin \psi,-1+r^{2}\right)
\end{align*}
$$

The range of the parameters is

$-\infty<a<\infty$	$0 \leq \theta \leq \pi$	$0 \leq \Psi<2 \pi$
$-\infty<\alpha<\infty$	$0<\beta<\infty$	$0 \leq \Psi<2 \pi$
$-\infty<\gamma<\infty$	$0 \leq r<\infty$	$0 \leq \Psi<2 \pi$

The basis functions in an arbitrary frame can now be written as

$$
\begin{equation*}
|p \lambda\rangle^{K}=U\left(L(p)^{K}\right)\left|p_{R}^{\prime} \lambda\right\rangle=U\left(L(p)^{K}\right) e^{-i \pi M_{31}\left|p_{R} \lambda\right\rangle} \tag{51}
\end{equation*}
$$

with $k=+,-, 0$ and satisfy

$$
\begin{align*}
& W_{0}\left|p \lambda>^{+}=\lambda p_{0}\right| p \lambda>^{+} \\
& W_{3}|p \lambda\rangle^{-}=\lambda p_{3} \mid p \lambda \nu^{-} \tag{52}\\
& \left(W_{0}-W_{3}\right)\left|p \lambda \nu^{0}=\lambda\left(p_{0}-p_{3}\right)\right| p \lambda \nu^{0}
\end{align*}
$$

The obtained basis functions again transform according to the same general formulas but the coefficients $D_{\lambda^{\prime}} \lambda^{(R(\Lambda, p))}$ are this time the matrix elements of finite transformation operators of the group E_{2} 。
4. Null-vector Representations

The null-vector representations are exceptional in the sense that all components of the momentum p are equal to zero in any reference frame

$$
p=(0,0,0,0)
$$

so that we do not need a standard reference vector.
All elements of the translation subgroup of the Poincaré group are represented by the unit operator in null-vector representations. The representations of the Poincare group in this case coincide with the representations of the homogeneous Lorentz group.

The representation theory of the homogeneous Lorentz group has been treated in great detail by Gelfand and Najmark in a number of papers, summarized in the books: M. A. Najmark "Linear Representations of the Lorentz Group" and I. M. Gelfand, R. A. Minlos, Z. Ya, Shapiro "Representations of the Rotation and Lorentz Groups and"Their Applications". This group has two
invariant operators F and G, given previously as

$$
\begin{align*}
& F=\frac{1}{2} M_{\mu \nu} M^{\mu \nu}=\vec{M}^{2}-\overrightarrow{\mathbb{N}}^{2} \\
& G=\frac{1}{4} \varepsilon^{\mu \nu \rho \sigma} M_{\mu \nu} M_{\rho \sigma}=\overrightarrow{\mathbb{N}} \tag{53}
\end{align*}
$$

There are many possible choices of basis functions for representations of the Lorentz group. We shall return to this problem below, but let us only note that the "canonical" basis used by Gelfand and Na.jmark corresponds to the reduction of the Lorentz group to its rotation subgroup

$$
\begin{equation*}
0(3,1) \square 0(3) J 0(2) \tag{54}
\end{equation*}
$$

The basig functions are the eigenfunctions of a complete set of operators, chosen as the Casimir operators of ail the groups, figuring in the chain (54). Thus we have

$$
\begin{align*}
& F \Psi_{\infty 0, \prime}, \nu \lambda j j_{3}=\frac{1}{2}\left(-v^{2}+\lambda^{2}+1\right) \Psi_{00, v \lambda j j_{3}} \\
& G \Psi_{00, v \lambda j j_{3}}=v \lambda \psi_{00, \nu \lambda j j_{3}} \tag{55}\\
& M^{2} \Psi_{00, v \lambda j j_{3}}=j(j+1) \Psi_{00, v \lambda j j_{3}} \\
& M_{12} \Psi_{00, v \lambda j j_{3}}=j_{3} \Psi_{00, \nu \lambda j j_{3}}
\end{align*}
$$

There exist two series of unitary irreducible representations, namely:
a) Principal series

$$
\begin{array}{ll}
-\infty<\operatorname{Re} \lambda<\infty & \operatorname{Im} \lambda=0 \tag{56}\\
\nu=0, \frac{1}{2}, I, \ldots &
\end{array}
$$

The $O(3)$ quantum numbers take the values

$$
\begin{aligned}
& j=v, \quad v+1, v+2, \ldots \\
& j_{3}=-j,-j+1, \ldots,+j
\end{aligned}
$$

b) Supplementary series

$$
\begin{array}{ll}
\operatorname{Re} \lambda=0 & 0<\operatorname{Im} \lambda<1 \\
\nu=0 &
\end{array}
$$

The $O(3)$ quantum numbers take the values

$$
\begin{aligned}
& j=0,1,2, \ldots \\
& j_{3}=-j,-j+1, \ldots j
\end{aligned}
$$

The null vector representations of the Poincaré group have no application to the classification of free particles, but they have very interesting applications in scattering theory.

Applications of the Representation Theory of Poincare' Group.

1. Classification of Elementary Particles.

The first and most obvious application of the representation theory of the Poincaré group is the one which we have already discussed. Namely, since elementary physical systems, by definition transform according to irreducible unitary representations of the Poincaré group (or rather its covering group, so as to include half-integer values of spins and spin projections), we have obtained a classification of possible types of elementary particles (at least of free particle states).

We notice immediately that only a few of the possible types of representations seem to correspond to particles realized in nature. Indeed, we have:
a). $p^{2}=m^{2}>0, \varepsilon=1 \quad s=0,1,2 \ldots$

$$
\text { or } s=1 / 2,3 / 2, \ldots
$$

These representations correspond to the usual elementary particles with positive real mass. Only those with very low values of spin seem to be realized as stable elementary particles. Quite possibly the non-existence of higher spin particles has something to do. with the difficulties in constructing a theory of such particles including any type of interaction.
b) $p^{2}=m^{2}>0 \varepsilon=-1 \quad \begin{array}{ll}s & =0,1,2, \ldots \\ \text { or } \quad s & =1 / 2,3 / 2, \ldots\end{array}$

These representations correspond to the standard antiparticles of the above particles (positrons, antiprotons, etc.)
c) $p^{2}=0, p_{\mu} \neq 0$ for a.ll $\mu, \quad \varepsilon= \pm 1$.

In this case only the exceptional, discrete, non-faithful representations, for which

$$
\rho=0, \lambda=0, \pm 1, \pm 2, \ldots \text { or } \lambda= \pm 1 / 2, \pm 3 / 2
$$

correspond to elementary particles of zero rest mass. Again only the lowest spins are realized in nature.

The continuous series of representations with

$$
0<\rho<\infty
$$

does not correspond, as far as we know, to any particles in nature.
d) $\mathrm{p}^{2}<0$.

These space-like representations, as far as we know do not correspond to any particles observed in nature. If they do, then these particles with "imaginary rest mass", must be tachyons, which figure in many theoretical considerations. Usually they are assumed to have spin zero, corresponding to the trivial representation of the $0(2,1)$ little group, rather than continuous spin, corresponding to, say the principal series.
e) $p^{2}=0, p_{\mu}=0$.

It is rather difficult to imagine having elementary particles transforming under null-vector representations.

We shall not pursue the very important question of the representations of the extended group, including reflections of all kinds and possible internal symmetries. We would thus obtain a further classification of particles, answering questions like: When can particles be equal to their antiparticles, what are the possible behaviours under time reversal, parity, etc.
2. Relativistic Kinematics.

It should be stressed that all representations of the Poincare group are important in physics, not only those corresponding to real elementary particles. One of the reasons for this is that when considering any sort of reaction among elementary particles
$1+2+\ldots n \rightarrow(n+1)+(n+2)+\ldots+m$
we are interested in multiparticle, or at least two-particle states.
Relativistic kinematics is basically the problem of taking the direct product of several irreducible representations (a reducible multiparticle state) and reducing out its irreducible components. This is of course the classical Clebsch-Gordon problem for the Poincaré group.

It turns out that if we consider the direct product of two physical representations, e.g. one representation with $m^{2}>0, \varepsilon=1$, the other with $m^{2}>0$, $\varepsilon=-1$, then the decomposition in the irreducible representations (the Clebsch-Gordon series) can in general, contain every type of representation of the Poincaré group--time-like, space-like, light-like and null-vector, in particular those with continuous spin.

The simplest reaction of interest is two-body scattering

$$
1+2 \rightarrow 3+4
$$

We can write the scattering amplitudes for such a process as the matrix elements of the scattering matrix

$$
\begin{equation*}
\left\langle p_{3} s_{3} \lambda_{3}, p_{4} s_{4} \lambda_{4}\right| s\left|p_{1} s_{1} \lambda_{1}, p_{2} s_{2} \lambda_{2}\right\rangle \tag{1}
\end{equation*}
$$

where relativistic invariance implies that S is a scalar operator

$$
\begin{equation*}
U(\Lambda, a) S U^{-1}(\Lambda, a)=S \tag{2}
\end{equation*}
$$

We cannot go into any details here, since we have not really developed the necessary mathematical tools (e.g. the Clebsch-Gordan coefficients of the Poincaré group).

Let it suffice to say that if we consider scattering in the centre-of-mass frame of reference we express the initial and final two-particle states in terms of irreducible ones as
$\left|p_{1} s_{1} \lambda_{1}, p_{2} s_{2}^{\lambda_{2}}{ }^{v} s_{2}\right| \sum_{\lambda_{1}-\lambda_{2}}|(2 s+1)| s_{1} s_{2} \lambda_{1} \lambda_{2}: p_{R} s \lambda_{1}-\lambda_{2}>$

where

$$
\begin{equation*}
P_{R}=(\sqrt{s}, 0,0,0)=p_{1}+p_{2}=p_{3}+p_{4} ; s=\left(p_{1}+p_{2}\right)^{2} \tag{4}
\end{equation*}
$$

$\mathrm{d}_{\mu \nu}^{j}(\theta)$ is a Wigner rotation function (figuring as a Clebsch-Gordon coefficient in this case) and the states on the right-hand side of the above formulas are two-particle irreducible states.

We can now calculate the matrix element of the s-matrix between the considered states. Making use of Schur's Iemma, which tells us that the S-matrix, being a scalar operator, must be diagonal with respect to the indices, referring to irreducible representations, we find

$$
\begin{aligned}
& \left\langle p_{3} s_{3} \lambda_{3}, p_{4} s_{4} \lambda_{4}\right| s\left|p_{1} s_{1} \lambda_{1}, p_{2} s_{2} \lambda_{2}\right\rangle= \\
& j=\max \left(\left|\lambda_{2}-\lambda_{2}\right|,\left|\lambda_{3}-\lambda_{4}\right|\right)^{\left.<s_{3} s_{4} \lambda_{3} \lambda_{4}\left|s_{3}(s)\right| s_{1} s_{2} \lambda_{1} \lambda_{2}\right\rangle \quad d_{2_{3}}^{j *}-\lambda_{4}, \lambda_{2}-\lambda_{2}} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right)
\end{aligned}
$$

In the above formula it is easy to recognize the Jacot and Wick expansion of helicity amplitudes, which here was derived in a purely group theoretical manner. The d-functions of the rotation group $0(3)$ figure here because of our choice of the c.m.s. i.e. becauce of a frame-of-reference, in which a timelike vector $p_{1}+p_{2}$, having $0(3)$ as a little group, was fired. The resulting formula is of course a direct generalization of the usual formulas of partial wave analysis. Indeed, for particles with spin zero (5) would reduce to

$$
\begin{equation*}
\left\langle p_{3} p_{4}\right| s\left|p_{1} p_{2}\right\rangle=f(s, t)=\sum_{j=0}^{\infty}(2 j+1) a_{j}(s) p_{j}(\cos \theta) \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \tag{6}
\end{equation*}
$$

We could just as well have performed a different reduction of the s-matrix. Indeed, an operator \hat{S} can be introduced, satisfying
 If we now consider the scattering in an appropriate frame of reference, obtained by stondardizing the momentum transfer $p_{1}-p_{3}$, and reduce the two-particle states $\left|p_{1} s_{1} \lambda_{1},-p_{3} s_{3}-\lambda_{3}\right\rangle$ in a similar fashion as in (3), we obtain different results, depending on the charact r of $p_{1}-p_{3}$. Thus, if $p_{1}-p_{3}$ is space-like as it usually is, we obtain an expansion in terms of the D-functions of $0(2,1)$ if $p_{1}-p_{3}$ is light-like the group generating the expansions will be \mathbb{E}_{2}, etc. A specially interesting case is when $p_{1}-p_{3}=(1,0,0,0)$, (elastic forward scattering) and the relevant little group is $0(3,1)$.

The space-like case $\left(p_{1}-p_{3}\right)^{2}<0$ is of particular importance and in that case for spinless particles, we obtain

$$
f(s, t)=-\frac{1}{2 i} \int_{-1 / 2-i \infty}^{-1 / 2+i \infty} \cdot \frac{2 j+1}{\sin \pi j} a(j, t) P_{j}(\cosh B)
$$

one of the fundamental formulas of Regge theory.
For further information on relativistic partial wave analysis and general expansions of scattering amplitudes we refer to the literature.

[^0]: *M. A. Najmark, Linear Representations of the Lorentz Group, Pergamon Press, $\mathrm{N}_{\mathrm{Y}} \mathrm{Y}$. I969.

