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I, Introductieon

The symmetry properties of the World in which we live in and their

©

raeflection in

Lo

scientific theories have played an outstending role in the
development of natural sclences. The history of applications of symmetriesz,
invaeriance principles, couservation laws ete. in physics can be trased back

to Aristetle and Piolemy, later to Galilel, Tycho de Brahe, Kepler and

Newton, net to mention the crucial role these concepts played in the develope
ment of snelytlic mechanics by Lie, Cartan, Hamilton and others., A gqualitatively
new stege in the use of easeghially group theoretical concepts started with

the development of the special theory of relativity, with its emphasis on s
precise end profount understanding of geometriecsl space-time concepis.

Indeed, an explicit consideration of the Gelilel group, consisting of space
robations and translations, time translaticns snd specisl Gelilel transformetions
connecting inertial frames of reference, moving with respect tc eech other
with rectilinear uniform velocity, entered into the game of classical mechanics

fat s relatively late staze., The Lorentz transformations and the corregponding
£ pow]

Lorentz group, on the gther hend, played & cruciel role right from the very

pde

i

o

the development of & relat stie theory.

Group theory has turned into s resl working ¢tocl for physicisis

=

specielly in the field of guantum physics. Indeed, the linser character of

the Hilbsrt space of wave functions (or state vectors) mekes this space

1]

articulerly suiltsble for reslizing representations of symmstry zroups.
Y Yy B 34

Let us just bri

(I't

Tly mention some of the different aspects of the
bions of symmetry prineipies and of group theory in physics.
Conceptually the simplest spplication is typiesl for classiszel physics = ths

mechanice of continucus mediz, hest flow, ete. and alzo f
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Vamsly, when the basical physical laws and =quations are siresdy known,

but their sclution presents a difficult and compliicated problem, many

simple, but srucial specific resulis can be cbbained directiy from the
symmetries of the eguations, without obitaining explieit soiutions., The

Tact that essentially all besiec results of stomic spectroscopy follow

from the symmetry of the problem, mainly from the properties of the three-
dimensional rotation group G(3) has been sufficiently stressed in E. Wigner's

Temous book "Group Theory end its Applicaticn to the Quantum Mechanios

of Atomiz Spestra’. Group theory alsc helps %o obtain exact sclutions of knowa

equations, relate general soluticns to pariicular ones, ste,

A second aspeet of group thsory in physies, which receives great

13

attentlion, whenever s new field is developed, flourishes ab present in

I3

nuelear physlies, elementary particle physics, gquantum £isld theory and

cther fields. Namely, once certein fundsmental symmetry prineiples are

- -

from our experimental knowlzdge or are shown to follow, say,

= 9

Trom some basical properties of space

r\
,n

~%imz, then these prineciples can be

juposed as "superlaws of naturs".

p

then demand thet all (unknown'!

=1
W

can

dynamical laws are compatible with these symmetry or invarisnce principle

42}
w

which thus serve as pert of the eriteris for the geceptability of &

& third aspect has plsyed znd dves pley & siznificent role in hish

energy physics, namely group theoretical methods furnish convenient tools

in terms of which it iz possible to make dynemicel aosumr
B

guesses ) and formulate hypotheses, the consequences of whieh can then be

tested sgainst erxperimentszl datsa.

I3 =,

in these lecturss, after some general mathematicsl introducticn,

we shell meinly concentrate on well esteblished symmetry groups, which we



gan intul "
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Jest

geometrical symmetries”; in thet they meinly reflsct

the symmetries of the space-time conbtinuum in which the studied PrOCessEs
oceur snd thus represent "kinemstics" rather than speeific "dynamics”
We shall, however, slso be interested in "Gynsmic" symmetriss, specific for

particuler interactions, rather than broad classes of interactions. Thus.
in nonrelativistic quantum mechanics the sroup 0(3) represents a
geometric symmetry group for an arbitrary spherically symmetric potential,

¥{ri, the four-dimensional rotation group O(4), on the other hand, reprase

& dynemic symmetry, typicel for the nomrelativistic Coulomb potentisl 1/»

L)

Both types of symmetries play very significant roles in particle physics.
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Il. Elements of Abstract Group Theory

d
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g;ﬂog T oty 1
2, An identity elemsnt ¢ exisis, such that
g = ge = &
. . - . , . N i
For esch slement gelG there exists sn inverss element of z sueh that

gg =g g=¢g

Problem:
ooy

end right lnverses operators

O"z {1 gon d

s h ey e = gmrg sr e - oy
same 15 TLrue for an inverze slismesnt,
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groups of order tws sre isomorphic:

e e o &
AnCE e ]

......

CE We W

one elsment only. )

1]

Thug: &@.m

&

a

Isomorphic to the above zroup of permutation

e %

Tollowing groups w! & = reflection of coordinat:
N c 5 < =
B & = rotation through w zbou
2 = 1, a=-1 the group cperation is rdingry m

L&

0

wp of

-

=g ==>)H = g g lmpossible since we would have only fwo
! 0%
e thus ab = e
=D o= e |
g ) N, } . n©
& = g & = & Impossible (==> g = b

il
i
i
i

e
1l
&
o
]
®

ey

. i - e £ g n T s
exanpLes are continucus

ne

) . L
JOLE nenegmnutative
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Remark: & group s & homogeneous manifeold, 1.z, we can introduce left

g+ 88 g~ 88,

any two elaments g.e (G 2.8G we can find a e G sueh that
- 1l 222 . 0 ¥

and g!' & & such that g, = gigD angd By, = 8

0%

0By -

For continuous groups this provides a method by which loocal

vmes , derivatives ete.) can be establizhed in the vieinity of a

g = & znd then transferred to srbitrary

Topologicosl Space ! & set of elements R is

o

% there corresponds a set M, called the

{
{2

a) If M contzins only one element X M, then M

it

b If M and N are any two subsets of R, then MUN = MUN

of the union Is the union of the closure).
2} M = M (epplying the operation of closure twice gives ths

a5 applying it oncel.

iy A topological spave is &

shbourhond . closgeness, etlce.

The union MUN of two spaces M and N is the set of




8 group

-1

& is a topologiex

on g, and g, and g depends continucusly on g.
s s
More precisely:

1) g,20 , BE0 == for every neighbourhocd W of
] il

there exist nelghbourhoods U and V of g, and Es such
Uy ¢ W

PO 6 a < - o o 1 --

; 21 gel& = » for every neighbourhood V of & there
ghbourhood @’G & such that U ~ o
intraduce the concept of neighbourhood, let us made o Fe

subset of

ement a € M.

is 8 point e contained in the closure

¢ la (the symbol M\ N denotes the

&, all points contained inm M but not ib

F the topological spsce R is closed if
& set G in the topological space R iz open if R
vioged: ﬁﬂ:G = B\ﬁ:

gpen and ed sedts ere in some sense dusl %o each oth

sobout an oben set there @OTTQSP@ﬂdS &I

£ goliection T of open sets of & topolog
B, 1f every open set X of R is the union of some open
L= L UL UL ...

=

‘N
7

open set.

bases - one of them with
number ig the welight of K. C

minim

{223
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Ly Cardinality: twe sets have the same cardins Lity 1 there exists
Lomone mapp$ng from one onte the other:

1} Finite cardinality

Z} Countable - alef, -~ mapping onto integers

3} Alef. - mapping ontoc resl numbers

Y Alef - mepping onto of gll real e’

numbers

!,.

Tunctions of real

Connacbness: Generalization of the properties of &
o general topological spaces,

is & covering of a sebt M O B if 4

MCcCz UIU,,UZ
8 b n

from evary coveri:

topological space R iz locally compset if every one of
ighborhocd, whose slosure is compaat,

UQ ('r
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Lecture 2

After this superficisl excursion inte topologieal spaces, let us return

we gome further relevent coneepts of group theory

Congider s group G

Notation: subsets A,B

Then AB set of zlemsnts ab with agh, beB
i -1 . .
A set of elements a = where zzh
T X . o
A defined by induction
=it} =1.m
ATT = (A7)

7 = {e}

Ae = aff = A

&
VoL

Pindtion: Subgroup of G: 2 subset H of

W

G, which in Jteell is & proup

necessary and sulfficient conditions for H to be s

of G ars that either one of the ing conditions iz satistied:

(&) gbei, » el

ation must satisfy:




Er B4 . e o ¥ e
souivalence classes of

H be & subgroup of &

s BEG P an~b if ab 7 = heH, i.e. a= hb

et L,

class A is called & "right coset" of ihe subgroup H:

hel, i.e. b = ah defines a "left rcoset" A = zi

P
(=%

¢
[

A subgroup NCG is an imveriant (or normal} subgroup 17

N y . -1
nell wnd 2eG | i.e. a NeC N for every aeG

fay
L4

Telously: I

His an invariant gubgroup, then sH = Ha

2. the left end right cosets coincide,

OB
~3ing

=
-«
o
k <
i
o
e’
o+
v

ubgroup.,

Let N be a normal subgroup of ¢ and iet A and B be

A s U= Wb, Introduse the produce: AB

E ol again a coset of N. The group

G by the normsl subgroup N and

1) Associativity

{ABIT = A{BC)

{Nalib JNe = Nal{llbNe)d



1.

21 The identity

150
I
=

5 B

indeed W& = N(Na)

[{}
3
£}
=

vary gLroup has at least two invariant subgroups:
G and {el

{the entire group and the identity element along)

Definition: & gimple group has no other invariaunt subgroup

Izemorphism: Two groups G and G ' are isomorphic if & one-to-one

one onto the other exists, preserving the group opesration:
Plxy) = f{x)f(x) x, yeC ), #ly) G ¥

A mepping of ¢ into

sixiegly) = g{xy). The set g*l(eﬁ} of

s'eG' is the kernel of the homorphism.

.

For topological g;oups some of the sbove concepts should

shall not go into that.

isomorphism of group G onto itself. Iuner automs

ske n fixed element geG  and put

f 'x) = gxg

o
=]

T g e e {0
G’ul‘i::.uy XU [

important concepts for topological groups, to which

curselves are discreteness and connectivity. A topolog. space 1

any two of its points can be connected by & continucus

i

BDE0E.

Congider & topological group G: if it is not

individusl




by definiticon that sheet orf GQ, connected to the identity

subgroup of &)

exists such that v.g =
P

elements 0.8, with E,8 ,constitute the sheet g, "similar" to g

K.
0% & group, since it does not contain the identity.
number of shests can be not only infiite, but continue:

An element o, , characterizing a sheet, can be ralied & "

is egain a reflection - in general on & new sheel

o)

groups can be considered to be topologicsl groups, in

consists of one point.

{1) Growp 0(3): all linear transformations leaving the
2 2 2 2
X o= ox- 4+ x4+ oy
L 2 '3
invariant

ge0{3) =+ g'g = 3

T denotes the

<

,.‘
il
',
&
i
fod

W odetg = + 1

Thug: 0{3%) consisis of two sheets;

2 z 2 2
K = X L - X
S 1 2

fovariant

[N
]
5
au
5
i
!_
1
i
e,
&=




We have: del g ig =+ (detg)” = 41 = detg = % 1

T N
g 18lgn = &k Tylyo

= B1pByg " BppBpp T L 7 Boe £k
Thue
& T@ with deth = 1, A -
i \ * 00 - 7
! with deth = -1, A_. > 3
- ) € T 00 o=

LV  with deth =1, A < -1

O
Cr
§

I;@ with deth = -1, A g =i

nzl Lorentez groups 0(2,1) consists of four

45, ©of which only L, - the proper ortrochronous Lorentz

Txnotly the ssme is true for the four-dimensional Lorentz group

gr

We shall be meinly, but not exclusively, interested

fa
)

-~

ne connected sheet).

FParametbrical

EPOUDS

0
i

is parsmetricsl or locally Eu

z finite number of real parameters:

e

[P
can D&

€3 7 8182
1 PO S { § oo f 5 < . =
miég yo= Folt (gl,a Lkigﬁ) 1,3, L e

~ -
&
u
“.
o
T~
0
e

!,.h‘_;



et

£ is & topological group then F = { F,}
4

and {Qi} are continuous functions .

A topological parametric group is & Lisz group i¥

» determining the multiplication are anelytic fTupctions.

Every parametric group is a Lie g

AT

A N ARE R
e

We shall not give the proof. (Continuity implies analyti

Jo However, a simple analogy is that equation

flxty) = £(x) £ly)

. “ —_ ax . I .
with F{x) analytiec has flx) = e as only continuous solutionz: the

%

snalytic functions.

Lie Groups and Lie Algebras

Having the concept of analyticity , we can introduce div:

and consider the tangential space in the unit point e (or in any ar

the group is & homogeneous manifeld).

Let us define a one-parameter subgroup of a Lis group (oorresy
a "direction” in an Buclidean space):

There sxists & neighborhood Q of e in whish the equation

172
hez & selubtion g7 "o O for gaef.
Uging this sxtraction of square roots and #

o o ey s e ey g N o Ly e
zan eonstruct elswmenits

o
AR I“lI“

111
L}
m



Using & limiting procedure, we construct '

g DA< g =e

for srbitrary resl non-negative A.
e . . . -1
I @ contain g, it also contains g = >

v g =gy <<

A .
We shall ecall such a family g a one-parameter subgrour of G.

Thus: for each

) . . A, . s .
Lonsely speaking: we can uniquely draw a line g=  in any directiom &

o4
[

a

i3
.
s

Example: GL{n,R): the group of sll real nondegenerate nxn ms

e 2y

[N

i
4

and the nsighborhood Q of ¢ by the condition
[e-1l] <1

Que can can be written as

2 p
) o ) F
g=ge = 1 % g+ = &, s b,
2 nl

where the medtrix g is g =

SEE

H

£
F
¥
€1
3
!
ot
D
g3
11
13
[a]
[
4\
e

e ol £ e Y N SN
in thig form it 1

w
&
jixd
1)
[

to exponentiate g:

/2 1/2a A A&
g% = e g



Expanding

e%a = 1 4 Aa 4+ ...

b3
N N . Cea A
we see that a represents a "tangential vector" <o the 'iipe™ g,

b
48 poum A L . 4 e B
dif'fsrent one-parameter subgroup g we obtain all tangential vectic

g tangential space A,

Let us see how group multiplication reflects itself in the

(L% da +,..0(T + b +,..) =T + alatbls..,

).m

(L + Ae +... = 1 + Amat...

{we are in the neighborhood of e = > |A| << 1 )

Introduce the "commutator" of two elements heG . EEG in the group:

k = g"thLen

the guedrangle Tormed by the transformations

AN
-1
S o
{;{

\




This matrix commutetor obvicusly stalsifes

fa,p] = =[b,a] sntisymmetry

-y
javd
-
N
€
o
-
+
pr—
5
Lot |
€2
i
ra—
—
+
3
(o]
-—
©
o’
[—
Ak
i

0n.o Lhe Jacebl identity

Y

We shall wuall the linear space A with the commutation operation ia.,b] the I
algebrae of the group G.
This concept can be generalized to an arbitrary Lie group.

we shall only be interested in "linear Lie groups" - those that can |

represented by linesr transformations in a linear vector space,

Thus: a Lie algebra is the differential of = Lis group.

e
{2

- group we can always construct e Lie algebra with commutators satlefying

b ad
i
I3
i

antisymmetry condition and the Jacobl identity.

Theorsm: (Lie): A Lie algebra can always be integrated to give the
multiplication law for & Lie group in the neighborhood of the idemtity. Th
midbiplication law for the whole group is a more complicated problem, to be
trsated below,

Let us consider the Lie algebra A and Iintroducs a busis e, ,¢.,...

(it is a finite algebra by definition). It is sufficient to the

e

commutabors for the basis elements.

e (summed over k!

e . k
Tre new ccngtants ©

o
id

s which are basis dependent, are cailsd

Thius -~ a complicated object - & Lie group, is t< &
k
1]

deternined by the structure constants C . It is

i)
jid
T
&
«h
O

ot
3

"



gtrueture constants of g Lie 'algebra satisfy

R
1J Jl
n Cm CZ'.[ m Cn . 0

Problem: 1) Prove the above assertion

2) Consider all possible two and three-dimensional Lie &

1

i
Py

e

"\
b






Lecture 3

We have given the definition qf a Lie algebra, starting from a
Lie group. Let us now look af some purely algebraic concepts and
properties. Most of todays lecture is contained‘in the book "Lie Algebras"
by N. Jacobson,(Interscience Publishers, N.Y. 1962). We shall talk of
algebras ovaer fields.
Definition: A field @ is a set of elemerts which is & commutative group with
respect to a group operation which we shall call addition a + b and in which
we introduce & further operation, which we call multiplication a.b, satisfying:

(1) Associstivity abc = al{be) = (ab).c

(2) Distributivity (a+b)c = ac + be

ab+ac

a(bte)
(3) The elements of @, different from zero in the additive group
(2 + 0 = &) form a group with respect to multiplication

(4) Multiplication is commutative.

We shall only need two fields: the field of real numbers and the field of

complex numbers.

Definition: A linear vector space L over a field ¢ is & set of elements

for which we introduce the concept of addition of vectors (elements) in L
end multiplicetion of vectors in L by "numbers" from ¢. These operations
must satisfy:

(1) =x,yeR = x+yeR

(2) x+y = y+x

(3) (xty)+z = x+(y+z)

(4) There exists Oegl: x + 0 = x for all xel

(5) =xel, cef = axel

(6) =xeL, a Bef = a(Bx) = (uB)x

(1) 1.x=x



(8) 0ex=0
(9) alx+y) = axtgy
(10) (o+B)x = ox+Bx
Definition: An algebra A (not necessarily associative) is a vector space

over a field ¢ in which a bilinear composition (multiplication) a.b for a,bed

is defined, satisfying:

(1) (a.+a )b = a.b + ab

12 1 2
4 =
a(bl bg) 2 bl +ab,
(2) alab) = {aa)b = alab) ael
Definition: An associative algebra is an algebra in which the multiplication
satisfies
(ab)e = albe)

Definition: & Lie algebra is an algebra in which the multiplication satisfies:

ab = -ba s o Antisymmetry

{able + (ca)b + (bela =0 ... Jacobi identity

Thug: the differential of a Lie group, as introduced previously, is indeed
e Lie algebra where the multiplication a.b is actually the commutators la,b].
Question: When is an associative algebra a Lie algebra?

Example:

The associative algebra of linear transformations of a finite

dimensional linear vector space into itself.

We can always use an associative algebra to construct a Lie algebra:

Let A be an associative algebra. If x,yeA then we define a Lie product (o



& zomuautatsr) of X,y as
[x,7] = xy - yx

product [x,y] satisfies all the conditions for a product in &

This can be used to show that every Lie algebra is

omorphiie to s Lie ajgebra of linear transformations so that each n-

dimensionel Lie algebra can be considered as a subalgebra of the gensral
Lie algebra of linesr transformations of an n-dimensionsl vector space,
The dimensicn of & Lie algedra {or of an sssoeiative algebra, or

of eny linear vector space) is the maximel number of linearly independent

vestors in the algebra (space!., As usual e, are independent if
Ie,e, =0 implies ¢, =0 for all i

where ¢ belong $4 the field {.

Any sst of linearly independent elements {e.} form e basis for the

{eigebra} and an arbitrary element can te written as

caiied the derived algebra,

algebra ir indesd o o algebra,

A subzlgebra B ol L 1z & set of elemernis b which themselvss




Defirition: N C L is an ideal (invaeriant subalgebra) if

Ina)eN for =ll nel, aclL

{i.e. NLIC N )

Thegrem:  The derived algebra of a Lie algebra is an ideal

Proof: Left as & problem.

Definition: The centre C of a Lie algebra L is the set of all elements cel

such that [ca] = 0 for all amel.

Lie Alzebras of Low Dimensions over the Field of Real Numbers

(1) dim L = 1 One element e : L = @e
[e,el = 0 ... denote L,
(2} dim L =2 Consider the derived algebre 2 =1
{a} dimL' =0 ,i.e. L' =0
(e eQ] =0 ,..an Abelian (commutative algebrs)

L=fe, + ey, die. el = e= a e, * aye

1
l—!
=t
N
n

Choose: e such that L' = Qe

T

4 - ~
et el f ¢ ae
PR
lefl = xe Kef)

Putb £ = x 7f, thesn



(3) dim L = 3

o €3 and consider the derived algebra LgE L'

Introduce the basis e;s ©
(e} L'*'=0 [ei’ek] =0 ,., an sbelian algebra
Thus [ef]l =0 [fgl =0 Jg,el=0 o LD+,
(v 1} Yo dim L' =1, L' = Pe, L' € ¢ (the derived algebra is contained

in the centre)
Put: L = e + §f + fg
§ —:{Pﬁ’ L' = ¢n[fg]
L' = ge f
= we can put [fg] = «

Further: [ef] = [eg] =0

Thus e

[fg] = e [ef] = 0 fegl=0’ oo I3

(b} dim L' = 1, L' = fe L'_,Céc

efC ) there exists an £ such that [ef] # O and ve can put: [ef] = &

i

and the algebre {e,f} is an ideal.

We have: [ef] = e
[eg] = ae
[fe] = Be
Put g = E -af + Be: [ef] = ae = e = 0
[fg] = Be -~ Be = 0
Thus :
[ef] = e [e.g)l =0 [fug]l =0 ves L, * L




(ca) dim L' = 2, L' abelian

" N
Put: L = ¢el e @ee + @
P - g i
Lt = ¢el * ¢e2

Ay Ny
Thug: [e.e.] =0
172

Y

iZka =0 & 1.k = 1,2 deta # O
Introduce: e = pisgs detp # O
zs = (p_l)s 1%
We have: [elea] =0
[eifj = pis[gsf] = pisasrgr = pismsrp—lrkek =
= (o™ ey

A resl 2 x 2 matrix o cen always be brought to one of the following

stendard forms by a similarity trensformation pozp""l where p is a real

0 o‘\ /1 o\/1L o\/1 ©
10, { 0 1)\1 1/40 B -lgh<l

o p =l
Gep<=
I p v

The Tirst corresponds to dim L' = 1, the rest give nev algebras, namely:

matrix:

[ef] =0 [eg] = e [fg] = ¢ L392
[ef]l = 0 [eg] = ¢ [fg] = e¥f L
393
[er] =0 leg]l = e [fgl =hf -1<hsl h#0 g Ly j
| > 5
‘ lefj =0 [eg] = pe = [fg] = e+pfl Degpew ! L

3.5




T
Avove, different values of h end p correspond to different (non isomorphic)

algebras.,

The last algebra corresponds to the algebra of the Euclidean group E2 ir

p = 0,

(C,) dim L' =2 , L' non ebelian:

B
{ef] = e
[eg] = we + Bf
[fgl = ye + 8¢

The Jacobi identity:

0= [leflg] + [[gelr] + [[fgle]

= pe + Bf - ge-be W B=é=0

This is impossible, since then dim L' = 1
(d) dim L' = 3 e;:85025
[eiek] = &yqfy = €5y = boOtally antisymmetric
€y % nn tensor with Biog © 1
aim L' = 3 = det a £ 0
Jagobl identity == 0o = e
‘Choose & new basis: gi = P5pey detp # 0 L,r = 1,0..53

e s a o s c " . -1 . .
This induces & similerity transformetion pop ~. However a symmetric metrix
¢ can be diagonalized.

y - e 1= = ~ @ =
Thus: le,e) &5 [92e31 e, [-Sel] Be



Tnig can esgily be reduced to twe possibilities:

[mln&'é] = ES {’EE'HE] = el [esel = ee L3g6
[@lagj = weg &2@3] = el [83813 = @2 L3§7

The firat is the Lie elgebra of 0(3), the second of 0(2,1),

Zimilerly one can classify slgebres of somewhat higher dimensions (clumssifiestion

of Lie elgebras of dim L = 4,5 and 6 exist in the literature).

Definition: The direct sum L of two Lie alpebras Mand N: L= M @& § 47

L=MUN and [MMIC M, [NN 2N and [M,N] = 0 (in obvious notations).

Exgmnl& from ebove: Ly + Ly ¢ L= {ef} , L, =&

-Definition: Representetion of & Lie slpebra L: A homomorphism of the elgebra

L into the Lie algebra of linesr transformetions of & vector spece M over .

The conditions for & homomorphism are:

1f 21 -+ ng EE -+ L29 then

El + Eg -+ Ll + LEE &El - dEE

2y, = ng,0,] = LyLy = Lply

I the homomorphism is an isomorphism (one-to-one, onto), then the
repregentetion It called feithful. The opposite extreme case is when
all mlements of the slpebra get mapped onto & single slement. Then the

revresentation is triviel,

Definition: The adjoint representation of & Lie algebre L: Represant

O R R R D AR T

zuch slement Relby ed fand for all xelL put x ad & = [x&].



Exsmples: 1) Algebra: e,f [e,f]=e

In the adjoint rep. we have:

Find the oparators adl im the basis e,f:
2d e ¥ =e =+ e ade =
x=f == f gde =
ad T x=e -+ eadf=
x=f +f adf =

The ¢

{29

Remark: in generel we could have, say

e + ple = B
. e v 6

in an e,f basis. We can put

e= (1,0} £ =1(0,1),

With usual metrix multipiicetion, we have:

[ee]
[fe]
[ef]

[£r]

L+ xad L= [x2]

-

0, so that o=B=0

ikt R

/0
adel = 0
0

adeg =/
0]

(1 0) < @ B\s (B}, but ¢ ade =
1 v &) . e
{ 3 % u8= gl S = . & . =
{01} v 8= {y ), but £ ade = e, so that v = =1, &= O
aY . , =
2% The elgebra of S0{3): €, 185585 [eigk] €, , €&
ade, x = e, ¢ ade, = Eeleil = 0
x = e, e ade; = {egel) = -eq
x = e, esadel = [eBel] = e,
zde,, eladag = [elegj = eq
ejaﬁeg = [esegl = -e;

(%)

(e8]



adeS elgdes = ieie3 = -e2 - 0 -1 0
egadeg = [e2e31 = e, ade3 = | 1
) 0
=z e a ¥ =
esﬁdeg E83,3é o

Problem: 1} Find the adjeint representations of ell three-dimensicnal
Lie algebras,
2} When is the adjoint representstion faithiul?
When is it trivial?
3} What is the kernel of the adjoint representation

{when i% is & homemerphism)?



Lecture 4

We have elready defined the concept of an ideal, namely a subalgebra

NCL is an ideal if [NL] C N,
Obviously, we have:
(1) The intersection of ideals is an ideal
(2) The sum of ideals is en ideal

{3) The Lie product of ideals is an ideal.

The derived series &f a Lie algebra:

(k) [

L21 = [L,L] 21" = [1,0']2 ... 2Bl =1 2

° 650 2

The lower centrel series

t
iV
t
]

L' = [L,L]

L]

o
ko
w

i 2 ...

koo 13 1o

fu
e

All terms in both series are ideals.

Definition: A Lie algebra is solvable if L(h) = 0 for spme positive integer hL.

Examble: An gbelian algebra is solvable.

Problem: Which two and three-dimensional algebras are solvable and which are

nilpotent?

Definition: A Lie algebra is nilpotent if Lk = 0 for some positive integer k.

Obviously, every nilpotent algebra is solvable, but not vice versa,

Example: [er] = e .. solvable, but not nilpotent.
Definition: The Radical of a Lie algebra L is the maximal solveble ideal of

L, i.e. a solvable ideal, which conteins all solvable ideals of L,



Definition: Algebra L is simple if it has no ideals except O end L and

if L' # 0,

Definition: Algebre L is semisimple if it has no non-zero solveble ideal

(i.e. if the radical is equal to zero).

Theorem: An algebre L is semisimple if it has no non-zero sbelian ideals.

Proof: We must show that if L has & solveble idesl it has an sbelien idernl
(the converse is obvious), Let I be & solvable ideal: [IL]lC L

z(h) = [z(h'l) z(h'l) l=o0 = X(hbl) is & non-zero sbelian
= ideal,

E

h-1 4

I 0

We have thus introduced two distinct classes of algebras - semigimple and
solvable - and the investigation of these clesses is very important, in view

of the existence of the following theorem:

Levi-Meltsev Theorem: - Every Lie algebralL es & linear space cen be considered

to be the direct sum of two subspaces A and B, A is & semisimple subalgebra

of L and B is a solvable subalgebra of L., B is the radical of L.
L=A®&B [L,B] & B,

Remerk: L = A ® B means that every element %eclL can be written s £ = g + b
with &eA, peB,

Thus, the structure of general Lie algebras can, to & large degree,
be understood in terms of semisimple and solveble ones,

The corresponding statement for Lie groups is:

Theorem: Every connected Lie group is locelly isomorphic to the semidirect

product



3

where R is a semisimple connected group and T is & solvable connected group.

Further - T is an invariant subgroup of G, so that

G T G"lg_ T, in particular R T R-lg T,
Example: An Euelidean group:

G = R,T

R ~ rotations, T - trenslations. Here R.T is & semidirect product, i.e.

co=-1
rlsrzsR9 tlgtzaT rtr “eT,

Definition: A group G is solvable if the sequence of subgroups Ql’Q2’°°°Qn’°°

contains the triviel subgroups {e}.yere Ql is the commutator group of G, i.e,

1

the group consisting of all elements of the type aba” b-l, vhere aeG, beG.

Qn is the commutato¥ group of Qn-l°

Schemetically we have the following picture for Lie groups (and Lie Algebras):

] T
o
Semisimple Lie Selveble Lie Groups
Groups
.—"‘““‘“_""__\\-
Nilpotent

Abelian

w-u...___

C%ﬁVSimple Lie
\\\N~\n\M%‘Groups ‘
s,

\M

_/

In & moment we shall return to semisimple Lie algebras, but in order to be

able to move more freely between algebras and groups, let us discuss some further
properties of groups.
We heve given a definition of e compact topological space, In &

metric space we can give a simpler definition: A set K in & metric speace is

compact if it can be covered by e finite number of spheres with equal radii € = Q

wvhére ¢ can be arbitrarily small,



4
If the space K lies in & Euclidean space, then it is & compact s@ace

_if it is bounded and closed.

A metrie space R is & set of elements in which we associate a distance
p(x,y) to each pair of points x,yeR. The distance p(x,y) is & real number,
satisfying

(1) e(x,y)

iv

0 ,plx,y) =0 iff x=y

(2) plxyy) = oly.x)

(3) plx,y) + ply,z) » p(x,2) (The trisngle inequality)

A locelly compact spave: each point of the space has a compact neighborhood.

Otherwise: +the space is essentially noncompact.

Theorem: Lie groups are elther compact, or 1oééii&'coﬁpact.

Proof: BEach element is parametrized by e finite number of parameters and

can thus be covered by a finite-dimensionel sphere.

Example: Circle: compact

- Straight line: noncompact

Properties of compact Lie groups:

1. Every compact Lie group of dimension 1 is a circle. Thus eny
one-parameter subgroup of a Lie group is isomorphic to a circle.

2. A compact group is either a>ggpnecﬁed group, or it consists of

- & finite number of connected sheets.

3, If X is the Lie mlgebra of a compact group G, then there exists
only & finite number of non-isomorphic groups having the same Lie

elgebre. These are called locally isomorphic groups.

From the point of view of physical epplications the most important
distinct properties of compact groups menifest themselves in the representation
theory of these groups., This will be treeted in detail in the second part of

this course - here let us just note that all irreducible representations of



compact groups ere finite-dimensional and unitary (or at least equivalent
to unitary ones), that expensions of functions, defined over compact groups
lead to sums, rather than integrals, etec. An example is Fourier enalysis:
functions defined on a circle can be expanded into series, on a line - into
integrals.

The general picture for the classification of groups that emerges is

the following:

Compact
Lie
Groups

In the next lectures we shall give & clessification of semisimple
Lie groups and Lie algebras and investigate some of their properties. However,
we still need some further preliminéries.
The adjoint representation of a Lie elgebra: defined above.

Let G be a real connected Lie group and L its Lie elgebra and let us

again consider the adjoint representation:

Lel. + adl.y = &y = [2,y]

Notation %,y:elements of L

~

L... an operator which can be written in the form of & matrix

@
i
a
°
o
-
.
o



The matrix is of order nxn where n is the dimension of the Lie algebra.

The form of the matrix does of course depend on the choice of the basis.

Remark: This form of the adjoint representation differs by a sign from

the one given in Lecture 3.

Properties:
(1) alxy] = [2x,y] + [x,0y]
(a differentiation formula)
. A -~ ‘
(2) [o,x] = [2,x]
Both properties follow from the Jacobi identity.

-

So: the adjoint representation is a representation, the linear operators

of which act in the algebra itself.

If we can exponentiate such a representation we obtain the gdjvint representation

-

of the group G. p(g) =g

Let G be & metrix group. Then:

-1
plely = gye

for any yeL. Again the dimension of the adjoint representation is equal to
the dimension of the group. |

Thus: geG is represented by p(g) ecting on yel according to the
above formula.

This finite-dimensional representation should not be confused -ith the

regular representation of a group, which is in general infinite-dimensional end

quite different (and will be treated in detail below).

Examples: (1) ©(3) .. sdjoint representation is 3 dimensional
{(2) o(W) adjoint representaticn is 6 dimensional
(3) GL(n,R) group of nxn nonsingular reel metrices., The basis
for the adjoint representations of the algebra can be taken to be the

operators E; ..
iJ



Eijy = [eij,y]

eij is & matrix consisting of zeros everywhere, except for a one at

'y

the intersection of the i‘th row and j'th column.

Remark: In general the adjoint representation is not faithful. In
particuler, if G is abelian then p(g) = 1 for all geG and the representation
is trivial.

We heve given g definition of an ié&&i in an.algebra. An equivelent

\

~definition: Any subspace of an algebrsa X, invarigpt with respect to the
’ "3;'5"“ 2

adjoint representation, is an ideal.

Indeed ¥ = ideal, YCX = [=,yleY xeY, ye¥ |

To each ideal Y in the elgebre, there corresponds an inveriant suﬁgroup H

in the group:

ghe™> cH  for all heH, geG .

The correspondence between ideals and invariant subgroups is not one-to-ones:

the group can have discrete inveriant subgroups, not reflected in the algebra.

Centre X of an algebra: xcX, Rel [x2] =0

coo8& centre is & commutative ideal.

Centre C in the group: ceC, geG = g'lcg = ¢

- &an gbelian invariant subgroup.

Now we can return to the faithfulness of the adjoint representation:

1 5 1 can only differ by an element from

(1) If x, = x_ then x, and %,

the centre of L:
.xl = X, + Z
(2) 1r P(gl) = D(gz) the g, and g, (in the group) can only differ

by & factor from the céntre of G.

g = ce;



tecture p)

We ended last lecture with some remarks on the adjoint representation.
We came to the conclusion that the adjoint representation of an algebre is faithe
ful if the elgebra hes no centre (no ebelian invariant subalgebra), Referring to

the definitions of a semisimple algebre, we obtain:

Theorem: The derived algebre of a semisimple algebrs is identical with the

algebra itself: L' = L,

Further remarks on the relation between Lie Groups and Lie Algebraz. We

elready know thet given & Lie group, we can uniguely "differentiate" it to obtain

a Lie_algebre.o We have also guoted one of Lie's theorems,vtelling us that a given
Lie elgebra cen alweys be integrated, at leamst in the neighborhood of the identity,
to give a Lie group. Let us consider the smount of erbitrsriness in the integration.

Let D be & disgrete invariant subgroup of the connected Lie gr@ﬁp G.

Then D must be contained in the centre of G.

Proof: d,eD, geG gdog_leD

gd g~ is (&) Connected

o -1 ;
) == gd g~ = d,
{b) Discrete

Thus : D is & commutative inveriant subgroup

= it is, by definition, in the cenire.

Introduce the Factor Group G0 of the group G by the discrete invariant subgroup D:

We identify all elements belonging to the same conjuacy c¢lass, i.e. gy o gy ir

g, = g8 (or d52)° Each set of elements (each coset) is an element of the group

Go“ The fact thet Go is & group is obvious®



1) (g;D-gDlgD = 818830 = g,D(g,D g.D)
2) gD D = gD D is the identity
3) gD Dg_l =D Dg-l is the inverse of gD

Examples: Take the group of complex, nxn, unimodular matrices SL(n,C) and the

subgroup of matrices le. We heve
de e = A" = 1
The group Ae is an abelian inveriant subgroup consisting of n elements,

Consider n = 2: SL(2,C). Then D = fe,-e}. The Group G, = G/D is obtained by

identifying g and -g. Thus:

- . &
_ L oe) Gy 5

Thus, we are "glueing" together individuel "parts" of the group. A certsin
neighborhood of e is preserved: thus G and Go have the same Lie algebre.
Let us now sketch the answer to the question: Given a Lie algebra L,

2

how do you find gll Lie groups having this algebral

1) Find one such group Gl
2) If discrete invariant subgroups D exist, then take Gl/D’ this group
has the same algebra.

3) 1If G, is not simply connected (i.e. if there exists at lemst one

closed cyele in Gl, which cannot be contracted to a point), then
there exists a larger group G,, such that G1 = Gg/ﬁﬁ

k) Among all Lie groups with a given algebre L there exists one unique
simply connected group é which cannot be further extended.

G/D0

L]

5) Take the maximal discrete invariant subgroup Do“ Then Go
is a uniquely determined "minimal grou.p".Go has no further discrete

invariant subgroups.



Thus, we obtein the following picture:

P

g )
/

G

é . Gl o

We have a whole series of loecally: isomorphic groups:

-~

Gi = G/Di

where Di are discrete invariant subgroups. The largest group G is celled the

universeal covering group. All these groups have the same slgebra.

Example: G = SU(n) is simply connected. The maximal discrete invariant subgroup
is

i}

m
n

Gi = u/D1
E.g.: For n =L we have
D, = {1,i,-1,-1i}
Dy = {1,-1}
D = {1}

and

G = su(n); G, =8U(n)/D. G, = SU(n)/D



Semisimple Lie Groups and Algebras

We have elready given the definitions of simple and semisimple groups

and algebras. Note: A simple Lie algebra has no centre, & simple Lie group

mey have e discrete centre.

Properties of a semisimple group:
(1) The adjoint representation of e semisimple group has no one =
dimensionel invarient subspaces (they would correspond to an abelian
invarient subgroup).
(2) The adjoint representation of a semisimple Lie group is completely
reducible, i.e. if the representation does leave & subspace invariant,
then all metrices of the representation can be brought to & block-

diagonal form:

0

plg) = ]

i

0 1

This however means thet & semisimple group is locally isomorphic to the

direct product of simple groups. (This will be shown below).

Definition: A group G is reductive, if its adjoint representation is completely
reducible.,

Thus we have:

..-//d
/«"‘/ h

T Reductive Lie ™
groups A
;";A
{ ( Abelian Y.
LN ]
> '--\\ __«r""”‘"‘”

Remark: Every compact group is reductive,



Definition: The Cartan-Killing form is an essential concept in the study of

semisimple groups.

Let L be a Lie algebra and put

B(x,y) = Tr ;§ = Tr(adx)(ady)

for x,yel,

Theorem (The Cartan Criterion): Algebra L is semisimple iff B(x,y) is not degenerate
(i.e. iff B(x,yo) = 0 for all xelL implies Y, = 0).
Sketch of Proof:

(1) Let B(x,y)

0 for all xelL,yeN C L. .Then }/ is an ideal, since

[yx] = Tr x[y.,x] = Tr(xyx - xxy) = 0 i.e. [yxleN.

[

B(x,[y,x]) = Tr

It can be shown (not trivielly), that N has a one-dimensional subslgebra N,
(elso en ideal). This is an sbelian ideal ==) L is not semisimple.
"2). Let L not be semisimple =5 there exists an sbelian ideal N, Choose

a basis for L such, that the first vectors form a basis for N. Then

NP
i e £t 7
‘@ol

for nelN, el

so that Tr {adn.edf} = 0

For details of proof: See Jacobson.

EXaﬁEle: [ef] = 0 [e,g] = pe-f [fg] = etpf

= /1 0 -
Put: e = 03 £ l> g =
0 0

= oo



Then:
0 p 00 1 !jf—p -1 0
ade = [ 0 0 -1 adf = [0 0 p adg= [ l-p O
0 0 0 00 \o 00
Tr ade adf = 0 ‘I‘f adg adg = 2(p2-l)
.?f ade ade = 0 '£r adg adf = 0
Tr adf adf = 0 'rr adf adf = 0

Thus ade J_ adls

—-%; not semisimple
adf | adL ' '

Remerk: 1) Consider algebra L in = basis'{ei} i=1,...n

. m
We have: [eiek] = Cik e
1 1 1
Ckl ck2 ""Ckn
adek = the matrix adek congists of the
AT
n n n structure constants € .
Ckl Ck2 geockn ks

We can characterize the Carten-Killing form by & symmetric tensor

b, = B(ei,e

ik ) = Tr(adei)(ade

) = (adei)rs(adek) = ¢ ¢?

k sr is kr

k

From here: B(x,y) nondegenerate & det(bik) 0 .
2)  Bl(xy,z) + Bly,xz) = 0

i.e. - it follows from the Jacobi identity that x is an antisymmetric operato:

with respect to the form Bly,z).
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Theorem: A semisimple group G is compaet if and only if the bilinear Cartan-

Killing form has a definite sign (is positive or negative definite).

We shall not give the proof. Its essence is that we use B(x,y) to introduce =
positive definite scalar product on the algebra, make use of the antisymmetry of
operator ; with respect to this scalar product. This can then be used to show that
thg metrices of the regular representation are orthogonal matrices. Thus: we
obtain a finite dimensional unitary representation. This is only possible for
compact groups, as we shall show when considering group representations.

Thus: we have & simple algebraic criterion for a basically topologic

concept of compactiness.

Remark: Even when the sign of B(x,y) is not definite we can use the Cartan-
Killing form to introduce an indefinite scalar product (indefinite-metric),
Then of course B(x,x) = 0 does not imply x = 0,

Let us note some further properties of semisimple Lie groups.

Definition: A linear operator D acting in the algebra L is called &
differentiation, ir
D[ng] = [st.V-.] + [X,D:}"]

A
Exemple: Action of the adjoint representation: Lo lx,y] = [alx,yll= ~[y[ex]] -

xlyel] = [Bx,y] + [x,2y].

Theorem: If L isg semisimple, then every differention can be represented as

an operatol 4 in the adjoint representation (for some f2el).

Thus: if plx,y] = [Dx,y] + [x,Dy] then

there exists £el, such that Dx = adf-x for all x.

(Every differentiation for = semisimple Lie Algebre is an "ipner differentiation”),




8

A similar property holds for Lie groups. An automorphism of & group is an isomorphism

1

of & group onto itself,(i.e. : g = g, glg2 + 8,8, » g - g“l). Automorphisms of

a group G themselves form a group Aut G, Consider the subgroups of this group

connected to the identity and call it AutoG,

Theorem: If G is semisimple, then every connected automorphism is an inner

automorphism, i.e.: every automorphism g - g contained in Auto G can be written

as
=1
g -+ goggo
where goeG°

In other words: any connected automorphism in a semisimple group is Jjust

& trensformation to a nevw basis.

Classification of Semisimple Complex Lie Groups and Lie Algebras

We shall consider all Lie algebras over a complex field for which the

Cartan-Killing form

LI

B(x,y) = Tr x.y

is non-degenerate.

Below we shall also make some comments on Lie algebras over & resl field,

the theory of which is somevhat more complicated.

Formulation of the Problem: Consider the algebra L, satisfying the ususl conditions
on x+y, Ax end [x,y] and the condition that B(x,y) is non-degenerate. We wish to
find a "canonicel" basis for the algebra snd write down all commutetion relations
for this basis,

Remembering that it was quite compliceted to do this for all two and three-

dimensional algebras it is remarkeble, that it can be done at ell for so general



a class as all semisimple algebras of arbitrary finite dimensions. One of the
reasons why this is possible is that for semisimple Lie algebras the adjoint
representation is faithful (the algebra has no centre), so that we cen alweys
Just consider & finite dimensional matrix slgebrs.

We shall solve the problem in several steps.,

I, The Meximel Commutetive Subalgebrs

1) Take an element el and consider the equation

adf .x =0
o)

for all x. This is an eigenvalue problem - namely we are looking for the
eigenvectors of the matrix adsz,o corresponding to the eigenvalue zero. For each
matrix,-adzG the eigenvalue 0 has & definite multiplicity and clearly a minimal

multiplicity of zero must exist.

4 o - y ; : - :
Definition: An element £OeL is regular if adé; has the minimal possible
multiplicity for zero as an eigenvalue,

(Many regular elements can exist, but in generesl not every element is regular).

2) Take all elements of L, commuting with 20 = they form & Cartan sub=-

algebrs Hel,

Remarks: 1) The Certan subalgebrs depends on the choice of 20. However, we
shall show that all different Cartan subalgebras are isomorphic to each other.
2) The fact that the Carten subalgebra is not simply a maximel
commutative subalgebra, but one that contains & regular element, is
crucial. An example of the importance of this fact is the conformal

group cof space-time, the Carten subalgebr; of which has only three
elements, although the maximal commutative subgroup has four-the

translations in the Poincere' subgroup. (These remarks will become



clear to the uninitiated towards the end of these lectures. )

3) Consider all elements h.tH in the adjoint representation (as

i
metrices). Any set of commuting complex matrices can be
simultaneously brought to the Jordan canonical form ("block-

triengular'):

o 2l 3
it

where 81l matrices have the same structure(seme dimension of each block).

We van now see that the eigenvelues mre linear functions on ype zlgebra

)

m(hl+h2) m(hl) + m(h2

e¢(an) Ae(h)

~

(since edding up matrices h1+h2 gives & matrix with elements a(hl) + oe(h2

on the disgonal of the first block, ete.)

)

10



Lecture 6

ned the Certan subalgebre H C L where L is & semi
in

o

We have defin

ple elgebre snd showe thet sll elements nlﬁh

pan be represenited,

the edjoint representetion, by metrices of the Sype
AN

h, =
@
|
i
i
;i
4'3'
.":
#
By definition hlﬁhg is repregented by nlvhg so thet
h. )} = %
o by vho) = a (b)) ¢ o (n,
(2]
< A
a (ak} = s, {h) .
- k
Sgoadn, by definition of the adjoint representetion, the matricss i,
g wlgebre H

inverient under the
4‘7 and we have
fa
{3}

el
' S
i i
Torm of b we see that:
2o A1 %the w (k) ere eipenvalues of &,



2. EBach inverient subspace Xu contains at lewst one
i

eigenvector, corresponding to o,, but does not

i'ﬁ
necessarily consist of eigenvectors gione.

3. One of the eigenvelues must be equal to zero. Indesd:

A 5 ~
hyx = {hix,a; take xeH, then .[hi,h] =0 i.e, hyh=0

We can now write the whole space L as a direct sum of invarient subspecss:

¢ 0, since we have separated out the eigenvalus O

b3
explicitly.
EBxemple: 3 x 3 matrices:

{independant) sipenvector

Remark:

Put: h =

e

B
) 2 i)
/fﬂ g O & f 14123
K X a O b ( xe <+ ab
bO 0 8 ¢ B¢
: - o 0
Xa - b XB “No
0 &

The twe dimensionsl inverient subspace X contains only one

l o
0

~

This only examplifies the splitting of & linesr space into inveriant

subgpaces with respect to e given operator h. The picture for several

comnuting operators h

is exactly the same. Sc fer, this does not exsmplify

o



the algebra of & semisimple Lie group - it is just an intermediary step.

Terminology: 1) Call all non-zero eigenvalues a(h) roots

2) Call the sum - 4) - the cenonicel decomposition of

the space L with respect to the Cartan subalgebra H.

3) The invarient subspaces Xa are-root spaces,

We shall actually show, that evefything is much simpler, namely that the

metrices L are actuslly diagonal (or et least simulteneously disgonalizable.)

Fotice that each root space Xa is the maximel inveriant subspace in which
eech operator h has just one eigenvelue o . Thus, in Xa (& space of lower

dimension then L) we can write

i1
2
Lo
=
Bt
o

(5)

Thiz implies: 1) For each xeX {and only for such x) one can find &
positive integer k < na§ vhere n, is the dimension of Xa’ such that
n K
(h ~a}" x=0

{in other Wwords Xm is & generalized eigenspace and all xexu are generelized

eizenvectors).

Byrample:
e e v 2

o
i
2
It
< ¥ e
N2 o
2 o ©
!
Q
=
L]
< M o



2) There exists at least one (eigenvector) xeX for vhich k=l:

a

hx = ax
This is en eigenvector for all matrices hel.
3) We have already stressed that hx = 0 for all h if

‘st, Thus:

HC X (6)

I1. Some properties of the Canonical Decomposition.

We have decomposed the space L into subspaces, not however subslgebras.
We now wish to esteblish commutation relations between elements from various

subspaces X {including Xo)e

Begic Lemma:

[X,s X1 o S (7)
where Xm+8 = {0} if o+B is not e root (then elements from the two spaces
commute). In other words: X X, c ¥ %ne X takes elements of X into

a B "arB o B
J{m“)’So
Proof: Put z = [xa,xs] » %8 X xBaXB (8)

satisfy

() Let X and Xg
hxa = ox, hx8 = Bxe
Then hz = h[xm,xe] = [hxm,xB] + [xa’th] = (u+6)[xuy3] = (o+B)z

==y 2 = 0 or the eigenvelue of z is @a+B

Vy



(b) Let %y and x& not be eigenvectors. Then we can prove

by induection that

A m ~ ”
{o- ()} 2 = 20 Cp [(Bea)s , (0-8)™ 2] (9)

Since (hnm)rxa = 0 and (hms)sxe = 0 for some »r and s, the r.h.s
of (9) is equel to zero for large enough m. Thus in this case

we again have z = {xms XB]‘GL Xm+8 (or z = 0). QED
In particular we have:

txo,,xal CX, (10)

.o c@&ch subspace Xm is invariant with respect to Xo (end also with -
respect te HY.

Putting o = 0 in (10} we have

[XO,XQJ C x, ) - (11)

g0 that XO is & subalgebran

We slready know that we have
xe HC X
o} - o?
where x is & regular element. More importent, we have:

Theorem 1: He= X@ - the Cartan ealgebra coincides with the root space
Xeg corresponding to the root 0.

Proocf: We shall show that
B([xlgxa ykE o0 (12)

for all Xy 5%5eX _; yel. Sinece L is semisimple (12) implies thet [xlx2] = 0,

that is [ngxgj = 0, Thus: Xog being & commutative subalgebratis contained



in the maximel commutative subalgebra, Thus:
x,C K (13)

Formulas (6) and (13) imply that X, = H

Now let us prove assertion (12).

a) anu 5 é # 0. In this case we actually have & stronger
statement, namely B(x,y) = 0 for all xeX . Indeed:
xy X6(:jxm+8 i.e,: xyoxB:= xa+8° It fellows that the

disgonal bleocks of xy must be zero, so0 as to take one subspace

into another (without mixing them). Thus

/
/O

T
|

K

and

~n

Tr xy = 0 i.e. B(x,y) =0

. = =3 .
for all xck@s yaxﬁ o
This does not mean that B(x,y) is degenerate, since yeX,, not

yel (x is not orthogenal to L)

D) yeXo This case i1s more complicated and we shall only

indicete the proof,



Lemme: Every inner differentiation in X, is nilpotent:
x% = 0 (1k)

where n_ = dimension of X and (14) holds for all xeX .

Proof of lemma: Write x in triangular form:

x / Vl(x) (in the subalgebra Xo)
= ¥olx)
%o
1 *
. v (x)
: o

and show that actually vl = ;uu;vn = 0, Then gpply the Engel theorem:
o]

If X is a linear algebra and all its elements are nilpotent: = 0, then

the matrices of X in any irreducible representation can be simultaneously

brought tc trisnguler form:

x = Xl(x) @
\\\ # A n(x)

in the whole elgebra X.

Thus:

B([xlxglsy) =

. [Ai(xl), xi(xg)J iy = 0 QED

L I =]

1

Finelly we obtein the canonicel decomposition as



III, Orthogonality properties (with respect to the Carten<Killing form).

S

1) 8¢ -a xa_LxB

- oL a e
2} For any xaelmg x, * {0} we can find an x_mex_a , which

is not orthogonal to Xaw

Proefy
L °£
1) xuxg X¥Q:=Xy+a+e a¥B ¥ O

A ~

=% The diagonel elements of X Xg 8¥e Zero

A A

Tr x X, = B{xu, xB) =0
2y Bl{x,y) is not degenerate => there must exist an element
y, not erthogonal to X, e It follows from essertion 1 that y

eran only be contained in X « ° QED

Thus: B(x,y) is non-degenerate on the pair (Xa’ X-a)"'

we sghaell call two such spaces dual to each other.

Corslleries: 1) dim X = &imX_ - . (16)
i root. (-0} exists for every réot 0.

o) Teking o= O we find: The Cartan subelgebra H is
orthogonsl to all root spacés X,. The form B(hl’hz) is not
degenerate on H.

Since ﬁi gre trianguler - matrices; we heve

~

/ = "
Bkhlshz) Tr h,h

Ry = In, u(hl)a(hz)

a
where n, is the dimension of Xa (only the diasgonal metrix elements of hl

and h2 figure in the trace of hlnh2 for triangular metrices).



1
(=]

3) If haaH has only zero roots, then ho = 0 (since_B(ho,h) g

for all heH).

Let us meke use of the dusl properties of roots and separate all roots
into "positive" and "pegative" ones. Let us introduce & basis in H, so that eac
heH has coordinates h = (El,,ag,ir)a

Then
alh) = « S % ceen B (a7)
so thet each reot is given by & set of real numbers

o6 = (Real, Ima, .oy Rea, Imur) (18)

(we ere considering en algebra over the field of complex numbers)n]
We introduce an ordering of the roots, saying @ > B if

s 17 Reul = ReBl then o > B if Imal:> ImBl..,etc.

In particular « is & positive root a > 0 if the first non zero

number in the set (18) is positive and a is & negative woot o < 0 otherwise.

Thus, we can write the cenonical decomposition in & symmetric form:
X=2 +H+ E (19)

where

E = IX E =IX (20)
u<p o> o

(seperete sums over negative and positive roots, as defined above).

Cbvicusly: Positive root + Positive root = Positive root

Negative root + Negative root Negative root
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It follows, That although X or X is in general not g subalgebra;

the subspaces E_end E_are subalgebras (since we have shown Ix o X J(:X g

KN

and &, gu m>0 B>O = a+p>0)

Example:. The elgebre of the general linear group GL(n,C). The Cartan

subaléebr& H can be chosen as the subalgebra of all diagonal metrices

of the order n. As usual, denote €;x & matrix with & 1 on the intersection

of the i-th row and k-th column, and ell other elements zero:

k
0 co0 06 ""'*0
- 0 . 0
ik
o O nonl'° 0
i
: 0 0
Then hel is
b= El ll nee +£nenn
Further
Eheijj = & Erierrseijj = § Er(ér‘ierj - 6rjeir) -

(21)

(ﬁi - Ej)eiJ
Thus, all vectors eij are eigenvectors of h (the eigenspaces Xu ere one-

dimengionel!} The roots are
ey = By - &, | (22)

In this case E+ consists of all upper trianguler maetrices, E_ of all
lover ones. Indeed:

Put 1 < j
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2 i J n
0

1 ) .
Then a,, = {0 0 ool 2os=1...0 0) so that it is & positive root

ij

(the first non-zero number is positive). However eij’ i<y iS‘ﬁpper

triengular,
Remark: G L (n,C) is not semisimple, however SL(n,C) is. Thus...we

should exclude e = e, _+...%e__ from the basis,
11 nn
A1l the general featufés»ﬁhich we have so far proved can be seen

in this example, However several new features appear:

1. The roocts a,, = £." = £, have real coordinates:
SRR B S

8y, = (0...0,41...%1,0.,.0) (23)
2. All roots are diffgrent“(uik = = i=r, k=s);

all root spaces are one-dimensional .

3, We cen introduce Wy = El - 52, Wy = 52 - 53 coe W 4% 5n_1f5n

a3 independent roots. All roots o,, are combinations of these,

i

L, Construct & matrix out of the basis vectong:

%11 €13 *°*  ©1p

The whole slgebre &+ can be obtfained by teking multiple commutators of

%541 (elements

(elements in circles), similarly £ by Gommuting € kel
- ke

in sguares).

We shell prove that these features aré?true in genersl, (for all

semisimple algebras).



Lecture 7

IV. The Root Spaces szre (ne-Dimensicnal

a
Theorem 2: All operators b, hel can be diagonslized simultaneously.

v

Thus: there are actually no Jorden submastrices im (1).
Proof: Take heH end define an operator &(h}
d{hjx = ax ¥ & X
())Gl " o

{(6(n) is the "dimgonal pert" of operetor h)

We have

§(n) [z, =

)

so that 8{h) is & differentistion., In & semisimple algebra every differentiation

is an inner differentietion. (we have not really proved thiz) - =0 that there

exists an xeX such that

Since §(h) must commute with H th@ﬁ:pxai gnd H iz & merimel commutstive

subgroup, we have: xeH. Teke the cperator & = h-x. We have

LY

6x = {b=x) x =0
(3 o

Thus &ll the roots a{8) = U eo that &= O,

Finelly we obtain:

"y

f
Loz
=3
-

cf
=g

iz 4

$Ho

5o the Bgonal, Q.E.D.






Let us now estsblish the commutation relations.

»'d

Take e X, e # 0. Then there exists e eX
a o’ e -0 =

Let us normalize e o s¢ thet
Ble_ gem) = 1
Take three elements: & ,¢ endh = (e ,e ]; they £
o’ -a o 6’ —a
B C L.
mC

Theporem 3¢
Remerk:

over a complex field.

Proof: We have
fe ;& 1 =n e ) =%%{h Je in e
[e,s a@jv o [ 5 78ed =i Je [h .e_
1) Let us show that m{h@} # U,

S
e

We kaow that least cne root BQh@) # 0

Teke the space enveloping all the spaces

N &

onaaoonX ﬁ-i‘

Bm@ B+mgooc

This space

On the other hend we can caleulste the trace of hﬁ &,
Teh = In, . I8 ) ¢ k alh )]
o k a#’k@ L_. ﬁL&/ Y @'e)—
where n dim X o
Btke Btko
. fn § % kS wflin 1T
Thus: m;h&) L nB¢kaV3k_§.@B“¢@J 2 Baive
k B
R.h.s, # 0 ;ﬂﬂgb @<ha§ # 0

i, ..
TRk

is invarisnt under Em . Ve have Trh

such thet B(ém,

{2k)

orm & subslgebra

= <alh Je
A

mast exizt.

oo

s

The algebra E,, is isomorphic %o the Lie algebra of spie.c)

We are considerins SL{2,0) as & three-dimensional elgebra

= Trle ;e 1 = 0,
& [+7) e
irectly in the above
{25]



Intreduce:

e h e
o o _ -l

g, = —— e = @ = oo

5 i
\@(huj m(h&) , Jmﬁhm)

(wve are in an algebraically closed field, so extraoting squere rocts is
no problem).

Obvicusly we have

[e+e=] = e [eoe%J =€ EEOE“} s -e (26)
Q. E.D,

% . .
Corollary: Every semisimple complex Lie algebre contains sn E = {@=990,e+f
subalgebra, isomorphic te SL(2,C) (i.e. 4o the complex extension of SU{2)},
Remark: Since (25) is true for srbitrary B, we have
3 % = . ‘g =ep
B,/ = ralh | (27}
where r is a raticnal asunber.

Theorem b: All Root Bpaces Xm are One-Dimensionad.

Proof: Consider the subspace

fe T+ {3+ X X +.00
O ¢4 Fdie'd

invariant under the subslgebra Eu . Teke the trace of hmﬁ ageting in this

space

O=Trh = alh }J{-1 + 0+ n_+ 2n. < 3n., %,.,
o o o Fla .

3

#

E ] 3 g 1 [23 a o
n, £ 0 ny 0 kg2, n, Q.E.D



Corollary: If o is a root, then ka with k > 1 is not e root.

Thus, the only roots proportional tox are: -o, 0, a.

V. The System of Roots

Let us agein introduce the basis { hi} s L = 1,0.,r in the Cartan

subalgebra, so that

4%y
(=8
o
o
et

The Cartan-Killing form provides us with a seelsr product (in general indefinite)

and we denote

Blay) = (x,¥} {29}

. ‘ &r
So fer the number olh) simply demoted a diagonel element of the mebrix h.

We have mlready noticed that we can write:

5 f o
£ = (o) {30}

2
=
ajl
2]

Thus: & vector with the components {mi} in the Carten slgebra H corresponds
to each root a{h). We have & Finite system of roots (veetors) I = {al,
Usually the number of roots is lsrger than the dimension of H sc that they
cennot 8ll be lineerly independent (e.z. a and -u are both rosts).

We have already esteblished that Ehm?e@] = &b, e, (remember that all

matrices hm are diagonal) and we can now write this relstion as
ihye | = {h?a}eu {31}

or for each of the basis vectors



- . 'l 3 T o =
We have shown that {Xus XB] CﬂXaﬂsg in particulsr £Xm° X 1¢ % =H,

Thus, we must have
o s ;
[emg esml m,r(m}hi {33}

Let us show that with the correct normalization of s, We can put the

ri(a) of {31) egual to the o, of {30) so thet (33 can alsc be written as

[em, e_m] =sh = o {3k)

(vhere aeH is & root (vector)). Indeed, consider the symmetric, tensor

A

= s"&-a {35]
by B(eAseB) Tr e, & L35]

S R
A"B AR "BS

where feA} is = basis of the algebrs and we put

®
i
(=3
=
L
=
1

H
*

(tc each k corresponds one A}, and CEB are the originel structure comstants

A L ;
/w - PPN o
Cik =0, C ot e, T L CAM elc).

We elready know thet Ble ,h ) = 0 and Ble }o= 0 for B # -u. Let us

-]
@ B

normalize e o so that

. _ B A
- CmA Y=ol

|
et

L B(emse

The tensor bAB can be written as



ik

0 1
1 0

The elgebra is semisimple, thus det b ¢ O end alsc det bik £ 0, This
nonsinguler symmetric matrix bik = bki can be disgonalized and sctually

(by choosing appropriate lengths for the root vectors) brought to the

form
e= ey N
‘bik = ik_u Qj6!
We have:
D ol = O B = D e wd S
by = CpCisC s ® “CirlC3C8e ¥ Cie Clas
S R A oD S J s
= c 4 ; (& . + . ~
i8%5-0 “sa “50 “oi%Rs ¥ CR-o Cis!
- CR Cj CS s CS = o
jo RS =ui C B -ui -l
-0
=2 =0, - = o]
i=-a i
Thus, we have
$ t
(g = o, (37)

Let us now collect the resulis.



VI. The Cartan-Weyl Basis

Theorem 5: In any semisimple algebra L we can choose & basis consisting
of elements of the Cartan subslgebre E and the root veotors emu The

commutation reletions can be written as:

[hishkz = 0
Ehisem] = miem
, (38]
[em”eumJ = uihi
Iem9e8] = Nmsem*s
where NmB = 0 if au+B is mot & roob.

This theorem has already been proven sbove,
Remarks: 1) We have imposed (emae m} = 1, but the norm (emgem} is
still erbitrery.

2) Ve have shown that any semisimple complex Lie algebra

consists of indiwvidual Ea elgebras which are "glued" together

{each E, is isomorphic to the aigebra of SL(2,Cl.

We still heve to determine the structure constants N and investigate

wf

]

the system of roots {a} =

Obvicusly we have

=
i
!
=
T,
|7
D
po—_

Bo aB



With an appropriate normalizstion of e, Ve can gchieve
N = =N (ko)

To obtain Na explicitly is a simple, if somewhat tedious task. It

B

is sufficient to consgider the subalgebra Emg acting on the space sgpanned

by

-p £n¢gq psq 2 0 fh1)

=

(the finite range of n follows from the finiteness of the number o

Caind
%
o

roots). Either by meking use of the representation theory of E&
heve & finite dimensional representation of E_ in space (Li}) or Just by
meking full use of the Jaecobi identities and obher algebraic properities

of the system (38) we can show that

2 (3+p), . P
Nmﬁ = 3“542 (o ) &ME}

Formule (42) shows thet if atf is a reot N o # 0o since then g # 0,

B

(Since w  H {0 is & vector) we always have (aa) ¢ 0).

For more complete proofs and further fnformabtion
&

Lol
®
[

1) N. Jaccbson, Lie Algebras

2) E. B, Dynkin: Semisimple Lie Algebras. im. Meth. Soc.
Transl, No. 17 {1950} [Uspebi Mat. Nauk (N.S.), Z, 59-127 (1947)].
3) E. B. Dynkin: Meximel Subgroups cf the Clmssicsl Groups,

Am, Math. Sce, Transl, Ser. 2, 6, 2k5=376 (1957) Em}uiy Moskov,

Mat. Obshchestve 1, 39-166 {1952)].
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L) C. Fromsdal: Group Theory end Applications to Particle

Physics,In: Elementary Particle Physics and Field Theory,

Brandeis Summer Institute 1962; Ed., K. W. -Ford; W. A. Benjamin,

Inc., N.Y. (1965},

5) The book I am following most closely is D.P. Zhelobenko, Lectures

on Lie Groups, Dubne (1965) (in Russian).

VII. Geometric Properties of the Root Svstem

We have
I &H
«0.8 finite system of roots.

Theorem 6: The matrix of scalsr products

M= |{{e,8}]] a8 e E

consists ol rational numbers and is pesitive definite. In perticular

{em) > 0,

Proof:

We have

Bla,h) = (k) = Ze°(n) = Eha)?, (43)
o @
Meking use of (27 we can put
(he) = rq(hsh}
with T raticnel. Thus
_ . 2 . | any
1= (h,h)g ) i.e. (h,h} = —3
Ir
G @



10
Formula (U44) shows that (h,h) is rational and positive. Using (27)

agein, we have

s

(e,8) = rﬁ(mm)

so that (x,8) is a rational number. Further, for any h,keH we have

(n,k) = £ afh) alk)
A=EOOTS

In particular:

(B,y) = (hsgh V= falh )uz(h,V) =1 {Ba)lval.

Y a B

Thus
T
M= MM
T . . oo 5
wvhere M° meens the transposed matrix and If any matrix iz real then
T - - - . . s S 2 i
RR™ is positive definite (A matrix M is positive definite if the gquedratic
n
form (x,My) = [ M, Xy, is positive definite}.
d .

¢ g ij
1rd=1 Q.E.D.

Remarks: 1) Relation (27}, following from (25) can be further specified.

Since we now know that =ll nm = 1 we have

Suming, we heave

{=ptq } {pta+ ‘) ; Y
a(n ) =2 “gp“ql' = -8(n ) (prarl)




11

Thus: ~2(a,B)

= —ptq | (k5)
(a,a)

where -p and q (p,q > 0} are the minimal and meximsl numbers k in
the series of roots Rt+ko
2) Since M = MT in view of the symmetry of the scaler product

(aB) = (Ba), and since M = M, we cbtain
M o= M - ' (L6}
so thaet M is & resal projection matrix,

Theorem 7: The complex linesr envelepe of I coincides with the entire

algebre H,

Proof: VWe already know that for & semisimple slgebrs X we have

[x,x] =%

Hence the collection of vectors [eme }J=uwh, = o must span H, i.e,

the set of roots I = {a! spans H. " Q.E.D,

VII. Simple Roots

Definition: A simple roct w is & positive roet that cannct be
written as the sum of eny other fwo positive mpots.
Obviously any positive root can be written ss & linear combination of simple

roots. What is more, we have



g

i2

Theorem 8: Let T be the collection of simple roots {u} (in some basis

iy

in H). Then
(1) o,Bell =F o=B is not & root.
(11) o,Bell end o # Bdlu,8) < O
(iii) The set N is a basis for H, If &< is & positive root

then

& = Ik (T}
where ki are non=negative integers.

Proof: (i) Let o~ be & positive root. Then & = Be{o=B) is not
& simple root.

Let 0-B be a negstive root. Then B=(8-u) + a =6 is not a simple
root.

1

(1i) It follows from (i} thet eny "a-string" of roots obtained

from B must start with B ¢
B BFa,.o. BHqu

(since B-o is not & root). Thus: p = O in (45} and we have:

~

x#(&gg) = -g 0 “48)
Lot )

BA

(We slready know that (ax) > 0).

(iii) Let us first prove by induction that the k, in (LT} &re
non-negetive integers. Any simple root w, can be written in form (W73,
Let B and vy be positive roots and B » v » 0. Assume that (ii1) is true
for vy and teke Bfn, Then B= Bl+82; Bi » 0, We have § » Bi =D

Bl = Zkliwi9 82 = 2k2iwi end we obtein the result:
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r
B=1I (x i * kﬁi

(& (Bag * Epyduy

Now let us show that the simple rootsz are linearly independent.

Assume the opposite:

2 xtw, =0
1

end take a scalar product with wj9 J=l...r. We obtain & system of linssr
equations for AY with real coefficients iwiwj) =% Wwe can proceed @s if
the A* were real (since Imk and Rel satisfy the same equations).

Call the positive A*,..a', the negative ones (b9}, Ve obtein

alw, = bjm - Og'bi 2 0

(h,h) = aibj(mimj}

The f.h.s. is (h,h) z O, the r.h.s. is € 0. Thus b = 0 so that & = bJ = Q.

Q.E.D,
Thus we have r linearly independent simﬁle roots in the Cartan subelgebra

H of any semisimple algebre and they form & basis of H,



Legture 8
AT
Example: SU(3): The algebra has 6 roots in the root system L:

-k, 1d=1,23 1¥

"1 7 57

Positive roots: &ij for 1 < J

1]

Simple roots: ©y gl - gg = Uy, U, = 52 - 53 S

= - = g, coo sit 51 gilwple
&13 El El W, Fu positive, but not simple

172
Remaxk The root vectors e, generate E+ since
le .e ]l=Ne , N0,
Wy "l Wy 4 Uy

Thus}the veglors e, gnd € generate the whole algebra X. Yi

particular:

[emlge_w} = w C H,

From here we can obtain the following assertions:

1. Given the system I« we obtain the slgebre X up o
gn lsomorphism.
2, If the system @I can be written as an crthogonal sum

of two subsystems

=0 &

»,
=

N

et

then I decomposes into two subalgebras:

L= L'&L"
3, If we multiply sll elements of I by the same rsal

number we obtain an algebre isomoryhie to A. Thus



the system U is only defined wp to dulavations.

Definition: T iz indecompesseble if no splitting of the type (L)) exists,

Assertion: The algebra L is simple iff the corresponding systen of

simple roots I is indecomposable,

Since all semisimple algebres can be obtained as direet products of

simple ones, it is sufficient to classify a&ll simple Lie slgebras.

i

IX. Clussification of Simple Lie Algebras

Definition: The number of elements in (ﬁ lequal to the dimension of the

Cartan subslgebra H} is called the rank r of the algebra L.
All we have to do in order to describs il simple Lie wlgebras

of rank r is to consider all possible syst

1}
I
@
=
7]
o
5
43
gc
3
K:B
[
L
o
o7
<
L]
[
[
g

r-dimensionel lineer space which cennot be decompossd inte orthoszonsl

subgspeees.

We slreedy know that simple roots satisfy the eguation

w 2lg.8)

]
€3

{ag)

el
f-l‘,r
Q
=
5
o
=
O
923
3
Lofy
o
)

vhere G is an integer. This iz a very strong restriceti
('8

configurations of the system I . Indeed:

= et = 4 oot ¢ b g

TR .

i
o

Thus

y N
] gy
ad ( L

=
(¢
o
ur
[N
L«2]
il
o
3
LG'" n
w
3]
0
s
A%



Gince (w,B8) 4 0 we have

i

raf =

Let us now use notetions, intreduced by Uynkin,

represented by & circle and two simple roots

them are not connected, with &
or 3 lines respectively. Thus:

o
90°

O}

120°

Performing & lot of guite tedio

-4

Fi
51';"9

£a3 ﬁ §=\§)
0\.!*;;?

(53)

& simples root is

. " L
with angle 6 = E'between
2w i 5 .
SR 3L or 2% are conpected by 1.2
3 %48 77 oo
o mm— 'iﬁﬁﬁ?“)
1359 150°
us menipuletions we find that the only

peometricelly possible configurstions of simple rocts fall inte four series
b B , C andD eand five individuel aigebres B.; Z,, Eg, ¥y and G,
n® n on e T 4] i z2
called the "exceptional’ Carten algebras.
*“\M B oy
: & fod N SO
b M-M““C:)'m"mmmx?ﬂ rwﬂ, e @ . 5 o P *‘“( {r:,j
/ R Fnen e
g P NP
B oy }—-—-—*—g o e P P o -
? e s e
o = o i e}
AR g T ,J"‘lm_m'; g . v 13 [ ammsuend g
C Q [ - J ,3"""“‘“"““"( o &
o u
[ Lo
T (‘:;L*"‘N e s "“’ . mR—— S ‘j:}
'Un \"‘_‘:;;f wa{:“jmmmw u«ﬂlh-an{ W (ﬂ‘
B #“% P o
C;i ey
d &
-
N s s e ?‘_: ‘;\"‘:
B I &
3 )
5 o Sl
k= o ‘?’" A‘ - W
7 R et T W
o C? " b e T
R o ol = e ™ -
EB (rmmnenil ) b Lo i Rono?



The numbers sbove the circles denote the relative squared lengths of
the individuel simple roots {(w,w).
Remark: The following feotor can be inferred from the Dynkin diegrame

1. There sre certain isomorphisws between the Lie

elgebres of low renk

oy By {
Al Bl Cl
B. = C e
2 2 'y
F I
3 5

2, D, does not exist, BE is represented by two
.

disconnescted pointe

end is thus not simple. Indeed
! % ey = cO fmeh
D, " Ay & 4 lor B, & E, | {55

s

Thus the only noneguivelent simple complex Lie algebras sre



Thus we have classified all simple

semisimple ones, vhich are just direct sums of these 1i sted gbeve,

still wish to construct them expliecitly. For the algebras Ay

o

b this is easy - namely it can be shown guite simply that the

Lie algebras of the classical linesr HrOUDS .

Let us summarize some of their properties.

Lie glosbres end slsc gll
We

. By C

AT

and

s& are the

Algebra lLie Group Number of real Properties of Matrices Property of
peraneters in Lie Group Matrices in
Alzebrs,
P N o !:‘ " - a 2 3
A SL{n+l,c) 2(n+1)=2 Complex matrices of Complex (mt+l)
Bpecisl linesr order n+tl with (n+l) metriece
groups aet G= with Tri=0
Bn 80{2n+l, ) (2o+ilizn) Complex orthogonal of Awtisymmetric
Speeial ortho- order {2n+l), satisfy comples
gonel groups O*G = O@T = 1 matrices of
. O = order 2n+l:
iy -
I s =X
c, Spizn,c) 2n(en+1) C@Fpl@k Symplectic Metrices of
Complex symplec- Matrices of order 2n type
tiec group / i A, \
;L 2 1
.
A wft T
Y, hg .‘1 i
v ﬁjsacmmlex
5 mitrices of
| order n
| |
‘ Awgkgm»vmm@tr
D, 850{2n 0} Zu{2n-1) Bame as & Seme &3 4
& £L

Remerks: 1. The orthogonzl ero leave the gymmetric
V-4 2 & .
[y Era L o me 5 '
4. * & A inveriant .
i 2 ° 2ul+l}

2. The symplewtic

form

gx
.J
]
b
7
-
.
(y
L—‘
oo

groups lemve the antisymmetric {compleés)




inverient, i.e.

(xy} = X,y

Ty

3

6]
fi
e

Sn “on

vhears

and In is & unit metrix of order n.

The algebres Gos Fh and 26 a8 well ag the correspondi
been coustructed explicitly in the 1i L@rumuw i de not
and Esg but their exisitence hes besp proved, The

Alpabr E. B, E, ¥ 3.
lgsbra 6 , g E% Gy
Dimengion T8 133 2B 52 1k

¥From the isomorphisms of we £

algebras

lovelly isomorphic

» B30{6,c)

semisimnie

Lop}
(&
=
Ny
w

3
fiude

s Abslian and thus not

know aboub B

i

dimensions are:

sllewing groups

ng Lie Jroups have



Actually: SL(2,z) and Sp(2,c) are even zlobelly iscmorphic
5 vid; T

50(3,a) = sL{2,¢)/D = digerete P dimensional centve
Thus: 1) One slgebra of rank L 0 AL =By =T
i .

Three slgebras of rank 2: Gz Aﬁ

na
L -

Iy By = C

‘u.«ud e Ead ™y
< [
e e
mestanzmory #’3‘1
(O o WL 4

n

The Sysﬁemgw of simple roots is represented completely by the

Dynkin diagrems. Let us look at the system £ of all roocts for alegehras

of rank 2. Since ell roots are linesr combinations of 4he two gimple

ones, they can be represented oy vectors in & plane {more generslly in &

a

Euelidean space of dimension r, egual to the renk of the gloabra

ﬁf

b B
£ ¢ @"‘”"“"Z} ¢ the lengths are the sane Wth@ angls betwesn simple

roots is 1209,

= e e e e W
Rkl AN 13

AN AN )

o
[+

o
T
g
=
i
&

- N, S
L N4 5 § . Ji
o 2 - QL i i /
21w N\ £7712771 - /
NS . P opesit
r - i R -
J >3- 33 )
%31 ®3z
o . o o
»qwm%vmlﬁ 7 p lw
B Gl 'w} W = 205
= 2 1
w w‘fﬁ . . -~
~ hngle betwsen simple 135°
\’...\_)
&@g TE &
g, "ﬁ#
“"i‘\% o . . ;= A
- 3 s £ Bosheasized lines correspond to v
AN ¢ -
N
1 | Y




2 2
) . P P

Angle betweemﬁ&l and«&% ig 150°

Problem: 1) Consider the algebre of SLin,c} end find the Cartan~
Weyl basis, chesk the "sanonical" commutation rules,

2) Optionally: do the seme Ter the other olmssical slzebras,

Heving completed the clessificeation and description of sll) complex

gimple Lie algebras, let us look et the real simpie Lie algsbras,

n

We repeat the whole procedure performed for complex slgebras,
Complications come from the faect that the field of real numbers is not elgebraicall
closed, so that the problem of finding elgenvalues and eligenfunctions of

& matrix x is meeh more complicated (you can ne Jonger ., in general , reduce

& matrix to the Jordan canonical form).

& more convenient gpproach ie to start from complex Lie slgebras,

H

the structure of which we alresdy know, and then 4o

ways of splitting off real forms, This wes dome to = large degres by Carten,
the finel angd complete version is due to Gantmakbher (contained in twe
Russian articles, to my knowledse net translated:

F. Gantmekher, Mat, Shornik Sy 100-1R6 {(1939) ang

s
L]
593
o
-3
§
)
=
ey
i
3
[
\E
et
—

The results can be extrescted from e.g. 8. Helgason . Differsntial Geometry snd

Symmetric Spaces, A.F. New Yaork 1962,
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We shall not go into the details «
exceptional resl Lie algebras. Let us Just note that one and only one
real compact form exists for each complex simple Lie slgebra, including

the exceptional ones.
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where IT is a wnit mabrix of order p.
3

i

i

Amomg the real simple Lie sigebras of low order we agein

have certain isomorphisms, leeding to locsl

the ErQupE .

Let us just list them:






1)

2)

[
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su(2) ~ 80(3) Spu(Q) ‘

SL(2,R) ~ su(1,1) ~ 80{2,1) ~ 8p{2,R)
fn, O 'Y )

s0(5) = bpu(4)

50{3,2) ~ 8p(2,R)

so{k,1) ~ spl2,2]

s0(k) ~ 80({3) fmyso{3) ~ su(a) ) suiz)

gulk) ~ 56{6)
SL{k . R) ~ 80{3.3)
,*‘L ¥ PR y
SU (k) o~ s0{s5,1)

su(z,2k s0(k,2) (the conformel group of space-time;






Lecture 9

In the previous lectures we have completed the classification
of all complex semisimple Lie algebrgs and written down the commutaticn
reletions for these algebras in the Cartan-Weyl basis. In particular
we have shown that the total informetion about complex semisimple Lie
elgebras can be expressed in terms of the properties of simple roots.

We have also considered real semisimple Lie algebras and have
shown how each complex algebre splits into several different (non-isomorphic)
real ones. ©So fer we have only presented the results, let us now discuss

the reel Lie algebras.

Connection between Rezl and Complex Lie Algebras and

Lie Groups

Formuletion of the problem: Let L be a given semisimple complex Lie

elgebre. We wish to find gll possible bases of L in which the structure
constants are real numbers.

Obviously, if we take such e basis fei} and consider its resl

envelope

where ci are resl numbers, we obtain a real semisimple Lie algebra.
One besis satisfying the ebove criterion has already been found -
namely the Certen-Weyl basis with the simple roots taken &s & basis for

the Carten subelgebre H.

Indeed; we have

[w.e 1= (wi,a)eOE

ifa
1 = =
[ea,e_ 4 =@ =Inu
[emes] = aSea+S



and all the structure constants are real,

The slgebra Lr

r

x= I Elwi % g? xaeOz
i=1 o0

with El and xa real is a real form of algebra L, namely in this fashion

we obtain the restrictions
SL(n,C) —> SL(n,R)

80(n,C)—> 50(n,R)

Sp(n,C)—=> Sp(n,R)

Thus, one solution of the above problem always exists. Another

solution that is of great importance is:

The Compect Form of the Algebra I

The scalar length of a vector in the canonical basis is

8

¢k
= l iy
(x,x) £,,8% + 6& X x

B

vhere f., = (wi,wk)

We already know that the metric tensor fik in the wlgebra E is

positive definite.

Introduce
cC = —é: (e, * e}
o 9/2 4 -
S ="‘:l-'"(e==@ }u

-

Obvious (¢ , s ) = 0 so that
o’ "o



(x,x) = £, 6% + £ { (a%)% + (3%)%)
ik
a>0

] o [+
where x=ZI tly, + I (a e, * b sa),,
i o>o

Thus, the "metric tensor" of (x,x) in the whole algebra L

is positive definite. It is easy to check that

{ iw, de,, i Sm}
form the basis of & subelgebre with real structure constants. Let us
caell this algebra Lu and we have

(x,%) < 0,

The group, corresponding to this algebra, will by & previous
theorem, be compact.

Thus we obteain:

Theorem: Any semisimple complex group G has & zompact real form.
Nemely: st{n,c) * sU(n)

soln,c) * so(n,R)

Sp(n,C) o Spu(M

Exemple: L = SL(2,c)

1))
4+
i)
~—~
o O
o
\_/
®
(]
]
PO g
o
Q
i
= O
e
[}
§

/0 o>
o

c = 0, = e +e = 0 1) Og = 2eq = | +0
10 0 =1

w
]
[0
o
Q
+
&
EN

bcg) with £.,a,b real ig an element of I_-u = SuU(z),



Quite similerly: SL(n,C) —> su(n)

The picture we now have is the following. Given = real semisimple Lie

group GR we can find its complex extension GC and then restrict G., to

CB
& real compact group U. This iz called Weyl's unitary trick:

Theorem:” The subgroup U is determined uniquely (upto gutomorphisms) as
the meximel compact subgroup of Gcn
Let us show how to find all real subaligebras ¥V of L., If V is & resl

form of L then:

L=V <+ iv

»
v

i.e. zel => 2 = xtiy x,yEV,

Y H
Introduce the eperation of conjugation:

z +olz) = x-iy

The reel algebra V is invariant under conjugetion.
' 02) =z & zeV .
Exemple: Take X as the algebra of SL{n,C):

1) o,(z) = z* (complex conjugation)
=> V = algebra of SL(n,R)
2) cz(z) = -z¥ (z+{is the hermitean conjugate of z)

=» V= L, = slgebra of SU(n},



In general the mepping z + o(z; is an ipvolution, i.e.:

)

o(zl+z2 c(zl) + 0(22)

U([zlazzl) = Isﬁzl)a 0(22)]

alaz) A olz)

1]

‘ Ug(z)'ﬁ b

Thus: the problem of finding all real forms of L reduces to thet

of finding 21l (in some sense) different invclutions.

- Construction of All Real Forms of a Complex Alsebra

L, Starting from the Compact one Lufn

Lu € L is determined up to & choice of a basis in Lu {up the inner

sutomorphisms ).

Theorem: Let o be an involution of L, leaving the compact form Lu’
invaeriant;

L =X <+N
w

where K and N are eigenspaces of ¢, corresponding toueigenvalues *1
(we have 02 = 1), Then V=K + iN is & real form of L and sll real forms
of L can be obtained in this manner.

?hus: all we have to do is find &ll involutions leaving Lu

invariant.

Theorem: Let ¢ be an inwvolution comserving the form Luu Then there
exists a Cartan subalgebre HC L, invarient with respect tc 0 .

(We drop the proof).



6

Example: SL(n,c) —> maximal compact subgroup SU(m). Carten subslgebra:

H...diagonal matrices of order n. Put:

where the separation:into +1 and -1 terms is arbitrayy. Then

is an involution preserving SU(n}. The invariant subspace is veV
T oamd F
SleE..v

The group corresponding tc V is SU(p.q).

Cartan Decomposition

L=X+ iX

where X is & subalgebra, invariant under an involution. (If X is a
subelgebra, iX in general is not one), If X = Lu then we can "integrate"

the Cartan decomposition to cbtain
G = U.R

where U is the meximel compact subgroup and R is the supplementary subspace.



Exemple: GL(n) = U(n)R(r) polar decomposition of matrix ge GL(n)

R(n) - positive definite hermitean matrices of order n.

For SL(2,C):

ab \ [ a B r s
= #
cd -B o s®  r
ad-be = 1 Suiz + !852 =1 r = real
Anslogy: Z = elelzl »0» polar decomposition of complex numbers.,

Thée Gauss Decomposition of & Complex Groun G.

We have for a semisimple Lie algebra
L=E +H+ E#

For the corresponding group we have

Here Z_, D and Z+ are Lie groups corresponding to the Lie algebras
E , H and E+° The bar meeans topological closure. In other words not

every geG can be written as

g =120 z,

but such g do form a dense set in G,



8

Theorem: Every complex semisimple Lie Group allows a Gauss decomposition.

Remark: If G is a matrix group, then Z_ and Z* can be considered to
be lover and upper triangular matrices with ones on the main diagonal.,

The matrices D are diagonal.

The Gauss Decomposition for a Resl Lie Group G,

The algebre of G can be written as
LR = K ¢+ iN

where K and N are eigensubspaces of the involution o ; Getermining LR

in the first plece,

Theorem: The real semisimple Lie Group GR with the slgebra LR can be

decomposed as

where F is locally 1somorph1c to a direct product of an abelian g”oup D

and & compact one U w1th the algebra K. Further Y% are subgroups cof

Z+ in the complex group G.

The Centre of & Simple Lie Group

The centre of a simple Lie slgebra is {0}, thus the ecentre of e

simple group is discrete.

Theorem: The centre of & complex simple Lie group and of & compact real
simple Lie group are finite,

(No proof given).



9

Corollary: The universal covering groups of the groups mentioned above
consist of  finite numbers of individual sheets.

Indeed, if L is & simple czomplex Lie slgebra and C(L} is the
centre of its universal covering group then it can be shown that the

following table summerizes the relation between L and C(Lj:

L ‘ A B, C D_ B, E, Eg T, @

c(L) ‘ Zo41 Z, By, ZX2, Zo L, Z 7 /

where Zn is the discrete group of divisors of unity:

Zn= {e) At =1 e = unit matrix
A = complex number

Thus: Z

W

5 (+#1, -1}

z, = (1,4, -1, -1)
5 2K
Zz ={e n } ogkgn-l

Thie table completes the classification of simple complex Lie slgebras,
in that it indicates the number of different, locally isomorphic

groups, corresponding to a given algebra.
For the compact groups it can be shown that:

& SU(n+l) is simply connected, sc that it is its cwn universal
covering group.

C : S'u(2n) is simply connected (and is it's own universal covering group).
D

B end D : The groups so{2n,&k) and S0(2n+l,R} are not simply connected.

Let us construct the universal covering group of 80{¢ R}

Consider the real vector X = (xl,ugnxﬁ)



10
and introduce some abstract elements of en algebra:

~YlsoouaYQ

)2

o
n

i 2 2
= + *oood
(x Yi b d X xE

This implies the anticommutetion relations:

YuYy ¥ Yo¥y = 26m,

All moromials
Y. ee Y s < &

2‘ ) f %
form en algebra of dimension 2, called & Clifford slgebra K (for £ = L the

Yu ere the Dirac y-matrices). Consider the f-dimensional subspace X, K
X=Xy, xeX
Introduce left and right multiplication

k=+kk k + kk . -
o3 2]

) g i .
by ko’ for which detk0 #0 (ko is a 2° x 2% matrix). Let G, be

the group of =&ll automorphisms
- "“l 7
k+k kk detk # 0
o o @

Let Gx(1-Gk be the su_bgroup9 leaving X inveriant:
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and let Gi be the sheet of Gx5 connected to the identity. Gx leaves
the length (xi'vi)2 inveriant and it is essy to see that G, is locally
isomorphic to S0(&) (it has the seme number of parameters, leaves the

seme quedratic form invariant)o
Definition: G, = Spin(%) is called the spinor group.

Theorem: The group Gi = spin (%) is simply connected. t is the

universal covering group of S0(%) and we have

so(2n~ 1) = spin(,2n+l)/’22 and S0{2n) = Spin{2n}/C where C = z, for

n=odd and C = 22 vaE Tor n = even.

The importanee of knowing whether & group is simply connected
is due to the relation between simple connectivity and representation
theory. Indeed, if we have & group G that is not simply connected, we can
consider its universal covering group G and the single-valued
representations of G will provide multivalued representetions of G {e.g.
the half integer spin repfesentati@ns of S0¢3)). & simply connected group

has only single velued representations.

Remark: The properties of the real noncompact Lie groups with respect

to simple connectivity are much more complicated. E.g. su{1,1} is &

covering group of 0(291)9 not however & universal covering group. It can

be shown thet the universasl covering group nas infinitely many sheets and thus
an infinite dimensional discrete centre. We can thus consider not only

single~-velued and double-valued representations of o{2.1}, bu

ct

"arbitrary-velued" ones.
This completes our survey of some basiecal properties of Lié Groups
end Lie Algebras and we go over to the second part of the course, namely to

& consideration of the theory of representaticons.
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Group Representation Theory

Definition: A representation of & group G in a linear space E is
a mepping

g = T
g

of the group G into & group of linear trensformations of the space

E, such tha@

=]
]
]

where I is the identity operator.

.

If G is = topol@gic&i”grcup then we demand that Tg depends

continuously on g.

Definition: Two representations 'l‘g and Sg are equivalent if there
exists a mapping A from the space of one to the space of the other such

that:

Definition: A subspace Eo(: E is celled invariant with respect to

the representation Tg if
'J.“g Eo - Eo

for all geG.

An inverient subspace is nontrivial if E # {O}EEO ¢ B,

Definition: A representation Tg is called irreducible if no nontrivial

invarient subspaces in E exist.



If a nontrivial inveriant subspace Eo exists, then Tg is

reducible.

A representation is called completely reducible if every

invariant subspace El has a complementary invariant subspace E2 such

that

E=FE +E

i.e. the space E can be decomposed into & direct sum of invariant
subspaces.
The space of a completely reducible representation can be

decomposed into irreducible components.

13



Lecture 10

Some Applications of Group Representation Theory

Before we continue with cur expoéition of some general features
of group representation theory, let us just give some examples of the gpplications

of group representations in quantum physics.

1. Degeneracy of energy levels in non+relativistic quantum mechenics,

Consider the Schrodinger equation
By (x) = j (1)
Yglx) Bp (x) (1)

and assume that the Hamiltonian H is invariant with respect to e certain group
G. This means that for every element geG +there exists an operator Tg acting

in the space of wave functions V¥

TgtpECx)’ = P{x) {2}
and satisfying
-1
THT =4H {3}
2 g (3]

Obviously, if ¢(x) satisfies (1), then so does Tgw(x)q Indeed:

, -1 o . ., C
H{T (x)} = T T77H T plx) = T Hy(x) = ET iz}
g¢< ) g g g¢€ ) g W( 4 gw‘ H

Ir

T H(x) #Culx)

for ell g, then the energy level E is degenerate and we denote the elgen-
function wEkfx)o The operstors Tg form & representation of the inverisnce

group G. If the opesrators Tg transform all functions wE (x) with E fixed

k

emongst each other, leaving no subspace of functions wEk inverisnt, then



the.rEPresentation is irreducible, The representation theory of G then
provides us‘with a lot of informeticn, e.g. it tells us what possible degrees
of degenergcy can occuf (namely it must cocincide with possible dimensions of
repreﬁentaﬁions of the group G), it pruvi&es us with & means of ¢lassifying and
labeling different functionms, corresponding to the same energy, ete.

If the functions wEk(x) correspond to a reducible representation of G,
then the group G does not describe the degeneracy completely and either there

. . "y

exists a larger invariance group G 75 G for which the functions wEk do transform
irreducibly, of we say that the degenermcy is mccidental.

Exempies: Put

)

H=- %6+ V(F) (&)

If the potential is sphericelly symmetric V = V(r), then we slwsys have a

i n

geometric" inveriance group G = S0(3), leading to & degenerasy with respect

to the meagnetic quantum number m In two special cases wg have a higher

degeneracy, than the one described by 50{3} mamely for the Coulomb
"]
potential V{r) = I/r when the group G =507k}, and for the isotropie harmonic
5 ")
osciliator V(r) = ar”, when the group G = BU(3),

2. BSelection Rules for Trensitions Between Energy Levels

We are interested in matrix elements of the type

where u.v enumerate representations of the inveriance group G and i,

Cte

enumerate basis functions in each representation. If we know scmething
sbout the transformetion properties of the tranmsition operstor T, wve can
use group representation theory to investigate {51, in particular to Find

when do we have TB? = 0, ete.
o



3. Conseguences of-Relativistic Invarience (or invariance of a theory with

respect to any group).
Consider the quentum mechanics of a free particle, Expesrimental

quentities are the moduli of scaler products of wave functions
2

The requirement of speciasl relativity is that such experimental guentities
{transition probabilities, etc.} should be inveriant under Lorents

transformations. Thus, & Lorentz trensformation

x = Agte
corresponds to
Ylx') = Uld,aipix)

end ¥{x) must then trensform under & representation of the inhomogensous
Lorentz group 'Poincare' group).

By definition a physical system is elementary, if it transforms
according to an irreducible representation of the group. Thus: &

clasgification of irreducible representations of the Poincare’ group is &

classificetion of all possible elementary physical systems .

L, Classification of Particle States with Respect to the Representstions

of an Internal Symmetry Group, (e.g. SU{2), SU{3}, ete.).

4]

5. Partisl Wave Apalysis of Scattering Amplitudes and its Generalizations.

Consider & function fix) on some homogeneous manifeld X on which

g group G acts as

T flx; = flzgi.
g Z

[¥3]



b

It is often useful to find components of f(x) with definite transformation
properties with respect to G, e.g. to expand f(x) in terms of the basis

functions of irreducible representations of G.

]

hus: we have & lot of physical motivation for performing a

cereful study of group representation theory.

The Basicel Problems of Group Representation Theory

For most physical applications we need & guite detailed knowledge
gbout the -Lie group of interest itself and about the group representations,

Basically, we hawve to know the following:

A, Knowledse about the Lie Group

1. Definition of the group, its structure {semisimple, solveble,
stc,), its isomorphisis, local isomorphisms, covering Eroups , universal
covering group, it's centre, its comnectivity properties, ebe,

2., The Lie algebre of the grouwp, its universal enveloping algebre,

the invarimnts of the algebra (the Casimir or Laplace operators).

Remarks: &) The universal envelloping slgebre K of & Lie algebra L ={ eignaoen}
is obteined as the ring of all polynomials in &io Two polynomiels are

considered equal to each other if they can be obieined from one another by &

finite number of commutaticns [e,,e ] = ? [A ring is a linesr spuce
1° 7k i i

g

of elements 8 which is an a&belian group with respect to addition ai+ak and

k

in which we have a distributive multiplication &J{ak%'? = (Ei&kjyv” The
5 .

ring is & field if it has & multiplicative identity aud an inverse for

\

every &, # 0).
o) The inveriants of the algebra, or the Casimir operators, ere

the operstors of the centre of the universal envelloping emlgebre, 1.,

§

polynomisals in e,, commuting with all es (and thus with a1l pelynomials in e,).

[



p

3. A complete study of the subgroup structure of the given group,
nemely & classification of all comtinuous subgroups into egquivalence classes.
The Lie algebras of the subgroups and their invarients, if such exist,

k., A systematie study of different possible parametrizations of the
group, i.e. all possible ways of representing & generel group element geG as
& product of elements of subgroups of G and eventually as & product of
elements of one parameter subgroups.

5. A list of all homogeneous spaces X on which the grovp acts
transitively. A systemstic studyvof #ll (in some sense} types of
coordinates in the space X, some of which, but not all'are related to

various chains of subgroups of G,

Remark: A lineer space X is a homogenecus manifold with respeet to the group
G, if G acts transitively on X, i.e. if for any x,yeX there exists & g=G

such thet y = gx.

6. The left and right invariant measure on the group (the Haar
measures) in & general form and in different forms, corresponding to each

parametrization. The inveriant messures on each homogeneous menifold.

Remark s Haar nes shown, that for an arbitrery Lie group (end even for
& larger class of topologicsl groups) one can introduce ijnverisnt

integration over the group, i.e. write

f‘iig}dmLfﬁg) = jf“/ g@g')‘&%ﬁg'} (6}

and tig) duR€g) = figgo)duR{g) {7}

where p (g) = w. (g g) and v, (g) = u_(ge } are the left end right invariant
L L' "o R R [+]

measures. The measures are determined uniquely, up to & constent factor,



and for a large cless of Lie groups, called "unimoduler" groups, the
left and right inveriant measures coincide,

Similarly, on & homogeneous menifold we have a uniquely determined

{up to a constant factor) invarient measure

rlxdau(x) = |flex)au(x) (8)

B. Knowledge sbout the group representations

1. A classification and explicit comstruction of all unitary
irreducible representations of the group, sll finite dimensional representetions
and usuelly also certein clesses of non-unitery infinite dimensional representations
{for non-compact groups).

2, A consideration of vericus specific remlizations of the representaﬁion
spaces, A systematic espproach to the problem of classifying and finding all
possible different bases for the representations. This is directly related
to the problem of finding =1l noneguivalent complete sets of commuting sperators
in the envelloping elgebra of the Lie algebra esnd is in part related to
the classification of ell cheins of subgroups of the given group.

3, An explicit comstruction of the different complete sets of
basis functions for cach representation.

4, An expliecit construction of the infinitesimal operators {as
differentisl operators) end of their matrix elements in each different basis
for all representations.

5. An explieit construction of the matrix elemenis of the finite
transformetion operators in the different bases.

6, The construction of the operators reslizing the transformetions

from one type of busis to enother (the overlap functionsi.



T

T. The reduction of useful reducible representations to irreducible
cnes (e.g. the regular representation, the quasi-regular one). An investigation
of representations that are not irreducible, but no’ completely reducible.

8. The reduction of the representations of the group to
. representations of each of its subgroups.

9. The Clebsch-Gordan series, telling us which irreducible
representations of the group are contained in the direet product of two
irreducible representations and with which multipliicity

10. Th: Clebsch-Gordan coefficients of the group, connecting the
basis functions of the irreducible representations contained in the direct
product of two representations, with the products of basis funetions of these
two representations. These coefficients should be obtained for each of the
bases under consideration.

11. Formulae generalizing @iassical Fourier snalysis to non-Abelian
and non-compact groups, i.e. formulae for the expansion of functions defined on
the group {or on a homogeneous space) and squere-integrable with respect to
the corresponding invariant measure, in terms of +he matyrix elements of finite
transformation operators (or in terms of the basis funeticns ) of irredusible
unitary representations of the group. These expansions would be various
generalizations of the Planchere. formula, they depend erucislly not only on
the group under considerstion, but alzo on the chosen group reprasentation
basis.

12. Generalizations of the above expansions to wider classes of
functions and thus to non-wnitary representetions. Analytic continuation

of group vrepresentations,
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This is by nc meens a complete list of the mathematiéal problems,
important for physical applications.

The program, as listed above, has not really been fuifilled
completely for any nom-sbelian group, not even for S0(3). We shall trest
some of the problems in general, first for compact, %hén for poncompact
groups. In the third part of this course we shall gS-over to the Poincare’
group and it's subgroups and little groups and treat theéir representation
theory in some &eﬁaiio

We have aslready defined & representation and the concepts of
equivalencenof irreducibility and of complete reducibility. Let us

introduce some further concepts.

Definition:

Representation Tg and Tg ere contragredient to each other, if a

nondegenerate bilinear form

a s

{x.x) xeE xeE {9}

exists, which is inveriant in the following sense

(T %, %5:‘ = {x.%x) 110}
@ 9 £ J €\ g ) Q ¢

Obviously we must have

dimE = dimE

S

We can consider E and E as one space, we can choose & basis, in which

(x,x) is diagonzl., Condition (10} implies

T = (1)

Rt
e
[

o

(superscript T means transposed)n



Definition: The Representastion Tg is called a tensor prodﬁct of two

representations
T =4 xB (12)
g g g

if it acts in the tensor product of two spaces E(A) x E(B):

~Tgeiaa = (Agei)o{Bgsm)

Remark ¢ We shall be considering representstions both in finite-

dimensional and infinite-dimensional spaées. Strietly speaking, we should

be more careful with some of the above definitions. In particuler, for infinite
dimensionsal representations {of non-compact groups) we should specify the types

of spaces in which the definitions meke sense, e.g. Banach spaces., (A Banach

spece is & complete normed space; & normed space is & linear space R, in which
m i 0 o o § I N
every element xeR has a norm |x|, satisfying: (1) |x] 2 0, |xl= 0 «~ x= 0,

(1) |ex|= |a]jx! for xeR, a = complex number, (iii) |x+y| g |x|+ly] for xz,yeR.

ghell meinly be working in & Hilbert space {a Hilbert space is & speciel

case of & Banach space, in which we have a scalar product {(x.v), satisfying

=0 <+ x=0,{2) (y,x) =Ty

L—

the usual conditioms (1) (x.x) » 0 (x.x

(3) (ax.y' = olx,y) (&) (Xl+x29y} = (x19y3+(x95y) and the norm |xi= /(x, x) }.

We shall not go into the necessary refinements here,

Tensors
EASIITA NN

Let G be e linear group (& group of metrices in en n-dimensionsl
space Fjp < ®}, Introduce a basis {ei} in E. Then the action of gel on €

can be considered as a transformstion to a new basis:
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A vector xzE cvan be written as

o

exm o= viv
x=XxXxe, =x'¢g;]
i i
) i AN .
Thus, the trace x e, is inwvariant so that
i ik
o= nkx
where
- T,\~1
h=g= (g) {1k)
We shall

-

call transformetions g covariant {(e.g. transformations of basis

vectors), transformations g contraveriant (e.g. trensformations of coordinates).

Let us introduce multiplication in E, defining:

(BN
Ce
Pinie N
b
N
e

Thus we obtain the gquantities e.e

5855 transforming as

3
k % F PR
ele! = gg e e vs o X {16}
173 gléj koL e®e P
whereas the coordinates transform az:
K3 ‘% i _} & 1 A ~ S e .
» i ¥ p— A oy - N i
3 & ¥ om hkhzn X uuog @g tlT)
Definition:
We shall

cell any gquentity tij transforming sceording to
covarient tensor

. co o1
of rank two, a gquantity t

Ce

transforming according to
contravariant tensor of rank two.

Similarly we introduce covariant snd
contravariant tensors of rank n and mixed tensors of zrbitrery rank:

i70001
v P .
dioeedg (18]



i1

In this manner we obtain finite-dimensional representations of the group

GD

g~h, E7B sndg+Ag@Bg (19)

s =
1]

where g = € @e®@ ... EIF: p factors

g é@é; q factors

=<}
4]

Remark: It is sometimes convenient to consider certain multilinesr forms,

instead of tensors. Thus, we can replace a covariant tensor of rank p by & form

i i i

x 13’ 20 o Dw p

P(:xgysnanJ = tn ) @
11129 vol

where the x~ ete transform contravariantly. The opersators Tg
. -1 -3 wl
TgP“,xayawusw) = P(E "Xe8 VeeoolZ W)

form e representation of G {we consider the g's ss matrices the x's as

vector-columns). Obviously the coefficients of

P'=TF
g
are given by the tensor
i, i iP
ticeed. =g, B, 0.8 T, .
] 3 3
1 je jl 3 jp .Llunulp

so that this representation is eguivelent to Agg

Similerly, we have

Tgp(xgy,e coW) = P(XEoooo WE]
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where X,¥,... &re written as rows and transform covariantly. This

representation is equivalent to Bgu

Thus: ingtead of tensors we can consider linear functions of vector

variables X,.005Wo

Symmetries of the Tensors

Introduce an operator 5 the action of which is to permute some of

the indices of a tensor:

Since one matrix g acts on each tensor index separately a rearrangement of

these meirices is irrelevant. Thus:

Sg = gS g & G.

We cen classify tensors according to their symmetry properties, which
are invariant under the group G. If a tensor changes sign under the permutation

of two indices it is antisymmetric with respect to these indices, if

it steys inveriant it is gymmetric.

As we know the pefmutations of m elements themselves form & {discrete)
group Sm - the symmetric group. For‘informa%ioﬁ on this group see e.g.
Hemmermesh.,

The symmetry properties will be used to split the tensor representations
into irreducible ones. We shell return to this in a future lecture, Let us now
meke some more remarks, necessary to prove some powerful general theorems

on the representetions of compact groups.
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We elready know that the group G itself is a hompgeneous_manifcld with

respect to left and right multiplication:

519€25G there exist goeG and gOEG such that

-~

ofo & = €8

gy = 8 LN

~Definition: Right regular representation.Rg:

Left regular representatigE_Lg

Ty -1
egoa(g) = f(go g)

Problem Check that Rg and Lg are indeed representations of g,



Lecture ll

Reference to previous lecture:
A, 0, Barut, R, Raczka; Classification of non-compact real simple
Lie groups and groups containing the Lorentz group. Proc. Roy. Soc°~287A,

519-532 (1965) (Essentially they reproduce Gantmekher's articles of 1939),

We elready know that e group G is a homogeneous manifold with respect
to left and right multiplication. Let us put Xo = G and prove thet:

Any homogeneous space X can be fitted in s standard manner into the

space Xo, i.e. the group G is e universal homogeneous space.

a) Consider xa&X and assume that the equation

x g = X - (1)

has only one solution geG for every xeX. Then we can simply identify X
and G (we have a one-to-one correspondence x ++ g, xeX, geG.
b) Let x &X, and assume that g in {1) is not unique . Consider a

subgroup HC G such that

x h=x heE {2)
(o] (o]

H ig the stationary subgroup of G, corresponding to vector Ko Let us

establish the degree of non-uniqueness in (1). Assume

= = o
X = X8 = X By By F 8y

-1 -1
Then xo = xogzgl di.e £,87 eH.

Thus, for each xeX we can choose 8y such that






Then any transformetion

g = hgx hel

also transforms x_ into x. We thus split the group G into layers

B \
%, ¢ xl
G Gx
k X 3 2
Only the layer G = H is a subgroup, since the others do not contain
bd
o
the identity e.
We can now write

g = hgx

xeX, hel, zeG
and, formally

(to determine en element in G we must determine z vector xeX and an
element th}

Instead of functions

geG which do not depend on h.

£ {x), xeX we cen consider functions f(gl,
Consider:

g = hg
and perform e right translation
ge, = ble,g ) = he
o
(a1 = =
(since xg = x g 8 = &, )



Thus, the transformation g — ggo induces the transformetion x —— X
' o

Thus, we can replace f(x) by functions f(go} constant on the classes G,.:

Thus:
Rg tlg) = rlgg ) and £g) = £(ng)
Exemple: G = 0(3), X = two-dimensional sphere.

2
Put: X = (xl,x29x3)‘ x =1

North Pole: x = {0,0,1)
H = rotation about O.: gB(W)

3

In Buler angles: g = g.(y} g,(0) g.{¢ = neglo,s)
whers h = gB(%'f) 5 gies(j’} =€lﬂ9)€@%.‘i

The condition f(g) = f{hg) obviously impiies that £{g) does not

depend on ¥ Thus: functions flg) in gensrel are gxpanded in terms of
the Wigner D-functions, however if they satisfy ©(g) = f{hz} then they
get expanded in terms of Y. (8.4,

km

Remarks on Matrix Elements of Finite Rotatiens

Consider e group G and en irreducible finite-dimensional
representation Tga In & finite dimensional zpace we can glveys choose

& bazis
{ egl i=1...n

and calculate the matrix elements of each operator Tgo

o

3

[



Consider the space LG = {f{%j} of all continuocus functions on the

group. Obviously C ={ Tij(g)}Q& L.

. { - : L
We have: Tijkggo)c LGQ T (g@g}c G

Thus: each row of Tg forms a subspace of LGs inveriant under right

translations, each column & subspace, invariant under left translatioms.

Take: ej(g) = T . {g)

13

We heve

= 0 i o=t (el o f Y2 (T (&
ejﬁggo) le(gge) I,,te) Tyl e (g mj(g@n

Thus: &, Elements of each row get transformed smongst each other only.

b) I Tg ig irreducible then the ejﬂg} gre linesrly independent

=

(ox Tg would act in a space of lower dimemsion).

We obtain the following resuli;

Theorem: The right regular representetion comtains svery finite

o)

dimensional representetion of the group ¢ with & multiplicity-eguel-to

the number of rows in T.,lgl, i.e. eousl to the dimension of the

S

representation.

e
=

If we can slsc show the oppoeite, nemely: a1l irrveducible
components of the regulsr representstion are generated by & row Tij (g

in & chosen besis, then we can eesily decompose the regular representalion.

We woulé simply have to consider sll irreducible noneguivelent representations

(2),

E'VV ' (g) of G with £ rusnning *hrough seme set and find how the matrix

ais el

Lo e o e X P Ny
elements Eﬁjigj gre sonteined in the speee of functions flg)



C s . & _ . . ,
The functions Liﬁ(g) are called elementary hermonics of the group

G, we shall show that they satisfy egusticns ilike
br{g) = arg)

N e « N ) o 4
where [\ is a generalized Laplece operator and thet functions £(z) can be

expended in terms of elementary hermonics.

Remerk: Essentielly all the special functions used in mathematical physics

sre elementary harmonics of some group in some basis.

Compagt Lie Groups

We have already given definitioms of & compsct Lie group and also
topological and algebraicsl criteria of compactness .

For & linear Lie group (Matrix greup), a simple way to find out

group end see vwhether the renge of these paremsters iz fipite., A linear

Iile group is compact iff this ranse - the "group volums" is finits,
group

Bxemple: &) BS0{3) : g= 8y,{ Wiy, (01g, (0

The volume 0z ¢ < 2w

Ozé&<w
0z % 72w
is finite; the group is compaet.

b} 80(2,1}: The invar the snslogue of the

Euler angle parametrization for O (g (Blg, . ld .
e sl



The group volume is determined by the bounds:
05‘1"‘2”"9 OS@‘fEW OSS(W

end is infinite: the group is noncompact.

We already know that the resl orthogonal groups Olm,R},
L1
the metrices of which are real and setisfy 070 = 1, are compset,
Similerly the groups U{n) of complex unitery matrices sabisfying

4
U U= 1 are compact.

Theorem: Any compact group G cen be reslized s a subgroup of Oln) end
as a subgroup of U(m if n and wm are large encugh., We shall not give &

preof here,

-Problem: Show that Oln} ¢ Ulm) and Uln) & Ulm). For & sgiven n

Pind as small as pogsible m.

Corolliary: A classification of all compact Lie groups is equivalent to

& classification of all subgroups of Olm}.

Clessification of Compact Liz Groups

Whenever we talk of & clagsification, we mean clessification up

to isomorphisms.

Definition: The group G is the direct product of two subgroups G, and

3
G2 if there exists & faithful representstion g - Tﬁ such thet
[o]

5 N,

Teg. 0 \ Y

T = 4 \ s B, B

4 - ) &’;} 7 ® g? 2

0 .A,gﬁ:b p

for ell geG.



Ixample:

3}
. detg 0
Uln} g o . ) detg = 1

i

L}

Definition: A group is indecomposeble if it cannct be written as
& direet product of subgroups.

All we have to do is give & list of sll indecompeseble groups.

¥de

This we have zlready done. A group that is indecomposible hes no inveriant

2

subgroups, i.e. it is simple. Thus , wve cbtain:

Theorem: Any compact connected indec composable Lie group is locally

isomorphic to one of the classicel groups 30(n.R}, S0(n}. S5p () or to
= i 9 @ u

one of the five exceptional compaet Cartan groups B, B, B, F, or G..
P S { 8 4 2

& & direct product of compact simple Lie

[N

Thus: Any compact Lie Eroup

groups and compect Abelian groups.

Remark: More gensrally a group {@@mpa@t or noncompeat) is

[r‘

& reductive
group if its adjoint representation is completely redueivle. Thus, avery
reductive group is the direct product of & sem igimple Lie group and an
Abelien one, There is & one-to-one correspondence between complex reductive
grouvps and compact Lie groups. Every complex reductive group has

compect real form, every compact group hes a reductive compley sextension.

Abelisn Croups

A one-parsmeter compect Abelisan group 1z alweys Lsomorphic 4o the

. . . . 38, e . . ] .
group of rotation of & cirele {e®'}, The direct product of n suech groups

forms an p=dimensional %erus. Forn = 2




. x . . - s
L nopcompact Abelian group e iz isoworphic to the group of motions
of & straight line., The direct product of n such groups forms an ne-

. . n
dimensional space R,

Theorem: Any connected Abelian Lie group G is the direct product of &

torus and a Euclidean space

i¢
-9y "
e L/
o4 0g ¢ < 27
g 55 * ¢n P CP—
e i
~ IT -
U. - _ =80 & 3;3 < o
. b X ]
/ : b @ ‘

Let us now consider some general festures of the representation theowy

of compact groups.

§
Schurs Lemma

Let Tg and Sg be two irredusible non-eguivelent finite-dimensional
representations of & group G. Then:

1) If there exists & constant cperator & such that

AT

o
[Wa]
n

g 8
then A = 0,

2) If there exists an operator 4 commuting with &ll eperators Tg:

&
L]
[9]

AT =T 4
g &g

then A is & multiple of the unit operstor:



Proof: 1. Consider the representation spaces E(T) and E(S) and lst A

provide a mapping

Denote EO(T) T E(T) the set of all vectors mapped by A into zerc.
EO(T) is an invariant subspace since

= { = 8 e Vo=
Ax =0 =b A\Tgxo} (Ax 1 =0

The representation is irreducible = E_(T) = E(T} or {0},

However: if A # 0 then E_(T} ¢ E(T) =3 E (T} = (0}, Now denote:

EO(S) C E(8) the set o: vectors obimined by the transformstion A, E {2}

is an invariant subspace, sg is irreducible = E@(S;‘ = E{S},
Thus, the mapping 4 is a Gne-“to-ame_mgppimg =3 dim E(T) =

UnE(S) = AT exists =

@
p

AT 87% = §
g g

This means Tg and Sg are equivelent; whieh is asgeinst the pasumptions
A=0 G.E.D,

2. Put Tg = Sg and consider the mepping A:

=

\ . - . . . .
Let A be an eigenvelue of A and define E@ ¢ E a5 the eigensubspsce such

that



EO = invariant subspace since

AT % ) =T Ax =T
g o g © g

=> Eo = E 50 that

i

Ax ATx xeE

Corollary 1l:

ryg 0
T = g
g
0 ¥
g
—

where U and V are irreducible and noneguivelent.

commuting with Tg are

e
f

=)

vhere Il and IE are identity operators i
U end V .
g g

©

The generalization to & sum of an

repregsentations is obvious.

Cerollary 2: The matrix elements of an

T =

g

|
e
o

@;
=¥
®

Ax = AI(T x }
o go

Let Tg be & direct sum of two representetions U and V:

Then: the only operators

=3

representation spaces ©

i

arbitrery nawber of irreducible

irreducible reprezentaticon

. 5 2 % . f Dgyemende T o @ sam (8
. - A
form a system of linearly independent functions onm &.



”

From Schur's lemma we see that esither w= 0 or Tg is equivalent to Sgg

If T ~S +then
g g

w = Al Q.E.D,

Remark: Let T &and S_be contragradient: § =T = (T T)=l then
— g g - : g g & ®

their tensor product acts in the space of squere matrices ol

- =1

This leaves

Trp = p +...%p invariant.,
L1 i

If p is the tensor product of two wectors x aend y

then the invarisnt is
Trp = (% J = x vy %, % v
P sY ) 1Yy e

i.e. that bilinear form whieh connects the twe contrasredient

representations.,

Remark: It is far from simple te generalisze Sehur’s lemme Prom finite-

imensionel spaces to infinite-dimensiomal ones, but it is possibie and

importent. We shall only return to this in specisl cases,



Lecture 12

One of the central problems of group representation theory
is a generalization of Fourier analysis, namely the expansion of continuous
functions f£(x) where xcX and X is some vector space in terms of some system

of "elementary" functions. Let us here state without proof an important

theorem.

The Stone-Weierstrass Theorem: Let X be 8 compact space ~nd let'{F}vbe a

system of continuous functions éf xeX satisfying the conditions$
1) {F} is en algebra, closed under addition, multiplication
and multipli:ation by a number
2) {F} coﬁtains en identity
3) {F} is symmetric under complex conjugation, i.e. if it
contains f(x) it also contains f‘*(x)o

4) {F} separates the points in X, i.e. if xisX, X eX, %, # x

2 2°

then there exists an f(x)e F such that f(xl) & f(xg)n

Then the closure of {F} coincides with all continuous functions on X, i.e
any continuous function f£(x) can be approximated with arbitrary asccuracy by

functions contained in {F}.
: 2 n .
Example: X = [0,1] , {Fl= {l,x,x...,X ,00.}

The application of the Stone-Welerstress theorem to group representation
theory will be in the following. Consider & group G and a fixed chosen

representation Tga Consider the series

1,7 ,T T T T T e oT e
’g’gég’ g@”g@g@"@g’



The matrix elements of these representations form an algebra. If G is

e matrix group, we can choose.

The "elementary harmonics" of a metrix group G can be constructed

by considering

1. g g@es-e- 2@eB . He,...

and reducing out all the irreducible components. If G is compact, then

any continuous funetion flg) can be expanded in terms of the sbove system,

Globael Theorem on the Representaticns of Compact Groups

Let G be a compact Lie group and
s= ('t

the system of all it's irreducible representations. Let G be realized as
& group of matrices. Then
l. All representaﬁions T(E)(g) are finite~-dimensionsl and
unitary (with an eppropriate choice of & scalar product),
2. All representations T<2)(g) cen be obtained from the tensor

povers
l’ g g®‘g9°°°g® @00‘@9000

of the group G.



3. The system of matrix elements Tgizg) for all possible
values of ¢, 1 and j form a complete orthogonal system of

functions on G with respect to the scalar product
(£,,£,) (£)2,(e)"

where dg = dgL = ng is the invariant measure on the-group.

(%)

L, For fixed % the functions T ;j(g) all have the same norm
L 1
@l =x, = ==
afs

where d(2) is the dimension of the representation (the order of the matrix

T(EO. (The norm is defined as ||f]| = &/ (£.£)),

5. If the function f(g) is square integrable, then the Fourier

series

(2) .(2)
£lg) ~ i,§5£ SH (g)

converges in norm. If f(g) is smooth enough, then the Fourier series

converges uniformly.

Remarks:
1) The left and right inveriant measures (Haar measures} are defined

by the relations

I f(gcg)drg = J f(g)dLg
feg ldpgg = f flgldee

The group volume for & compact group is finite and we can normalize

j dLg =1, f ng =1



For a compact group we have dLg = ng = dg., In general for any Lie

group dLg and ng exist and are determined uniquely (up to a constant factor).
A group for which dLg = ng is called umimodulare All semisimple

groups, all connected nilpotent Lie groups, all compact groups and many

others are unimodular,

Proof that dLg = ng for a compact group:

We have: dL(ggo) and dL(g) are both left invariant measures

dL(ggo) = c(go>dL(g)

C(gc) is a Jacobian, satisfying C(glgE) = C(gl)c(gg)
We have

ff(ggo)dL(ggo) = f f(ggo}C(gO)dL(g)

so that: iff C(go) = 1, then 4.8 = ngo

However:

de(ggQ) = clg, ) f d-g

1 = clg).1 Clg ) =1
We have

d(eg,) = d(gog) = a(g™)

dg
(We shall not prove the above assertions).
2. We say that a function f(g) is differentiable if the

infinitesimal operators for left and right transliations

flg) + f(gcg) » £{g) =+ f{gge)

exist.



3. Convergence in norm means:

A sequence of elements X, in a normed space R converges in

norm to x if [x-xnl + 0 as n+ «

In the proof of the global theorem use is made of the procedure of

averaging over the group.

Let Tg be a representation of G in the linear space E. For each

xeE introduce

( dg = 1
J

xO = J Tg x dg
G G

(G must be compact!)

The vector xo ils invariesnt:

= T '=, : q( Yy =
T x jg’l‘gxdg jT x g g) = x_

g'o o g8

If there is no invariant vector xeE (except the vector 0), then

T 4 = 0
fsg

Schur's lemma
T (RS dg = 0
| 7@
if Tg and Sg are finite-dimensiocnal, irreducible and noneguivelent.

Proof of Global thgorem:

1) Unitarity of finite dimensional representations. Let f(x,y)
be & bilinear form in the space of representation Tg° Let us average it

over the group:



The form fo(x,y) is obviously invariant

£ T X,T'v)=ff{'l“1‘v
° g, g, g'e

TT, vidg =
s &8

(T x, T dgg = £ (x
[y, =, 1, vase, = £, (x)

In & finite dimensionsl space we can always choose a positive

definite bilinear form, e.g.

# #

fx,y) = Xy¥q Fowo¥X Y

(in a chosen basis). The sters mean complex conjugation. If f(x,y)
is positive definite, then so is fo(x,y)a Thus, for & finite
dimensionel representation of = compact group we can slways construct a

positive definite invarient bilinear form:

(xsy) fo(st) = (Tgxs Tgy)

0 9 (xsx) = O<=_'—> x=0

v

(x,x)

Thus, every finite dimensional representation of a compact group

has & positive definite invariant bilinear form snd is thus unitary.

2) Orthogonelity and normalization of matrix elements,

Consider two irreducible representations of G:

+ T and + 5
& g & 23

Consider the metrix elements Tg = []Tij(g)gig Sg = iﬂsasig)iio Let
the basis in each representation be so chosen that the matrices Tij

and SaB are unitery. Consider the tensor product



~ #*
where Sg =(égyl = Sg (the representation is unitery). The matrix

élement can be written as:
1 Iw =T, ( )S* (g)
<
e g'jB} i €588

a) If Tg and Sg are not equivalent, then it follows from one

of the corolleries of Schur's lemma, that wg has no inveriants. Thus

( g, ¢
Lid =
Jgg
i.e. in terms of matrix elements
- f #
gy s ( =
J Tiﬁkg, 848 gldg = 0

Thus: the matrix elements of two non-sguivalent irreducible
representations are mutually orthogonal.
b) Put Sg = Tg, Choose & basis mabtrix
t
O seee O

ooocoo00 0

e, = OocolosO 5

c0o0o000 00

Oonoanno

end apply the averaging operation. We obtain an inverient matrix
0 /
liestSIEm = ngestdelim

By Schur's lemme we must have

0 ; - , .
logollse = 1 frgeantsllsgm AGeviey,



Take matrices with zero trace, e.g.:

for 8§t , e -e

est S5 tt

We find:

A(s,t) =0 for s # t, Xss = At

Finelly:

Thus: the matrix elements sre muﬁuﬁlly' orthogonal and all hawve the

same norm.

¢) Calculate the norm.

. . & .
For a unitary matrix we have UU = 1, i.e,

+ ® . .
UikUkz = Uikuzk = 51@* in particular
a Y
Tou (gl =2 {no summation over i)
g M

For our matrix elements:
a
12
T, . (g¥]" =1
A I
J=i

Integrate over the group:



Finally, we can put 9

# 1l
f Tis(g)Tmt(g) = 7 %ialst

3. Fourier Series on the Group G.

Let G be a compact matrix group. Consider all tensor powers of
G and let us separate out from eamcng them & system of nonegquivelent
irreducible representations E("Lz"(g)5 where £ runs through & discrete set.

Introduce an orthogonel system of functions, consisting of the matrix

elements

=

A Le s
SRR e

Take & function f(g) end introduce a Fourier series

f(g)% Z Cf?. eﬁ»
Leiod 1§ LS
where
P A
Cij"“ ‘\fgeij)n

Let f(g) be continuous. It follows from the Stone-Weierstress theorem
that there does exist e linear combination 8(g) of egx(g)s which
J

approximates £ with arbitrary chogen accuracy:

max|f(g) - 8lg)|< ¢

From here one can prove the "mean square convergence' of

- ) (o

, cg%) T‘t%(

fT1g iJ
1,5,.%

g)

to flg).
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More precisely: An arbitrary function f(g), geG \G-compact ), satisfying
2
flf(g)i dg < e

cen be expanded into a Fourier series:

dg
tlgh T ol (g)
ged i, 5=1 9 1J

where A is the complete set of all peir-wise nonequivalent

irreducible unitary representations of G, dp is the dimension of the

representation (). We have

() _ . g,
Ci,j =a Flg) Ei,j‘ (gldg

and the "mean square convergence" means thet the Parceval identity

holds:

e = ] 1 ]

For a proof see N, J. Vilenkin, Spescial Functions and the Theory of

Group Representations, Chapter 1 paragraph k.,

L, Finite-dimensionality of Irreducible Representations

We shall show that every irreducible representation T of &
compact group G is contained amongst the system of "elementary harmonics"
El, introduced above, The EE were obtained from the tensor powers of the
group G and are thus finite-dimensional by comstruction. We shall meke
use of the fact thet every irreducible representation of a compact group

is contained in the right regular representation.



1l
In the proof we make use of a powerful technigque, having

many other epplicetions, namely that of projection oPeraters, which

project out & chosen irreducible representation from an arblitrary
reducible one.
Indeed, we already know that we can expand any function

f(g)eD(G), where D(G) is a Hilbert space of square-integrsble functions

over the group:

_ L2 ek ( L #
£(g) s ; Cijﬁij(g), Ciy = ¢y Jf(g)Eij (gldg
9 H

Now introduce an opersator

2 i g ¥
Pij = d, 5dg Eij (g)Rg
G
vhere Rg is the right regular representation of G acting in D(G). When

acting on f£(g) eD(G) the operator P?j projects out & set of functions,

. . , . - - L2 <
transforming according to the irreducible representation T . Indeed:

2 -~ g;* Pyt o E* [P

- B = a . a / ;l

Pijf(g) d f ag Eij (& By (g} d, jdg Eqy (g1r(ge!
G G

Put g& = g' and use dg' = dg to obtain

2 A N S L U DA BN & .
Pijf(g) d, Idg Eijﬁg g )f(eg') = 4, % Eip(g ) |dg Epj(g ye(g™)

L, &
g Epi(g)cpj

Thus, Pijf(g) is & linear combinstion of the matrix elements of the
irreducible representation E Lvwith one Tixed & . Operator P?j is a

projection operator in the following sense:



iz2

84, oy B %,
4 P 5 (g) = 1,3 ij E (g)
191 *2do 1p Pl2 P
% 2 ¥ L
2 | 1 o2
=4 JC dg B.~, (BJE T (g&) =
10 P J 13,7 P
) g g ¥ 2
2 2 1 = "2 -
=a, o2 J52e (2L () £2 (g =
f1p Plpg M ] 144 ai,
) 3
2 %o 1
=8 ,8 JCSES(gh= 6§, . 6,, P
1% J,ip PaPh Bitp dilp 144,

Now let Tg be some abstract irreducivle representation of G.
We know that TgeRgo This means that there exists z subspace G@eGs such
that D(QQ C D(G) is a subspace of square-integrable functions, such

that Tg acts on D(go) irreducibly. We have

3 ) S, \ “‘E e i
i.e, f(go)e D(GO) Rgf(g@; _f(gog)c D{GO§

Now put f(go)ﬁD(go) end aet upon it with our projection operstor

z T A L 7 o
Tijf(goj = Cﬁ J dg Eij(g)f(gog;
Since f(g&E) < D(Go)9 ng either project D(G@} into zerc or into itself.
In other words, since this space D(G) is invariant and irreducible, it
4
cean only contain one of the harmonics E- end our chosen Tg must be equivelent

to E .
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To summarize: +the irreducible representations of a compact
group are finite-dimensional, unitary and contained in the tensor powers,

generated by the matrices geG.

5. Complete reducibility

Any unitary representation of a group G and thus any finite
dimensional representation of a compact group is completely reducible.

This follows immediately from the lemms:

Lemma: Let Tg be a unitary representation with the scalaer product (x.y)

in the space X and let X. be an invariant subspace of X. Then the orthogonsal

1

complement X, of Xl is also invariant,

Proof: Xg is the orthogonal complement of xl’ i.e,

(x,y) =0 xeX, 5 yeXy.
Take xexe, yle

) = Ty

=

-1
T x = (T "T xsT
(g,y) (gg

However Xl is invariant = TCg-l)y@Xl=é> r.h.s. is equal to zero

=

(T x = 0
2 Y)

Thus, T x6X, = X, is an invariant subspace.
g 2 . Q.E.D,

A succesive gpplicetion of the lemma will reduce g reducible representation

into irreducible components.



1k

Remerk: There are complications for infinite dimensional representations,

even if they are unitary., In general one has to introduce the concept of g

continuous direct sum, ete.

Thus, No Jordan metrices can occur in the representations of

A1t
z(t) = 01

8 compsact group:



Lecture 13

Exemple

As an exsmple, let us consider the representation theory of
the group SU(2). Everything to be said here is of course well known,
we Jjust wish to demonstrate some genersl results and prepare the ground
for generalization to arbitrery compact groups.

sU(2): Group of second order matrices satisfying:

vu=uwt =1 detU = 1 (1)

1) The algebra of SU(2):

Any unitery metrix can be written as

U = elth (2)

where hs is hermitean andtraceless

h=h Trh = 0 (3)

We can use the Paull matrices a5 & basis for the spece h

= 0 1 c = O' —i) = 1 O) “4-)
Gl <l 03 2 i 0 03 0 -1

The algebra of SU(2) is spanned by & = =-1ig

for SU(2):

K (k=1,2,3) satisfying

leg.a ] = epyp2, (5)

(eikl is the totally antisymmetric third order tensor satisfying 2123 =

1)






Introduce complex linear combinations of 2, namely
= L ; = L ; =1
e, = 5 (01+102) e =5 (01-102) & = 3 93 (6)

leysel= 2 [eoe+J =e, [eoé_Jﬁ ~e_ (1)

The elgebra E of SU(2) consists of the complex linear combinations of

e+,e_? e
= gz + z + 7
a S _e e
with
% %
7 = =z Z = =F
~ o o

2) The dimgonal basis element a3.(or eo) generates & one-paremeter

subgroup of SU(2) consisting of disgonal matrices

e‘i¢ G
y = (8)
0 el¢
Introduce a matrix
0] 1 ‘
-1 o]
satisfying
f el¢ 0

slys = y — (10)
0 e

(it leaves a diagonal matrix disgonal and reshuffles the metrix =lements)

Call 5 a Weyl element.




{ 3) Consider a finite-dimensienal\fepresentatidn u Tuo Call Ai the
operators, representing the infinitesimal opéraﬁors &y in the

representation space E:

AT = ey by (11)
Similarly we have

[Bgl=28 , [EE]=E_, {EE ]=-E (12)

Let us start out by first looking for = representation of the Lie algebra
and only efterwards consider the question, whether this representation cen
be extended to & single-valued répresentation of the group.

Thus: We wish to find all irreducible reslizations of the algebrsa
E by linear operators EO,E+ and E_9 satisfying (12],

We know that any commuting set of unitary matrices TUL can be
simultaneously diagonalized, in particular the matrices TT s representing
the subgroup of matrices ¥y . In other words - we can alweys consider the

matrix Eo to be diagonal.

L., Consider an eigenvector x. of E_:

A

onA = Xxx (13)

Lemma: If,x is an eigenvalue of Eo setisfying (13) then we also have

Ex . = —AX—A s E {(a+1)x

Y oA+ Al

(1h)
L

(X-l)xk_l

where xA+l and XA 1 can, in particuler, be noll vectors.




Proof: Consider the vectors

Xyp = Ex, X _,°% E_x, and x_, = X = T_X, (15)
where T_ represents the element s in the group, so that T;1 TYTS = T;l

from which follows

T ET = -E {16)

Using (16) and the commutation relations (12), it is easy to check

that the vectors (15) satisfy (14). Q.E.D.
Corollary: If Tu is an irreducible representation, then the eigenvalues

of E0 are nondegenerate end cen be written as & chain
-"2!9 ‘g/+lg coog 2!"1991

where & is integer or helf-integer.

ugggggL Define & = kmax (the largest eigenvalue) znd Xy as the corresponding
eigenvector. Then g A=1,0-2 are also eigenvalues, &nd so is -%, (The
quantity-2-1 is not an eigenvalue, since then 241 would be one too,
contredicting the assumption that % is meximel). Thus &={-£) = 24 is integer.
None of the eigenvalues can be degenerate, if Tu ié irreducible, since if two
functions xq ané X, corresponded to one eigenvalue %, then the
represeptation would have two invarient subspaces, the ones generated by

epplying E,_ end E ‘and powers thereof to x _and %,.
+ - 177 T2 Q.E.D

We can choose a basis in E consisting of the eigenvectors

of E
Lox, = X Am = =0l 000,81 5L (17)



Choosing an appropriate normelization of x. we can arrange that

A

E x, = (2-X)xx+l

(18)

=
el
13

= (£+X)xk-l

(Check that the operators thus defined satisfy the correct commutation
relations). |

We have obtained all representations of the algebra of SU(2),
each one of them corresp&nding to a.definite highest eigenwvalue £ of Eo
(we shall also call £ "the highestVWeight")u We must now find out whether
representations Tu of the group exist, which correspond to the found

representations of the algebra,

6. The generators as differential operators.

Consider the space R of homogeneous polynomials f£( Jof order 2%.

xl,xe
The monomials

L-H 24U
X X

7 = 5 W= o, =f+l,...,0 (19)

u 1

form a basis in RZ (dim Rl = 2£+l)u It is easy to check that the

differential operaﬁbrs

D ==x .i_ ....a;.._x .._a_)(
+ 2 axl - 1 ax2 o} 2 8x2 1 Bxl

20)

form a Lie algebra, isomorphic to that of sU(2),

T. Realization of representations of the group

Consider

- [ B '
g 5 detg = af - Bo = 1 {21)



The equation
Tgf(x19x2) = f(ax1 +Yxys BX * sz} (22)

determines a representation of SL(2,C) in the space R, . Restricting
the group SL(2,C) to SU(2), i.e. considering only matrices (21),

satisfy the additional conditions
la]®+ |y]2= 8|2+ [6]P =1 oa* +ys¥=0 (23)

we obtain a representation of SU(2), which we denote D, or 52 . The
corregponding representation of the algebrsa D+5 D and D09 coincides with
(20), The two-dimensional representation Dl/zzﬁgz is the group itself and

is spanned by the monomiels

xl and xzu

Representation A22 can be realized using symmetric tensors of order 2% .

Indeed, every polynomial fERQ{’can be written as:

1 onui 2 = 9 :
£ = % 1 |2 %. X. (13 = 1,2) {224)

. °
1 1

where the tensor t 172

is totally symmetric. Thus AQQ iz the symmetric

part of the tensor product of & terms

e@e®..-Pe

8. Normalization of the besis:

The basis

oo A= Rp
Zu x x2

is orthogonal, since z and z

are both eigenvectors of E_ and thus
1 o ©



(Zu s 2 ) =0 for My # My

Consider the normalization. We can check that the vectors

2

e, = jE— (25)
H (f=u) ! (g+u)!

satisfy

*»eusepj = 1

9. Alternative reslization of the representation Qeo The homogeneity

condition on f(zl,zz) is
- .
f(azl,aze) = g f(zl,zg) (26}
Thus:
o ) = 22 f(zl e 22 g0a) (o7
(zy,2,5) = 25 z, ° 1) = z, ¥z (27

and instead of the homogeneous functions f(zlszz} we can consider functions

of one complex variable #(z). We have

Tgf(zl,zg) = f(o:z,l * YZ,, Bz, ¥ 622)
0z, Yz oz, +yz
_ og ,%21*V %5 _ 20 17Y%
= (le + 622) £( ERTTIG 1) = (le+622) ¢(iBZ v ) (28)
1 2 1 2

7 z
_ 22 1 2% Jo 2L+ y
= (22) (8 - +§)" ¢ Z,

2 __EET.__-
B EE + &



Thus: the action of Tg in the space {¢(z)} is:

_ ey 20, fazt
Tg¢(z) = (Bz+§) ¢<€ﬁ%} (29)
Using the basis z, = ¥ , 1.8
l, z, zzono zgz (30)

one can now calculate e.g. the matrix elements of Tg, We have obtained

the following result:

Theorem: Any lrreducible representetion of su(2) is given by one parameter
%, which is integer or half-integer. The operators of the representation
are given explicitly by (29). The dimension of the representation is (22+1)

and the representation of the algebre is

E = (2~ E = (R+ujz E = uz 1
z = (2-u)z g, = (#u)zy %y = HE (31)

L-u

The basis vectors zu, pur=L ,-041,...%4 &are the powers z WM = =Ly, .0 4R

In particular, we have:

E1=0 E 2% o (32)
Schemstically, we have
E_%_,=0 E- Ey . kg =0
- R ¢ ,
G v = & P

X._e X)\ Xf



Remark: TFor every representation of the algebra (31) we have & single-
velued representation (29) of the group SU(2). Had we been considering
S0(3) we would have found that only representations with & = integer

are single valued representations of S0(3),

Complex Extension of Lie Algebras end Complex Lie Groups

In the SU(2) example we considered a complex extension of the Lie

algebra to E_,Eo, E+

generate SL(2,C)

and we saw that as a complex algebra these operators

g = ; detg = 1

where ,8,v,8 are complex. SL(2,C), as we know is compact. However, if
we restrict ourselves to representations depending analyticelly on the

. # %
parameters (depending on By00050, not however expiicitly on @ ,...8 ), then

we have 3 simple correspondence with the representation theory of SU{(2).

Definition: A Complex Lie Group. A Lie group satisfying:(i!The slements

1 I

group operations 8185 and g*l are determined as complex analytic functions

are parametrized by a finite number of complex parameters t....t . 2) The

#
(of t,, not depending on %,).
i i

In a complex Lie group any one-parameter subgroup gx cen be
continued to complex:kn It follows that the Lie algebra is a complex

Lie algebra. Given & real Lie algebra with & basis elgnua,en

2 i .
[eiek] = Cike2 Cik - real



we can complete it by adding the independent vectors:

le. ;000512
1° **"n

We have alreéiy discussed complex zefiisimple Lie groups and know thaet
iy

in general any complex Lie group has several non-isomorphic reel forms.

Example: GL(n,C). In the neighborhood of the identity put g = e, xeX
where X is the algebra of all complex nxn matrices:

Consider two subspaces of X:

¥
Xl - real nxn maftrices : x = X

e
X2 - antihermitean nxn matrices x = -x

Complex extension of Xl,E complex extension of X2 = X

The corresponding groups are : XlnnoGL(n,R)

X U(n)

2uua

(We know there are other real forms).

If n is egual to one, then X corresponds to the group of all

complex numbers (with respect to multiplication) z = oel¢; p# 0. X

1
corresponds to the group of all real numbers x # 0 and X2 to the group

i¢

of unimodular numbers e .

Schematically, in general

GL(n,C)

Uln)
e N\
=7

GL(n,R)j\




Lecture 1h

Complexification of & Real Group

Let G(R) be & real matrix group. In the neizhboerhood & of
the identity we cen use "canonical” coordinates 8, , provided by the Lis
oo

algebra:

3 1
, = {¢ & .Fo. .0 & }J’
g expltﬁlcl +Gn;n

o

gnd we cen now cenbtinue enalytically to complex values of ei’ i.g. to the
Kt v Y ;Q - 3‘ a 5 ) 5,

group G(C). Further, the powers i, (", @7,... will cover the whole

ronnecsted group G(R) and cen serve to combinue the complexification out

of

of the basis =, and is ealled

&3

the complexification of G(R),

o )

A gimilar extension is possible even when G(R) is not = metrix
EXOUD .
We shall not prove the sbeve stetements.

Symbolically:

- 5
mX\\ C}

)

ation of G(R) in & finite dimensionsl

o

Let -=»L be & represen
g 1Y
LR A

space E, In "cancnical" coordinates

T = exp.{8.E.+...46 E }
g il n



where ElgaousEn are the generstors of ng (represenﬁing elgouoge o
Replacing the real numbers ei by complex cses we cbitaein & representaiion
of the grouwp G(C). However, different peths for extending the neighborhood
¢ 4o G(R} can lead to different Tgs i.e. the representation Tg ef a{C) is
not necessarily single valued.

We can desl with this difficulty in two ways: &) Agree to

consider multivalued representations on the same footing as singleuvalué&

ones. b) Instead of using the group G(C). consider its universal covering

group, Indeed, thet group which is the universal covering group of all

Lie ér@upﬁ with the»sam@ Lie algebre can only have gingle-valued representations.
?hus we shell define G{C) to be the universal sovering gf@up {the complexifiecation
G<§§ + 3(C) hes the seme degree of arbitreriness as the reconstruction éf a

Lie group from a Lis algesbra)., -Then any representation T of G(R) ean be
& L S .

uniquely continued teo e single velued representation of G(C

dimensicnaerity of B was not essential. It is however esgential Lo sssume thab
Tg depends snalytically on the real paremeters im CGireel analyticity).

1
The Principle of Comptinuabion: Any resl anelytic representetion of the
group G{K) can be continued to & complex analytic representatiom of GIC ).

Tf G{C) is chosen ms the universel covering group of 21l complex extensions
of GIR}, then the continuetion is unigue.
9

P, S )
Symbelicaliy:

7 Ly

G(R} SDIKIRY)

+3
It
5
]
¥
+3
0
&

where DIX(R)) is the Lie algebras of the representetion T . Analytic

Uﬁ

continvation preserves the irreducidbilizy

b

3

reduel

‘:

Tr’c

d

£
L

EJ)
E~

sy and complete

reducibility of representebions.



AR = =
g = ( 8 det g = 1
¥ 4
, #® # o
§=a,v=-8 = gesSU2]
Representations of SU(2)
; ) 28 . 7 azdy
T £lz) = (s of =L
g 4 kBﬁﬂ J o ( 634‘}’@\\

o

=3
=

Dropping the conditions §

representation of SL{z2.c) (

=

Definitions: {(¢y v

% 2
‘Tg does not depend on © ,...8 )

®
s ¥ = =8 we obtein & complex analytic

Let G ¢ & complex Lie group with parameters €.,....% .
= 1 *n
The representation g - T is:
g
Analytic, if it depends snalytieslly on be o
L
Antisnelytic, 1f {t depends anazlytically on g
Real, if it represents G(C! as = resl Lie group with parameters
Rbﬁl ,a._rmt:l-y o ¢ EE:‘L“, . ,im‘bﬂ
Exempie 1: Let G(C) be & matrix group:
keprezentation: g - g is analytic
‘iﬁ L ! - G
g8 + g is antianslviic
YA |
g+ e(@le is real
o - 4 0 f wf : g £ 3 fe $ Y i S g o & A 4
Example 2: Let fiz/=flx,y) be analytic functions, (i.e. they setisfy th

fla,y) = uix,yl + iviz,yd, u
u _ 3v su Al j
5%~ by * 3y el

g ¥ -

by

=
b=

2

ot



The representetion of the additive group of complex numbers

.

Tg@f(z) = f&z+zc)

iz anslytic.

Remerk: the Cauchy-Riemann enelyticity conditions sre eguivalent to the

condition

arfas
™

[s 34 Re¥y
J
]
o
o] ar

¥
4
[EY
! ar
o

I# G(R) is & real Lie group, we can celeulete the infinitesimal

operators in sny representation according te the formula:

;s el ¥ R
Blz) = 5= [T i}

32
&

A o, . . \ - s
where g = & is & one-parameier subgroup, generated by the vector . We

thus have s mapping x<2Dix) satisfying

Diex+ By) = aDlx) + BDiy)

o]

[Dix}, Diyi] = pllx,yl)

{.,e. Dix} iz & representstion of the Lie algebra of G(RJ.



Now let G{C) be & complex group and g + T{gz) an enalytic
representation., The ebove construction is aslse vaelid in this case and
Asa,B are now complex, If g = Tg is & real representation, then we put

. . T ig X
A= T+ 1o and consider g and g separately. Thus, every vector x is

represented by two differentisl operators

D(x) and D{ix)

where
5y i}
Dix) = <= [T %]
(x) &t ! g “T=0
Diix) = 2= [T o]
9g g “o=0

In general Di(x) end D(ix) are independent. However the repressntation is

analytic if

D{ixz} = 1 Dlx)
end anbtlanalytic if
D{ix} = -1 Dlx)

We can slse intreduce the linesr combinations

T .o
Alx) =3 [D(x) - 2 plix)]
WA 1 F o § s ooy T
Alx) = E'ED(x/ i plix)]

and now we have:
1) Aflx) is &n analytic representation

2} Alx) is an antianalytic representation

g
o
B
1]
e
T
¥
o
+
=l
Eiaie Y
4



Now let G(C) be a complex group and g - T(g) an analytic

representation. The sbove construction is also wvalid in this case and

A .8 are now complex. If g = Tg is & real representstion, then we put

. . T io . - .
A= v+ i and consider g sand g geparately. Thus, every vector x Is

represented by two differentisl operators

D{x) amnd D{ix)
where

5 .
)] = ———— v
D{x) 3T éTgEETEO

In general Di{xz) amd Diix} ere independent. However the representation

analytic 1if

piix) = 1 blx)

o

end antisnelytic if

I 1 7 3
Eix) = 5 Dl = 1 Didx)]
= 1 i‘ﬂ
ilx) = E-EDﬁx) + 1 Dldx)y

and now we have:

£

Ly
=

(x) is an esnalytic repregentation
23 Alx) is en entianalytic representeiion

3) [af=}, Alx)] = C
by pix) = A(x) + Alx)

e

[z



b A

Hesult: Every real representetion of the complex algebra Z(C) can

be decomposed inte the direct sum of two components, one analybic, the

gbher antispalytic,

Exemple: 1) the group of complex translaticns:

= REX oy
peg %
The infinitesimal ocperstor is
3 b, =
s x FY o= E g e o
o] Gouy (o 5
R S N S S d Biw) = o _)_
and we have Liz) = L, o ¢ Atz = z@ 5

I 5

I}
6 et 7

PV S
LEL UE

nooa [ ow b e ¢ .

/e 1‘\ i~ifz 0N _ F0 0%

a = : £ % = %
O R B o st Ly o)
v O 0~ Y U LiZ ol YA

" L ;T S - &

wnick heve a

e e
e ey s
i T g F oo

o
o

o relati

. o ¥, =y, e
5 " o S e fap P oep Ay Py
LA L';ﬁ éy,e\,;‘ﬁgnun :“,{“g,?g{a{kv u:d—\:’:}gqcﬁn

Ty
W Ui




and alse terms like g X £

LJ

.
iytie

in relativistic gquantum theory one usually introduces anel
represe npaﬁ;@ns of SL{2.0) as "dobtbted tensors", the antianslytic ones es

"undotted tensors” .

The Principle of Unitery Reduction

1t

Teke & group G with & subgroup H T G. If we congider &

representation g - TF end then consider Tg for enly those g, which satisfy

5 :
hel, then we say thet we sre reducing the representation of ¢ to &

representetion of the subgroup H. The representstion T, in this reduction

raducible,

can be reducible, even i T

s
. - - i P ren f 5 L Ta e R S R S g
Example: Congider twe swubegroups e ELIZ,C) @ the group of trisngular mav

% and the group of disgenal metriees D:

N\
=
o

W

N . [N
el [} . E
Q\ v/

2

&

3

ey

0
S

7 ‘iy
4

: . < . s oy o
Thus, 1T v twe dimsnsional representation of SL(2,
= £

[

% J@s PO
et g o O

i % g %

{

end reduce it t the representation 7 iz reducible. Similavly €
b

representation T@Q dely iz completely reducibnle.

e

13

&

&

@



)

Seduction Theorem: Let g.qug ve a complex analytic representation of a

complex group G and let huﬁ&@ﬁ be the reduction of Th to & resl form H of

G, If Tg is irreducible or completely reducible, then so is T,

Progf: Let T be finite-dimensional i.e. Tg 15 & matrix

i

90005600

+3
(T
[}
fﬁfﬂh&\\\
3

=
)
i3
B3
<]

B
[
o]

ir Th ig reducible then i1tz matri

‘ . T‘
Y L padin)

Howewver, each slement of Té i en anelytic function of some paramsters

fPunetion 1s egual to zero P el veliues

T
CALE o

}:":

ZETrO, he redus:

contrary to the assumptionsz.

The theoren can also be proven fo

dimensional

representations, 1f we give an

Corollary: We have & one-ti:

correspondence bebween irreducible real

enalytic representations of & resl group and an irreducible complex snalytic
representations of the complex extension of thisz group.

- foe  m o . p ] P A e T P
L& we copslder & compect Lie group O and it's e

2 -
lex exbenszion,

spriate definition of the matrix elements.

-G we obtelir:



~

1) G can be realized as a group of matrices

2) All irreducible analytig representations of the group G

aere finite dimensionel and are conteined in the tensor glgebre
3)ALll finite dimensional amalytic representation of G are completely

reducible (or irreducible).

Complex Extension of the Group Uln)

We already know that if

¢ = U{n) then G = GL(n,C)

and the algebre X of GL(n,0) consists of &ll complex nxn matrices, Choose

the usual basis of X, namely the matrices epqu They satisfy

e @ = § e
bg rs gr pe
and
2 5 N . -
le e [ =8¢ ] - 0_ @
Py’ rs gr ps PE Y
We know that
X=E 4+« F +F
ofe o -
where
E+: ieinSi(j"} ;E0§ e;:{j 5E=§{@idsl‘fjg
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It is sometimes convenient to replasce the basis {eii} in Eo by

h h

1% f117%ppe Mg T Cpp33s ce By 4T S 1%

Foo ot

€ = ell nn

Then elimineting € from the algebra corresponds to going over to the

group 8Li{n,C) (or SU.n}).

Anslytic Representations of GL(n,.CJ

Let g + Tg be an anelytic representation of the complex group

&
[

GL{n,C). The generators form & reﬁresenﬁ&ti@n af the algebra of GL{n,C)

3

heorem: 1) The generstors of the representation E,, can be split into three

subalgebrasz E+9 E and E@_V9 corrasponding to &, o€ and e e They satisfy:

<

2} All cperators Eii cap be simultsneously diegonelized

3} The eigenvalues of the aperators E
L P

. gare all integers.

[z

&
o,

Proof: 1} The first assertion is cbvious

2} Congider a commutebive compact svbzroup v ¢ GLin,C)
¥ 9

i, Z}
13
= 16 U<y, 27
O i¢, i
&
N

A set of commuting unitery ocverstors Tvﬁ representing matrices v, can always
Ve S

be gimultanecusly disgonslized. Now consider the subgroup of matrices

§ C cnln,C}



3 11

§ = T Ai=@@mplex

The operators T@ will be the snalytic continuetion of = real anslytic
representation of a compact group. It follows, thet if the TS are chosen
to be diagonal, then T& will alse be dimgonal.

3} Consider & common eigenvector of all gperators Taﬁ

T, x = alé)x

We heve:

w88} = ald" jalar )

N

We alsc heve afle) = 1, so that ald) is & numeric representation (& one-
dimenzional representstion) of the Abelian group D, alsc called the

charscter of the Abslien group D. Such representations of en Abelian group

ere just ordinary esxpomentials.

Thus :
ald) = e T D A
( & Xp 1'{;’11 l"-o 5n
Where ¢.guo0q2_  are fixed numbers, Restricting ourselwsz to aly), we have

aly) = exp & {¢.e.+...49 o G.g §, < 2v

1L ‘non i

Since we demsnd that the representetion should be single-valued we must

have

e

caol nteger
1 n “eser



Denoting the eigenvalues of the matrix & :

eiAk - Gk
we have
c C C
_ 1, 2.0 n
ald) = 61 62 bm

We have thus shown that in the space of %h@ gnalytic reprasentation Tg

there exists & Dasis Iin which the matrices Tg- ars dlagonel

/ o, (8] \

a2
s
a,
fa
=
feld
S

[

where N is the dimension of the representation Tg and esch sigenvelus

can be ziﬁten B

¢ C
e A R ~ o
aflé) = & § ¢, = integer
X il i =
It follows thet all eigenvalues are enumerated by & set of integers (Glguacgcm)o
in order to construet the representation theory, we must
&) Find ell irreducible systems of operators E, satisfying

i3°

the given commutation relations, such that all E,, are disgonel and heve only
integer eigenvelues.
b} In each irreducible representation £ind the common spectrum of

the operstors conteined in E@5 i.e. find all eigenvalues:



we) =

fti
()

Cy8y * Cob?oootC ¢

5

COTTESpPon

[=1
[N

ng to

= L
H(¢) ¢1E11+°"°*¢nhmn

The Weyl Subgroup

The Weyl group W is &

finite subgroup of GL{n.C) consisting of
gll possible permutations of the

coordinate axes ( of the basiz). IFf we
decide to keep the orientation of the axes (keep det g = 1}, then, we can writ

]

& system of matrices of the type

2]
f

['r.zlj
o

Their products form the Weyl group

with n! pereameters. The importance of
these matrices 1s in that

for 6eD, 1.2, they take &= diagonal

matrix into e dlagonsl matrix with
permuted metrix element

a

Above we hawve shown that if alé

L

i

ol

an eigenvelue of T, |
o
corresponding to an eigenvector x, common to all m

atrices T, {for ell 6),
then

&, ¢, €
[ s e f= 5 Ay = « L
@(6) = exp L (A C¥...#5C 1 =& "6, “...8
o P 1 nn’ -,



1k

Let us call the zet of integers

3

& spectrel point
We now have: if C={C ..., ﬁi is pectral point for a
Yoodk
representation Tg of GL(W ,&), then so is
S B
7= 0, 5C, seeesl, )
1 -z “n

obtainzd from C by & permutation S

Indeed 3f

ald) = exp 1 [ C+...a € )
L8 P 471 %" 'n"n
= T@x iz also on sigenvector:

is an eigenvalue corresponding to ¥, ther
=T ald')x =
5

om a{§] by the permutation 8, The operators T
the elgenspace

L]

where @ 6°) iz ovteined fr

bors,; 80 they preserve the dimension of
. - _— . - 5 g . LN

he eigenvalues determined by U and by C heve the same multiplicity.

have inverse cpers

The noncompact group GLi{n.C) only £
we only study s very

Remsark:
we wish Yo obtein all representations of 3U(n) bus
}, not all of them,

a8 of representations of GLin,e

Q»_-ﬁ



q e
)

TR

Lecture
Helbulk

=
G

urther exasmple, consider:

The Sroup SU{3)

Fult the generators

of U(3) into & table:

A1,
e i

s

P

)

o s izt T

Esre s

E = = E {8,..E,.1 = [E K
g Tays PRgyefigy 31032
5 = = E e i | = [&® B
Ry &135 i llggfﬁ‘g,‘_} gmlgsbls‘

B
e

[N . Y
ote o £ Ll g
L & o oy

-, 3 e g o o R
be chosen diagonel BIE
i s v & o o
M) o= o 4
Ty LB B
& 2 2
T we heve
e, &§ % oy S
= oSiR AL ¢ P4

i

#

O



o

1, i.e,
+t} determine the same

Restricting ourselves to SU(3), we have det g
3
and C3 gre defined up

. Thus: {C,,C,,C.) and {C 4%, Cyet,

+ e\bgir q}s =
In ether words, the perameters Clgu

eigenvalue Alo ).
Lo & common &dditive constant

02993} is & spectral point, then the points

ir ¢ = {c,,

Lemne,
= 1,2.3

= Gy ey = (1,0,~1)

(0,1,=1} and %y g
to the eigenvalus

{1,-1,0), Gpg =
It the eigenvector Xy vorresponds

corresponds to the eigenvalue A &) ¢€°@3

s indeed an eigenvalue.

where ¢,, = =@, o 0., =
* 13 ji® “iz

an also be eigenvectors.
j = F . %

A ¢}, then the vector x E, =
1 F97A
with the spectral point Céa oy Further, ilg) + ¢i=¢j is
wnless B, x, = 0. :
15
. . e
Prool: - e
= E, He, + [HE, Ix, = E, Az + ﬁnww X, = (k#@ - i 5Zij
137 i3 TS 1377 'j ) 37y
50 we can have

doss not necessarily heve an inverse

s operator W"j

ThHe
iJ _ o~ .
Jb;l‘w = Ei{;l}\\ = 0,
ting on the set of pointe C, anmmely
- 9 o

g P
¢~ C end C + Cro, ,.
id

ddition vregserve the sum of C

Both the Weyl 4ransformetion and the ad

S0 We can normalize
.+ C. + C. =
2 3

[N



which determines & pleme in the CI,CE end C, space,

A1l points of our spectrum are on this plane. Preject the axes onto this

plane,

[ép}

For U(3) the numbers ¢, ave integers, for SU(3), with the appropriste

[

Thus the whole spectrum will be in the gridpeoints of &

lettice, generated by the basis vectors e Qeg,eg}ﬁ
& &
2 i
™~ -
\‘M /
W:
Ve,
3
g5 o L \‘
Rerressnt the points as: e, = {1 © Q)

jomd

®
3]
i
e,
]
[
[y
S

Fid
I
P
[
)
?‘_’_

snd remember thabt: ., = (1 =1 0} = «a,
. 12 21
G, = L0 1 =1} = =g,
23 : 32
= (] 0 1) = -
@5 { 0 =1 Gy



We

have: &1 + mzl = ezg
e. + a = @ B, * ¢ = g

2 32 3°® 3 23 2

&, +d,..=e . & o = g,

i 1 31 3

f [ S S
N, 7
* V' »
f;"‘ \ 7 g d { - RN
\EZ"M ,/@\t\g \LB Y }4‘
_o »
3 el
general point ¢ = Q019cogc ), representing an eigenvalue,
Choose & set of C, namely all

gider

is only e finite number of such points.
is maximal

Kow con
Thers is onl

Llamongst these that, for which Ty

imal (@r\highesﬁ} wedlght

for whi@h,cﬁ is nexime
by

«_:v

. -
those

(C,+C#0, is fixed).
=t

Lz
© ,
¢ = €m15m23m?)
it follows symmetry (with respect o the Weyl group), that
m, Z W. & o,
i 2 3
ot & that if £ is the corresponding eigen—

It follows from the

vector, then
s o TR & e N
Elgg = ﬁgﬁg = nlsg = 0
Now consider an irreducible representstion. Al produsts of the infinitesimal
operatores, Enkm acting on £ preoduce & set of vacﬁ@rsgth@ envelaope of which
ig sn invarisnt subspace E@{; E. ©Since the representation iz irredusidls,
we must have Eo = E. Thus: all the basis vectors of the repregentation can
be ootained by epplying the lowering operators EﬁlgEBﬂ end E,, te the vecteor
o “ e
hegt weight. Correspondingly,

£y ecorresponding te the high



spectral disgram cen be

1) ¢ = (2,1,0} {(The octet)}
5 Giroy  Ryey
i R o nﬂ,_,,;,,‘,.w e 3
) ST 7/ X ’_/”
VY X
/W\ AN
ool T Mo
K gbzﬂuﬁ\ SRR
S /
3 ¥ Y
%, L ~
Foy 1 me et -
y 1A | !
(\é’)tﬂnfv % L, 020
‘Ia Gg .
P o . ; - '
2; ¢ = {3,0,0} (The dechplet)
& o :\ £y AN 3 — £ 3 — e %
2owl05E) ey [0t ool €4 (3,0,000a,, = (2,0,1)
‘\9\\%\ d " ) s = \ - {3 &
N S/ (3:0,0)¢ 2a,.= (1,0,2]
AN e {11 v / -
. Gl /
- Lo S e / ; 5 o = y
PO I N (= e . = | ;
{_Q,}H‘Z‘,‘.,id‘é @T"""%"‘*ng és('):” (“_'5,090)”{&21 \»-9»150,
% { /
N i I . . .
5 | / k) 435 = (1. 2.0}
, N/ (3,0,00%20,, = (1,2,0)
{01,278 ‘ (KN
‘ 2 (0.3,0}
(0,21}
(0,1.2]
(+1,31.1
a4 ~O J 3;_&5’“@“, ‘ﬁ'}l
e 2L
B
Ty e 3 % " R
d mbove exsmples o, F g"e P55
Vg i
4 {3 0,4
Thegrem: The spe s of BUL3)
1ie on & hexsgon in the plene C, + C, + C;’Tﬁ = m gand on & system of hexagons,
inserted into the largest one, st definite distances. BSome or zll of the
hexsgons somstimes degensrste into trisngles (if one of the points lies on

cbteined by successively applying 0"21*&*32 end.

G

}



=

one of the thre axes ). The vector 4, corresponding to the highest

waight, is determined uniquely {up %o normalization). A1l the bighest

weights lie in the Weyl chember X . where E mgc

Further: the multiplicities of the sigenvalues sre constant mlons each

o

hnexamgon (triangle) snd are eguel $o pne on the cubmos® hes tapert . Moving

O g

lowards, the multipiicit

pﬁ
(i
L5
i
o
2
Ly
@
341
i
g
B

ty elthe linearly, or steyvs constant

(sterting from the first hexsgon, whi

iy

We shall return to this problem, but sl presen

@

o

- Fenresentaltions of Uln)

e

Let us teke n general and to avoid

complieat

@

ons , use &

global sppro

rather than the infinitesimel one. Thus, we shall sctuslly

=

construct generalizing formulse like

for SULZ),

An diwportent step i the parametriz

I above,

Qﬁ.

use & decomposition, slressdy mentione

3

The Geauzs Decomnosition

& oS *
/18 IR WA
. (O 1 \ \\G S Jlg 1/ #EvE=G8, =02



Now comsider G = GL{2,n) and consider three subgroups

z e%_ , 2,e%, and feb).

RE
(2]
s

We know that these matrices generate the zlgebras

E_, B, snd E,

-3

¥

metrix
. N\
B11 o Eyp

En1 °°° Bpy

gre not egual to zere, i.e. if

where

then g can be written aes

= A 7 €
g =z Sz, SECs EpRhLs

Z_ﬁD and Z,(}ng wvhere

't is {(supposedly) well-known thet if the diagonel subdeterminants of &

éeD



where z ¢ and z

ere determined uniquely.

. o, &
i

2
o

s

We cen exclude & set 8:eG from the group, for which at least one

-

here % is not contained in &. Exeludi
ower dimension than G, we obtain a parametrizat

will not contéin the identity e and there exists & neighborhood
» , uding the set 6, whieh is of

ion of the group:

T ‘i::’#’-n
/‘,_.u | S,
//‘r \{
e AN I
P / Vot 1 / /
N (el e
N\, R
‘\\\\ \‘w T 4"//
™ \\, jﬁﬁ<=t
\"“‘N.,“m’- Y 2
=0
Lie’s Theoranm
A well-¥nown thecrem, which can be checked dirsctly is: In &
finite-dimensional space over the field of complex munbers every commutative
femily of linewr operstors has at lesst cne common sigenvector,
o i TS e B, r;' S fh g - T B = o T Y] &
Sophus Lie zener ged this theorem to some classes of none
commutative operators We shall neither prove Lie's theorem, nor give it's
moet several formulation but only use & specisl case (since we are not going
inte the theory of sclvable groups).
Thus, consider the group H of {apgular matrices:
f’ h.?q‘ hle’ 000 oulln \\_“
h = )
[ h §
oo o > « - I
22 Z2n det h # 0
£ Iy
£y s 1
} i I -a. L}
\ i/ |
Y ~ h ;
k) nn I
A 4
Special case of Lie's theorem: In any finite-dimensicnal representation
of the group H there exists et least one non-zZerc vector x, which is the eizenvechor
of all cperators of the group H. Thus:
N ot T
T x =



where A{h}) is & continucus funetion, which itself is & one-dimensional

representation of H

®

3= aln, )

-
e
i
et

Corpllery: Every finite-dimensieonal reprssentation of Th cen be brought

Ho ar fowvm.,
Proof: One common elgenvector exists =25 all metrices T, can be
reduced to the form
T .
oo [ Aie s e
B L‘l mmr. o tamm, ‘n&
o | E
¢ i I
l{ o . i
{! 4
[ 3
i i R‘% i
‘!*, i L4 i
Y s i i
The agein forwm & representabtion H, s¢ that we can again

L e, hhus greduvally reduweing T, ©o mguler form.,
i3

t E,_ operators act inm
- o o # Wy, 1 o § -
it Z o D end Z_  Tkeep” their structu

2 N y
f L o o 0™ i #

;e o M e . 4

L & - L [ == »

o
e
[es]
o
i
5
NPT
oy
fosd

S e PR N - T RN
are the cheracters of the dizsgonzl sroup D.

representablon spase diagonslizing the sperstors B and the
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When considering the right regular representation
Rg flg) = f{ggo)

we saw that each row of the matrix

forme an invaeriant subspece with respeect to Pg0 and that the representation

Tg can be realized in this subspace. Put ¢ = szz+ and find the first row of

T =T T.T
g z="8

We obtain the first row as:

P

a8}, a{6)T (z3aouugm(5)TlN(z)

12

where

a{é) = ml(é) 2

Hi
83

Thus Tll(g} depends on éeD only, le(g}, k=2,...,8 depend on § in the
same simple menner and do not depend on z_ at all,
Note: The Lie aigebra of the group Z+ is E+, consisting of

nmabrices

with the basis e, 1<y,

i

We shall combine the infinitesimal and the globael method.,
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The maximal eigenvector

For SU{2} we had a highest weight & and to sach £ corresponded one

definite eigenvector Xp. Cell it the maximel eigenvector,
More generslly: A meximel eigenvector of & representation Tg of G

is & non-zerc sclution x of the set of equations

for all infinitesimal cperators E, €E . In terms of the group this corresponds

te the eguetion
T x=x
Z

for ell zgz#n Thus; e meximel eigenvector is an invariant of the subgroup

Existence of e meximal eisenvectnr: Put H = DZS{La It follows from Lie's
-

]

theorem thet there exists & common eigenvector x & 0 of T for whiech

hB
E,.x = A, .x i< 3
0 g s 3 - el
3 il
Hemrever E”§ = |E,,, E, ] 1<
Hewrever ry 198 By

2o thet A, , = O for i < j. Thus, ¥ iz maximel
'Lu
&, .x =0 i = 4
Qijz i 3
and iz alec an eigenvector:
E .x=mx m, = A,.
ii i i ii

Uging cencnicel parameters in the group, i.e.
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W& have

where

. im1t1+n¢imntn
a(é) = e - = &

It follows from the analyticity of «(d), i.e. from the single-veluedness

it
. . k .
on the torus 6, = ¢ o £t < 27 that m.,....m  are integers,
K k 1 n g

Consider the SU{2) submlgebra

We heve E%x = 0, go thet % is the maximal elgenvector of this subelgebra

too. We have

on = {ml—mg)x

We know that the highest weight for SU(2) is non-negative. Thus we

=

ebtain ml & ., gnd generally

N S o
ml & mE R mn

Dgnnomr) end call it the highest weight of representation Tgn
2

&“

Put: o = (m. .m
e

eyl eslls the set {m....m } the signature.

¥ e 1 n’ ncmgw...,.m

We have proved the following!

Theorem: For every analytic representztion of the group G there exist

en inverient of the subgroup Z¢s

called the meximel eigenvector, satisfving

Ts(x) = aib)x,



The e:

=t
om

envelue is an exponential.

Similerly we can define s minimal elgenvector of T a&s an invariant with

respect to the subgroup 7 .

Unisuensss of the meximsl sigenvector., Let us show thet if Tg is irreducible
then the meximel eigenvector x is unigue {up %tc normalization).

Let x be & maximsl eigenvector in the space E of Tg and let £ be
g minimal eigenvector in the space E of the dusl representation. {Remember

#

Tg if there exists & nondegensrsie bilinear

[
ey
@
F
3
o
7]
3
o
et
=
&
]
©
[T
oo
{2
=
pos
g——"t
[}

&) hn
wdg KGR,

c oy,
h

LS4
(N
E
F7a)
)

(x,x) = QTgxs T

We heve T =T B
g g

i

k4 4

These vectors satisfy

le.x) # 0

since otherwvize we wowuld have

2
3 =
ot !

/ i "‘;‘—.‘3{ i f
xagIgL) - Tz=T5Tz#

il
=
g

w
=
(=3
=]
£3
ol
Al
% -
§
T
43
W
&)
)
Ba
5
i
|
o]
r—
[eg]
s
—
[0
'3
4
P
H

Irreducibility of T_ implies that the vectors Tgx generate the whole space E,

Thus {e,E} = 0 which contradicts the assumption that (x,x) is nondegenerate,



1k

Let us assume there are two highest weights in E,.xl and xgn

e

Kormelize so that

Since x, end X, are invariants of Z+9 so is Xq=Xgo However

ﬁa,xl—xz} 0
i A=Ky = G
We obtain the thecrem:
Theorem: If T_ is an irreducible representation, then the maximal vector x is

g

determined uniguely up to normalizetion. Thus, the highest weight is alse
determined uniguely.

Corgllery: If two different representations Tg anc § _ of G have different

o

highest weights, then they are pot equivelent,



Lecture 16

Let us now consider reslizations of Tg in various spaces.

Realization on the Group G

Congider the right regular representation.

ngf(g) = tlag ) (1)

For the matrix elements of any representation we have:
T, leg ) = T, (gIT  (g) (2)

Put

e, = T..(z) (3)

(elements of the first row are chosen as & basis). Then:
. = = (g} ) =
Teots = Tyglegy) = 1 T (817, (8, L s Tas(8,) (W)
Let us- construct the basis vectors e explicitly. Take &

representation Tg and denote it's maximal eigenvector e Let £ be the

.?o

-

minimel eigenvector of the contragradient representaticn Tgc Normalize e

(for fixed g) so thet
{ee,) =1 (5)

The equation {e,x) = 0 determines en N-1 dimensional hyperplane in the space

E. Choose the other basis vectors in this hyperpiane, so that

(ssek} =0 for2<k<N (6)



Now apply this bilinear form to eq. (L) for i=l

(e,Tey) = T4(g) = & (&) (1)
In terms of the Gauss parameters: g = z_é“z+
. I _ _
el(g) = (E’Tz—T6¢z+el = {Tz_ssTsel) = (egTael) = e1(6) {8)
We also have T.e. = a(é)e,, so that
671 ES
\ e, (8) = m(sj—x (9)
where
i Ty
= 3 (10
ald) = 8, "o 8 (10)

is the highest weight.
Let us express the parameters of é‘in terms of these of g. Consider

egain the diagonal subdeterminants of g:

b,(g) = 8, a,le) = 6.8, slg) = 8,85...8, (11)



We have

s = Mgl
b _sle)

(12)

We cen now write the besis vector e. as:

1
el(g) = gliml-me ’ iii zzz ﬂmgnt oo;(detg}mn (13}
where the exponents
Py = Myloys Dy = M=l Preil = Mpe1™Mps

satisfy
Py > 0 1<k £n-l
Pp® R ooo arbitrary
If Tg is irreducible, then all other basis vectors can be obtained by applying

right transletions %o elz
=

We objain the theorsm:

Theorem: All irreducible analytic representations Tg of the group G = GL(n,C)

gre determined by & set of n numbers (the signetuvre) a = (mlsooﬁmn)

my

(A%

My 2 MaZoso
2" 73

. s o . .
where m, are integers. The representation Tg can be realized in & space Emg

spanned by the function

mn
co.tdet g)




end all functions el(ggc) obtained by right translations. The signature
o determines the representation uniquely (up to equivelence). The action

of the operators Tg in the space Em is given as
Tgof(g) = flgg )

and el(g) is the maximal eigenvector of the representation (inveriant under

[
.{J+)a

Remerk: The restriction to SL{n,C) corresponds to putting det g = 1. We

cbtain mll enslytic irreducible representations of G. For SL(n,C} the signature
is no longer unique end has to be normalized, e.g. by putting mn = 0 or
m,#m¥...4m = 0. The space E for SL{n,C} consists of polynomisls on the

group, (For GL{n,C)} not necessarily, since we can have m < 0.)

Realizetion on the Maximal Compact Subgroup U

If we are interested only in the representations of the maximal
compaet subgroup U = U{n), then we can meke usze of the principle of unitary

restriction te cbizin the following.

Theorem: All irreducible representations of U = Ul{n) are determined (uwp to

eguivelence) by & set of integers

and can be realized in a linear space of functions f{u}, spenned by the
function:

m. —m u TR b m
11 u u -3 -] W
21 22|

(1L)

n



and ell functions el(uuc) obtained by right translaticns. All irreducible
representations of SU(n) are obtained here by setting det u = 1. The

operators of the representation act as

Ruof(u) = fkuug)n

Remark: If we construct the space EGZ es above by applying right translations
to eléu) and then use also left trenslstions on the group U, then the space

Em gets extended to M& gpanned by ell matriyx elements Ti (u). The

J

representation seting in this space is reducible,

Rezlization on the Group Z

Above the signature o did not enter explicitly into the formuls
for the action of ng but.iny into the definition of the representation
space E,. Let us construct & different realization in which the cperators
depend explicitly on «¢. ©Bince the vector € iz defined as the minimal

eigenvector of the conbtragradient representetion the basis vectors
{ =
&, = (g,T e,
1\%) ( ggl}

do not depend on & in the Gauss decomposition. Thus we have

(z )} =86

‘ Y o= (=Y = = z}f' [ o €3 o T
e lg) =T, (gl = T, (z 6z ] T B Tog 81T, (2] MGWTH(HI%(%)

1i i 8

= al{6)T..(z )}, Finally

117+
! ‘ = ) { o

where we put z, £ Zo The seme must then be true for all slements of Ea’ 1]
that

(15)



Thus, to each function f(g) on the group G tHere corresponds & function
(z) on the subgroup Z = (Z+) namely the restriection of f(g)} from G to Z.
As can be seen from (15), the curréEPQndence between £(z) and £(g) is one-to-
one,
Denote R the obtained space of functions £{z) and consider the

action of Tg in this space, We have Tg@f(g§ = f{gg@}o Restricting £lg)

to £(z), we have:
Tg@f(z) = f(zg@) (16}
Put
2g_ = z_bz, (17)

then

To find the multiplier afé) = m(zsgn) we notice that & is the dimgonal
part in the decomposition of zggn Using (9) and (13) we have:

I R
N TR P
alz,g } = (2g)7,

(zg)yy l2el,,

3 m
.. ldet g} {18)

{we have det zg = det g).
We have cobtained:
Theorem: The irreducible representation with signature o = (mlgoqomn) of

G can be reslized in the space of polynomiels of the matrix

1 z12213°uczln
- ] 19 )
g = 1 Boge oo z&e7 (20}



where the multipliero{(z.g) is
P P B
olz,g) = All(zg) Azz(zg)oanAnn(zg) (21)

. = I,
pl

s g5 i=1,...n, (m

" 0). Further z, is the right triesnguler

matrix in the Geuss decomposition for zg. The maximel sigenvector is

ei(z) = 1

and the space Rm is spanned by the functions

fg{z)'E Tgul = al{z,z)

for all geG,

Remerk i: Formule (20) simplifies in special cases:

a) g = zoaz

Obviously m(zgzg} = 1, so that
= - 3
T, f{z) = f(a;@, (22)
D
P -1
Taf(z) = P(z28) = £I6(6 ~26)]

We have &~ zdg Z, hence

T (2) = a(8)£(6 s ) (23)



8
Remark 2: The realization in the space £(z) is convenient in that it involves
& minimel number of varisbles. For n=2 this realization reduces to
T flz) = (8ze8)? £( 2L )

Zd
Bzdé

Explicit Expression for the Gauss Parameters

Put

g = Lig EeZ_,8eD, zel_ (2h)

Call

the subdeterminant of Egg gbteined from the rows ijgcuagip and columns
jlsuoogjpu Meking uséﬁbf stendard multiplication rules f@r determinents

we find

12,..p~1p _

lgoaupvlp _ ¢
€12,..p-1q = %p " %i2...p-1g © “p%pq (25)
i
where 4  is & diagonal subdeterminent of §6Eo For p=sg we have:
P
lzucup_lp . ’D
12...p=1p Ap (26)
{in agreement with (11)).
For p » q we get 0=0. For p < q we have
Amq
pq = o pEg (27}



- - 12...p-1lp
vhere Ay 12,..p-1q °
Similarly:
.
Spg & —BL pza (28)
T
D
12...¢=1p
where A' =
P4 12...q9=1g
We can now puts.
£z} = f(zw) W= 1,2,,,.n, ¥ <V {29)

and the transformation Tg of (20), representing zeC, cen be written as:
By oo & Elz— ) {30)

whare the su%determinants&mv and 4 are calculated for the matrix zg.
B

_AMv(zg>
Remark 1: The transformetion Euv = .E_TEET’ is & generslizetion of the
T D —C— ——— 1 4
} '
transformeticon
Bz+6

Remark 2: For GL(2,C)} (or U{2))we have sisc constructed a basis in the

representation space, namely the monomisls
5 & s000% p= 2

In the general case we could also comstruct & complete set of linearly
independent basis vectors for each signeture o, but we shall net go into

that here.



Lecture 17

Fundamental Representations

Let us consider a certain set of signatures, namely:

>
i

(L 0o 0...0)

>
]

(L 1 0...0)

a ° L3 L} o L} ° ) °

B
]

(L 1 1...1)

Theorem: Let E be an n-dimensionesl spece in which G = GL(n,C) acts as a
éroup of linear transformetions. Consider all completely antisymmetric
tensors

lllguo.lk

k<n

over E. They form en irreducible set and transform according to the
irreducible representation of G with signature Ak’

Proof': Take & set of numbers

transforming coveriantly under G. In terms of matrices we have

(Xi9°°°’xé)=(xlbnnnsxn) gllu""'gln

Epycee €nn

The determinants

s ooeX,
1y 1
e, ., . C Yy oeeedy
ipipeeed, = 1 k (2)
Wi Ibﬂwi
1l k




formed out of k such "rows" of numbers provide & basis in the space of

antisymmetric tensorsii*: Take

8 ’ .

s = [, O
2"\6

C) n

end act upon each row in (2). We obtain:

pe, n ()

l 2coolk

L}
[
.

T ..

lzenuk

i.e. e, - i . 1s an eigenvector of TS’ corresponding to the eigenvalue
lbnnk

g o= 8. sinu; g,
ll 5 ‘i"lﬁ"

The antisymmetiry implieé that each set il,,ac,ik gppears only once so that

all eigenvelues u are different. Thus, one of the determinants (2) must

.5 ,be the meximal eigenvector. The only one of them invarient with respect to

7 =17 is e

- 10°°° with the weight

Hence, since thersiis only one maximel eigenvector, the entisymmetric tensors

transform irreducibly according to the representatio Ak' Q.E.D.

Young Patﬁerns

We write the signature as

o = (ml,u..mn) Mz Mo2ee.z W



and denote the corresponding representation.Du (or just o). Sometimes

it is convenient to introduce = different set of integers:

and write

Ipl,-e-,pnl p, 2 0

(in square brackets). Now pi are arbitrary nonnegative integers. 1In

these perameters the signatures of the fundamentsl representations will be

Al = [l,o,quoo]
A, .= [0,1,...0] (6)

o o s i o ot S o s £

If the signature of a representation is

(myseeesm) =(pyseenun, ]
then the highest weight is

m, m D, D D
O 1,2 n
a(s) = 61'"6n = Al A2'°“An

where Gi are the diagonal elements of 6 and Zﬁ are the corresponding
subdeterminants. We know that in the reelization of representations Tg

on the group G, the maximal eigenvector is

(see previous lecture).



Let us introduce the Young patterns. For each representation Ak

wve draw a pattern:

consisting of k boxes. The pattern indicates thst Ak corresponds to s

tensor ei s with k indices, that it is completely entisymmetric and can be
lﬂﬂbk

obteined as the "entisymmetric product” of k vectors mccording to (2)

@

Let us generalize to arbitrary signatures:

SIEIS I

'
Py
n \ | IO
[
N e
Pr o

We have n rows (the bottom ones can be empty), getting shorter (or staying
equal) as we go down. The numbers (mlupnmn) are the lengths of the rows,

the numbers [p.,...,p_J, the differences between successive lengths,
L n

Example:

(8S5§l§7190) = »{39)“’9091201

i

The Young patterns will be used to study symmetry and antisymmetry properties

of irreducible representations realized with the help of tensors.



Tensors and Young Tableagg

We already know that all irreducible representations of any compact
group can be realized in the class of tensors.

For Uln) we shall consider the contravariant tensor;

i i.:..1
t = tlg m (8)

of rank m, and decompose the corresponding representations of G into

irreducible ones:

Obviously en operator Us’ permuting the superscripts of t, will commute with
any operetor Tg (since Tg acts independently on each superscript). It follows

from Schur's lemma, that equations like

can be used to obtein irreducible subspeaces, (or subspaces that are multiples of
an ir;educible one). We shgll shpw that we can get =ll irreducible

representations in this feshion. Actually, we shall show that all operators Pm’
projecting out irreducible representations with a given signaturec= (ml,.,.,mn)

can be written as

s

P = ] e(s)U , (9)
S

where the c(s) are numbers. We have



where tm transforms according to the irreducible representation o and

where I is the identity operator.,

We could proceed by investigating the structure of the symmetric

group Wm’ but shall first consider e more direct method.

The Method of Z-invariants

Let g~a»Tg be & representation of G in & finite-dimensional space
E. We know that 'I‘g is completely reducible (unless it is irreducible) ,

so that the space E can be decomposed into a direct sum of invariant subspacess

In each space Ei we have one highest weight o, = mi(é) and corresponding
maximal eigenvector W, e

Thus, we can decompose Tg,into i:reducible components by the following
procedure:

1) Find all inveriants of the group Z in the space E, i.e.

all vectors that could be maximal eigenvectors.

2) Amongst these invariants find all eigenvectors w,

and enumerate all highest weights ai(é)n
Once we find w; we can immedietely obtain the whole space Ei by

applying elements of 2~ to w, .

Criterion: A finite dimensional representastion of G is irreducible if and only

if it contains one and only one non zero invariant of the subgroup Z.



B 1'/ 7
Thus: We shell consider contravariant tensors, transforming according

to the representation

Tgﬁé@;@mé (10)

i1.i,....1
Ingtead of t 12 we can use the multilinear form

ilooeim
(X yFyooo,W) = ¢ Xy Yy oeeeWy
172 m

where x,y....w are covariant vectors of dimension n

e e b 1 Ly —

=
i
=
H
=

We cen write these vectors as rows, their transformetion is right multiplication

by g. Thus:
Tg@(x,y,.eaw) = 0{xg,yg,...wg) (12)
ili2“°°im
Denote the space of all multilinear forms of order m (&1l tensors ¢t — - )
¢ .
m

Our aim is to decompose 'I‘g acting in @m into irreducible components,



The System of Basis Invariants

Consider zeZ acting on x:

l = Z oo ~
. 12 "13 ""In _ . -
Xz = (xl,xg,uaaxn) = (xl’l1212+“2’ x1213+x2z23+x3,,0u)
0 1 223,uzgn
0 O 1 Z3n
I%E—ln
1

The only Z-invarient in the space ¢, is

1
ml(x) = X,
More generally, the subdeterminants
“1 5%
wo = | oxox
2 172 (13)
T2

w = - L2+ x
ol 10

5

w‘unnw
jai

are Z~-invariants. We already know that the determinants

Xy oo,
1 k

wl L) Dwi
1l k

form & basis in the spaces of antisymmetric tensors of order k end that



the Z-invariants W,  are the maximal eigenvectors for the corresponding

representations. The highest weight Ak corresponding to w, is

k

Ak = 6162°n56k k=1,,00en

No other totally antisymmetric tensors can be constructed, out of
n-dimensional wvectors.

However, more general symmetries cen be considered. Thus, any

vector of the type

P, P, P

Wy oo W n (1k)

W = W
172 n

is & Z-invariasnt. Note that w is a multilinear form of order

m=py + 2p2 + 3p3+ouu+npn (15)
Applying T6 we find
TGM = ow
with
b, P b
_ oA T2 n _
o= 57 A ek o= (16
m. .m T
= 511522:_? . .,(Sn
where
p; =m, -m . 1= lyceasn moeq = 0 (17)

(This is of course just an alternative way of viewing the formulas, obtained

previously).



10

The rank of the tensors under consideration is obviously

m = m.¥+m +aan+mn

172

vhere m, ere the entries in the signature

(ml,me,o.o,mn)

The representation with signature o will in general figure seversl
times in & decomposition, since we can choose different orderings of the
vectors X,¥,... when writing the system of determinants Ws o This, however

is the only arbitrariness in the problenm. Indeed, we have

Lemma on Z-invariants: Any multilinear form, inverient with respect to the

group Z cen be written es a linear combination of the monomials

with all possible orderings of the arguments in the determinants wl,...,wn
and with all ‘possible exponenis P: s satisfying pl+2p2+,,npn = m, wvhere m is

the rank of the form.
Proof: A (classical) proof of this (classical) theorem is given
by Weyl in his (classical) book:

H. Weyl: The Classical Groups

(Princeton University Press, Princeton, 1946)

From the lemms one can readily obtain the fundamental theocrem:
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Theorem: The space @m of mll tensors of rank n can be split into the

direct sum of irreducible subspaces
Ec(ml,au,,mn)

in which the maximal eigenvectors are the monomials

/
C mml'mz mmz"m’ . e
o 1 2 ***"n

gl

The index o runs through all possible substitutions of the vector
arguments X,¥,...w into the determinants Wysooesld o The multiplieity with
which the representation (ml,uu,,mn) occurs in the space ¢m is equal to the

number of linesrly independent monomials

with fixed exponents mlgngngmno Those and only those signefures esppear,

for which

m 4+m.*.,.+¥m = m m, = 0,
12 n i~

Actually, the complete information on the reducibility of tensors is
contained in thisz theorem (we do not give the proof). However, we shall

st1ll look at the symmetries of the tensor representations.

Let us return to the Young Tableaux.

Consider a table of boxes, corresponding to a given signature

= RN oo 2 0,
a (ml, ,mn) m 2z m, zm, m 20

with the properties:
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1) The lengths of the rows decrease or stay constant in the

downward direction.
2) The total number of hoxesm is equal to the rank of the
tensor under consideration.

3) For the group U{n) the number of rows is less or equal to n.,

Example:

o = (7,5,4,0) = [2,1,4,0]

(If n is a fixed known number, then we do not have to draw the empty rows,
otherwise they are essential).

Besides the round and square brackets symbolisms, we use the
symbolism of totally antisymmetric tensors (of fundemental representations).

Thus:

, Py Po D e - T
o = Lmlnnu,mn) = [pl,uon,pn] ol T Py S 8, ,nuén (18)

Consider the basis invariants w aouwn of (13) and write them in box form:

1
xlx2 XP X X
y.¥, ¥ v | S

wy = 2 Tpr=z= | T = (19)
2 , .
e g o000 ' i
{ ————
ViVe Y v v

An arbitrary ordering of the arguments x,y,... in the determinants wi in the

product
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can be represented on the Young pattern, e.g.

S 8 s

= = ¥y ¥
W ~,wlm2w3 Xy 1 Y2 123 _
‘zl Z, t1t2%3
ulu2u3
B ¥V | X
t Z
u
Let us consider some examples.
Example 1. ,
One row only: | - 7 { m boxes).

The corresponding meximal eigenvector is

s m
w o= [x]lyl...lw] = w;
The maximel eigenvector is totally symmetric under all permutations. Thus,

the representation

ls remlized in the class of totally symmetric tensors of order m, The only

totally symmetric Z-invarieant is w?n It follows that in the decomposition of

< . m .
8 general tensor the symmetric tensor representation Al occurs once and only

Qrce,



1k

Example-2:
One column only (:m boxes)
Y
The representations Am = 5 . 88 we know)correspond to totally anti-

iw

symmetric tensors. The representation An can also ocour only once in the

decomposition.

Example 3: For m = 3 we can consider e.g.

_ corresponding to 3! = 6 meximal eigenvectors Wy oWyt

Yy | x X |z z |y
w = w' =" [ w''=

z y X

2 - R

%
£
=3
2
l o
| =
t
2
e

However & permutation of arguments within a column just changes the sign
of the tensocr, so we may consider only the upper row. Further, the

corresponding vectors are not independent. Indeed:



X1 ¥y %5 . 5 . x

0 = vy - 192 1 o, 1 %o
171792 1 zq Zy 1l zl Z5 1 yl Yo
lelzg

Thus:

W o~ w''+w =0

Finally two of the maximal eigenvectors w = w1,m2 are linearly independent

so that the representation

o = A1A2

Tigures twice in the decomposition of lekn

Remark: ~The rank of the tensor m figured .crucially in all examples,
the order of the group n (we are cohsidering U(n) did not figure at all.

We shall show that this is true in generael.



; NS
~¢bec%uﬁe$$8

Remarks on the Symmetric Group
We shall use the symmetric group Sm {the group of permutations

of n elements). Denote an element of 5 by the symbol:

s(i. )s(4

1 2 m

where s(i) is a function of an integer argument i and runs through all

values r = 1,2,...m in some order. The multiplication law is:

The number of elements in Sm is (m'),

We can nov consider a representation of the group Sm in the space
of multilinear forms @m,
o(u,..u ) =8 @(ulgugn,uum) = ¢o(u_ ,u bos e sl 7o (3)

1" m

The coefficient tensor of @ is obviocusly:

(latin indices run through 1,...,m; greek ones through 1...n)
Example:

%”1v2“3“u AP



We already know that
{Tg,S] =0 for all geG (5)

It can be shown that all linear operators A, commuting with all

operators Tg, can be written as

A= Jals)s (6)
s

Young Symmetrizerg

Consider a Young pattern and introduce & standard numbering of the

boxes:

7| 6] 5| 43 211

o= | 12/11/10| 9| 8 (m=18)
15(1k4 113
18|17 16§

Put one wvector x,y,...w in each box.

Denote: pu..a permutation, acting horizontally, i.e, interchanging two
objects (vectors) in one row.
Q.. & permutation, acting'vertically, i.e. interchanging vectors

in one column.

The operator



is called a Young symmetrizer. The sum is taken over all‘possible D
and q. The sign of a term is "+" if q is an even permutation, "-" of q

is odd,

We can write:

£

QP (8)

2
4]

where

P=Jp
. (9)
Q= )(+ q)

s

Here P is a horizontal "Symmetrizer", Q a vertical "Antisymmetrizer",

It can be shown, that if we normalize Y properly, putting
1

d==Y 10

" (10)

then

i.e. d is a projection operator.

(See M, Hammermesh, Group Theory, for proofs and further details).

a

Remark: 1In general P and Q do not commute,

If we perform s permutation & in the space ®m’ then any Young symmetrizer
Y acting in this space, gets transformed into
-1

YS = g¥s

We can construct a central symmetrizer, averaged over the symmetric group:

€ = %2 g s¥s~

1 (12)



The normalization is such that

E = g, (13)

A central symmetrizer, being an averaged quantity, commutes with any
permutation So’ In particular all central symmetrizers, constructed using

different Young patterns, commute snongst each other:

€8, = €584 (%)

Notation: We shall write
Y, d end e
o’ Ta o

%0 stress that the symmetrizers depend on the Young disgram o (on the

representation which we are considgring),

Theorem: The tensors
T = E&t (15)

form a meximal subspace in @m in which the representation is a multiple

of an irreducible representation with signature

o = (ml,mz,“u,mn)°
An arbitrery tensor can be written as a sum of projections:

t= ) T, (16)

where the sum is over all o satisfying

m, +m+.,.tm = m m, =0
1 2 n -

[



The tensor
t, = T b (17)

transforms according to an irreducible representation with signature o
. . -1 . R . .
and equivealent symmetrizers sY s project out equivalent irreducible

spaces. The normalization um, figuring in the central symmetrizer
£ = ;2-,2 sY st (18)
Mo s

is

woo= %. (19)

where ka = k(ml,aoomn) is the multiplicity of the signature o in space

@ L]
m

Remark: We obviously have
Yp = Y qf =+ ¥

(the sign depends on the parity of the permutation q).

Example: Consider a third rank tensor tle and act upon it with the

various symmetrizers. We know that the possible independent Young patterns

ere: .
1 _21, |2 3
alm (3 211 ) o, 4" MEL. u3 4V 3 mhw ‘l
3 —L —
We have
t1Jk = 4 t1jk = Ly t:ij
o o o



Thus: .
t:"ij = %_{tijk + 1_‘k:'ij + tjki + fikj + tjik + tkji}
o
1
tijk = %_{tljk + tkij + tjk:L _ tlkj _ tjlk _ thl}
%o
2298 2 Ly (23)][ ¢ (22) 610k -
o 3
3
%;{tljk . tjik i t1k,j _ tli}
gLdk. L [1- (12)1[1 + (23)]¢39E =
oth 3
% {tijk . t1kj _ tJlk _ thl}

and

Zd t:x.jk - Z tljk - tljk
o a
o V]
Remark: When we speak of a certain symmetry of a tensor ta we have in

mind that ta satisfies

This does imply that ta is antisymmetric with respect to columns

gt =+t

[+ o

but does not in general imply that it is symmetric with respect to rows:

pt £t .

(This can be seen in the above example., )

We shall not prove the above fundamental theorem, The idea of the proof 1s

to show that the space Ea of tensors tu = Yat is invariant and contains only
one meximal eigenvector w(a) = Yy, where y is & certain vector in @m, Further
one can show that the subspace T, = E&t contains all maximal eigenvectors with

signature o and that t = Z Ty
o



We still have to settle the question of degeneracy, i.e. how many
i,...1
times does each signature & occur in the given tensor t .

The picture we have is the following:

Let us represent the irreducible space Eu by a line:

NICN .
! L3 N

The extreme left point corresponds to the maximal eigenvector md(u),

the other points are reached by applying the lowering operators. All
representations corresponding to the same o form a maximal subspace M(a)
and we can represent it by a rectangular disgram with k = k(o) rows, while
ka is the multiplicity:

>
__/\ N

fﬁi § 4 4]
M

N

T LH4

The group G acts horizontally, the group of permutations S5 vertically. It
can be shown that Qa - the space of all tensors, obtained from the
maximal eigenvector by all permutations, is an irreducible space with
respect to 5. We can denote the representations of G by the symbol o(G),

those of S by 0(S) and we have a 'reciprocity" relation:

Multiplicity of a(G) = dimension of w«(S)

Multiplicity of a(S) = dimension of a(G)



¥

Without proof we give =a recursion formula for the multiplicity

n
k(ml,m2,anomn) = ) k(ml,me,.oumi—l,aq,mn) (20)
i=]

Thus: multiplicity in @m in terms of multiplicity in @m_ Only

-1°
those k(mluunmn) figure, which are admissable, i.e, the m's must not
increase to the right and the lengths of all Young columns are less or

equal to than n.

Examples: i
m= 1 k(1) = 1 (1) =11} =4, ~ O
2
m= 2 k(1,1) = k(1,0) =1 %- By * Ay =AT7 + 8,
k(2,0) = k(1,00 =1 ) or O@M = H+m
m= 3 k(1,1,1)= k(110) = x(1,0,0) = 1
k(3,0,0)= k(2,0,0) = k(1,0,0) = 1
k(2,1,0)=  k(2,0,0) + %(1,1,0) = ¥(1,0,0) + k(1,0,0) = 2
- 3
by x by % Ay = AB + A7+ 2A1A2
or D®D®u=@+m*‘83*5u
m= L k(1111) = k(1110) = k(1100) = k(1000) = 1
k(4000) .- = k(3000) = k(2000) = k(1000) = 1
k(2200) = k(2100) = k(2000) + k(1100) = k(1000) + k(1000) = 2
k(2110) = k(2100) + k(iiioj = k(2000) + k(1100) +k(1100) =
= k(1000) + k(1000) + k(1000) = 3
k(3100) = k(3000) + k(2100) = k(2000) + k(2000) + k(1100) = 3

me HeHeNen = 0+ 0T« @ 33 D0

(Remark: For SU(3) the signature {1,1,1,1) is excluded, since the column

has 4 boxes and 4 > 3).



This completes the construction of irreduciblé représentations of the group
G (6L(n,C) or U(n)) using three different methods - realizations on the group
G, on the subgroup Z and on the class of tensors.,

A problem which we have so far solwved only for n=2 is that of finding a
basis for each irreducible representation o, We are looking for & natursal
basis, in which all operators representing the subalgebra Eo and the subgroup

D are diagonal

§ = T

[
jod
——~
O
~—

(21)

For SU(2) all the ai(é) where simple eigenvalues, so that there was no
multiplicity problem,
Let us now consider the question of a basis and this multiplicity problem

for U(n).

The Algebra of -Z-multipliers,

Return to the realization of an irreducible representation in the class of

functions f(z) , zeZ = Z,. We have

T £ = { 2
gz, d(zgg)f\(zg)w) (22)
where 7% = 1 212 213 . zln
1 223 221'1 (23)
1
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m, -m m,,~m.
alz,g) = (zg)ll (Zg)ll (Zg)12 m_
co.(det g) " =
(zg)2l (zg)22
P b b
2 .
= All(zg) A, (zg) ... Ann(zg) . {24}
A (zg)
- _uv ;
(zg)uv = Au(zgy? (25)
and
12...u=1v
Auv = glEnauu—lv

is the indicated subdeterminant of I[gl

°

The space R(xof functions £(z), in which the irreducible representation

acts can be characterized by a system of "indicators" I ,uSIn 1 » vhere

1%°
n L
_ 3 _ 3"

I = ]2y oy © 2k 3%, (26)

k=1 -

F)
I.= =z — (27)
2 3k az_k
P

I =z — '
n-1 nk an_lk (28)

It is easy to check that

=4 Voo - ’
IlAl(zg) ¥ 0 IlAk(zg) =0 k=2,,..,n (29)

(The operator Il acting on A2,A3 ete. replaces the first row by the
second one, so that the determinants have two identical rows and are

thus equal to zero). Since Al depends linearly on Ziy W have

e =
IlAl =0 (30)
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In general

LAy = coolyb, g = LA L= .= A =0 (31)

2
IkAk =

.

0 0.

Tk

We already know that the space R is spanned by the functions
a .

P, P, P

' _ n
alz,g) = Al A2 send

It follows that if f(z)eRu then

D
Im&+l £(z) = 0 o

1]

13230uun—1 {32)

n{n-1)

This is called the indieatbr system and we have n-1 equations for 5

variables =» infinitely many solutions.

Theorem: The space R, of the irreducible representation of G coincides
with the class of soclutions of the indicator system.

We drop the proof.

Remark: Actually, we have

I =§E
o o o+l

where Ea ol is the operator representing the generstors
ol
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In the realization on the group we also have

and we must add the condition for f(g) not to depend on z_:
Eikf(g) =0 ik
and the condition

E,;Tle) = m £(g)
(i.e. the homogeneity condition £(g) = a(8)r(g))

Thus we have a space R, of functions f(z), being solutions of the
indicator systems., We wish to Tind & basis in Ra s consisting of weight

vectors

Tof = y(8)f (33)

end to enumerate all +the weights a(S8). We know how Tg acts for any g.

In particular for g = & we have

Tfiz) =a(8)7 (67 28) (3L)
where
m m
1 no . .
a(8) = 6,7... 8§ ~ is the highest weight.

Let us fix the maximal eigenvector s corresponding to the highest

weight a(8), putting

e, = 1 (35)

and obtain the other eigenvectors.
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Definition: The polynomial 8(z) is a weight multiplier on 7 if it is

an eigenvector with respect to the transformation z - d_lzé i.e,

-1

0(877z8) = u{dle(z). (36)

Ir 6(z) is a solution of the indicator system, then e(z)aRa and we have

7.0(2) = 0(8)6(s7128) = al(8)u(s)8(z) (37)

i.e. 9(z) is an eigenvector corresponding to the eigenweight

v(8) = ul(8)als), (38)

Similarly, it follows from (34) that any weight vector in Ry is & Z-

multiplier.

Thus: We have vectors S(Z)ERa acting as multipliers on the group and

multipliers u(6), acting in the weight space:

: N
<71 A 3)\
8 (z\‘

Remember that the highest weight is

ml mn
ul(s) = 8,7 .8 mx my2...m ... integers
It can be shown that
k k k
- 1,72 n
p(s) = 8,76, .8

so that the action of p(8) on o(8) corresponds to the addition:

m, -+ m, + k,
i i i



The multipliers 6(z) and u(8) can be used to construct a basis

in Ra and to obtain all weights and their multiplicities.

Let us égain consider the special case of SU(3).

Spectrum and Basis for the Group SU(3)

In this case we have

The elements of z are weight multipliers in Ran

Indeed
-1 -1
1877 78, 877 256,
-1
§ “z8 = -1
0 1 857 Zp384
0 0

H13 5 Hyp Hpg

Consider a representation o = (ml,me,m3),say a = (7,3,0) and the space

R = R(m mom. )" In particular:
¢ 17273

R(7.3,0)

1k
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The signature is

_ _ _ b3
a = (7,3,0) = [L,3,0] = AJA;

Let us find the corresponding multipliers:
The vector Al corresponds to two multipliers:

by =8y = lzpzggl

(first row in z)

The bivectoré&e corresponds to two other multipliers

z Z
_ - > _ [ %12 13\ }
by =88, = {zyg, 245 = ( L, )

23

Let us show how the multipliers act.

The weight diagram, which we already know how to construct is:
(%,7, 0) \ : ; ‘<sz Az €7f340)

\ f%g TR 4
\

(7,03)

(% !
Let us first discuss just this example:
1 © == —l |- = =
1) Consider P TS 818, kg 1, ky =1, kg =0
Thus we can let
, 2 3 L
1o 2150 2950 2,7 and 2,

act on¢X (because Ai figures in ). Higher powers sre forbidden.
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We get

k

(mlm2m3) —_— (ml,mg,mS) + n(kl,kg, 3)

i.e. (7,3,0) = (6,4,0) + (5,500 = (4,6,0) + (3,7.0)

Thus, we reach five points along the horizontal. Each has multiplicity

one

2) Consider Zygt Moy = 85 63 k. =0, k,==-1 k, =1

We heve:

3

1 2
» Zo3s Zp3 s Zpg

(No higher powers, since A2 figures in the power 3: Ag)o
(7,3,0) = (7,2,1) = (7,1,2) = (7,0,3)

We have four points with multiplicity one.

3) Along the line o = o¥ we use

2. 5 gk
13 %13

Draw an auxilﬁary diagram:
\
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Points (k,2) on a line k+% = const. correspond to the same eigenvalue =>

The multiplicities are:

k+ 4 : multiplicity k + &= multiplicity
0 1 L } L
1 2 5 3
2 3 6 2
3 k 7 1

From here we can easily show, that the multiplicities are constant along each

hexagon.
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Now let us return to general representations of SU(3) and consider

the epectrum and the basis in B .

-

We are considering the s speciel group

det g = 1

s

ignature <mqm Mol o indeed let us put m, = 0

e

8¢ we can normallze the

12}

nd write:

2
i
i«

1w
&2
i
[

e L= 4. represents the vechor representation, 4 = ég the bivector,

e}
bl

Herx

which in happens to be dual to A,

ey g
r~oL f\ r~ ¥:j ‘}

H
@
1]

B with zignsture o = {p,q] consists of ¢h

&
i
m
"
2
Ty
=
g
=
P
;3

: Cfea+bep, 0scgq,b#0
5. . Dekegp, 028 2g
A
Bry 0<ce<p, 0gb+ecgq,b#0
The 5_ along the line o + o® {from the
'

e5 generate the

| 3

/. The multipliers in the ser

®

- - < = . < - .
s 25 soo 5 =dg }‘-~9 [y nmogk o K"'-'-anng,.l.
£ i
& @ ?/ ]
R e
ip=g! * 1 entries
whnere
% §on f Lo 9
#_ 0= Biip.g, + 1,



Proof: Dropped for lack of time.

Grephic illustration:

AN
€.

oL ¥ ,
. R+
The sgeries SO aets along the line ao¥, 812 gbove this line, 823 below it,
Coroilary: To construet the weight diagrams it is sufficient to find all

the vertices of the largest hexagon {which can of course degenerate into a

triengle), Conneet the vertices as shown below

The muliipli
by steps of one as we move paraliel to the line co¥ till we hit the triengle,

where the multiplicity reaches ites maximum walue ko = min(p,q) + 1, Beyond

the triangle the multiplicity mgein decreases to 1 by steps of one
% Y D

Examples:
w“,__,g,_,V/’/?’eﬁ
Qlig\\\;:\\\
\\\ vector (= quark\}

%,
4y

=
(Q
4



- bivector (= antiquark)

ootet

Separation of multiple points in the spectrum

The weight vectors corresponding to degenerste (multiple} weights in the

spectrum obviously cannot be characterized by the weight they correspond
to and must be enumerated differently.

The weights themselves were obtained by considering the representation

We can perform such & reduction by steps, i.e, first reduce the giroup

G to a subgroup GOB where

(det 8)5. = 1

(%



for all ga&Gon We can then restrict ourselves to the case when 2 is
diagonal. This makes it possible to use the highest weights for the
representations of Go to label eigenvectors.

Let us first consider an suxiliary problem, namely the reduction

of U(3) to U(2),

We drop the condition det g = 1 and the normalization of the

e

signature (m_, ,m,.,m
1°72°73

Remark: In the language of Young patterns the restriction U(3)—> sU(3)

corresponds to deleting all columns of length 3 (n for SU(n)):

A

X/ k_
/s

(each such column corresponds to a factoréln(ﬂngﬁr SU(3)) in the highest weight

D, P D
. oA LT2 n
&= Ay TAy e BT

haowever An =det g = 1},

T%e@=tﬁﬂ,GoNU@),Lea

=G [ & [O u(2)
g 80, BoT 0 2eU(2)

001

Problem:
Consider a representation of G given by the signature o = (ml,mz‘m ).
We wish to restrict G to GO and find all signatures of the representations of

Go’ realized in the space Ra“ Thus, we are looking for a decompesition

where Bi are the highest weights (the signatures) of irreducible representations

of G ,
o}



Solution: We must find the z-invariants of the subgroup Zo:
l x 0
7 o= 0O 1 o Z ez
o o
0 0 1

In Ru we have

E% f(z) = f(zzo)o
o]

Thus, the maximal eigenvectors must satisfy
m(zzo) = w(z) 2 €2 _s

An arbitrary zgZ can be written as

7

/ I
1oz, 2, Loty f1¢ o
z = 0 1 223 = 0 1 t2 0 1 0 =
0 0 1 0 o© 1 0 0 1l
10 213 /fl Z4p 0
= 0 1 223 0 1 0
0 © 1 &\O 0 1
Thus w(zzo) = w(z) if w(z) does not depend on ¢ but only on t, end ty

)

w = w(nl,te

The maximal eigenvector for G was mo = 1, This will certainly be a maximal

eigenvector for a subgroup, so



is one solution of our problem. The other solutions can be obtained

by appxyiﬁg certain Z-multipliers

W, = wi(tl,t

) to w .
A o

2

The Z-multipliers tl = 213 and t2 = z23 correspond to the

multiplier

-1 -1
Hy = 6p765 and uy = 8,78,

in the welight space. For the subgroup U{2) we must put 63 = 1, Thus

the application of My and Hy corresponds to decreasing the number my and
m, in the signature by steps of one,

We obtain the theﬂi#%}n:

If we reduce the representation o = (ml,mg,mB} of U(3) to U{2), then

we always have the signature

)

B = (ml,m

(o} 2

for U(2) and further all signatures obiained as

= kl kes = (m,-k., m.-k,)
Hp Mg P = My=ky, mo-k,

Putting o = le,m2,m3) = [p,q,r] = [m.l-,-m2s Wy~ s m3] we have

The spectrum of the subgroup U(2) in a representation of U(3) is simple

(there is no multiplicity problem).



In other words:

All signatures (21,12) of U(2) will figure once and only once,

for which

2, mlzzlam23£23m3
l, 4
WA, (W\\)W\z\
WA, \J//L\Z
- LAY ™ él

In terms ofYoung Daptgrns:
We obtain the reduction U(3) D U(2) for a given representation of
U(3), by:
a) Eliminating the third row
D) Teking the obtained diagram and gradually decreasing the length
of each row till its length coincides with the length of the

following row in the U(3) diagrem.

Exampie: ‘
] = 111 +E\:\+E*
1
D) E‘:_]_]J‘:D + I \
(5,3,2) = (5,3) + (4,3) + (3,3) +
u(2)

(5,2) + (4,2) + (3,2)

Thus a basis for representation of U(3) (or SU(3) can be characterized

by e pattern

=1
=
8
=
v
©
v
=]
v
)
v
=]

<2
1]
>
>
>
v
3]
v
>

(2 Gelfand-Tseitlin pattern).



Here my s Wy and m, are fixed and determine the representation (or its
highest weight), whereas 21, £2 and s, run through 8ll possible values
and characterize the highest weights of the representations of the

subgroups in the chain of groups

u(3) 2 ul2) Dul1)

The generalization to U(n) is now straightforward.

The Gelfand-Tseitlin Basis for U(n)

Reduction U(n) ™) Ul(n-1),
Choose the basis in such a way that the relevant U(n-1) subgroup

is realized by the U(n) matrices

aeU{n-1)

T~ OO

Consider an irreducible representation of U(n):a = (m,.....m ). We can
1°? *n

agein show that in the reduction of o to U(n-1) we have

1) The signature

Bo = (ml"°°mn-

R

is always contained in o .
¥ U(n-1)

2) The other signatures can be obtained by applying the z multipliers

in the last column of



and Z1en corresponds to the weight 6;16n = 6;1, so that the reduction

o contains each signature
U(n-1) &

B = lemslganamnusn) s

w
o

once and only once (subjest to the condition thet B is indeed a signature,

i.e. satisfies the usual ordering conditions).

Theorem: The restriction (mlmea,o n) U(n-1) contains all signatures

(215850002 ) for U(n-1) once and only once, for which:
1°72 n=1" "

The Gelfandmmgejtlinmﬁaﬁise

Consider the reduction

Uln) 2U-1)2 ..... ) UL)

and classify a basis so that

.

g

The largest boxes correspond to irreducible representations of Uin-1)

the smaller ones to U(n~2), ete, down to U(1),
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Each basis vector corresponds to a pattern

Sl= -] -2
1%
"1
with
m,y E ll > m2 2 12 sose En_la mn
s ah 2 ®nep = ‘n-1

Again m_ ...,m_ are fixed, all other signatures (of the subgroups)run
1777

through all admissable valuer.

Thus: =& vector eY is & basis wector if it is contained in the representation
of U(n-1) with signature ézjnanzn 1)g in that of U(n-2) with signature

(sln“sn_g)S ete,

Remarks: The chain of subgroups U{n) DU(n-1)D DU(1) is called an
enumerating cone. Its choice is not unique. The cone corresponding to

the chain
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leads to the Gelfand-Tseitlin basis. The eigenvector eY corresponds

to the weight (the eigenvalue):

u +u2)-vl (m myt, b Y={2. %2

v, ( 5 +0
v(8) = 162 voo 8

1 7 n-l)
n

The number of parameters determining y, if we exclude the signature (m....m_ )

is

1+ 2+, 401 = 2D

) o

<

equal to the number of parameters in the group Z. The basis vectors e
can be given explicitly, but we shall not do that.
2) We could have chosen different cones, e.g. by fitting the

subgroups inte the group differently. For U(3) the possibilities

are

X X X and also x| xyx ete.

\'<j>:c éz) X X x

Mathematically all these schemes are equivalent, but their physical
interpretations cen be quite different. Thus in the eightfold way the
Tirst three disgrams correspond to the splitting out of isotopic spin

(I-spin), the next two to so-called U and V spin,
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It is an interesting mathematical problem (with a lot of physical
content) to construct the operators connecting different bases with
other and this cén be done quite simply in terms of.z—multipliers°

3) The Gelfand-Tseitlin basis is mathematically very simple
and pretty, unfortunately it ig not always that Bésis which is of
physical interest. Thus, for SU(3) in particle physics it is directly
relevant, since the SU(2) in the chein corresponds sey to isospin and the
U(1) specifically to the third projection. However, already in SU(6) we

are interested in the subgroup:
su(6) 7 su(3) x su(e)

rather than in the Gelfand-Tseitiin chain, containing SU(5), etc.

For SU{3) applications in low energy nuclear physics (the shell
model), or in =a guantum mechanical treatment of the harmonic oscillator,
we are interested in an 0(3) subgroup corresponding to angular momentum and .
this O(3) has nothing %o do with the SU{2) of isospin.

L) Similer Gelfand-Tseitlin bases =xist for the other classical
groups ~ the orthogonal and sympletic ones.

5) For non compact groups there is a much greater variety of possible
subgroup chains. E.G. for U(2,1) we can consider two obviously non-equivalent

chains U(2,1) D U(2) 7 u{1) and U(2,1) D U(1,1) D U(1), as well as others.

- Characters of Irreducible Representations

Let us, without elaborating, introduce a concept useful in many

applications, namely the character of an irreducible representation (see

Weyl's book).

X(8) = TrT,
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Thus: the character of Tg is the sum of all weights of Tg, each entering as

many times as is its multiplicity.

Weyl derived two different expressions for X(§):

_D(zl,za,,,o,zn)

X(8) =
D(n-1,n-2,..0)
where: Zl =m, + (n-1)
L, = m, + (n=-2)
Rn—¢ = mn—l 1
£ =m
n n
and ’ Sll 22 SLn
61 51 00051.
D(2. 48, 4000k ) =
172 n
[ ) £
5,15 2 . .80
2 2 *tTe
. g
g L g m
n n
(2)
g o c
m *m+1°m
x(8) = 1 M7 Mrenel
m -(n-1) m
n n
s 5
- s n
Um(d) = ] 8, 7. 8
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Dimensions of Irreducible Representations of SU(n)

Using Weyls formulas we can derive an expression for the dimension of

the representation
a = (ml,,uu,mn)

namely

w(l,—la)
A
, , i<j
dim o = -*——?;—7;-
ﬂ(li—Lu
1< J

where % mj+(n—j) j=1l...n

The simplest way of understanding this formula is in terms of Young
diagrams, Indeed, the method is the following: draw the Young pattern
corresponding to o and eliminate all columns of length n (for SU(n)).
Write the numbers zg = n-1, n-2,,.,2,1,0 next to the pattern. Then

gj =(£§ + length of roﬁ) Write dim o as & fraction with & Zn and

OE a8 0
S
2l differences ﬂi—lﬁ, i < J, in the numerator and Ejunn n and all differences
Eg - ﬁg s 1 © J, In %he denominator. ’

Examgles:
o] o} (o]
A, 8U(3) 2122, 8521, £.=0
1) 2
1
0 2, = 2¢1 =3
L, =140 = 1
23 = 0+0 = 0
1 -
dim(1,0,0) = 3.1 3-1) = 3



2) 2 '13
1
0
3) 2T
1y
0
yy 2 ]
1
0
-B. 8U(6)
1) 5
L
3
2
1
0
2) 51T
l‘-"‘
3
2 e
1
0 &
3) 5
L
3
2
Remark:
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fundamental role in group representation theory,

corresponds to
symmetry, then

symmetry to an

the breaking of a symmetry.

Thus :

The reduction of a group to subgroups, as we see, plays a

. : . Ne . [
aim(2,1,0) = 2 2) g
2.1.(2-1)

ain(3,0,0) = 21l o g
2,1

. _ 5.3

dim(3,2,0) = T+ .2 = 15

dim(1,0,0,0,0,0) = 6_01&.'3,2',1\2‘?.3J¢«mf5. 1,23 .1\b2~;‘1‘=
5.4.3.2.1 1.2.3.4. 1.2.3.1.2.1

dim(2,1,0,0,0,0) =~J:5.3.2.1~2.k.5.6 2.3.4 1.21 _
5.4.3.2,1 1.2.3.4 1.2.3, 1.2 1

dim(2,1,1,1,1,0) = 7.5.4.3.2 2,3.4.5-1.2,3 1.2 \E
5.4.3.2.1 1.2.3.4 1.2,3 1.2 1

In physics this reduction

We have e.g. &n SU(3)

we introduce medium strong interactions reducing the SU(3)

SU(2) one.
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Casimir Operators

Above we have used the highest weights of a group and of its
subgroups to separate multiple points in a spectrum (to remove a
degeneracy). In physics this is usually done by introducing a complete
set of commuting operators (a complete set of observebles),

The corresponding problem in representation theory is: given a
representation g —+ Tg find all functions of the operators Tg (or of their
generators), which commute with all operators T .

These operators are called Casimir operators, or Laplace operators, or

Beltrami operators.

Definition: Envelloping Algebra.

Let M be a set of matrices, not necessarily an algebra. Add to M
all products of elements misM and all linear combinations of productis. We
obtain an algebra U(M), called the envelloping algebra.
Example: The Pauli matrices 61,62 and 03 do not form an assoclative slgebra

(with respect to multiplication), since 012 = e, Add ie =» we get the

envelloping algebra.

The Universal Fnvelloping Algebra of a Lie Algebrs

Let X be an abstract Lie algebralover the field of complex or real

numbers). We know the commutators of all elements x,yeX:

[z,y]
We can define a new operation - multiplication: xy- sp that
[x,y] = xy - yx
It is sufficient to do this for the basis vectors:

€. 5 Eogooal
1®* T2’ n



and write‘éll products

remembering that

k
[ei,ej] = egey-e ey = Cijek
We obtein en infinite-dimensional algebras A(X), called the&?ﬁiversal

envelloping algebra of X. A general element of A(X) can be written =s

(s) iii2°°is
t = % &y & o0.8
172 s
1.e00d
The tensor % can be taken to be symmetric (& tensor which is

antisymmetric with respect to a pair of indices can be reduced to a lower
order tensor in view of the commutation relations for ei)n

If we have a representation of the Lie algebra X

we can continue it to -a representation of the envelloping algebra A(X):

€. €, a..€, —3 E, E, ,..E,
1o s 1 o ls
The obtained representation is itself a finite-dimensional.envelloping
algebra for the given representation of the Lie algebra X (since each Ei

is a finite-dimensional matrix) (at least for finite dimensional representations

of X).
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The Casimir operators:

Consider a commutative subalgebrsz C(X)of A(X)

clx) ¢ AX)

such that the elements

cisc(x)

commute with all elements of A(X). We ecall C(X) the -centre of the
envelloping algebrs A(X) of the Lie algebra X.

Consider s representation of the algebra:

An element cisC(X) gets repregented by an operator Kc

c = K
o

If Tg is irreducible, then it follows from Schur's lemma that Kc

iz & multiple of the identity operator:

The operators Kc are called the Casimir operators for the representation

T a
g



Lecture 20

Construetion of the Centre of an FEnvelloping Algebra

Put
i ...13
C=c 1 8 o0o€
1 s

and let

[C,ei] = 0 i=1,2,...n

iluouis

This is & system of equations for the tensor ¢ . However,

let us use a more global approach, using the adjoint representation

of the algebra and the group. The representation
e, —>E, E,e, = [e.

is the adjoint representstion of X. Exponentisting, we get the

adjoint representation of the group:
g~ plg)
acting in the algebra X:
]
() e, =p.(ge .
p(g) 3 DJ(g <

The monomials

transform according to the tensor product

D(g)® o(g)@,”®o(g) (s factors)



since it is easy to check that:

We obtain the rule:
In order to find all elements of the centre of the universal
envelloping algebra of the Lie algebra X, it is sufficient to find all

symmetric tensors over X, invariant under the adjoint representations of

the group olgls

Let us simplify further. Consider a row-wvector

u = (ulsuegunoun)

transforming covariantly.

We have
k
E,e, = le,.e,) = ¢, e
i3 I i’ JJ ij7k
Thus:
k
B.u, = &,,
i) 13uk
i nauis
Take & symmetric tensor C end construct the polynomisl:
I §
i 5
$p(u) = ¢ U, ool
i i

The invariance of ¢(u) corresponds to
/ =
¢inu) =0
or in terms of the adjoint representation of the group

o{o(glul = ¢(u)



We obtein a simpler rule:

In order to find all elements of the centre of A(X) it is sufficient

to find all solutions of the eguation:
$lou) = ¢lu)

where ¢{u) is a homogeneous polynomial of & covariant vector
u = (ulsugguocun)‘and p = plg) is the adjoint representation of G

]

acting on X. Onece we have ${u) = ¢(uluouun)5 then

£ = ¢(else2,oc,en)

is an element of C (remember that ciluoui is & symmetric tensor),
Example: Consider SO{3):
[alall =0 fa2a1] = <&, {a3a1 = 5,
[alaz‘ = tag [a2a2 = 0 [a3a2] = ~a,
~[ala3] = -a, {aeaSE = & fa3a3} = 0

We replace these commutation relations by the trensformetions of &

row vector

(uy u, v,

A2(ulu2u3} = (~u, 0 u,)

A3(ulu2u3) = (u2 =u. 0)



Thus: The action of A; on Culu2u3) corresponds to infinitesimel

rotations about the axes Oul, Ou2 and 0u3, respectively ===§7 the

adjoint representation coincides with rotations in the (w.u.u.) space.

17273

Now consider the eguation
dlou) = ¢{u)

We know that the only independent quantity that is invariant under

rotetions in a three dimensional space, namely

u2 = ue 4 ug + u
1 c 3
Thus we have
¢flu) = Flu®)

where F is an arbitrery function.

&

It follows that the centre of the envelloping algebra for 0{3}

consists of sll operators

: 2 2
F{a) , L = B, * &, &

2

Thus. 0({3} has only one independent Casimir operator

A = a? + a2 4 g
1 2

A}
w N

Adjoint Representation for a Matrix Group

For & matrix group, we have

-1
ple) x=gxg



Indeed, for the algebra we have

- ta ~ta . .
(Legalx=e xe = {1+ ¢a) x (1ta” = x + tlax]
50 that
ax = [m,x]
Remark: dim @(g} = dim G = finite. Do-not confuse with the regular

representation vhich is infinite dimensionsl

Consider the group G = GL(n,C) (or G = GL(n,R)). It can be easily

shown that all polynomials satisfying
%) = plx. .} = pf -1y
plx) = p,Agji =plgxg ) geG

can be expanded in terms of powers of the traces

"l = T r\‘-z':m
p, (x} = Irx,non,pnﬁlj = Trx

; . n m*
\possibly slso including terms like Tex iTrx‘ﬂ

Casimir operators for Uln):
Using the commutation relationsg for &, We can check that the

operators

form & complete basis of the centre C.
From here we can directly obtain the theorem: ALl Casimir operators

for the group U(n) in any representation can be obtained as functicns of



the n Casimir operators KS:

Ky =By

Kp= B 4 B
11 14y

K, = B B , ...
1112 12.1.3 ln l

Remark: For SU(n) we. must exclude Klo

Eigenvalues of the Casimir operators

Consider an irreducible representation o = (ml,uaumn) of Ul(n).

From Schur's jiemma we have

for all Casimir operators. We are interested in the relation between
ki and m_:,L {the eigenvalues of the Casimir opersators and the highest
weight).

Censider the meximsl eigenvector w. By definition (of w) we haeve

E+w =0
(E+ is the subalgebra spanned by Eij’ i<y,
We also know that
Eiiw = mw i=1,2,...n
For the linear Casimir operator Kl = ElI + E22 +uDB+Enn we have



The quadratic Casimir operator is

=
1
.
jea)
t
+
o P
3]

2, ] E..E
<

2 ¢ L BasBas
i j J

The First term snnihilates w. Commute the entries in the last term:

Thus:
2 2 2 w
= Fmotoo.tm )+ ) (m, -
L (ml m, mg) L (mg mj)
i<j
In general
s s s
= + oot ) }
k_ (m1 m,, mn) X(m)

where X(m} is a polynomizl of lowsr order than s. T% is not difficult

n

to construct X{m) exsiicitl but let us leave it at that.
-1 9

Complete-Set of commuting operstors

A compliete set of commuting operators can be constirusted in the
following manner. Take the Gelfand-Tseitlin "numbering cone", i.e,

the set of subgroups:

Uln) > Uln-1)2 ... ul1l: ___!




A complete set of commuting operators, which removes all degenerascies
g 3 $

consists of the Casimir operators of the group Uln) and those of all

subgroups
Ulo-k) , k= 1,.0.,8-1
Notation:
Uin}: Kips Kopooo K 0

ST R
Uln=1): Kmm1

o
=
-~
§s
§s

The disgonal subgroup T is automatically included as

Kope1 = Bagteeo¥Ep 5 01

K = E__+,,.+E
In=Z2 11 n-2,n=2

Let us hereby finish our expesition of the representation theory of
;. 3 oy 3 3 4 A
compact groups {(and of the analytic representations of non--compact ones),

There mre of course many importent questions, which we have not even
irect products of representations

[}

like the reduction of
ents), the transformstion metrices (th

e

oeffic

(4]

Gordan series and
D-functions for U{n}) and meny others,
We have actusally slready considered representations of non-zompact
groups, however only analytic representations. A considerastion of more
general finite dimensionsl representatiocns containing analytic and antianalytic



parts would be very similar. Indeed all sbove considerations.can
be directly generalized to arbitrary "real" representations.

Instead of one signature o we shall have %wo

o = [plapz,auuprl

B = lay.05.000,]
end in the space of functions over the subgroup Z we have
Tgf(Z) = a(z,g)R(z,g)f(zg)

where ol(z,g) and 8(z,z) themselves form en analytic and an anti-
analytic one-dimensionel representation of the subgroup Z. Let

us now consider unitary representations of noncompact groups.

Unitery Representations of Non-Compact Groups

In this chapter we concentrate only on one series of nencompact
groups, namely SL(n,C) and wish to consider, in some sense,all
representations. The methods are a straightforward generslization of
the method of highest weights used for analytic representations. They
can be and indeed have been directly applied to all semisimple groups.

We shell also devote one lecture to more general Lie groups.,

References:
1) I.M. Gelfand, M. A. Najmark: Unitary Representations of Classical

Groups (In Russian or German)

2) M. A, Nejmark, Unitary Representation of Noncompact Groups.
(Lectures at Summer School on High Energy Physics and the Theory

of Elementary Particles, Ed. V.P. Shelest, Kiev, 1967) {(In Russian).
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i. Definitions:
A :epresentation of a Lie group G is a mapping g-e»Tg of a group
element onte & group of linear operators acting in a 1inéar space E,

The mapping satisfies

1) T =71
e

2) T ,T. =T,
g1 & 818y

3) ‘Tg depends continuously on g

The representation is finite dimensional or infinitely dimensional
depending on whether E is finite or infinitely dimensional.

A representation is irreducible if there are no closed inveriant
subspaces in E, except for {0} =znd E, (to make this meaningful we must
have some topology on E for infinite dimensiocnal spaces),

A representation is unitary if ﬁhgre exists & positive definite secalar
product (xﬁy)’fer *,y€E, invariant under &ll transformations of the

group:

2. Induced Representations

The method we are using is directly related tc Mackey's theory of
induced representations, which we shall come back to,

In this particular case (of complei semisimple groups) what is
going on is the following:

We have a group G and a subgroup K. Consider a representation
k- Vk of the subgroup K in space L. Consider a set F of vector functions

o

(g) defined over the group G and with wvalues in L, satisfying
1. F is & linear space with respect to the addition of the functions
f(g) and multiplication by & number.

2, flkg) = ka(g) for keK, geG (some sort of homogeneity or

covariance condition),



1i

3. F is inveriant under right translations, i.e., if f(g)ecF

then f(ggo)aF for all g8 ,tG,

Define an operator Tgo acting in F as

é:é@f(g) = f(ggo) g8, &G (1)

The mapping g -+ Tg is a representation of G since

iy - 'f“‘, - T ) = {; 5 o= af k)
g flel ﬁgl {gg,) gléig)» bleg,) = tlgg,a,)

'

-
m
]

f(gge)eF by above wondition 3).

The representation g*ﬁuTg of the group G, given by (1) is called &
representation of G induced by the representation k~ﬁmvk of the sub-

group KC G,

Notation: T

3. Application to the Group SL{n.C)
‘ i)

Teke G fo be SL(n,C) and K C ¢ as the group of upper triangular

matrices:

k 1’ DGDOOkL ‘
11 12 in

Koppgeolyy

Let us take the representation Vk of K to be one-dimensicnal, given

by & complex valued function wl{k), defined on K, such that



iz

ale) = 1 (2)

m(klkz) = u(kl)a(ke) , (3)

The condition flkg) = ka(g) now is
£(kg) = alkiflg) (4)

In this case F consists of complex walued functions f(g) (since

L is one-dimensional}, satisfying

1} F

koo

s & linesr space
2y flkeg) = alkif{g) keK, el

31 If f{gieP then flgg_JeF g, g eC.
G o
The representation is given by the formula:

T *{g) = £lge ) (5)
. °

I% is easy %o show that of{k) can only depend on the diagomal
elements k,. {the condition det k = 1 can be used to eliminate one of
o

the kii}n Aetuslly (2} and (3} can be used to show that

na
no
[\Y]
o
e
il
i
i
O

where m_ are integers, o

. —-complex numbers.

k
This ceonstruction sctuslly lesds wme,. ss we shall see, to,

irreducible representations of SL{n,C).

b, The triamngular decomposition

We shall use & slight modificetion of the Gauss decomposition which

we have been using, nemely we shall write

g = kz keK, zgZ (73



where Z is the group of nilpotent lower triangular matrices:

1
2= 11 O

“31 %3 1

z ) “za . Z 1

Similarly as previcusly denote

plpg"““pm pl < p2°°°q:p

A8pee-qp Gy S %o ey

& subdeterminant of g, constructed out of the elements gik on the

intersections of rows plnnpn and columns qlw,qnc Then:

o0 7 (pqi%:\::: psa (8)
(q+¢ a#2. . .n }
g+l g+2,..n
p*lnonn
qu = (q p+lu=°n (9)

D p+1annn
P ptl...n
These formulas make sense if the denominators are non-zero, Thus we
can represent "almest" all g in form (7), namely we have to exclude
& manifold of lower dimension,
For f(g)eF, g = kz, we have (in view of (4yy:
rlg) = £(kz) = a(kir(z) (10)

similarly as for the analytic representations considered previously.

13



1k

Sinee @{k} is fixed, (10) allows us to replace f{g)cF by

f{z)eF, defined over the subgroup Z.

In this realization we put

'I‘g #(z) = o¢(z)

o
= kz = k''z
g ggc go
Then we have
T flg) = £legg,) = £lk"z
g
T g} =T alk)r{z} =
g g
G ol
Thus:
T w ; "1 nSaf
T #{z) = ¢lz) = alk) alk")flz
ST
However: krg = k"z so that
© g

o

28, = kvk"zg

Finaily:

k. k"eK, z =
S{ 3 ,t-ag

) = af{k")f(z
g

3

1§

- %
Wi

zg = kz
ggk

—~—
L
NS

e

)

4

a{k}¢(z)

f—»"‘j- NnNym 4
Ak k" )P
alk JE( g )

(13)



Example: sL{2,C):
zg = kg
g
10 g g. '
11 Bip ko Eip 1
“21 g g
21 ©Sp2 0 k22 (Zg)El
811 = Kyt Epplels 701811 8y = |
Bip = ko Zo181p T Bop = K

The metrices Z and g are given, we solve for k and Zg

L -
k., = g koo =
12 12 11 g12221+g22
Koo = 8% * 85 {zg}zi = B13%p178p;

S ¥~ 4
810%21 800
Thus, the action of Tg on £{z} in {1k} is the following:

9

iy

linear transformation

2) The function f(zg} is multiplied by the multipl

15

Zglay

22

The argument z undergoes a generalized fractionsl-~

ler

. 4
alk}) = ¢ 7,81k depends on the transformation g. the point

z and on the representation we are considering).
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5. The Invariant Scalar Product., The Principsal Nondegenerate Series

Let us restrict outselves to unitary representations of SL(n,C).
We must then choose such a space of functions F, that we can introduce
an invariant scalar product. Let us first introduce an invariant measure
on Z.

Put

Z = X + 1 » x real
pa - Fpa T pg * P T Y o Fpgr Ipg FC

It can be shown thet the left {and right) invariant measure is

df{z)= 10 .dx a (1
u ) p,a=1""pg ¥ pq 5)
D *q

Let us now consider the space of functions f{z} satisfying

j!f(z}igdugz} < o

{Integration from -» to = with respect to all Xog and ypq}a This

space is & Hilbert space, denoted LEQZ) with the scalar product

(fﬂan) = [ flﬁzﬁfziz}dufz} (16)

2
558 L (z)

congider the representation:

T e(z) = (x)f(z )
g g

m +0_ -m
m n

[ nn



where menumn ere integers, Ug,onncn are complex numbers., To find
out which representations are unitary with respect to the scalar

product (16) we must put

‘F"\:
(fl,-2} (Tgfl,Tng)

This condition poses a restriction on Ty namely:

o = ip, - 2(k-1) k=2,3,,..,n (18)

We shall prove this below for sL(2,c) only. The result is:

The principel nondegenerate series of unitary irreducible

representations of SL(n,C) is determined by twe sets of numbers:

the integers mg,non,mn and the real numbers peﬂgun,onu The representations
are then given by formulae (17) and (18).

We have not yet proved irreducibility. The way to do that is to
use Schur's lemms and show that'any bounded linear operstor in szz)5

commuting with all operators Tg is a multiple of the identity.

Example:
SL{2,C) (locaelly isomorphic %to the hemogeneous Lorentz group 0(3,1)}
Take: zel z = 10 2= x4 1
z 1 " s

f{z) = £{x,y)

L2(z§ is the space of functions:



Put

o B

Representations of the principal series:

. - meg w11 ozHy ,
Tgl(z) = |Bzes|"  (Bz+8) f(gz+6 (19)
. | - . Ggeky
{since Koy = Bz#és_zg = EEEE) .
Here m is integer, o = -2+ip, p = resl. Unitarity: dz = dxdy

j T2 T F, dz = | |Ba+s "0 (gaes) ™™ fl'(“g? )

gl ge Rz+d
Lokmbo¥® T em az+y)
3¢ F51 f Yo =
EBZ’ 5& »BZ*GE f2 <—m32+6 az
{ % Y
. S 10FE < az+y\ mz+y} .
jiﬁZ%°E I\ Bawe | Tol Bzws) 92
" oty
Put T %, We can chegk that
2
dz
dz = 'a-;\ du

(See Appendix in M. A. Najmsrk: Linear Representations of the

Lorentz Group).

We have: %% = (Bz#6)° so that
1 Py B @+§ﬁhf (Qf (04
jTgfl‘z) Tgfg(z;dz = |zt ] ,1‘u)f2‘u)au

- . ; . . - .o # .
Thus: the representstion is unitary, if o+ + 4 = 0 =2 o= -2+ip.



=

Remark: 1) For SL(n,C) the terms -2(k-1) in (18) are necessary
precisely in order to cancel the Jacobian of the transformation
Z ¥z

g

2) Formula. (19) also gives the finite dimensional

representations of SL(2,C).

T plz) = (Bz+s )M (Bzeg )Y P (%%%%\ M,N...non-negative (20)
= ‘ integers’

if we put
m - ip -
_E“{*’é‘!"wl—M
m ip
_— Sl ] =
573 N ,
}
i.e,
ip=s M+ N + 2
m = -MEN

In particular the anslytic representations eorrespond to N=0, i.e.

ip =M+ 2, m= -M,

6. Realization of the Principal Nondegenerate Series On the Unitary
Subgroup
Instead of using functions defined over the group G or the nilpotent
subgroup Z, we can consider functions over the maximel compact subgroup
U, in our case SU(n).

Put

r o=su(n)() x (21)



Obviously: yel iff

e i¢l
er 0 (22)
y = : .
() " l¢n
e
and det vy = 1
91 * O tec.tp =0 (23)

Lemma: Every matrix geSL(n,C) can be written as

g = ku keK ueSU(n) (2k)

If we also have g = k'u', then k' = ky , u' = y—lu, vel,

Proof: Take k—lg: the last row in g is multiplied by kin’ the last

but one row in g is replaced by & linear combination of itself and the
iﬁéi row, etc. This is the same proceduge as the orthogonalizetion of &
set of vectors and we can use it to orthonormalize the rows of k_lg,
Hence knlg = u can be teken to be unitary, so that g =ky. Further:

g = ku=gkrur => i = wu'TT = p, Obviously reK, re SU(n) =>

r Y. Thus

k' = ky u' =¥ 1u Q.E.D,

On the group G we have f(kg) = oa(k)f(g), so that

£f(g) = flku) = oa(k")f{u)
similarly as we had
flg) = flk'z) = alk')f(z)



Thus:
£(2) = o Mk a(k)(u) = o M) = ali)e(u) | (25)
Also flyu) = aly)r{u) yel' (26)

In view of (17), we have

~3ilm 4 F
1(m2,2+,u°+mnmn)

since kﬂz = Yoo =€ 2 =2,3,...,n,

Explieitly celeculating Jacobians, we can check that

f[f(z)fzdu(z) = j!f(w)]gdu(u)

where du(u) is the invariant measure on the Group U,

It follows that (25) gives an isometric mepping of Lg(z) onto

Li(u}: the space of all functions on U, satisfying (26) and

flf(u)lzdu(u) <

Representations of the principal nondegenerate series are given by

the formula

Tgf(u) = a(k)f(ug) (27)

where k and ug are given by the formula

ug ku



Proof:
T flg) = T alk')f(u) = alk")T £(u) g.=k'u
% & %
T flg) = flgg ) = f{k"u_ ) =oalk")f{u_ ) gz =k"y
&, o" g gs o go
Thus: T f(u) = a(k' " k")f(u )
.8 24
o o]
Finally: T f{u) = o(k)f(u )
, g g
ug = ku E.D.
. Q
The non-unigueness in g = ky is irrelevant, since if g = k'u' = ku, then

-1

w(k)Eu ) = alen)ely ™) = @(k>a(y>a<fl)f<ug) = a(k)f(u )

g g

The realization of representations of G in the space Lg(u) is convenient
for solwving the problem of the reduction of the represenﬁaﬁion g Tg to the
subgroup U = 8U{n)., The representation Tgiu will definitely be reducible
since all irreducible representations of SU{n} are finite-dimensional.

Let us find the irreducible representiations of SU(n), contained in the

reduction ngun

We have:
T flu) = alklf(u_)
o} o
uu = ku
o u
o
Put: k=e, u = uu—-;, then
uo e

Consider an irreducible representation of U:

v L , )
u~+c (u) v = set of numbers, e.g. the signature of

a representation.



Choose such a basis, that c'(y) is diagonal:

v = 3

The corresponding basis is galled canonical anduxj@”) are the weights
. . v . " s
of the representation , Since C'(u) are the operators of a representation,

we have

ng(uuo> = é C;s(u)C:m{uo),
in particular
o}, (yu) = w, (y)c? (u)
Jr J JETT
C;Z(uv) = C}i(u)mgiY)

For SU(n) we' already have expansion formulae, folloving from the

Stone-Weierstress theorem, namely the Peter-Weyl theorem: Any function
. o,

f(u}e Lgiu} cen be expanded in terms of the matrix elements of the

3

[

irreducible representations of SU(n):

() = §  vy.cl (u) (28}
vie 97
We have
fya) = alyirlu) = oly) 7 b?‘C? {u)
Tg JETJR
vil
y b ¥ | T 5
£lyu) = (yu) = L fyvie? (u
and £ {yu) } szcjz‘YU) N bjij?\>cjz )
% ‘JL;Q.
50 that
\ Y : 5
v h o , = 9%
[aly) wj(wilbjz 0 (293
. v, N .
i.e, b,, # 0 only if aly) = w,(yv).
JE J



The functions

n . P . . s v
form a canonical basis for an irreducible representation u =+ C (u),

Let giooo be those numbers, amongst 1,°c°mv, for which
. ,\‘Q

fa{y), as opposed to @(k) depends only on the integers (m

ses M ) in
2° ? n)

. . , L 4
nhe“s;gnature of SL{n.C}1,

We have

T C.z(,u) = le(u\f) = le(u)wgw)

Y J
T C,,(yu) = alyiCc,, (u)
s TN Y750
It follows that there are pv-functions
¢’ {uw), ¢, (uh...c¥  (u)
Ja; g, oy

: - . v . . :
in the space of %he representation u ~+ ¢ (u)} with weight wly).

o L P . o . o Vi ’ , X
Thus, p is the multiplicity of the weight e(y) in u += ¢ {u) (note that
aly) is just a weight, not necessarily = highest or iowest one).

We obtain:

Theorem: The reduction u = Tu of the irreducible unitary representation
g =+ Tg of the principal nondegenerate series for the group SL(n,C.to SU(n)

is given by the formula
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and contains an irreducible representation u =+ Cw(u) as many times

as is the multiplicity of the weight a(y) in this representation,

Example: SL{2,C) D su(2).

We have:

Take a representation Tl(u) of 8U(2}, with the highest weight L . This is
contained  in the representation (m,p) of SL(2,C), if m is a weight

in Tl(u), i.e, if
me(~22 ,~28+1,,..,20-1,24) (& = integer or half-integexr)
in other words if |m| < 22 . (For SU(2) we have

_ L PRTEY.
T £(a) = (Bz+8)°% i & +a)>

Since for SU(2) the multiplieity of any weight, in particular the weight
-i¢m

-m (i.e. e ) is p,, = 1, each representation of SU{2) with & 2 IEJ

(and with L integer or helf-integer simultanecusly with i%% is contained

inT ]u°
g .

7. ~Principal Degenerate Series

Let us consider further representations of SL(n,C). Take n and

split it into positive integers:

n=mn+n.t.,.n
1 2 C

no
A
2}

A

n ni >0, 1=1,,..,r.
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Put

811781y
g = conoea

Er1°°Bpp

Here gpq are matrices with np rows and nq eolumns, so chosen that
det g = 1,

Consider the subgroups of matrices

Kpg Bypeeckyy Inl
k = 0 k22“°°k2r 7 = Z21 In2 C>
00 O0DoG & O0O0DOO0 OO 23.1 Z32 In
3
0 0 k eboecccaaan oo
Zrl ZrQ In

vhere k¥ and g are the same type of matrices as g and I is a unit
bq pq ba . n,

matrix of order n .,

k
Lemma.: Almost any matrix g can be written ag
g = kz (30)
where kEKn-u,un s zazn ...no
b r 1 r

We shall not give a proof, nor even write the matrix elements of k and
z in terms of g explicitly, but refer to the original articles. The

formulae are very similar to those in the nondegenerate case,



i2
Representations of the principal degenerate series are constructed
like the non-degenerate ones,
Take a one-dimensicnal representation of K

n<n uaun
12 r

k + alk)
and a set F of functions £(g), satisfying

(i} F is 8 linear space
(11} rlkg! = alk)rlg) kel
Doeeel

(iii} elegleF= f(gg@)aF for g and g =G

(£{g) is & mepping of the group manifeld g onto the space of complex numbers).

A representation of G in the space F is given by

o &= { ) X
Ty flg) = fleg ) A (31}
o}
Since we have:
= \ £ i f 4
elg) = = : <K =/
(g} = flkz) = alk)f{z) chh n L
1 r 1
we can consider functions on the subgroup 7 onlky.
nlnounr v
Then
T rlz) = wflk)flz ) (32}
g g
where
zg = kz keK HE -
N.oooll N. ooold
ok 1 r

and «{k) depends only con the determinants of the matrices kppn
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Unitary Representations of the principal degenérate series are

constructed in the Hilbert space LE(Z .
: nlnocnr

) of integrable functions

over Zn coom? satisfying

1

fif<z>12ducz> ‘=

where u(z) is the invarisnt measure on Zn 0
i o0 en,

:
1.8,

dqu(z) = dy , 2= z__ + iy

dx
pg " pg pg Pq pa

=

¥ am B

g
Q

a

and only these qu figure which are matrix elements of the matrices Zi°€Z

J  n,...n,
- 1 t

The scaler product is

{ ' = ) (
(£,.%,) [ £, (2)f,(z)au(z) (33)
Putting: A, = Det kjj we have
o I R e
m+ip, - \nl+n2) -m, m3+1p3-(n1+2n2+n3) ~my
alk) = iﬂei b, |ﬁ91 hy e r
= (34)
N lmr+ibr-(nl+2n2+2n3+n3+°°2r?~l+nr)A_mr

r r

and it can be checked that this choice of the exponents ensures uniterity

(invariance of (33)). Here

N are real
p25 spr -

Mpysoco sl are integer
and Dislgsocosn, 8TE positive integers satisfying

n=rn.%.,..%n_.
1 r



Thus

of n,

Examgles:

n=2: (SL(2,C}) : No splitting

n=3: (8L(3,C) : 3=2+1
I3 =1+ 2

It can be shown that all

series are irreducible.

Example: Take SL{n,C) and put

we have as many degenerate representations as we have

—
—

hR

"splittings"

10 degenerate series (in the above
sense)

two degenerate series (equivalent)

representations of the principal degenerate

This i1s called the maximal degenerate representation:

We have an“"np = Zn—l,l
I Oucouo 0
0 l.... 0
7 =
O L2~ T -+ l O
Z. Ze.,, i
1 e n-1
f{Z} = f(zlnnnz _1)
‘ o-1 jmEip=-n =
Tz oon) = fg BynZst oy z *e, ) X
) g, Z.+g
i B j=1 90§ “mp ¥
N1
! e, z.4g

.

nn
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Remark: Thus, the degenerate representations are given by smaller number
of numbers M5 Pg then the nondegenerate ones. In the language of Casimir
operators this would mean thet only some of the Casimir operatorsAare independent,
The eigenvalues of the rest are egual to zero or functions of the non-zero

ones.

8, Realization of the Principal Degenerate Series on the Unitary Subgroup

Introduce the subgroup'

of matrices

det vy = 1 (35)

where Uﬁ is & unitary matrix of order p. We have
D

= yu yel .
nluaun

3

Further: proceed as for nondegenerate representations, replacing

I by Fz', o0 okl
- v
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9. Supplementary Nondegenerate Series of Irreducible Unitary

Representations.

The group SL(n,C) has further irreducible unitary representations -
the supplementary series. Obviously - they must be constructed in different

Hilbert spaces.,

Example: Consider first SL(2,C)and a space L of functions f(z) falling of

“at infinity in such a fashion that the integral

[ A(Zl’z2)fl(Zl)fQ(ZZ)dzleE

converges absolutely for all f £ £L and for Az ) to be specified.

1 1°%

Here
dzl = dzldyl; dz2 = dxgdy2 z:L = X1+lyl . Z, = x2+1y2

The scalar product is introduced as

(£ ,£,) = {A(zl,_ze)fl(zl)fz(zg)dzldz2 (37)
In general we can write
_ m+ip=2 -, GZ+Y
T f(2) = |8z (Bz+y) (32 )

(with p-complex)
and A(zl,ze),p and m must be chosen that (37) is invariant under Tg. It

%
can be shown that an invariant scalar produce is obtained if

¥M. A. Najmark, Linear Representations of the Lorentz Group, Pergamon
Press, N.Y. 1969.



. - _ Ow2
m=0 p =ic (a= real), A(zl,zz)— legzg| (38)

For the representation to be unitary the invariant scalar product must

be positive definite. This will be so if:

=
i
(@4
el
]

io 0<ag=x?2 (39)

It can be shown that the representations of the supplementary series are

irreducible, The space L of functions £(z) can be constructed explicitly.

Return to the general case of SL(n,C). Introduce & set of matrices:

z., 1 (ko)

N
1]
b

Representations of the supplementary series:

T f(z) = alk)f(z- b1
g (z) = a(k) (zg) (h1)
m2+0'2k . '-‘cgm2 l mn+cn -mn

a(k) = |k | pp e ]knn

Okucn complex .



Write the inveriant scalar product as

(£,,2,) = {A(T;éé)fICZ)fg(ﬁZ)du(z)du(ﬁ) (k2)

T
vhere du(z) = I dx & Z_ =7 o+ i
ue) =1 PP p o Up

The kernel A(z,%z) must be determined.

The functions £(z) lie in a linear space L, satisfying
a) for £, fEL (42) ‘tonverges absolutely.

b) L is invariant under Tg of (Ll1).

It can be shown that the invariance of the scalar product has quite definite
implications for the n, end o of (41) and for A(z,2z).

The results can be stated as follows:

Theorem: The unitary representations of the supplementary nondegenerate
series can be constructed in a Hilbert space L of functions f(z) with &

scalar product

(fl,f = A(i)fl(z)fg(%z)d%dz

o)

where

0 <g, <1 J=1,.0..T



The operators of the representation are:

T £(z) = a(k)f(z ) zg = kz
2 (z) (k)e( . g z
n-27t m+ip -m T m' +ig! +g" -m
a(k) = 872 1 Ju [P fx Pop L2 Taian @
p=2 PP =1
1+i0'-g" -m'
- Imq iog-op Mg
(¢] ' aQ
k 8 bn.l
where B(k) |k22| [k33[ oo | nnl
and
k= kln
k2n
L]
4
8
X
T
0 uT

Thus, a representation of the supplementary nondegenerate series is given

by n-1+l integers

(0t < %0, RO NP A integers
and n real numbers
[P , oloe,o! , ol,...0" real
1 n- 271 1 T 1 T
with 0<g¢" <1 P = Llyuec,T



lO° Supplementary Degenerate Series of Representations

These representations are given by an integer 1 > 0 and a

pertition

n=n +n

1

+..t0
2 r

where the last 2T numbers are np =1 for p = r-21+l,...r. The representations

are realized in the space
f(z) zeZ

Nooooll
1 r

We shall not go into this here.

1l. ~Eguivalence of representations

It can be ghown that two representations, belonging to different series
are never equivalent. Representations of the same series are equivalent irf

the sets of pairs:

(mlpl) oo (mnpn)

(mipi) - (mipﬁ)

can be obtained from each other by e permutation of pairs and this

rermutation does not take us out of the given series,

12, Representations of GL(n,C)

Same as those for SL(n,C), except that the "signatures" (ml,,umh)

and (plno%ph) should not be normalized,



13, Representations of U(p,q)

These have also been studied by Gelfand and Graev and alsc by
others, using similar methods as for SL(n,C). The main difference is that
U(p,a) groups have further series of representations, namely discrete

representations.

Reference: M. I. Graev: Am, Math. Soc. Transl. 66, 1 (1968),

General Theory of Representations

I. BSolvable Groups

Definition: (a) The group T is solveble if the adjoint representation can

be brought to triaghnalﬁform:

~
s b O
g + adjg = e* = pll(t)’ 0. v
ooy (E)s ppy(E), 0 1 0
pnl(.t)onunnucconnﬂopnn(t)

(The adjoint representation of the Lie algebra is

~

x + adjx = x  vhere xy = [x,y])

(b) The group T'is solvable if the set of derived groups
T LT, . ,T(“)

terminates with

(n)

T = {e} for some finite n = 0.

Here T' consists of all commutators

k = g-lh_lgh g,heT

and their products. T" is similarly constructed from T', etc..



It follows from Lie's theorem that any representation of & solvable

group can be brought to a triagonal form.

II. The Levy-Maltsev Theorem

Consider an arbitrary Lie group G and its adjoint representation

g+~ plg).

G is yeductive, if p(g) is completely reducible

o(g) = //// .
7,

77

If G is not reductive, then the matrices P(g) can be brought to the form

The space X where F(g) acts can thus be split into the direct sum of two
subspaces



where B:is am invariént subspace

p(g) BT B

The Levy-Maltsev Theorem: Any Lie algebra X can be represented

as & sum of two subalgebras

X=A+3B (1)

where A is semisimple and B is solwvable. B is the maximal scolvable ideal

in X and we have

[A,B]C B (2)
Corollary: Any connected Lie group G is locally isomorphic to the
semidirect product

G = R«T (3)

of & semisimple connected group R and a solvable group T. T is a radical,

i.e. a maximel solvable invariant subgroup, so that
-1
RIR-C T (L)
Example: The group of transformations of a Euclidean space En:

G = R-T

where R is the group of rotations about a fixed point, namely the origin,

end T is the group of translations:



IIT, Representation Theory of General Lie Groups

We shall use the semidirect product decomposition of the Lie

group G

G = R:T (

A9}
e

and apply the theory of induced representations.

Mackey's theory of induced representations, more general then it's
predecessor due to Gelfand and Najmark, tells us how to get all irreducible
unitary‘representations of G, given those of T and R.

We shall only consider a simple case, namely when T, in genersl
solvable, is acﬁﬁally Abelian., Let us resirict ourselves to unitary
representations, constructed in some Hilbert space H,

Let us go through several steps, |

1) Congider the*subgrouy T and use it to induce representations.

Being Abelian, T has only one-dimensional irreducible representations:

teT t > Uy Uig = o(t)E EeL (6)

Here L is some space, in general larger than the Hilbert space H gnd £ is a
generalized eigenvector of the generators of T. In this case, we even

know that:

it +o. .t ) L
cx(t) = e 171 nn = el)\t (7)

where A= (Al,,.,,kn) lebels the representations of T and also labels the

vectors & = E£(A).

We are interested in induced representations, so now we must

construct a set F of functions f(g), geG, with values in L: f£(g)eL.



As we know, F must be a linear space, be invariant under right trans-

formations e, and must satisfy a homogenity condition

f(t.g) = al(t)f(g) (8)

Let us inspect this conditions

We can write an element g of G = R.T as

g = (r,t) (9)

with

-1

gt= (rt

. -rwlt) and e = (1,0) (10)

The condition rtr_l = t' corresponds to the multiplication law

(r,t.) (

7 oty) (rgty) = k

t,.) (11)

Ti¥os T T

In this notation an element of T is (1,t), an element of R is (r,0).

We have
(r,t) = (1,%)(r,0) (12)

The homogenity cendition (8) is

flt'g) = £((1,8").(r,t)) = alt")f(xr.t) {13)

Using (12) and (13), we find:

£lg) = £((r,t)) = £((1,£)(r,0)) = alt)f((r,0))

£lg) = e e (r) (34)

10



According to the general method sketched previously, we now consider

representations of G:

g = (r,5) = U(r,t) where

I

Ulr .t )e((r,t)) = f((r,t)(ro,to)) = f{{rr st + o))
eix(t+rto)f(rro)
On the other hand

_ ixg it .
U(ro,to)f(r,t) = U(ro,to)e Mr) = e U(ro,to)z(r)

Finally we obtain

| £00rt, ) i{ll(rﬁo)l+ug°+An(rto)n]fiw )
_ U(ro,to)f(r) =g ° f(rro) = e ¥r
(15)
In particular

1{11t )

U(lgto)f(r) = e ° plr)
’ {16)

U(r.O,O)f%r) = f’(rra)

so that the functions f(r) should be labelled by the index i.

To proceed further it is convenient to make use of the concept of
a "little group” and to consider functions over a different manifeld than
the group R, on which the group R also acts transitively.

We elready know that if we have a Lie group R acting transitively on
a space A, then A can be "inserted" into R. Indeed, comsider & standard

point Ao and & general point A.
A eh Aed
o]
We then always have at least one reR, such that

A= Ar ., (17)



If there is only one such r

is more than one‘rl, then we put

Then
_ -1
Ao Aorerl
so that
-1 _
rerl = hegH

x?’ then [\ and R can be idemtified, If thers

(18)

(i9>

where H is defined to be the little group of 2@, i.e. that subgroup

of R, vhich leaves a chosen vector Ao invariant.

For each vector X let us choose one representative element

rxeG, satisfying (17). Every elemeny of R, taking RO into A, can be

written as hrxo We thus obtain%h family of left cosets

where Ty determines & coset and h an element of the coset.

we write

R = HA and A = R/H

Symbelically

iz
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Thus, the homogeneous manifolds A appear as factor spaces of the group

R with respect to a subgroup H, leaving a certain vector A) invarisant.

A function over the group can be written as f(r) = f(hr}\)° If it satisfies
an inverience condition, like f(hr) = £{2r) or more generally

fhr) = Vhf(r) where V, is a linear operator, giving a representation

h + V, and transforming different functions f(r) = f(hrx), corresponding

ﬁo the same A, amongst each other then we can establish a connection between

functions on, the group R and functions on the space iA. Thus

(r) = f(hr}) =V flr. ) = v £ (1) (22)

where the subscript i indicates that we have in genersl many functions
(1), corresponding to one i.

2) Let us now cemstruct the homogeneous spaces A {homogeneous
with respect to the semisimple subgroup R of G), in a manner close to that
originglly applied by Wigner for the Poincare' group.

Return to the representations of the group T of {6}. We have &
vector S(K)EL, we know how it transforms under Ut’ representing T. Let
us see how Ur’ representing R acts on &£(A),

Put

r+ U, Ura(x) = n(xr) (23)

and see how U, acts on n(x),

Utn(x) = UtUrE(k) = UrUﬁ,E(l) =Ue

n{x) )y

with



We can formally put

A = Artir = rAr Tt o= A't

i.e. replace the transformation of the coordinates ti by a trans-

formetion of the exponents Al.onkn
A' = ot (26)
Remerk: If G is a group of matrices then (25) and (26) can be under-

stood literally, if we suitably arrange the ti into & matrix t (we know that

the ti gorrespond to one parameter svbgroups of T) and the exponents Ai into

~ Lo

P— 1-4.. -~ -~

s matrix A so that t,N, = T_tA . Then A%’ = Trkt' = TrAr ‘tr = TrrAf % =

Tri't = ¢4,
it

Thus: We have a space A of points A, = (Xlonukn) and the group R realizes

1
transformations in A.

If the group R acts transitively in A, i.e. A is a homogeneous manifold,
then we can proceed. If not, then either A can be decomposed into transitive

subspaces ASB i.e. into individual "layers", as in the figure:

or A cannot be thus decomposed. This last case is caslled the "ergodic

case", is the most difficult one and we shall not go into it at all.
Thus, let us decompose A into subsets As on which R does act

trensitively. It is then clear (at least intuitively) that the space H

of the representation can be decomposed into a direct (continuous)
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sum of irreducible subspaces

H = (@Hsds

J

Each of the subspaces Hs is spanned by the vectors E(AS) with AS in A .
Each of the transitive sgbsets AS is called an gggig and its structure,
as a manifold, depends on the group R.
From now on we consider each orbit separatgly, dropping the subsecript s.

The vector £(A) is a vector function on the orbit A, Since the eigenvalues

are, in general degenerate, we write a further subscripts

£ = £.(x)

i
where 1 labels all eigenvectors of the generators of Tl corresponding

t0 one Au

Exemple: The Proper Ortochronous Poincare' Group:
T is the group of translations, R the homogeneous Lorentz group. The

set A is the set of momenta ) = (po,p), the subseript i will be a spin projection

and the orbits are (for each fixed value of mg):'

1) The upper and lower sheets separately of the hyperboloid
p2=m2>0 a)po>0
b) pO<O
2) The one sheeted hyperboloid

22 =2 <o

3) The upper and lower halfs of the light cone

p2 =m° =0 a) p, > 0
_) Py < 0
L) The wertex of the cone:
p° = m° = 0 p =0 u=0,1,2,3
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3. We already know how the operator Ut and Ur act on £{}). Indeed:

U.E(h) = eilt

. 5(3)

(28)

Urg(x) A(r,i)g(%r}

where

A = phrT
r

and A(rgh} is en operator, acting on the subscripts i only. Now we can
meke use of the homogeneity of A to "insert" it into the group R, as discussed
above, Indeed, write r = hr, as in (20), where heH and H is the little

group of %g We introduce the functions £(r), putting

.

E(hr) = £(r)

and thus

E(r) = E(hrx) = E(rx) = £(i}
We now hawve
UE(r,) = Alr,0)E(e, r)
Putting
r,r = hrﬁt {29}
we have
U.E(r,) = A(r,x)a(ru) (30)

Remark: The procedure of inducing is thus applied twice, First, the inducing
group is the abelian group T, secondly the inducing group is the littie group
H.

L, We still have to specify what are the operators A(r,i) acting on the subscript
i, when

£(x) ='{£i(x)} (31)
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Obviously we have:

Uflrg E(rx) = A(rlrz,l>§(rkrlr2)
U Elr. ) = Alr. ))A(z, ar JE(r.r.r.)
rlFQ hy 1 2 1 AT1lT2
so that
A(rlrQ,k) = A(rl,A)A(rg,lrl) (32)

Let us again fix a definite "reference" vector AOaA and denote R, its little

group
- .] ‘ f"
Ar = ) for gll r &R (3.))

Consider Tl and rgs Roa Then

Alzirpsd) = Alr ,h)Alz,,0) (34)
We &iso have
Alg,a) = 1
Thus: The operators
Ulz) = Alr_,2 ) (357

form a representation of the little group Rou

However, we still have to relate A(r,A) for arbitrary r and X to U(rO}

Let ko and X be given, then again choose (and fix) rk such that

(transitivity of A implies that at least one such r exists). We have

A(rkrskc) = A(rksko)A(r,hcrx) = A(rx,ko)A(r,A)



Put

B(r) = Alr,x ).

)

Then:

Alr,\) = B (z, )B(r,r)

4 A A
We can always write (see (29))
ryr o= roru uel

Thus:
B(rxr) = A(roru,Ro) = A(rO,KO)A(r ,Xo) = Ulr )B(ru)

sc that (37) becomes

-1 .
= T
Alr,x) = B (rX)L(r’O)B(r‘U)
and we finally obtain:

U E(0) = 7 0U(r Yolw)E(w)

where we have put

We zan further simplify by introducing a new basis

e(x) = p(W)eln)

and replecing Ur by operators Vr of an equivalent representation

v o= b(W)U b

r r A)

(36)

{39)

(ko)



We then have:

[}
[¢]
0]

—
e
S

Vﬁe(k)

v e(n) = Ulr_le(n) r

L+
t
¢

We have shown the fellowing:

Theorem: All irreducible unitary representations of the group G = R.T

can be reslized by means of the formulae

<3
]
P
)
g
i

U(ro}e(m3

where e(A) are vector-valued functions on the homogeneous manifold A and
H{r@} are representations of the stationary subgroup RD, defined for some

point A@aﬂn For given r and A we can determine rOERq and uel from the relat

{(We have i =i r, ,rs=rr ;i is & chosen fixed point),
c A oA o

Remsrk: A representation of G is thus specified by:

&) Cheracterizing the "orbit" A , i.e. the homogensous space over
which we construct representstions.

b) BSpecifying the representation of the stationary subgroup R@
leaving a chosen vector koeﬁ, characterizing the orbit, inveriant.
References:

1) G. W. Mackey: The Theory of Group Representations.
(Lectures at University of Chicago, Summer 1955},

) W, H. Klink, Lecturas in Mgret. Phvsiecs ¥TD {Boulder)
d¢, K. T. Mahanthappa, W.E. Brittin,Sordon and Breach, N.Y, 196G,

= o

(V]

) R. Herman: Lie Groups for Physicists,.Benjamin, N.Y. 1966,



We now proceed to the final part of this series of lectures, namely the
representation theory of the Poincare' Group. We shall first talk sbout

the group as such, then sbout its representaetions.

\

The Poincare' Group

I. Definition

Consider a four-dimensicnal resl vector space

x = (xo’xl’x2’x3)a X (

[ead
e

with an indefinite scalar product

= - e o = YJ\);,’ (” ”
(‘3{ sy ) Xoyo xlyl “-Eyg x3y3 g Auyv \ 2 }
g% =1 gt =1 i=1,2,3 (no summation),
gV =0  ufv

The transformation

x' = Avx + g
uowv 3

=
L3
ot

is called a Lorentz Transformation if it leaves the interval 72 between two

points x and y inverient:

2.-3 HV Y/ ) e o .
" =g (xu-yu)\xv— yw) = invariant

—
R
PN

It is easy toc check that the condition (4) is satisfied if and only if

Vo, ) o s .
i is e 0(3,1) matrix, i.e. if
r

ATgA =g

—
AT
—

W

L Lorentz transformefion is homogeneocus if au = 0O,u $,1,2,3, inhomogeneous

agtherwise,
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It is easy to check that the Lorentsz transformetions form & group, called
the Inhomogeneous Lorentsz Group, or the Poincare' Group. Denote an element

of the group

g=(4,a) (6)
Multiplication is

(Aya) (A7,a%) = (AR, a+ia’)

——
-
o

the ldentity element is

e= (1,0) (83

[y
b3
£u
@1‘
£y
[{1]
ga
=
1]
"
7}
m
o
n

~ - o
gt = (mt, oot

o
O
Somm”

Thus, the Poincare' group is an example of & more general structure - &
semidirect product of a semisimple group (the homogenecus Lorentsz group) ,
with an Abelizn group (the group of transistions in the veetor space XJ,

A zonvenient way of writing Lorentz transformations as g matrix group

iz to introduce five:dimensional matrices

[

where A is an 0(3,1) matrix and a is a four-vector, written as s column.

The matrices L act on five-dimensionsl vectors (columns}, written as



The Poincare' group contains the homogeneous Lorentz group f\, the

transletions & and the discrete elements:

i
o
[
1
|
o

Space reflections (11)

gnd

I%t = I oIt Space time inversion.

and right hand of (5) we find

o
[0}
<t
=]

i
1+
}_Jl
.
g_!l
il
g

taking the oo-component, we find

© ACEPO £als
A~ 2 1 or A g ~1 Ry
ol o
Thus, we can split the homogeneous Lorentz group {and slst the Poincare’
group), into four connected components:
o o] . . , o ea s -
L, 3 det A = +1, sgn Ao = +1, Thiz component contains the identity of

the group, is itself a subgroup and is called the proper ortochronous Lorentz

group
4 o} L. -
L : det A = <=1, sgn Ao = 1 Contains i
¥ o] .
L g det A = 41, sgn A = =1 Contains I
o+ s} st

[l
:(a
o
1
ﬁv
=
il
6]

_ -1, sgn Ao -1 Contains 1tc



We alregdy know that the proper crﬁochronous Lorentz group is the group
80(3,1), i.e. a simple group which is one of the real noncompact forms
corresponding to the Cartan algebra Bga We know that it is loeally
isomorphic to SL{2,C) which is simply connected and is thus the universal
covering group of the Lorentz group, We also know that the complex

extensions of S0(3,1), namely S50(4,C) is enly semisimple, not simple.

Bl
B=1

L. Algebrs of the Poincare’ Group and its Invariants

Let us restrict ourselves to the proper crtochronous Poineamre’ group
{i.e. exclude the discrete operators I_ and It> and consider infinitesimal
b

trengformations of the type

Iy
[i]
fa
o
43
5
53
felo
(40
o
g
Fad
3
'—b
[
=
o
ot
4]
1G]
[N

mal Lorentz transformation as

\4‘ \)R P o %
x! = (8§ + } + L5
<y = (8 e iz %y 145

]
[
=4
<F
¥
{1

) . . . . .
Here Ev end ¢ are first order infinitesimals, From the invarience
b H

quedratic form T we readily obtain

&, =0 foru=y Uy = 0,1,2,3
{16}
i 5] i k . -
g = g, E B =g, ik = 1.2
o i k i > 593
Together with the ah we thus have 10 parameters, Writing = general element
of the Poincare' group in some representation as
U(A,a) = expli ¢ P~ i=¢ J ] £17}
( ® ) XpLJ- TR 2 e qu J § oo

where Pu and J‘mi are the generators, and asre hermitisn operators in any

unitery representastion of the greup, we can direetly from the multiplicstion

law {7} obtain the familiar commutetion relstions:



w’ v
M ,Pl=ilg P -g P ] (18)
M ) (gyyPy = 8,5Fy) (
M. ,M ]l=i{lg M _ +g M - M- M
L uy® @6] \gva wo guo vp guﬁ vo ~ Byo Mﬁ>
We shell slso use a three dimensional notation, putting:
Moo= (Mo M M) Be(M.,M_ M,
23731712 el 023703
o
P = (P ,P
(p_.B)
The physical interpretation I these operastors 1s thel:
Mik i,k = 1,2,3 are generators of space rotations
M . k= 1,2,3 are generstars of pure Lorentz transformeticns
ok :
Pi i=1.2,3 are generators of space transistions
Po is the generstor of a time translation.

1]

Note, that under finite Lorentz transformetions the generstors Pu and M trans-

VY

form as & vector and as a tensor, respectively

U'j-é:A,o}PuUMgO) = 4P

AR
=2
ot

A,

I
U gASO)M“vU(A,O}

]

=
= o

o

We know the role that Schur's lemma plays in representation theory and

thu

s we eare very interested in the Casimir operators of the Poincare' group,
i.e. in all operators from the envelloping algebra of the Lis algebra. that

commute with all genersators.

It is a simple matiter to check thai the operators

Pt
[an}



and
W = gww“w" (21)
where
e (22}
2 v pa
(euvgd ig the totally antisymmetric tensor with 50123 = 1} are always

invariants of the group (are Casimir operators), It is semewhat less obvious
that in genersl these are the only invariants. We shall show below that in

many specific cases there are however additional nvarisnts.

o

An important feature of the Pauli-Lyubanski wvector W is that it is

invariant under transliations

EPH, WU] = 0 {23}
and alsoc that
W .
g" PH, =0 {2k}

i.¢. only three components are actually independeni.

III. The Poincare' Group in Physics

The outstanding role of the Poincare' EYOUp Desomes slear as Soon as
we demand that the phymlcal theory we are considering is compatible with the

= =

special theory of relativity. In such z theory all frames of reference that
can be obtsined from a given frame by a Lorentz transformation are equivealent
the descripiion of a physical system, i.e. the zame observation mede on
& system in two such frames must give the same result.
In classical physics this relativity principle is satisfied by
demsnding that all equations of motion should have the szime form din

eguivalent frames of reference.



strictl

rels

axps

the

In quantum physics the situation is much more complicated; since
ly speeking no consistent gquantum theory compatible with special
tivity exists., However, the relativity principle requires that -
riments conducted in different systems lead to the cbservation of

same probability for a given result, This leads directly to

s 3

rictions imposed upon wave functions,

Indeed let us congider the quantum mechanies of a free particle.
reguirements of relativity can be imposed on the equations of motion, i.
zan write eguations invariant under Lorentz trensiormations like, say,
Dirac equation, On the other hand the correct transformation propsriies
bz imposed directly upon the wave functions.

Experimentally measurable quentities, like transition probabilities,

in & guantum theory are givenm by the medull of scalar products of wave funct

o L o]
oL B

the

=y - . A - g o . o
. &Q; o The requirement of special relativity is now that the valuss
uch guantities should be invariant under Lorentz transformations.

Thus, if the coordinates are subjected to & Lorents transformeiion

wave function is transformed sccording o

Ulh,a) §iX) = ¢(x%) (25}

‘s ig @ definition of the operator U{fi,a)}, satisfying
R . ; Y ; Loy "
i! (U&Asa)wfs U(A,a)‘pi;‘ ! = ‘i‘qu‘iq:/‘ i {éb/

°

It can be proved thet if the transformstions ¥ - X' form & continuous

group, coanected to the identity operator, represented by & wunit cperator

then

condition (26} is eguivalent to

W
~=-
;
N
e
.

Ky

[=3
(=>4

&
A

G

ons



The condition that a set of transformstions leading stepwise from one freame

of reference to another one should be equivalent to a direct transformaticn

between the two frames leads to the conditien

. ¢ Voe iy . .
U(h,a) U(AY, a') = Jolhie,h e )U(AA“,a+Aa*) (28}

whers ¢{A,a,A",a'} is & real phass, Specifically for the Poincare' group
it can be proved that the phase~factor in (28) can be replaced by +1 or -1

s thst

Ulh,a) UlA'a™) = + U(ALY, at+ig') {29)
9 o 9

¥

LDE

B

Wigner's or Bergmann's articles, or the review by T. D. Newton)

4

It follows, that the wave-functions admissible in & relativiztic theory

transform under single-valued or double-valued unitary representations of the
Poincere' group, IFf ¢iin {28) is an arbitrery resl phase then we are considering

unitary ray 3 EPEESuQE&tIGBS O~ Drof ective representatd ioms . For the Poincers!

Eo. A f £ el 3
Erour whnls L8 not necessary.

o ¢

We shell zceept as & aeflnitlon that we call & physical system

eiementary, If it is described by a wave funchtion, transforming according to

en irreducible representation of the Poinesre' group., The classificabtior

lrreducible representabtions is thus a very importesnt and physicelly meaningfu

W

task, curresponding io a classification of &ll possible elementary physicsa

3 °

g, in eiementary pariicle physizs we consider n free
non-interacting) particle to be an elementary relativistic guantum meshanical

system described by a wave functions transferming under s unitesry irreducibis

representation of the Poincere! ETTUD .



It should be stressed that the significance of the representations
of the Poincare' group in particle Physies is by nc means limited to the
clagsification of free particle stéteso Indeed this representation theory
formg = basis for the relaﬁivi;ti@ kinematics of resctions amongst perticles,
when we have to comsider many-particle states, transforming according to

redusible representations.

o Classes of Irreducible Unitary Repres ﬁt&&ﬂ@nb @f the Poineare' Group

- 2 R~
We have lru¢dy mentioned that the invariant operators P and W,

commute with all the generators of the Poincape’ grovp, It follows from

sur's lemme, which is applicable inm this cage, that the necessary and

dent condition for a unitery representstion o be irredusibie is,
thet any cperator commuting with all the gznerators must be the multipls

of the unit operator. Thus all functiops belonging

o

¢ the Hilbert space

T‘Q

ol ene lrreducible representation must be eigenfunctions of the operators P

arnd 'W"E.,D corresponding to one end the same eigenvelue.

The problem of classifying sll irrpeducibles repregsentations of
the group thus reduces to finding the elgenvelue spectire of the complete set
of Inveriants of the group.

Let us introduce a notation for the elgsmvaluss of the two inveriants of

2 u 2 A
PT =P P = VG
M
2 S 2 ! Z
W o= wuw“ = -~m s{s+l} for o~ & O
{30}
2 o~y T
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The irreducible representations of the Poincare! group diffep
principally from one another depending on whether the vector Pu is timelike

{mz > 0}, spacelike (m2 < 0}, lightlike (mg = 0, but not 21l components of P

i
gre equal to zero) or a null-vector (m° = 0, Pu =0wu=0,1,2,3), Thus, we

representations of the Poincare’ group,; which we shall call,
a) Timelike representations
b} Spacelike representations
o) Lightlike representations

d} Null representations

The additional invariants which appear in the individusl classes
of representations, will be discussed together with the other properties of

these presentations in the following baragraphs,

V. ~Physical Meaning of the Operators and & Clzssificmtion of the Stetes of

en Elementary Relativistic Quantum System,

According to the above definitions an elementary relativistic quantum
system is deseribed by & wave funetion, transferming according to en irreducible
unitary representation of the Poincare! group. Such awave function will clearly
be the eigenfunction of the cperators P2 andg WZ, corresponding to definite
values of m and s {or p), as well as the edditiongl inveriant operators, We
ghall identify the invariant m with the mass of the system (e.g. an elementary
particle) and s with its spin. Thus the vaiues of the inveriants of the
Poincere' group specify the type of particie we ere considering,

The infinitesimail operators of the Eroup can now be identifieqd with

[

the guantum mechanieal operators of linear mementum (P., 1 1,2,3), energy

.
(e
Y

. mmgular momentum (M., , i,k = 1,2,3), centre of inertia (g =M p”),
g’ * € ik s



We are interested not only in the "type" of particle under consideration,
but also in its "state", e.g. in its momentum and in the orientation of its
spin. To do this we associate a particle in a specific state not only with
& certain irreducible unitgry representation of the Poincare' group, but
with a basis function of such a representation. This leads us to the problem
of constructing and classifying all possible bases of irreducible
unitary representations of the Poincare' group.

4 convenient and physically meaningful way of constructing a basis of
& representation is to consider the slgebrs of the group generators and its
envelloping aigebra (i.e. all powers of the generetors). Using these operaitors
we construct a complete set of commubting operators (commuting with each other,
but not with all generators of the group)o The complete set of commen elgen-
functions of these operators, corresponding to a definite set of values of
ﬁhe group invariant, can then serve as the basis of a representation.

The choice of the complete set of commuting operat@rs is, of course,
not unique, and there are many physically non-equivelent possibilities. A
cimssification of the different possible complete sets of commuting cperators
has not been provided for the Poincare’ group.

The basis most commeonly used in particle physics consists of the commen
sigenfunctions of the linear momenta P and of one of the spin projections,
58y W.3 (neturally, the besis functions, like all cother funections, in the space

, . . . . 2 2
zarrying the r’e_'presen“c;a‘tion_9 are eigenfunctions of the invariants P and W j.
Thus e.g., for metw 0 this basis, which we shall call canonisel, satisfies the

equations
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P =
uwmsg,pk Puwmsa,pk
anmsg,pk = kawmsggp%
= _ 2 (31}
ms§ ,pA Ipms’gf,pjx
2 2 -
W wmsg,pk = -m S(S+1)¢mss,px

Here £ is a parameter, indicating a possible degensracy
which is lifﬁed by considering the additional inveriants of the Poincare’ group,
when they exist. The subscript x tells us which component or combingtion of
components of the spin WK we are diagonalizing, The goefficient CK will be
specified,

Clearly, when using the canonical basis, we are treating a subgroup of
the Poincare' group preferentially, namely ths translations generated by Pw
and a ong—dimensional rotation generated by WK - This basis corrssponds to the

reduction of the Poincare' group to the subgroup Th x 0{2),
et Srx o2) (32}
+ b ;

A different basis, which is alsc of grest use in vhysics, corresponds
to the reduction of the Poincare' group to the {homogenecus ) Lorentsz Eroup

and one of its subgroups, e.g.:

<
A0
.
Py
iy
[
T

4 4 -
P, DL, D0(3) D

(at least for representations of the group algebre).
The complete set of commuting operators consists of %“he Casimir operators
of each group in the chain of subgroups, i.e. the invariants of the

homogeneous Lorentz group, the square of the three dimensicnsal gngulsr momentum



and one of its projections.

The corresponding "angular momentum basis functions" sstisty the

equations (for me > 0):

1 z2 2
= - FA = 7 )
F ¢msE?uXMM3 2 (177 mms&,vRMMB
G ¢ms£,v)\MM3 = "wmsg,w\mB
Mo = M(M+1)
msg,vAMM3 mszgvAMM3
M12¢ms£9vAMM3= M3¢ms€,v1MM3
2 _ 2
P ¢ms§,vAMM3 - n wmsgstMMg
o]
2 2 ,
W ¢ms£9vAMM3 =n S(S+1)¢msz,vXMM3
Here we have
_ 1 v _ 32 22,
F = +2MuvM = (M™-N")
G = %EUVOGM M=
uv po

16

(34}
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~\L¢cture'2h'

: \;rrEducible Unifary Representations of the;Poincare' Groug;
| | .Let us proceed with a systematic eprsition of the representation
theory of the Poincaere' group. The treatment follows the original work
of Wigner, which hes been reviewed and extended in numerous articles and books,
References:
l. E. P. Wigner. On Unitary Representations of the Inhomogeneous
Lorentz Group. Ann. of Meth, Lo, 149 (1939).

2. Yu. M, Shirokov. A Group Theoretical Consideration of the Basis

of Reletivistic Quantum Mechanics I-v.
Soviet Physics JETP\E, 669, 919, 929 (1958)
7. 493 (1958)
~9, 620 (1959),
3. H. Joos: Fortchr.d, Physik 10, 65 (1962),
L, m, D, Newton: The Inhomogeneous Lorentz Group in the Theory

of Groups in Classicel and Quantum Physies, Vol., 1, Ed. T, Kaham,

Oliver and Boyd, Edinburgh, 1965,

The method is identical with the one discussed in a previous lecture

for an arbitrary Lie group with an Abelian inveriant subgroup, namely the method

of induced representations.

1, Re@uction of the Representations of the Poincare' group to-Representations

~of Little Groups.

Let us first start by using the Abelisn subgroup of translations, to
induce representetions, Thus, let us choose g beasis for the representations,
consisting of eigenvectors of the translations. Since this does not in

general specify the elgenvectors completely, we shall slso demand that they



are eigenvectors of a further operator W, (2 spin projection). Thus we

have

2 2

P wmsE,pA = m l‘bmsg,p)\
WQWmBE,pA = 1m28(5+1)wmsg,pi e # 0
= _pewmsg,px m2 = 0 1)
1r::uwmsa,pk = puwmsi,px
v wmsi,pl = Cf mes&,pk

The number m and s (mass end spin) characterize the representations, some-
times an additional invaeriant exists, so we mey have an additional lsbel & .
The meaning of p2 for m2=0 will be specified below. The state vectors (basis
functions) are slso labeled by & four-vector, the momentum p é[pu} and a
spin porjection X , also to be specified. Thelmeaning of the subsecript
and proportionality coefficient Cg " is discussed below.

In sgreement with the general theory we can immediamtely write the

operators representing translations in the representation (A,a) + U(A,a)

e H Uw

U(l,a)y (2)

msg ,pA = ms§ ,pA

We know that U(A,ON will again be an eigenvector of %J , corresponding

msg ,Dh

to a different eigenvalue of the momentum %J . Thus

U(A’O>meEBP>\ = ;\' Q)\'A(A’pN}msE,Ap)\' (3)

Here QA'A(A’P) ere metrix elements of an operator acting on the "degeneracy
labels" only, i.e. on the spin projection. As in the general theory, we shall

relate them to the representations of pertein little groups.



The operators Q(A,p), depending on the Lorentz transformation A
end on the value p of the momentum, at which they are applied, can be
eveluated conveniently, using Wigner '"boosts".

Thus, let us choose a "reference vector" p which we fix. We
must now split the manifold {p} into layers on which the Lorentz group

acts transitively, i.e. into indiwidual "orbits". Consider a proper
orthchronous Lorentz trensformation A and put
B, = K (pg)

v H

By definition the operator A preserves the "length"

so each value of m2 will correspond to an orbit.
Further, if’m2‘> 0 or m2 = 0 'bu‘c,!p]J # 0 for all u, then the sign
of Py is an invariant as well., There are no further invariants and we

obtain the orbits

Timelike: la) p" =m" >0 R m>0
1b) p2 = m2 >0 P, £ =M
Specelike: 2) p2 =n° <0
Lightlike: 3) p2.= 0 B, # 0 for at least one u= 0,1,2,3
Tull Vector 4 p%=o0 p =0, for all .

For each orbit we must choose a different reference vector PR and

there will be a big difference, depending on whether P_ is timelike, spacelike,

R
lightlike or nullvector.
Consider a chosen»orbit and fix PR' Any p in the same orbit can be

obteined from pu by & Lorentz transformetion. Choose & specific fixed Lorentz



transformetion L(p) (a Wigner "boost"), putting: .

p, =L (pp), (k)

and choose L(p) such that

¥ = U(L(p),0)y (5)

msg ,pA ms & ,ppd

Such an operator L(p) is called a "rotationless boost": it takes pp into p
end U(L(p),0) leaves the spin labeis unchenged (i.e. it corresponds to the
identity element in the representation of the relevant little group).

Now consider the little grbup of the reference vector:

AY
Ru(pR)v = (pR)u

For such a specific Lorentz transformation we have:

O -

Thus the operators Q(R,pR} realize a representation of the little group R
and QA'A<R’pR) are simply the corresponding matrix elements.
Now let us reduce & general U(A,0) to rotationless boosts end little

group transformations.

L

o

Put o
A= L(Ap)R(A,p)L’l(p) (7)

where L is & rotationless boost and this is a definition of R(A,p).

We have

R(A,p)py = L™ (Ap)AL(p)py = L7 (AD) WAp = By (8)



Thus R(A,p) is an element of the little group R, leaving Pp invariant.
Let us denote the matrix elements of the little group transformation

R(A,p) by the symbol

D, (B(A,p))

A general transformation of the homogeneous Lorentz group is now

represented by the operator U(A,0), acting on the basis functions as

UUA, 00 oy = U(EUD),0)U(R(A,P),0) T(L™ p), 000, . =
= U(L(Ap),0) E'DAVA(R(AP))nUJmSESPR}\, (9)
and finally
U(A,o)wmsgsp;\ = )\Z'DA,A(R(A,p)wmsE’APA, (10)

An arbitrary element of the Poincare'’ group can be written as

U(h,a) = U(1,a) U(A,0) (11)

so that (10) and (11) completely specify the action of the operator
representing the transformation (A,a) in the considered representation.

The results of this paragraph lead us to a theorem, which we shall
only state, referring for the proof e.g. to the review article by

T. D, Newton.

~Theorem: . A unitary irreducible representation of the Poincare'

group is completely specified by giving:



a) A resl number mz, corresponding to the mass of the elementary

2

o

physical system, together with the reference vector Pr saetisfying pg =m
b) A unitary irreducible representation of the little group

leaving Py invariant.

2. Realizations of the_Individual Classes of Irreducible Unitary

Representations.

We shall now discuss the individuel classes of representations
introduced previously. To do this we must in each case specify the
reference vector Pps the corresponding little group and the representations

of this little group. We must also specify the boost L(p) and the additional

inveriants & .

1. Time-like Representations

The reference wvector Pp for timelike representations satisfies

pg = m2 > 0 and can be chosen as

%2={irm 0, 0, 0) (12)

where m = + \j—;g\>0 . The sign of the energy component (.pR)O =j~_ m is
en inveriant of the group for timelike representations (we are not
considering discrete operations, like time reversal, here), so that this
class of representations contains itwo subclasses, corresponding to
e = sgnp_ = + 1.

The little group of vector (12) is clearly the three-dimensional
rotation group 0(3). Indeed, to understand the physical meening of this
0(3) group consider the components of the spin operator W, when acting in

the subspace p = Pps i.e. for particles in their rest frame:

W= -po(O, Mooy My, Mlg) (13)



Thus, for particles at rest the space components of the relativistic
spin operator W are simply the generators of space rotations, satisfying

IM239 M3l.] =1iM,, IMsl, Mol =i My, fMlg, M23.] =i M (1k)

31
The irreducible unitary representations of 0(3) ere, of course, well known,

being characterized by the eigenvalues

w2=¢p2 (M ‘2+Ml

2)
23 3

with

s 25e0ns (16)

(the representations corresponding to s integer are one-valued, to s half-
integer two-valued)., These representations are finite-dimensional, since
0(3) is & compact group, the dimensionality being 2s+1.

Thus, the basis functions of timelike representations wms are

€,pA
characterized by a real non-zerc mass m, a finite integer or half-integer
spin s, a positive or negative sign € of the energy 18 and further by the four:
momentum p and spin projection i. These representations, corresponding to
& real elementary particle state, have extensive applications in physies,

To specify the basis functions completely, it is sufficient to give
the values of these functions in the referencé frame (for p2 > 0 this is the
rest freme) and then to specify the boost operators,

Indeed, let us for brevity of writing drop the invariant quantum
numbers mse in the wave functions and use the physical "ket" notation,

putting

wmss,pl = Iph > (a7)



In the reference frame let us choose |pA > such that

Mlelpﬁx >= AIpRA > (18)
and nsturally slso
P, Ipgh > = (pg) lpgh > (19)
2 2
4 IpRA >=q IpRA >
(20)
2
W ]pRX > = -m s(s+l) lpRA >

The wave function (basis function) in an arbitrery frame can be

expressed as

pr > = U(L(p))|pph > (21)
with

(22)

ek o), =,

When p and Pr (two vectors of the same orbit, in this case both timelike)
are given, (22) does not specify L(p) completely but only up to a little
group transformation (in this case an 0(3) rotation),

We shall, =~ =~ glve the expregsions for three different boosts
here, which correspond to differenf perametrizations of the vector p (and
respectively to the reductions of the group 0(3,1) to 0(3), 0(2,1) and to

the Euclidean group in two dimensions E2)g



Indeed the components of a timelike vector p(p2 = me) cen be

written as

P =+ Vbz (cha”sha gin® cosy, sha sinbsiny, sha cosbd) (23)
p =+ %pg (cha ch8 , cha shB cosy, cha sh siny, sho) (2k)
p=+ %pe (chy + %- ree"Y, re™’ cosy, re”’ siny, shy+-%-r2e-Y)
(25)
With p. given by (12) it is easy to check that the corresponding
boosts can be given as
cha 4 0 3 0 \ -sha
+ . 2 . 2 X .
L (p) =/ sha sin® cosy, -cosécos P-sin“y, (1-cos6)siny cosy, -che sind cosy
i she =sind siny, (l—cose)sinw cosy, -cosh singw-cosew, ~che sin6 siny
\\sha cosé » Sind cosy -y 8in® siny . 4 =cha cosh
(26)
_ cho chB s, —=shB cosy s —ShBf siny s —sho chpf
L (p) =
che shB cosy , -chB coszw-sinzw » (l-chB)siny cosy , -sho shB cosy
cho. shR siny , (1-chg)siny cosy , -chpP sinew»coszw s =sha shBf siny
sho 0 0 -cha
(27)
Lo(p) = chv¥\% roe™Y , =I' cosy ; - siny , =shy 4\% r2e”Y
r el cosy , -1 , 0 , re” T cosy
r eV siny , 0 , =1 , v e siny
shy +\%~r2e_Y, -r cosy , -r siny » —Chy + :—Pf-rge—Y

(28)
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We shall call a,9,) spherical coordinates on the hyperboloid

p2 = mz, m,ﬁ; Y hyperbolic coordinates andy, r, Y Horospheric coordinates,

Their ranges are

0<ax<e Oseoe<nm Osyv< 27
-0 & g < 0< B < w 0 < 1< 2n (29)
-n <y < o O r<w 0 sy < o

As shown by Boyce, Delbourgo, Salem and Strathdee the unitary operators

acting on the basis functions can be written as

~1yM ~18M iyM ~iaM
U(L;) = e 12 e 31 e 12 03
_ -1WM12 —lBMOl 111)M12 --1oaMO3 (30)
U(L™) = e e e e
b
0 —wM12 alrhl 1wM12 ”lYMOB
U(Lp) = e e e e

where wl = -MOl + M3l°

The boosts were so chosen that the basis functions in an arbitrary

system (obtained by applying the boost operators to the basis functions in

the reference system)

lox >T = u(t ) | h>
lpr >7 = U(L7(p)) [pRA> (31)
e 0,
o >° = U@ (p)) lpRA>
setisfy
Wo |pr >T = ae pi + pg + pg [pr >* (32)

AN
- 2 2 2 +
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(WO—WS)]pA >° = n(po—p3)] pr >° (34)
Thus, e.g. the functions
Upge,pn = 1P > = U(LT() |pp2 > (35)

are eigenfunctions of the operators

P2, Wo, P and W (36)
u 3
The basis funetions (35) transform under transormations of the
Poincare' group according to (2), (10) and (11) where Dy 1y (R(A,p))

are matrix elements of the Wigner rotation functions. The zetion of the

i
i

infinitesimal operators Muv can easily be celculated,

2. BSpacelike Representations

For spacelike representations the reference vector satisfies

P; = nf < 0 and we choose it in the form

PR = (Ososos \l "P; ) (37)

The root is taken to be positive and its sign has no invarisnt meﬁning.
Spacelike representations do not have any edditional invariant.

The little group of vector (37) can directly be seen to be 0(2,1),
i.e. the three-dimensional homogeneous Lorentz group acting in the (PO’Pl’pE)

space., Indeed, the spin operator W, when acting in the subspace p = pé,

reduces to

_ ' 2\
W - - —pR (M129M025 - MOlBO) (38)



Thus, for particles in the reference frame (37) the surviving
compenents of the spin operator W satisfy the slgebra:
M, My, ) = iM

T2t 20

o Moo Moy b= -y IMg, M5 T = 4N,

The Casimir opersior of this 0(2,1) group can be written as

2 2,2 2 2., _ .2 ' e ;-
W = -m (MlgmMgo— MOl) = -m~ s(s+l) (39) .

Conp-

Y
i

Since 0{2,1} is & non-compact group, &il its irreducible unitary
representations, except the triviel one, are infinite dimensional.
The irreducible represenﬁations of 0{2,1) can be characterized by

two numbers
X = (s,g) (Lo}

whers s 13 an arbitrary complex number and & = 0 or ¥. The representation

el

theory of this group must be treated separately; here we shall just give

g almssificetion of the unitery representetions:

(&) Unitary representstions o

th
[
5
@

first principal series

+ ig, 0), — = < g <« » g - real

na i

Hers

o= 0, % L, 4+ 2,0

{b) Unitary representations of the second principsl series

-4
[
P
i
FOf -
+
F
e
N
i
8
A
Q
A
]
N
i
3
14
e
s

zneo0

3
§+
o+
-
+
[\SILO
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(c) Unitary representations of the supplementery series

X=(s,0) -1 <s5<0 s - real

)\=05i13i2 g eoa

(d) Unitary representations of the discrete series

X= (s,e) s - & = negative integer

Depending on the sign of X we have two types

lw)]
>
I

-S, =8 + 1, -5 + 2,,..

Dh:K=S,S—lSS—2,°M

(e) The trivial representation
X = (0,0)

The baesis functions of space~like representations are thus
characterized by an imaginary mass m2<:.0 and by a generally complex wvelue
of the spin s. The spin projection X takes either an infinite or semi-infinite
number of values., These representations do not have direct applications in the
quantum mechanics of relativistic free particles (unless we consider "tachyons"
moving at superlight velocities). However, they pley a very important role
in relativistic pertial wave analysis.

Again we can construct basis functions making explicit use of the
Wigner boost operators. Indeed we can again construct the wave function
pRA > in the reference frame (which is now, however, not the rest frame of
e particle). The basis function in an arbitrary frame is obtained by epplying
the boost operator as in (21) and (22) again using the L;, L; and Lg boosts

of (26) -~ (28) and (30).



The components of a spacelike vector p are then expressed as

D= —p2 (sha, cha sin® cosy, cha sin6 siny, cha cosd)
2 .

p = J-p~ (she chB, sha shBf cosy, sha shB siny, cha ) (h1)
2 rz T

p=-p (shy - 5 e Y, -re™ cosp, -re™’ sing, chy - z— e )

with

- € g < w 0B <cmw 0 2y < 2n
- < g € 0B <= 0 < ¢ < 2n (L2)
- <y < @ Ogree= .0 v < 2n
The basis function
o r = I8 T S G)) o
\

2,'P and W_ and satisfies

is agein an eigenfunction of P2, W 3

- . ]2 3 2 -
W3 fpl T @) V/po =Dy - Py | LA P
Tﬁése functions transform according to the given general formulas

vhere the functions D, (R(A,p)) are now the rinite trensformation

metrix elements of 0(2,1).

1k
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3. Lightlike represéntations.

We can choose the reference vector for lightlike representations as
P, = (w, 0, O, + W) W # o, (43)
Here w has no invariant meaning, but its sign has, so that we obtain two

different subclasses of representations for w > o or w < o,

The little group of vector P. in (43) is isomorphic to the group E,,

i.e., the group of motions of a Buclidean plane. When acting on the subspace

determined by PR’ the spin vector W reduces to

W= -y (+M12,_M23 M, My - M, M,) (Lh)
Putting

Ty = My *Myy Ty =M, =My (85)
We obtain the algebra of E2:

[MlE,Hl] = ill,, [n2, Mlg] = i, [nl,ng] = 0,

Obviously, Ml2 generates rotations and Hl, H2 are isomorphic to generators

of translations.

The Casimir operator of +this algebra is:

_ .2 2 2y _ 2
Wos e (-If -I5) = —p (46)
o 2
Here p~ is clearly an invariant of the Poincare group, whereas EE- only
: w

of the group EE'

The unitary irreducible representations of E2 are of two types.
(a) Principal series:

p real, O < p < «

A=0, +1,

or A= i_%



(b) Discrete series
p=20
Representations (b) are not "faithful" since = T, = 0 in them and

they are all one-dimensional, since M12’ as the only surviving operator,

becomes the Casimir operator. Thus

Mo Woos’p A A WOOE’P‘a (k7)
R R
where A = 0, + }3 + 1, ... labels the one-dimensional representations,

(remember that we are not considering discrete operations like space
inversion).
It follows from (4L) that for these lightlike representations with

p = 0 we have
W =+\ P (48)

and A is an additional invariant of the Poincaré’group (when both the mass
p2 and spin W2 are equal to zero)., These are the representations corresponding
to physical particles of mass zero and (48) shows that for such particles
the spin vector must be parallel or antiparallel to the linear momentum vector
(so that the special theory of relativity implies that €.g. the neutrino
must have a definite helicity), Note, that .for a massive particle the state-
ment, that the spin is parallel to the momentum is not Lorentz invariant and
can only hold in a definite coordinate system,

The basis functions for light-like representations can again be obtained
using the same boosts as for time-like and space~like representations. It ié

however, convenient to apply them to the vector

'

Py = (w, 0, 0, =w) (49)
obtaining

P =we " (1, sin6 cos¥, sin® sin¥, cosf) (50)

= we™® (chB, shB cos¥, shp sin¥, -1)

i

we ¥ (1 + r29 2r cosY, 2r sin¥, -1 + rg)



The range of the parameters is

- © < & < ® 0 <cp < 0« v <op
-® < g <® 0 cg<w 0_<‘{-’<2'rr
-® <y < ® 0 ¢ p < » 0 <y <og

The basis functions in an arbitrary frame can now be written as

4

lons = u(L(p)) |p;x> = U(L(p)") e‘i“Msllpr> (51)

with K = +, -, o and satisfy

I

W past

+
o ‘p, |pA>

Wy |pA>" = xp3_]px>‘ (52)

(wo-w3) IPK>O = A(1”0-P3) |pk>°

The obtained basis functions again transform according to the same general
formulas but the coefficients DA'A<R(A’p)) are this time the matrix elements

of finite transformation operators of the group E2°

L, Null-vector Representations

The null-vector representations are exceptional in the sense that all

components of the momentum p are equal to zero in any reference frame

p = (0, 0, 0, O)
so that we do not need a standard reference vector.

All elements of the translation subgroup of the Poincard group are represented
by the unit operator in null-vector representations., The representations of the
Poincaré group in this case coincide with the representations of the homogeneous
Lorentz group.

The representation theory of the homogeneous Lorentz group has been treated
in great detail by Gelfand and Najmark iﬁ a number of papers, summarized in
the books: M, A. Najmark "Linear Representations of the Lorentz Group"
and I, M, Gelfand, R. A, Minlos, Z. Ya. Shapiroc "Representations of the

Rotation and Lorentz Groups and Their Applications'". This group has two



invariant operators F and G, given previously as

=1 wo_ gt P
F = 5 Muv M =M -0N
(53)
1 _uvpo =
= [ =
G T Muv Mpc MN

There are many possible choices of basis functions for representations
of the Lorentz group. We shall return to this problem below, but let us
only note that the "canonical" basis used by Gelfand and Najmark corresponds

to the reduction of the Lorentz group to its rotation subgroup

0(3,1)70(3)J0(2) (5k)
The basip functions are the eigenfunctiams of a complete set of operators,

chosen as the Casimir operators of all the groups, figuring in the chain (sh}),

Thus we have

woo;vkjj3 = %'(-v2+A2+ 1) tlloo,\)kjj3
G Woo,vAJJB = VA iyeo,\)kjj3 (55)
Mgwoo,vAJJB = (j+l)woq,vkj53
M12Woo,vkjj3 N jSWoo,vkjj3

There exist two series of unitary irreducible representations, namely:
a) Principal series (56)

- ® < Re )\ < w Im A =0

1
s o
The 0(3) quantum numbers take the values

v=20 1

5 s

J=v, v+1l, v+2, .,

j3 = _j: ‘j+l, ¢esa g +j



"b) Supplementary series
Re A = 0 0 <Ima <l

v =0
The 0(3) quantum numbers take the values
J=0,1,2, ...

33_="j: "j +ls o“’-j

The null vector representations of the Poincare group have no applica-
tion to the classification of free particles, but they have very interesting

applications in scattering theory.

Applicationg of the Representation Theory of Poincar; Group.

1. Classification of Elementary Particles,

The first and most obvious application of the representation theory of the
Poincard group is the one which we have already discussed, Namely, since
elementary physical systems, by definition transform according to irreducible
unitary representations of fhe Poincard group (or rather its covering group,
so as to include half-integer values of spins and spin projections), we have
obtained a classification of possible types of elementary particles (at

least of free particle states),

We notice immediately that only a few of the possible types of represen-—

tations seem to correspond to particles realized in nature. Indeed, we have:

2 2

a) p =m >0,&e=1 s=0,1, 2 ...

b 2

or s =1/2, 3/2, ...

These representations correspond tc the usual elementary particles with
positive real mass. Only those with very low values of spin seem to be realized
as stable elementary particles, Quite possibly the non-existence of higher

spin particles has something to do with the difficulties in constructing a

theory of such particles including any type of interaction.



b) p=m” >0 e=-1 s=0,1, 2, ..,

or s =1/2, 3/2, ...

These répresentations correspond to the standard anﬁiparticles of the above
particles (positrons, antiprotons,uetc,)
c) p2 =0, p, # 0 for all u, e =+ 1,
In this case only the exceptional, discrete, non-faithful representations,
for which
pP=o0, A=0, 32, ,.. or A=+ 1/2, + 3/2
correspond to elementary particles of zero rest mass., Again only the lowest
spins are realized in nature,
The continuous series of representations with
0 <p <o
does not correspond, as far as we know, to any particles in nature

a) p2 < o,

These space-like representations, as far as we know do not correspond to any
particles observed in nature. If they do, then these particles with "imaginary
rest masét. must be tachyons, which figure in many theoretical considerations,
Usually they are assumed to have spin zero, corresponding to the trivial
representation of the 0(2,1) little group, rather than continuous spin,
corresponding to, say the principal series.

e) P =0, P = 0,
It is rather difficult to imagine having elementary particles transforming
under null-vector representations.

We shall not pursue the very important question of the representations

of the extended group, including reflections of all kinds and possible internal

symeetries. We would thus obtain a further classification of particles, answering
questions like: When can particles be equal to their antiparticles, what are

The possible behaviours under time reversal, parity, etec,



2. Relativistic Kinematics,

It should be stressed that all representations of the Poincaré'group
are important in physics, not only those corresponding to real elementary
particles. One of the reasons for this is that when considering any sort of
reaction among elementary particles

1+2+ ,..0~ (n+l) + (n+2) + ... +m
we are interested in multiparticle, or at least two-particle states,

Relativistic kinematics is basically the problem of taking the direct
product of several irreducible representations (a reducible multiparticle
state) and reducing out its irreducible components. This is of course the
classical Clebsch-Gordon problem for the Poincaré'group.

It turns out that if we consider the direct product of two physical
representations, e.g. one representation with m2>o, e=l, the other with m?>o,
€ = -1, then the decomposition in the irreducible representations (the
Clebsch-Gordon series) can in general, contain every type of representation
of the Poincaré/group—-time—like, space-like, light-like and null-vector, in
particular those with continuous spin.

The simplest reaction of interest is two-body scattering

1+2+3+b,

We can write the scattering amplitudes for such a process as the matrix
elements of the scattering matrix

P3S4 AB, phshkh El plslll, p2s2K2> (1)
where relativistickinvariance implies that S is & scalar operator

-1
U(A,a) S U (A,a) = 8 (2}
We cannot go into any details here, since we have not really developed the

‘necessary mathematical tools (e.g, the Clebsch-Gordan coefficients of the

4
Poincare group).



Let it sUffice to say that if we consider scattering in the centre-~of-mass

frame of reference we express the initial and final two-particle states in

terms of irreducible ones as

[P;5,h1s PosSoh, : Z (25#1”515211)\29 P8 A=A, ¥
l 2 ¢ ?I st ce) - (3)
] ¥ \ "y
<P3s3hgs P3SNl = KA ) \ (2s+1) L s,‘dx3,xh,x' < 5352 3%y,,Pgs A |
g Rl SR ‘

where

- - - « = 2
Py = (V¥s, o, 0, 0) = Py ¥ P, =Pyt yS (p, + 1) (%)

div(e) is a Wigner rotation function (figuring as a Clebs¢h-Gordon coefficient
in this case) and the states on the right-hand side of the above formulas are
two-particle irreducible states,

We can now calculate the matrix element of the S-matrix between the
considered states., Making use of Schur's lemma, which tells us that the

S-matrix, being a scalar operator, must be diagonal with respect to the

indices, referring to irredutible representations, we find

Py ghgaPy sy Ay [BIR 814 spps 0> =

(24+1) cs s hahy |8 () esnns @t . O a(pep po-p))
j=m&X(lk§-x21,‘i3vkhl) 3 h'3 h j l 2 l 2 A3 kpll—le 1 2 3 h

In the above formula it is easy to recognize the Jacot: and Wick expansion

of helicity amplitudes, which here was derived in a purely group theoretical
menner. The d-functions of the rotation group 0(3) figure here because of our
choice of the c.m.s. i.e. ﬂecauee of a frame-of-reference, in which a time-
like vector p, + p,, having 0(3) as a little group, was fixed, The resulting
formula is of course a direct generalization of the usual formulas of partial
wave analysis. Indeed, for particles with spin zero (5) would reduce to

o

<P3PhlSlPlP2> = (s,t) =jzo (25+1) aj(s) Pj(coge) 5(pl+p2_P3_Ph)

(6)
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We could Just as well have performed a different reduction of the S-matrix,

~
Indeed, an operator S can be introduced, satisfying

: 32'9'53"?{2-;\3
<=Ppsp APy [8] pys 1 1’”93 3-x3>= {-1) <p383hgPys iy 8D 8 1Ay app8 h, # (1

If we now consider the scatterlng in an approprlate frame of reference, obtained
by standardizing the momentum transfer pl-—p39 and :educe the two~particle
stateslplslkl, -p353-k3> in a similar fashion as in (3), we obtain different
results, depending on the charact r of pl—p3° Thus,»if pl-ps*is space-like
as i1t usually is, we obtain an expansion in terms of the D-functions of
0(2,1)7if PP, is light-like the group generating the expansions will be E,,
ete, A specislly interesting case‘is when P, -P3 =(1, o, o, 0), (elastic
forward scattering) and the relevant little group is 0(3,1).

_ The space-like ease (pl—p3)2<0 is ofjparticular importance and in that
case for spinless particles, we obtain

-1/2 + ie

~ 25+1

£(s,t) = sinm

l\)ll—‘
o

alj,t) Pj(coshB)

«l/2 « iw
one of the fundamental formulas of Regge theory.

For further information on relativistic partial wawe analysis and general

expansions of scattering amplitudes we refer to the literature.





