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Review of basic notions

A Lie algebra g is:
m g is decomposable if nonvanishing ideals g1, g, .. ., 9k
exist such that

9=0190D...D g, (1)

m semisimple < no nonvanishing Abelian ideal exists,
m simple < no nontrivial ideal exists.
Any semisimple algebra p is a direct sum of simple
algebras
Any representation p of a semisimple algebra p on a vector
space V is fully reducible, i.e. if W is an invariant subspace

p(p)W C W
then its invariant complement W of W in V exists such that

pWCW, V=W+W. (2)
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Three series of ideals — characteristic series of g:
m derived series g = g(@ D ... D g D ... defined

g®) = [g* M, g% M), g@ =g

If 3k € N such that g(k) = 0, then g is solvable.
m lower central series g =g D ... D gk D ... defined

g=[g""4g], g' =0

If 3k € N such that g¥ = 0, then g nilpotent. The largest
value of K s.t. g # 0 is the degree of nilpotency.
m upper central series 33 C ... C 34 C ... C g where 3; is

the center of g, 31 = C(g) = {x € g|[x,¥] =0, Vy € g}
and 34 are the higher centers defined recursively through

3ki1/3k = C(8/3k)-
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Alinear map ¢ : g — g is

m derivation & ¢([x, y]) = [¥(x), ¥] + [x, ¥(y)],
m inner derivation < 3z € g: ¢ = ad,, i.e. Y¥(x) = [z,x],

m automorphism < ¢([x, y]) = [¢(x), ¥(y)].
Any derivation which is not inner is outer.

The centralizer gy, of a given subalgebra h C g in g is the set
of all elements in g commuting with all elements in b, i.e.

gh:{xeg|[x,y]:0, VyE[’J}. (3)

Ideals in the characteristic series as well as their centralizers
(and their various intersections) are invariant with respect to
any derivation and automorphism, i.e. they belong among
characteristic ideals.



Any Lie algebra g has a uniquely defined

m its maximal solvable ideal — radical t,
m its maximal nilpotent ideal — nilradical n.



Levi decomposition

Let g denote an (indecomposable) Lie algebra. A fundamental
theorem due to E. E. Levi® tells us that any Lie algebra can be
represented as the semidirect sum

g=pDr, [p,p]=0p, [v,x] Cr,[p,t] Cr, (4)

where p is a semisimple subalgebra, called Levi factor, and t is
the radical of g.

Y evi E E 1905 Sulla struttura dei gruppi finiti e continui, Atti Accad. Sci.
Torino 40 551-65



Levi decomposition

Let g denote an (indecomposable) Lie algebra. A fundamental
theorem due to E. E. Levi® tells us that any Lie algebra can be
represented as the semidirect sum

g=p2r [ppl=p [, S fpCr, (4)
where p is a semisimple subalgebra, called Levi factor, and t is
the radical of g.

The Levi factor is unique up to isomorphism of g.

When [p,t] = ¢ the algebra g is perfect, i.e. [g,g] = g.

Y evi E E 1905 Sulla struttura dei gruppi finiti e continui, Atti Accad. Sci.
Torino 40 551-65
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Levi decomposable algebras in applications

Levi decomposable with nontrivial Levi decomposition, in
particular perfect ones, occur in many physical applications.

m The Poincaré algebra itself is of that kind, with Abelian
radical generated by translations and Lorentz algebra
forming the semisimple part so(3,1).

m Levi decomposable algebras often occur as symmetry
algebras of physically interesting PDEs.

m Such algebras also occur in the construction of higher
dimensional cosmological models as the algebras of Killing
vectors. In fact, that was the original motivation for P.
Turkowski who did a lot of initial research in the structure
of Levi decomposable algebras.
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Example: Symmetries of the heat equation
ur — Uy, = 0.

The (point) symmetries, i.e. transformations of solutions into
solutions arising as transformations of graphs of f : (x,t) — u,
are generated by the vector fields

4xtOy + Bt%0, — (2t + x*)ud,, 2xOy + 4t0; + ud,,, O,

—2t0y + xudy, ud,, Ox.

The first three form the simple algebra s[(2), the rest forms
the radical. A simple investigation of its structure shows that
it is isomorphic to the Heisenberg algebra in 1 dimension.
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Notice that we have discarded an infinite dimensional Abelian
subalgebra of point symmetries which originate from the
linearity of the heat equation. Its structure is described by
commuting vector fields

F(x,t)d,

where F(x, t) is an arbitrary solution of F, — F,, = 0.

Similarly, the Burgers equation v; + vuu, + v, = 0 has the
symmetry algebra s[(2) D a,.
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Turkowski's classifications of Levi decomposable algebras

We notice that by virtue of Jacobi identities t is a
representation space for p and that p is isomorphic to some
semisimple subalgebra of the algebra of all derivations of t.

The Levi decomposable algebras up to dimension 8 were
classified in Turkowski P 1988 Low—dimensional real Lie
algebras, J. Math. Phys. 29 2139-44 and in dimension 9 in
Turkowski P 1992 Structure of real Lie algebras Linear Alg.
Appl. 171 197-212.
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vector space V' of chosen dimension. For each p, all solvable
algebras t compatible with the representation p were found by
an explicit evaluation of Jacobi identities with unknown
structure constants c,-jk of the radical ¢, and classified into
equivalence classes.



Method of Turkowski

The approach used by Turkowski was to consider a given
semisimple algebra p and all its possible representations p on a
vector space V' of chosen dimension. For each p, all solvable
algebras t compatible with the representation p were found by
an explicit evaluation of Jacobi identities with unknown
structure constants c,-jk of the radical ¢, and classified into
equivalence classes.

Turkowski stated and used also some general properties of Levi
decomposable algebras. These properties are a direct
consequence of the complete reducibility of representations of
semisimple Lie algebras.
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Turkowski's general theorems

Namely,
m if the representation ad(p)|. of p is irreducible then v is
Abelian.

m If v is solvable non—nilpotent, then there exists a
complement g of nin ¢, i.e.

t=n-+gq
such that ad(p)|q, = 0 for all p € p, i.e. ad(p)|. must
necessarily contain a copy of the trivial representation.

In view of this property, it is of interest to study and
classify Levi decomposable algebras with nilpotent radicals
first.



Turkowski's general theorems |l

m The set of all elements belonging to the trivial
representation

{x € nfad(p)x =0, Vp € p}

is a subalgebra of n.
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Our main goal

By inspection, one immediately realizes that only few out of
5— and 6—dimensional nilpotent algebras (see Patera J, Sharp
R T, Winternitz P and Zassenhaus H 1976 Invariants of real
low dimension Lie algebras, J. Math. Phys. 17 986-94)
appear as nilradicals of Levi decomposable algebras in
Turkowski's tables.

We would like to understand this feature of Levi decomposable
algebras and try to find some criteria allowing us to easily
predict whether a given nilpotent algebra may have a Levi
extension. Turkowski's classification will be used as a useful
test case for our ideas.
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Simple no—go criterion

Because all ideals in the characteristic series and their
centralizers are invariant with respect to any derivation, in
particular with respect to ad(p)|., we can use Lie's theorem to
easily deduce the following proposition.

Theorem
If a complete flag

0CVCWC...CV,=n

of codimension 1 subspaces can be built out of ideals in the
characteristic series and their centralizers, then no Levi
decomposable algebra

g=p>dn

such that [p,n] # 0 exists.
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Using this criterion one can immediately establish, without
further considerations of the structure of the representations
of p, that out of low dimensional nilpotent algebras (dimension
at most 5), the following can never appear as a nilradical of a
Levi decomposable algebra.

dimn=4:

Asi: [e2, eq] = e1, [e3, 4] = e2; the characteristic
flag is

0 Cn®Cn?Ccent(n?) Cn.
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dimn=5:

Aso: e, e5] = e, [e3, 6] = €, [e4, 5] = e3;
the characteristic flag is

0 Cn*cnd®cn?Ccent(n’®) Cn

Ass: [es, ea] = e1, [e2, 65] = €1, [e3, 65] = e
the characteristic flag is

0Cn®Cn®Cj Ccent(n®) Cn

A5,6: [627 e5] = €1, [e37 e4] = €1, [e37 e5] = €,
[es, es] = e3; with the same flag as As .
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We find it rather intriguing that all other indecomposable
nilpotent algebras As 1, As 1, As 3, As 4 of dimension 2 < n <5
do show up as nilradicals in Turkowski's list of Levi
decomposable algebras of dimension < 8, i.e. they do admit
Levi extension(s).

In the case of six—dimensional nilpotent algebras, the same
argument allows to immediately exclude from the list of Levi
extendable nilradicals the algebras

As,1, A6.2, As6, As.7, As,11, A6,16, A6,17, A6,19, As,20, As.21, Ap 22

In this case, however, not all of the remaining algebras allow a
Levi extension. According to Turkowski, only four algebras
A63. A6.a, As 5, As 12 out of 22 indecomposable 6—dimensional
nilpotent algebras allow a Levi extension. The structural
reasons for that will be given below.
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Decomposition of n into ad(p)-invariant subspaces

The complete reducibility of representations of semisimple Lie
algebras allows us to deduce the existence of complementary
ad(p)-invariant subspaces ; of W™ in W

W= ﬁlj-]-nj+1, ad(p)ﬁlj C I‘hj, j=1...,K. (5)

We can refine this statement in the following way. Let us take
m; = 511.

Now the commutator of two ad(p)—invariant subspaces is
again an ad(p)-invariant subspace. In particular, [my, my] is
an ad(p)-invariant subspace of n? and we have?

1’12 = [ml,ml] + 113.

%in general not a direct sum
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intersection [my, m;] N n3. By the complete reducibility of
ad(p), there is an ad(p)—invariant complement of [my, m;] Nn®
in [my, m;] which we denote m,. Altogether, we have

n? =m, +n®, my C [my, my], ad(p)my C my.

Continuing in the same way, we can construct a sequence of
subspaces m; such that

n=mg-+mg_1+...+my (6)
where

Wo=m; 0/t m C [my,my], ad(p)m; Cmy. (7)
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In any basis of the nilradical n which respects the
decomposition (6) the matrices of ad(p)|, have block diagonal
form. If any of the blocks is 1-dimensional then it necessarily
corresponds to the trivial representation p(p) =0, Vp € p.

The m;m;—submatrices of the representation ad(p)|,, j > 1,
i.e. the matrices of ad(p)|w,;, are fully determined by ad(p)|m,
through commutators.

For the same reason, the kernel of ad(p)|m, is also the kernel
of ad(p)|n. Therefore, the representation ad(p)|, of the Levi
factor p is faithful if and only if ad(p)|s, is faithful.



The representations on my, m; and m;;; are related in the
following way.



The representations on my, m; and m;;; are related in the
following way. Because the commutators of e, € m;, e, € m;
transform under action of any block—diagonal derivation D by

"_Zj,:ll m; n
Dles, es] = Z De.[ec, ev] + Z D9y[ea, ed]
c:n—i—l—Z{::l m; d=n+1—my

(8)
where D€, are components of the matrix of D|y, : m; — m;
and D9, are components of D\, : my — my, the commutator
subspace [m;, m;] transforms under a certain subset of
irreducible factors in the tensor representation
ad(p)|m; ® ad(p)|m, and the same is true also for
mj; C [mj,ml].



Main result

Theorem

Let g be an indecomposable Lie algebra with a nilpotent
radical n and a nontrivial Levi decomposition

g=pDn

There exists a decomposition of n into a direct sum of
ad(p)—invariant subspaces

n=mgF+mg_+...+my
where
. R
W =m; + 0/ m; C [my_g,my], ad(p)m; C m;.

such that ad(p)|w, s a faithful representation of p on m;.
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Main result 1l

Theorem

For j=2,...,K the representation ad(p)|w, of p on the
subspace m; can be decomposed into some subset of
irreducible components of the tensor representation

ad(p)‘mj_1 ® ad(p)|m, -

If any of the subspaces m; is one—dimensional then ad(p)|s
must contain a copy of the trivial representation corresponding
to the subspace m;. When j < K, the representation of p on
m;, 1 can be decomposed into a sum of irreducible
representations, each of which is equivalent to an irreducible
representation contained in the decomposition of m.

In particular, when ad(p)|w, is irreducible and
dimm; =1, 1 < j < K then the representation ad(p)
m;41 is equivalent to ad(p)|m, -

lmjsy ON



Why certain nilpotent algebras are not in Turkowski's lists?

Let us consider the 6—dimensional nilpotent algebra

A 15 :[e1, @] = es+es, [e1, e3] = ey, [e1, e1] = €6, [2, 65] = 65.
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Why certain nilpotent algebras are not in Turkowski's lists?

Let us consider the 6—dimensional nilpotent algebra

Mg 15 : [e1, &) = estes, [e1, &3] = ey, [er, &a] = &5, [e2, &] = 6.

It has an incomplete flag of characteristic ideals
ocn*cnPcn®Pcicn

in which only a 5—dimensional ideal is missing. Therefore, if
any Levi decomposable algebra with the radical Ag 15 exists
then we have a decomposition of the subspaces m; into
irreducible representations as follows

my =27 4+1;, my=1; mg=13 my =1,.

The representation space 1; coincides with the 1-dimensional
subspace my M 33.



By Theorem 2 we have
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At the same time, 33 of the algebra Ag 15 is Abelian and
contains both m, and ms which leads to a contradiction with
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By Theorem 2 we have

ms = [11, mp] = [my N 33, mp], my = [1;, m3] = [my N 33, m3].

(9)
At the same time, 33 of the algebra Ag 15 is Abelian and
contains both m, and ms which leads to a contradiction with
Eq. (9); namely, [m; N 33, m3] = 0. Therefore, no Levi
extension of Ag 15 exists. The same argument can be applied
also to the algebra Ag 17.
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Second example

Consider Ag 13
[e1, &2] = 65, [e1, €3] = €4, [e1,€4] = €5, [€2,65] = €5.  (10)
We have
n® = span{ey, es, €}, n*> = span{eg}, cent(n?) = span{es, e, €5, € }.
By dimensional analysis alone we have the following structure
of irreducible representations of hypothetical p:
m =2;+1;, my=13

and two options for my: either my, = 2, ormp, =1+ 1.



Out of the two, my =1 4 1 cannot be found in the
antisymmetrized tensor product of 2; + 1; with itself;
therefore, it must be m, = 2, = [2, 14].



Out of the two, my =1 4 1 cannot be found in the
antisymmetrized tensor product of 2; + 1; with itself;
therefore, it must be m, = 2, = [27, 1. On the other hand,
from the Lie brackets (10) we have

[21,11] C [n, cent(n?)] = span{es, e}

which splits into m3 and a 1-dimensional subspace of m,.
Therefore, [21, 11] must be simultaneously a trivial
representation and a 2—-dimensional irreducible representation,
a contradiction showing that no Levi extension of Ag 13 exists.
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In a similar fashion, most of 6-dimensional nilpotent algebras
missing in Turkowski's list can be shown to possess no Levi
extension by dimensional arguments only.

Only in two cases Ag 14

[e1, &3] = e, [e1, es] = 66, [€2, €3] = €5, [e2, 5] = €65, € =1
and Ag 13

[e1, €] = €3, [e1, &3] = €4, [e1, &1] = &5, [€2, €3] = €5, [e2, 4] = €6

we had to resort to at least partial explicit construction of
derivations of n in order to demonstrate that they cannot have
a Levi extension.
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possible to achieve by the theorem of Turkowski.
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Nonnilpotent radicals

Let us assume that t = n -+ g, ad(p)|; = 0 as is always
possible to achieve by the theorem of Turkowski.
We have

ad(p)[x, y] = [ad(p)x, y] + [x, ad(p)y] = 0

for any x,y € q and p € p, i.e. the subspace [q,q] C n must
be a representation space of the trivial representation (if [q, q]
is nonvanishing). Furthermore, forany z€n, y € q, p € p we
have

ad(p)ly, z] = [y, ad(p)z]

i.e. ad(y), y € q maps any representation subspace V C n of
an irreducible representation of p either to a representation
space of an equivalent representation (including V itself) or to
zero.



Another restriction: [p, q] C n means for the corresponding
derivations acting on n that

[ad(p)[n, ad(x)]s] € Tnn(n), ¥p € p,x € q.

This in turn implies that the mym;—blocks of ad(p)|, and
ad(x)|, commute.
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g is an algebra over C then dimt — dimn < 1.




Theorem on nonnilpotent radicals

Theorem

Let g be a Levi decomposable Lie algebra which cannot be
decomposed into a direct sum of ideals, p its Levi factor, ¢ its
radical, n its nilradical. Let n — Zle my be the
decomposition (6) of the nilradical n. Then for any p € p and
x € t the submatrices (ad(p))mym, and (ad(x))mm, of ad(p)|n
and ad(x)|,, respectively, commute

[(ad(p))mym;» (2d(X))mymy] = O.

In particular, if the restriction of ad(p) to my is irreducible and
g is an algebra over C then dimt — dimn < 1. When equality
holds then the mym;—block of ad(f;) (A € t\n)isa
nonvanishing multiple of the unit operator.
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The proof of the statements when ad(p)|w, is irreducible is a
direct consequence of Schur's lemma. [

Theorem 4 can be used in explaining the particular values of
parameters of solvable radicals ¢ allowing Levi extension. E.g.
in the algebra gss4 in Mubarakzyanov's classification of
solvable algebras there are two parameters whereas its Levi
extension Lg 44 has only one. The reason is that in order to
have (ad(f1))mm; commuting with (ad(p))mm, one of the
parameters must be equal to 1. For the same reason the four
parameters in the algebra /\/'607‘1’375 are reduced to the values
¥=a=p,3=09=qin the Levi extension Lgj;. And
similarly for other parametric families in Turkowski's
classifications.
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Conclusions

m We have investigated the structure of Levi decomposable
algebras. We have formulated several general properties
that the nilradical of any Levi decomposable algebra must
necessarily satisfy.

m We were able to explain the absence of a Levi extension
for all but two 6—dimensional indecomposable nilpotent
algebras by abstract, mostly dimensional, considerations,
without an explicit construction of derivations.

m The results and methods used in this section can be
applied to Levi extensions of arbitrary dimension.

m Especially, if a particular choice of the Levi factor and the
nilradical is desired by some application our results can be
easily used to estimate whether such a Levi extension may
exist.
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m One particular immediate consequence: no nilpotent
algebra n such that

dimn — dimn? =2 and
J € N exists such that
dimn/ —dimnw/*! =dimwt! —dimw*2 =1
can be a nilradical of a Levi decomposable algebra
(generalization of a known result for nilpotent algebras of
maximal degree of nilpotency).



Conclusions Il

m One particular immediate consequence: no nilpotent
algebra n such that

dimn — dimn? =2 and
J € N exists such that
dimn/ —dimnw/*! =dimwt! —dimw*2 =1
can be a nilradical of a Levi decomposable algebra
(generalization of a known result for nilpotent algebras of
maximal degree of nilpotency).

m It remains an open problem to find some structurally
interesting series of nilradicals in arbitrary dimension
allowing the classification of its nontrivial Levi extensions
other than n being Abelian or Heisenberg.
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