Fyzika laserových generátorů Fyzika laserů s přechodovými kovy

#### Jan Šulc

Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz

11. března 2021

## Aktivátory pevnolátkových iontových laserů

| 1  |               |     |     |     |               |     |     |     |    |    |    |    |    |    |    |    | 2  |
|----|---------------|-----|-----|-----|---------------|-----|-----|-----|----|----|----|----|----|----|----|----|----|
| H  |               | F   |     |     |               |     |     |     |    |    |    |    |    |    |    | He |    |
| 3  | 4             |     |     |     |               |     |     |     |    |    |    | 5  | 6  | 7  | 8  | 9  | 10 |
| Li | Be            |     |     |     |               |     |     |     |    |    |    | В  | С  | Ν  | 0  | F  | Ne |
| 11 | 12            | 1   |     |     |               |     |     |     |    |    |    | 13 | 14 | 15 | 16 | 17 | 18 |
| Na | Mg            |     |     |     |               |     |     |     |    |    |    | Al | Si | Р  | S  | Cl | Ar |
| 19 | 20            | 21  | 22  | 23  | 24            | 25  | 26  | 27  | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| K  | Ca            | Sc  | Ti  | V   | $\mathbf{Cr}$ | Mn  | Fe  | Co  | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
| 37 | 38            | 39  | 40  | 41  | 42            | 43  | 44  | 45  | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
| Rb | $\mathbf{Sr}$ | Y   | Zr  | Nb  | Mo            | Tc  | Ru  | Rh  | Pd | Ag | Cd | In | Sn | Sb | Te | Ι  | Xe |
| 55 | 56            | La- | 72  | 73  | 74            | 75  | 76  | 77  | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |
| Cs | Ba            | Lu  | Hf  | Ta  | W             | Re  | Os  | Ir  | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
|    | 200           |     |     |     |               |     |     |     |    |    | -  |    |    |    |    |    |    |
| 87 | 88            | Ac- | 104 | 105 | 106           | 107 | 108 | 109 |    |    |    |    |    |    |    |    |    |

| 57 | 58            | 59            | 60 | 61 | 62            | 63                     | 64 | 65            | 66 | 67 | 68  | 69            | 70  | 71  |
|----|---------------|---------------|----|----|---------------|------------------------|----|---------------|----|----|-----|---------------|-----|-----|
| La | $\mathbf{Ce}$ | $\mathbf{Pr}$ | Nd | Pm | $\mathbf{Sm}$ | $\mathbf{E}\mathbf{u}$ | Gd | $\mathbf{Tb}$ | Dy | Ho | Er  | $\mathbf{Tm}$ | Yb  | Lu  |
| 89 | 90            | 91            | 92 | 93 | 94            | 95                     | 96 | 97            | 98 | 99 | 100 | 101           | 102 | 103 |
| Ac | Th            | Pa            | U  | Np | Pu            | Am                     | Cm | Bk            | Cf | Es | Fm  | Md            | No  | Lr  |

### lonty vzácných zemin

- Valenční 4f elektrony stíní elektrony z podslupek 5s a 5p, které mají menší energii, ale větší poloměr
- ► Slabá interakce s vnějším polem ⇒ úzké emisní a absorpční čáry

# lonty přechodových prvků

- Valenční elektrony v podslupce 3d na vnějším okraji elektronového obalu jsou v přímé interakci s okolím
- Silná interakce s fonony široké absorpční a emisní čáry



# **Yb:YAG** c = 10 % Yb/Y L = 3 mm D = 3 mm

**Cr:YAG** To = 75 % L = 2.8 mm D = 3 mm









Absorpční a emisní spektra přechodových kovů ([Xe] 3d<sup>(1-8)</sup> 4s<sup>(1,2)</sup>) jsou charakteristická svou pásovou strukturou, na které mohou být superponovány také relativně úzké čáry.



Cr<sup>3+</sup>:BeO.Al<sub>2</sub>O<sub>3</sub>

- síla pole
- spektrum fononů

#### Fyzika aktivního prostředí laserů s přechodovými kovy – d-orbitaly



# Fyzika aktivního prostředí laserů s přechodovými kovy

- Efektivní potenciál jádra > odpuzování valenčních elektronů > krystalové pole > spin-orbitální interakce
- Teorie Tanabe-Sagano [3]
  - pro komplexní molekulu aktivního iontu obklopeného šesti ligandy tvořícími osmistěn – symetrie oktaedru (např. Cr:YAG)



- ligandy = bodové náboje
- řešení energetických stavů tohoto systému při uvážení vzájemné interakce orbitalu aktivního iontu a ligandů, nalezení matice energie a její diagonalizaci.
- odchylka od symetrie oktaedru se bere jako další porucha (např. Cr:Al<sub>2</sub>O<sub>3</sub>)
- Další opravy Jahn-Tellerův efekt

Hladiny 3d elektronů se rozdělí na dva sety:

$$\begin{array}{ccc} 3d\varepsilon & 3d\Gamma \\ -4Dq & +6Dq \\ 3\times \mbox{ degenerovan} \acute{y} & 2\times \mbox{ degenerovan} \acute{y} \\ x = -iR(r) \Big[ Y_{21}(\theta,\phi) - Y_{2-1}(\theta,\phi) \Big] / 2^{1/2} & u = R(r) Y_{20}(\theta,\phi) \\ y = -R(r) \Big[ Y_{21}(\theta,\phi) + Y_{2-1}(\theta,\phi) \Big] / 2^{1/2} & v = R(r) \left[ Y_{22}(\theta,\phi) - Y_{2-2}(\theta,\phi) \right] / 2^{1/2} \\ z = iR(r) \Big[ Y_{22}(\theta,\phi) - Y_{2-2}(\theta,\phi) \Big] / 2^{1/2} \\ maxima mezi pozice ligandů maxima ve směru ligandů$$

- Dq je parametr síly pole krystalu (míru překrytí 3d orbitalu s orbity ligandů)
- ► R(r) normovaná radiální vlnová funkce,  $Y_{mn}(\theta, \phi)$  normované kulové funkce
- Energie komplexu může být vyjádřena pomocí Racahových parametrů A, B a C (Slaterovy integrály)
  - Člen A je aditivní a na rozdíl energie nemá tedy vliv
  - Členy B a C vystupují v nediagonálních prvcích

  - Rozdíly energie mezi různými hladinami byli spočteny pro všechny kombinace elektronů v oktaedrálním poli – Tanabe-Suganovými diagramy. Jsou normalizované vzhledem k B (iont) a k parametru pole krystalu Dq

### Tanabe-Suganovými diagramy



Typická energetická hladina je označena takto:

(2S+1)A

S spinové kvantové číslo a A je písmeno přidružené k symbolům charakterizujícím danou bodovou grupu operací symetrie

Osmistěnné symetrii přísluší označení A1, A2, E, T1, a T2

Spinového výběrové pravidlo přechod může nastat jen mezi hladinami, které obsahují stejný počet nespárovaných elektronů. V případě, že se přechod týká jen jediného elektronu, musí mít stejný spin na počátku i na konci přechodu.

Laportovo výběrového pravidlo přechod je zakázaný, jestliže jde pouze o přerozdělení elektronů majících podobný orbital uvnitř jediné kvantové slupky (výchozí a konečný stav má stejnou paritu).

- Pro 3d elektrony jsou všechny přechody mezi různými hladinami zakázané, protože všechny hladiny mají stejnou paritu.
- Je třeba uvažovat další tři interakce, které mohou vést k povolení kvantového přechodu:
  - 1. elektrická dipólová interakce za účasti vibrací mřížky
  - 2. elektrická kvadrupólová interakce
  - 3. magnetická dipólová interakce

#### Příklad – rubín vs alexandrit

Rubín Cr<sup>3+</sup>(0,05%):Al<sub>2</sub>O<sub>3</sub>, široké absorpční pásy, první laser (1960), úzké emisní spektrum laseru 694,3 nm, s klesající teplotou práh klesá

Alexandrit Cr<sup>3+</sup>(0,10%):BeO.Al<sub>2</sub>O<sub>3</sub>, široké absorpční pásy, první "vibrační" laser za pokojové teploty (1975), přeladitelné emisní spektrum laseru od 710 do 820 nm, s rostoucí teplotou práh klesá





Systémy se spinově a orbitálně degenerovanými stavy mají tendenci spontánně deformovat své okolí a sejmout tak tuto degeneraci.

- Rozštěpení degenerovaných energetických hladin za cenu mírné deformace okolí (snížení jeho symetrie) je energeticky výhodné.
- Pro ionty z prvního řádku přechodových kovů, vyznačující se silnou vibrační vazbu a slabou spin-orbitální vazbou, může být Jahn-Tellerovo štěpení větší než spin-orbitální štěpení.
- Teorie nad rámec Born-Oppenheimerovy aproximace iont příměsi ovlivňuje symetrii ligandů
- Potenciál typu "mexický klobouk" ⇒ "raménko" v absorpčním a emisním spektru



- Ti<sup>3+</sup> [Xe] 3d<sup>1</sup> 4s<sup>0</sup>
- Jen dvě hladiny, vzájemně posunuté těžiště ⇒ široké absorpční a emisní pásy bez ESA
- J-T štěpení <sup>2</sup>E ⇒ Al<sub>2</sub>O<sub>3</sub> symetrie kubická se deformuje na trigonální a "raménko" dále rozšiřuje absorpční a emisní pásy



- Laditelnost laseru 670 1070 nm
- Délka ML impulzu  $\sim$  15 fs
- Doba života na horní hladině ~ 3,5 μs



## Shrnutí

- lonty prvního řádků přechodových prvků (d-prvky) mají odkrytou valenční slupku a jejich elektrony silně interagují s okolím
  - Široké absorpční a emisní pásy
  - Teorie Tanabe-Sagano (diagramy)
  - Jahn-Tellerův efekt
- Cr:Al<sub>2</sub>O<sub>3</sub>, Cr:BeO.Al<sub>2</sub>O<sub>3</sub>, Ti:Al<sub>2</sub>O<sub>3</sub>

#### Literatura

- RICHARD C. POWELL: Physics of solid-state laser materials, Springer-Verlag, 1998
- BRIAN HENDERSON AND RALPH H. BARTRAM: Crystal-field engineering of solid-state laser materials, Cambridge University Press, 2000
- YUKITO TANABE AND SATORU SUGANO: On the absorption spectra of complex ions I., II., Journal of the Physical Society of Japan, Vol. 9, No. 5, 753–779, 1954
  - Přednášky: http://people.fjfi.cvut.cz/sulcjan1/FLT/