Fyzika laserových generátorů Fyzika laserů s lanthanoidy

Jan Šulc

Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz

18. března 2021

$Plán - \pm hotovo$

- 1. Elektron-fononová interakce
 - komplexy a model konfiguračních souřadnic
 - štěpení hladin v poli krystalu
 - nezářivé přechody a matrice s nízkou energií fononů
- 2. Kvantová soustava s vibračně rozšířenými hladinami
 - emisní a absorpční spektrum
 - zobecněné Einsteinovy relace
 - prahová podmínka a pracovní vlnová délka laseru
- 3. Fyzika laserů s přechodovými kovy
 - přechodové kovy
 - Tanabe-Sugano diagram
 - Jahn-Tellerův efekt: Ti:Al₂O₃
- 4. Fyzika laserů s lanthanoidy
 - Ianthanoidy
 - Dickův diagram
 - Judd-Ofeltova analýza
- 5. Kvazi-3-hladinový model aktivního prostředí
 - rychlostní rovnice
 - řešení pro stacionární stav CW laser
 - podélné čerpání a optimální délka laserové tyče
- 6. Systémy s přenosem energie
 - iont-iontová interakce
 - kodopace, up-konverze, křížová relaxace
 - spektroskopické vlastnosti aktivního prostředí ve vztahu k činnosti laseru

Plán – možné

- 7. Saturovatelné absorbéry
 - rychlý a pomalý absorber
 - Frantz-Nodvikova rovnice I.
 - ESA, FOM a anizotropie ESA
- 8. Optimalizace Q-spínání
 - aktivně spínaný laser
 - pasivně spínaný laser
 - vliv ztrát a ESA
- 9. Laserový zesilovač
 - Frantz-Nodvikova rovnice II.
 - single-pass, multi-pass
 - regenerativní zesilovač
- 10. Nelineární konverze v laserovém rezonátoru
 - Raman
 - SHG
 - OPO
- 11. Vznik, vliv a odvod tepla v pevnolátkovém laseru
 - rovnice vedeni tepla
 - rovnice pro tepelné pnutí Lamého rovnice
 - numerické řešení
- 12. Polovodiče v laserové technice
 - kvantová jáma
 - opticky čerpané polovodičové lasery
 - polovodičový saturovatlený absorbér
- 13. Zajímavé aplikace

Aktivátory pevnolátkových iontových laserů

1																	2
H																	He
3	4											5	6	7	8	9	10
Li	Be	Be								В	С	Ν	0	F	Ne		
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	\mathbf{Cr}	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	\mathbf{Sr}	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	200										-						
87	88	Ac-	104	105	106	107	108	109									

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	\mathbf{Ce}	\mathbf{Pr}	Nd	Pm	\mathbf{Sm}	$\mathbf{E}\mathbf{u}$	Gd	\mathbf{Tb}	Dy	Ho	Er	\mathbf{Tm}	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

lonty vzácných zemin

- Valenční 4f elektrony stíní elektrony z podslupek 5s a 5p, které mají menší energii, ale větší poloměr
- ► Slabá interakce s vnějším polem ⇒ úzké emisní a absorpční čáry

lonty přechodových prvků

- Valenční elektrony v podslupce 3d na vnějším okraji elektronového obalu jsou v přímé interakci s okolím
- Silná interakce s fonony široké absorpční a emisní čáry

lonty ve vnějším poli matrice

Yb:YAG c = 10 % Yb/Y L = 3 mm D = 3 mm

Cr:YAG To = 75 % L = 2.8 mm D = 3 mm

Elektronová konfigurace lanthanoidů doplňující konfiguraci Xe [Ar] 3d¹⁰4s²4p⁶ 4d¹⁰5s²5p⁶

₅₈ Ce	₅₉ Pr	₆₀ Nd	₆₁ Pm	₆₂ Sm	₆₃ Eu	₆₄ Gd
4f ¹ 5d ¹ 6s ²	4f ³ 5d ⁰ 6s ²	4f ⁴ 5d ⁰ 6s ²	4f ⁵ 5d ⁰ 6s ²	4 <i>f</i> ⁶ 5d ⁰ 6s ²	4f ⁷ 5d ⁰ 6s ²	4f ⁷ 5d ¹ 6s ²
₆₅ Tb	₆₆ Dy	₆₇ Ho	₆₈ Er	₆₉ Tm	₇₀ Yb	₇₁ Lu
4 <i>f</i> ⁹ 5d ⁰ 6s ²	4f ¹⁰ 5d ⁰ 6s ²	4f ¹¹ 5d ⁰ 6s ²	4f ¹² 5d ⁰ 6s ²	4f ¹³ 5d ⁰ 6s ²	4f ¹⁴ 5d ⁰ 6s ²	4f ¹⁴ 5d ¹ 6s ²

- Laserového procesu účastní elektrony z podslupky 4f
- Jestliže je lathanoid začleněn do matice, většinou s ní sdílí tři elektrony: jeden z podslupky 4f a dva s podslupky 6s.
 - Elektrony v prvních třech slupkách a z prvních tří podslupek (4s, 4p a 4d) čtvrté slupky představují sféricky symetrický potenciál, který poutá 4f elektrony k atomu.
 - Elektrony z podslupek 5s a 5p stíní zbývající 4f elektrony před polem krystalu, které je proto nemůže příliš ovlivnit a má jen malý vliv na strukturu spekter trojnásobně ionizovaných lanthanoidů.
- Absorpční a emisní spektru lanthanoidů v laserovém aktivním prostředí je charakteristické čárovou strukturou. Šířka čáry jednotlivých přechodů je řádově 10¹¹ Hz (v případě přechodových kovů je to ~ 10¹⁴ Hz).
- Protože je vliv pole krystalu na energetické hladiny lanthanoidů slabý, vlnová délka emise je na matrici méně závislá, než je tomu u přechodových kovů. Na základě znalosti energetických úrovní určitého lanthanoidu v jednom materiálu je možné odhadnou tyto hladiny pro jakoukoliv jinou matrici.

Vlnové funkce 4f-orbitalu

Jak rozmístit 1-13 elektronů mezi 7 pozic 4f-orbitalu při uvážení spinu?

				Počet	Počet hladin			
4f ⁿ		4f ⁿ		e^{-}/e^{+}	SL	SLJ	SLJM	
4f ¹	Ce ³⁺ , Pr ⁴⁺	4f ¹³	Yb ³⁺ , Tm ²⁺	1	1	2	14	
$4f^2$	Pr ³⁺	4f ¹²	Tm ³⁺	2	7	13	91	
4f ³	Nd ³⁺	4f ¹¹	Er ³⁺	3	17	41	364	
4f ⁴	Pm ³⁺	4f ¹⁰	Ho ³⁺ , Dy ²⁺	4	47	107	1001	
4f ⁵	Sm ³⁺	4f ⁹	Dy ³⁺	5	73	197	2002	
4f ⁶	Eu ³⁺ , Sm ²⁺	4f ⁸	Tb ³⁺ , Dy ⁴⁺	6	119	295	3003	
4f ⁷	Gd ³⁺ , Eu ²⁺	—	—	7	119	327	3432	

Hamiltonián pro valenční 4fⁿ elektrony volného iontu:

$$H_{Fl} = H_0 + \sum F^k f_k + \zeta_f A_{SO} + \alpha L(L+1) + \beta G(G_2) + \gamma G(R_7) + \sum T^i t_i + \sum M^h m_h + \sum P^f p_h$$

- H₀ centrální pole, pouze posunuje absolutní hodnoty energie
- Pro každý následující člen první faktor představuje radiální fitovací parametr (určen z experimentu), zatímco následující faktorem je úhlový člen (určen z prvních principů).

Energetické hladiny lanthanoidů – Dickův diagram pro Ln³⁺

- Nejjednodušší konfigurace mají ionty s jedním elektronem nebo dírou v 4f slupce (Ce³⁺, Yb³⁺)
- Konfigurace 4f⁷ (Gd³⁺) je stabilní a vyžaduje vysoké energie

 Přechody v rámci f-orbitalu podle Laportova výběrového pravidla "zakázané", protože mají stejnou paritu

$$ec{d}_{12} = \mathbf{e} \langle 1 | ec{r} | 2
angle = \mathbf{e} \int \psi_1^*(ec{r}) ec{r} \psi_2(ec{r}) \, dV = ec{d}_{21}^*.$$

Operátor elektrického dipólu (lichý)

$$\hat{\mathbf{P}} = -\mathrm{e}\sum_{i}\mathbf{r}_{i}$$

Operátor magnetického dipólu (sudý) – speciální případy

$$\hat{\mathbf{M}} = -rac{\mathbf{e}\hbar}{2\mathit{mc}}\sum_i (\mathbf{I}_i + 2\mathbf{s}_i)$$

Operátor elektrického kvadrupólu (sudý) – příliš slabý

$$\hat{\mathbf{Q}} = -\frac{1}{2}\sum_{i} (\mathbf{k}_i \cdot \mathbf{r}_i) \times \mathbf{r}_i$$

 Řešení je v mixování stavů (4f-4f, 4f-5d) v důsledku interakce s okolím (Racach 1949)

Vlnové funkce lanthanoidů a mixování stavů (4f-4f, 4f-5d)

Judd-Ofeltova teorie (1962)

Výchozí a koncový stav je daný mixováním stavů 4f^N (φ_{a,b}) a 4f^{N-1}5d (φ_β) v důsledku interakce iontu s okolím (V̂). V prvním řádu poruchové teorie:

$$\begin{split} \langle \Psi_{a} | &= \langle \varphi_{a} | + \sum_{\beta} \frac{\langle \varphi_{a} | \hat{V} | \varphi_{\beta} \rangle}{E_{a} - E_{\beta}} \langle \varphi_{\beta} | \\ |\Psi_{b} \rangle &= |\varphi_{b} \rangle + \sum_{\beta} \frac{\langle \varphi_{\beta} | \hat{V} | \varphi_{b} \rangle}{E_{b} - E_{\beta}} |\varphi_{\beta} \rangle \end{split}$$

- Stavy |Ψ_{a,b}⟩ mají smíšenou paritu
- Pravděpodobnost přechodu v důsledku elektrické dipólové interakce:

$$\langle \Psi_{a} | \hat{\mathbf{P}} | \Psi_{b} \rangle = \sum_{\beta} \left\{ \frac{\langle \varphi_{a} | \hat{V} | \varphi_{\beta} \rangle \langle \varphi_{\beta} | \hat{\mathbf{P}} | \varphi_{b} \rangle}{E_{a} - E_{\beta}} + \frac{\langle \varphi_{a} | \hat{\mathbf{P}} | \varphi_{\beta} \rangle \langle \varphi_{\beta} | \hat{V} | \varphi_{b} \rangle}{E_{b} - E_{\beta}} \right\}$$

P je operátor elektrického dipólu. Operátor interakce iontu s okolím:

$$\hat{V} = \sum_{i} \sum_{qk} A_{qk} r_i^k Y_{kq}(\vartheta_i, \varphi_i)$$

Racachův irreducibilní tenzor

$$C_q^{(k)} = \left(rac{4\pi}{2k+1}
ight)^{1/2} \mathsf{Y}_{kq}$$

Judd-Ofeltova teorie (1962)

- Zjednodušující předpoklady:
 - 1. Stavy 4f^{N-1}5d (φ_{β}) jsou degenerované v J
 - 2. Platí $E_a E_\beta = E_b E_\beta$ (využije se pak relace úplnosti $\sum_\beta |\varphi_\beta\rangle\langle\varphi_\beta| = 1$)
 - 3. Všechny Starkovské podhladiny jsou stejně obsazené
 - Prostřední je opticky isotropní
- Síla oscilátoru

$$f = \frac{8\pi mc}{3\hbar\bar{\lambda}(2J+1)e^2} n\left(\frac{n^2+2}{3n}\right)^2 \underbrace{\sum \left|\langle \alpha JM|\hat{\mathbf{P}}|\alpha'J'M'\rangle\right|^2}_{S_{ED}}$$

Operátory elektrického dipólu P a interakce s krystalem V se kombinují do efektivního tenzorového operátoru U^(λ) a využije se Wignerův-Eckartův teorém:

$$S_{ED} = \sum_{\lambda=2,4,6} \Omega_{(\lambda)} \left| \langle I^N SLJ \| U^{(\lambda)} \| I^N S' L' J' \rangle \right|^2$$

Judd-Ofeltovy parametry je možné určit z prvních principů:

$$\Omega_{(\lambda)} = (2\lambda + 1) \sum_{p} \sum_{t=1,3,5} \frac{|A_{tp}|^2}{2t+1} Y^2(t,\lambda)$$

ale komponenty pole krystalu A_{tp} je velmi obtížné stanovit a tak se parametry $\Omega_{(\lambda)}$ stanoví fitováním na experimentální data

Redukované maticové prvky tenzorových operátorů U^(k) jsou tabelované

Judd-Ofeltova analýza

Síla oscilátoru se dá experimentálně stanovit. Například z absorpčního spektra:

$$S_m = \frac{3ch(2J+1)}{8\pi^2 e^2 \bar{\lambda}} n \left(\frac{3}{n^2+2}\right)^2 \int \sigma(\lambda) d\lambda$$

- Fitováním na teoretická data se stanoví odhad parametrů Ω_(λ)
- S pomocí těchto parametrů a tabelovaných redukovaných maticových prvků tenzorových operátorů U^(k) lze spočítat rychlosti libovolného přechodu (Einsteinovy A-koeficienty):

$$A_{J'J} = \frac{64\pi^4 e^2}{3h(2J'+1)\bar{\lambda}^3} \left[n \left(\frac{n^2+2}{3} \right)^2 S_{ED} + n^2 S_{MD} \right]$$

(S_{MD} jsou taky tabelované, ale tabulky jsou hůř dostupné)

Radiativní doba života

$$\frac{1}{\tau_r} = \sum_J A_{J'J}$$

Branching ratio

$$\beta_{J'J} = \frac{A_{J'J}}{\sum_J A_{J'J}}$$

Význam a využití parametrů $\Omega_{(\lambda)}$

- Ω(2)
 - Roste se vzrůstající asymetrií pozice Ln³⁺
 - Roste se vzrůstající kovalencí pozice Ln³⁺
 - Roste s nephelauxetickým efektem (vzrůstající vliv pole lingandů vedoucí ke zmenšení repulse)
- Ω₍₄₎
 - Závislost na prostředí nejasná a málo studovaná a interpretace je kontroverzní
 - Snad má vliv hustota elektronů v okolí Ln³⁺
- Ω₍₆₎
 - Citlivý na překryv 4f a 5d orbitalů
 - Rosté s poklesém Coulombovské interakce (s poklesem intenzity krystalového pole, s nárůstem vzdálenosti Ln³⁺ a ligandů)
 - Klesá s rostoucí kovalencí mezi Ln³⁺ a ligandy
- Určitý smysl má srovnání více vzorků při použití stejného postupu
- Smysl má verifikace přes změřené radiativní doby života konkrétních hladin
- Pro některé přechody může být smysluplný poměr některých J-O parametrů, který je méně citlivý na metodě
- Výsledky J-O analýzy se dají do jisté míry použít i pro stanovení rychlosti nezářivých přechodů

- Stanovení parametrů Ω_(λ) je silně citlivé na použité metodě výpočtu měřením absorpčního spektra počínaje, přes výběr použitých pásů zahrnutých do výpočtu až po vlastní nelineární fitovaní
- Různí autoři používají různé postupy (i třeba různé susceptibility)
- Některé ionty nemají dostatek vhodných nepřekrývajících se pásů (Yb³⁺, Pr³⁺)
- Zahrnout přechody s nenulovým S_{MD} je obtížné
- Vliv silné-slabé čáry na výsledek může být značný
- ► Některé přechody mají velký vliv na výsledek fitu (nenulový je třeba je jeden člen |⟨I^NSLJ||U^(λ)||I^NS'L'J'⟩|²)
- ► Ačkoliv se běžně používají historické tabulky stanovené pro Ln³⁺:LaF₃, nejsou hodnoty |⟨*I^NSLJ*||*U*^(λ)||*I^NS'L'J'*⟩|² ve skutečnosti zcela nezávislé na matrici (existují i odchylky o 20 %)
- Některé ionty (Eu³⁺) zcela vzdorují J-O analýze

Judd-Ofeltova analýza Ho:YAG

 $\frac{3\hbar c^2}{8\pi^3 e^2} \frac{2J+1}{\bar{\nu}} \frac{n}{\chi_{ED}^{abs}} \int_0^\infty \sigma(\nu) d\nu = S_{abs} = \sum_{\lambda=2,4,6} \Omega_{(\lambda)} \left| \langle I^N SLJ \| U^{(\lambda)} \| I^N S'L'J' \rangle \right|^2$

Judd-Ofeltova analýza Ho:YAG

Transition	Barycenter	Refr.					f_{exp}	f_{clc}
${}^{5}I_{8} \rightarrow$	$[\mathrm{cm}^{-1}]$	index	$ \langle \mathbf{U}^{(2)} \rangle ^2$	$\left \langle \mathbf{U}^{(4)} \rangle \right ^2$	$\left \langle \mathbf{U}^{(6)} \rangle \right ^2$	$ \langle \mathbf{L} + g \mathbf{S} \rangle ^2$	$[10^{-6}]$	$[10^{-6}]$
⁵ I ₇	5232	1.802	0.0248	0.1335	1.5120	23.2428	14.0	18.9
${}^{5}I_{6}$	8770	1.813	0.0088	0.0391	0.6969	0	7.9	10.3
⁵ I ₅	11269	1.819	0	0.0114	0.0879	0	1.7	1.8
⁵ F ₅	15648	1.829	0	0.4120	0.5698	0	30.0	28.0
⁵ S ₂ , ⁵ F ₄	18570	1.837	0	0.2425	0.9207	0	40.8	36.9
${}^{3}K(2)_{7}, {}^{5}F_{3}, {}^{5}F_{2}, {}^{5}G_{6}$	21990	1.849	1.5427	0.8772	0.8775	67.0324	80.1	159.0
${}^{5}G_{5}$	23910	1.856	0	0.5235	0.0002	0	26.7	27.7
${}^{3}K(2)_{7}, {}^{5}G_{4}$	25899	1.865	0.0069	0.0423	0.0694	0.2934	5.3	5.8
${}^{3}H(4)_{6} - {}^{5}G_{2}$	27923	1.874	0.2351	0.3416	0.3636	0.0216	42.3	42.1
${}^{3}M_{10} - {}^{5}G_{4}$	34673	1.913	0	0.2706	0.0528	0	26.7	24.8
${}^{1}L(2)_{8} - {}^{3}I(1)_{7}$	35871	1.921	0.0194	0.2917	0.0250	7.4147	22.3	38.5
$^{5}D_{3}$	39965	1.953	0	0	0.0272	0	2.2	1.9
${}^{5}\mathrm{D}_{4}$	41389	1.965	0	0.2700	0.0146	0	27.6	28.1

Table 3. Input data for J-O analysis of Ho;YAG: barycenter energies determined from the measured absorption crosssection spectra; refractive index of YAG²⁶; set of optimized squared reduced-matrix elements for tensor operators $\mathbf{U}^{(k)}$ and $\mathbf{L} + d\mathbf{S}$; experimental f_{eff} costillator strengths.

Table 4. Ho:YAG Judd–Ofelt intensity parameters Ω_{λ} and calculated spontaneous radiative lifetime τ_{τ} for ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$

$\Omega_2 [10^{-20} \mathrm{cm}^2]$	$\Omega_4 [10^{-20} \mathrm{cm}^2]$	$\Omega_6 [10^{-20} \mathrm{cm}^2]$	$\tau_r [ms]$	References
1.2	5.29	1.48	6.75	Kaminskii ³⁰
0.101	2.086	1.724	7.82	Walsh et al. ²¹
0.04	2.67	1.89	6.36	Malinowsk et al. ³¹
0.1	2.59	1.48	7.5	Ryabochkina <i>et al.</i> ³²
0.55	1.95	1.42	7.87	this work
0	1.83	1.54	7.53	this work [*]

*Results, if transitions to levels ³K(2)₇, ⁵F₂, ⁵F₃, and ⁵G₆

were incorporated in the J-O analysis.

Shrnutí

- lonty lanthanoidů (a aktinoidů) (f-prvky) mají částečně stíněnou valenční slupku a jejich elektrony interagují s okolím jen poměrně slabě
 - Relativně úzké absorpční a emisní pásy
 - Dickův diagram
 - Judd-Ofeltova teorie
- Judd-Ofeltova teorie umožňuje poměrně jednoduše do určité míry zkoumat vliv matrice na spektroskopii iontů lanthanoidů
 - Síly/intenzity spektrálních čar
 - Doby života energetických hladin
 - Poměrně nespolehlivé výsledky

Literatura

RICHARD C. POWELL: *Physics of solid-state laser materials*, Springer-Verlag, 1998

Ofelt, G. S., "Intensities of crystal spectra of rare-earth ions," The Journal of Chemical Physics 37(3), 511-520 (1962).

B. M. Walsh, Advances in Spectroscopy for Lasers and Sensing, ch. Judd-Ofelt theory: principles and practices, pp. 403–433, Springer Netherlands, Dordrecht, 2006.

Hehlen, M. P., Brik, M. G., and Kramer, K. W., "50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application," Journal of Luminescence 136, 221-239 (2013).

B. Henderson and R. H. Bartram, Crystal-field engineering of solid-state laser materials, Cambridge studies in modern optics, Cambridge University Press, Cambridge, 2000.

Přednášky: http://people.fjfi.cvut.cz/sulcjan1/FLT/