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QUANTUM KINEMATICS ON SMOOTH MANIFOLDS

B. Angermann
H.D. Doebner

Institute for Theoretical Physics A
Technical University of Clausthal
Clausthal, Germany F.R.

J. Tolar

Faculty of Nuclear Science and Physical Engineering
Czech Technical University

Prague, Czechoslovakia

1. Introduction

1.1. Let M be a differentiable manifold {(connected and of finite
dimension). Consider physical systems with M as configuration space
and suppose that, at any time, it is possible to observe the localiza-
tion of these systems and their motion on M. A mathematical model for
this intuitive physical picture depends on the type of the systems.
Here we will describe the family r’M of non-relativistic gquantum me-
chanical systems on M. We propose mathematical models for the systems
in FM,
sical interpretation.

we study the structure of these models and discuss their phy-

1.2, The abstract framework for a description of any guantum mecha-

nical system § is given by the axiomatic approach {cf. Appendix):
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The states of § are in 1-1-correspondence with the positive bounded
operators T with unit trace, Tr T = 1, in some separable Hilbert
space H. All physical observables of § have to be identified with
selfadjoint operators /A in H. The probability that a measurement
of the observable A 1in a state T of S yields a result in the
Borel set AN\ ¢ R is given by

(1) Tr(TER (A,

where EA(.) denotes the spectral measure of the selfadjoint operator
A; T is determined, if the values (1} are known for sufficiently many
A and O .

For the application of this scheme to any family [T of quantum
mechanical systems, e.g. to FﬂM, it is necessary
a) to characterize the family by a set J}¥ of mathematically well
defined objects which can be identified with observable gquantities,

which is large enough to describe the physics of I~ y

b) to map X into the set SA(H) of selfadjoint operators of some
Hilbert space H, such that at least some significant properties

of X remain valid on the guantum level.

Such a procedure is called quantization method or gquantization; X

serves as a kind of germ of appropriate mathematical models for the
systems in .

1.3. The material is organized as follows:

In section 2 the family [~ of quantum mechanical systems, localized

M
and moving on M, 1is characterized by a set J<M of "kinematical ob-

jects" called Borel kinematics on M. J{M is the germ of mathematical

models for the systems in F’M and is guantized in section 3 via a

mapping of J(M into the set of selfadjoint operators in some Hilbert
space H, such that those properties of JcM survive, which are on
the one hand characteristic for F‘M and can be used for a rigorous
mathematical formulation on the other hand. We end up with the defini-

tion of a guantum Borel kinematics on M, which is essentially a col-

lection of abstract position and momentum operators and which repre-

sents a possible mathematical model for a systen in f"M.
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The structure of these nmodels is discussed in section 4. We prove that
the position operators are unigque up to equivalence. For the momentum
operators an analogous result is not valid, additional assumptions are

necessary. In section 5, we introduce the notion of "differentiability"

for those guantum Borel kinematics whose momentum operators are, up to
eqguivalence, differential operators with respect to a (not necessarily
trivial) line bundle structure on the point set M x € over M. We
derive the form of the momentum operators and a characterization of

all inequivalent differentiable guantum Borel kinematics in sections 5.
and 6 respectively by differential geometric methods}) the results are

shortly discussed.

2. Borel Kinematics on a Smooth Manifold

In order to characterize the family F’M of gquantum mechanical
systems we introduce a set S%M of objects representing the localization
and motion observables of the systems in F’M.
2.1, The intuitive physical picture of a system S Dbeing localized
on M is that, at any time, there are experiments to observe the "po-
sition® of S on M. Hence we assume that a sufficiently large number
of regions BcM is associated with physical observables - position
observables - in the sense that the expectation values of these obser-
vables give the probabilities for S being localized in B. A canoni-
cal set of regions of M is & (M}, the g~algebra of Borel sets of M.

2.2. The intuitive physical picture of a localized system S moving
on M is that, at any time, there are experiments to observe the (in-

finitesimal) change of the localization of S on M, i.e. the "momen-
tum” of S on M. The canonical objects characterizing motions on M

are infinitesimal generators of one-parameter flows on M, i.e. com-

plete vectorfields on M. We will assume that all X € XC(M) with

X M) = { X!X is a smooth complete vectorfield on M} represent phy-

sical observables - momentum observableg - of 8.

2.3. The B’'s and the X's are related:

The flow of X¢€ XC(M),
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%)X : R X M w3 M, (L, M) sy Qi(m) B

(x£) (m) = S (Feqr)m)

t t=0
shifts Borel sets via

BMysB —> ¢i(8) = {qiim)| men} e B

and models a motion of localization regions of & (flow model).

2.4. The above discussion motivates

Definition 1

For every differentiable manifold M, JﬂM = (SBH(M), IC(M)) is called

Borel kinematics on M.

We assume now that the characterization of qu through the objects in
JG(M)LJ.XC(M) and the physical observables associated tc them is

"complete”; internal non-mechanical degrees of freedom, like spin, are
not included. We call the systems in T”M mechanical. For their physi-
cal characterization, JQ,M is large enough and will be used as a germ

of mathematical models.

2.5, If M is a homogeneous space with respect to the transitive
action of a Lie group G (with Lie algebra ¢ )} on M, then there is
a natural representation ¥ : g ——> .KC(M) of g'in 3EC(M). The

pair (& (M), w(g)) is then called a Borel ¢ ~-kinematics on M.

Borel ¢ =-kinematics are used in a quantization method based on Mackey's

systems of imprimitivity {([1]1,1[2),131).
3. Quantization of Borel Kinematics
The Borel kinematics j{M = (r (M), XC(M)) is quantized by

mapping & (M) and X (M) into the set SA{H) of selfadjoint opera-

tors of some separable Hilbert space H,
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(2} E : HBM) ——> SA{H)
(3) P o XC(M) ey S A (H)

such that the position observables E(B) and the momentum observables
P (X} carry some of the characteristic structure of X L including

an operator version of the flow model.

3.1, Quantization of of (M)
3.1.1. Consider the system Sel, in a state T eST(H) = { 7T
is a positive bounded operator in H, Tr T = 1} . The mapping {(2) is

assumed to yield selfadjoint operators such that, for every Be & (M),
the expectation value of E(B) in T

E(B)('))

(4) bp(B) := Tr(TeE(B)) = [ idg 4 Tr(T+E
{cf. (1)) exists and can be interpreted as the probability to find §,
in the state T, localized in B. This forces [E(B) to be a bounded

positive operator for every B ¢ &(M). It is furthermore plausible to
assume, for every T e S8T(H), the map

(5) b i HM) ——> R, B ——s b (B)

T

to be a probability measure on & {M). This leads to the following

necessary properties of E

{6a) leilf <, ogE®B , BefHM™M ,
E(@) = 0 ’ {E(M) =1 2
N
€(U B.) = s-lim ) _ E(B,)
3 J N-——>oo j=1 ]

for sequences of mutually disjoint Borel sets.

Hence E should be a {(normalized) positive-operator-valued (POV-}
measure on o (M) ([4],[5]).

3.1.2. The set of POV-measures on M 1s vast. In order to select cer-
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tain POV-measures as candidates for a map (2) a more detailed descrip-
tion of the measurements of E(B) is needed: we assume that the possible
results are O, whenever § is not in B, and 1, whenever S ig in
B, or equivalently, that the spectrum of E(B) consists of 0 and 1
only, i.e. that E(B) is a projection operator in H. Sc we have, in

addition to (6a),
(6b) [E(B), €(B)] =0 , B,Be &)

(cf. [41}).
A map (2) with the properties (6) is called a projection-valued (PV-)

or spectral measure on & (M). Thus our discussion leads to the assump-

tion that & (M) is quantized via a spectral measure on & (M)

(cf. e.g. [6]).

3.1.3. DEM was assumed to be "complete" (cf. 2.4.), so those projec-
tion operators in H, which commute with all E(B}), B &€ &H (M), are of
some interest. If FeE(&(M)), then cobvicusly F commutes with E
{cf. (6b)). The reverse is true, if the v.Neumann algebra generated by

E 1is maximal abelian or, in other words, E has multiplicity 1. We

call E an elementary spectral measure in this case.

3.1.4. The guantization of & (M) via a spectral measure B on & (M)
automatically induces a quantization of the algebra c®M,R) of real

valued smooth functions on M via a map

(7a) Q@ : C®M,R) =———> SA (H)
defined by
(7b) ate) = [ 1ap ames™h ()
R
R
i.e. (QUf)y,n) = J f AELIy )
M
2
on  J@(f)) = {yer| [ £ dE()Iy, yI<w}

(cf. [4]). The operators Q(f) <can be called position operators too.
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3.2. Quantization of X c(M)

3.2.1. Consider a complete vectorfield X on M, with flow <px v
and quantize & {M) via a spectral measure E.

For every state T e€S8T(H), q)x induces a shift of the probability mea-
sure (5) along X,

(8) — ugegl,

B

(bps @E ) (B) = up(@l (B) , Be%(t) , ter .

The idea is now to relate this one-parameter shift-group to a continuous
one-parameter group of unitary transformatiocns of H,

(9a) VX:RxH“—-»)H, (t,q,.)—————)‘v)é'q,
X X X X
V.o=1,V, oV =V , t,.,t,e€R ,
o t1 t2 t1+t2 1772
which has the "shift property"
X PR X
(9b) Bpo @_p = Hqr o T —WtoToW_t .
for all TesST(H) , teRrR ,

i.e. which unitarily implements the shift (8). Exploiting the analogy
between cpx and VX, we require X to be represented on the quantum le-
vel by the selfadjoint infinitesimal generator P(X) of a unitary

shift-group VX v

X
th.' %
{10} s-lim — = i P{X)y
=30 t
vig-%
v e J@xy) = {§e€ H|s-lim exists } ,
£=——30 t

{cf. [7] Ch. VIII}.

3.2.2. The map {3} quantizing IC(M) should have some further physi-
cally motivated properties which are connected with the flow model on

M (cf. 2.3.):

Take a pure state T, € ST(H) , w€ H , ¥ % 0, (T, % = lmﬂ'z(q,ww ¥,
which is localized in B € &(M), i.e.
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(1) (B) = Tr(Too£(B)) = Il P @@ 3%, %) = 1

I
Ty
and a complete vectorfield X on M which vanishes in B,
(12) xtB =0

Then the flow ¢ X of X acts trivially on B and it is resonable
to reguire that P(X} and ®{0} have the same expectation values in
T,

¥

(13)  Tr(Tye (X)) = fall " @) u, y)

= iyl P @)y, ) = Tr(T,eR(0))
whenever 1 € U (P{0)) n J(P(X)).
We call a map (3} local, if for all w # O , Be BH (M) , XEX.C(M)
(14) (11 A (12} mm—— (13)
whenever 1y € D (P(0))n J (P(X))
3.2.3. The set of all vectorfields on M is e.g. an infinite-dimen-
sional Lie algebra and a module over c®M,R) , etc.. In X C(M) these
structures are spoilt in general, but XC(M) contains Lie subalgebras
and vector subspaces. Hence it is plausible to assume that a gquantiza-

tion P of ¥ C(M) retains the partial Lie algebra structure of
.QéC(M). We shall call a map (3} a partial Lie homomorphism if

{15a) P(X + a¥) = P(X) + a P{Y}

for all X,¥ e%C(M) , a€ R , whenever X + ay eXC(M)
and
(15Db) (P(xy,p(Y)] = 1 P{[X,¥])

for all X,Yexc(M) , whenever [X,Y]&XC(M) B

where the operator identities hold on a domain which is dense in H.

A physical motivation for these requirements is not well known. There
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are examples in which (15b) is not satisfied. Non=-linear P can be

constructed but have not been used in physics.

3.3. Quantization of 3¢ M

3.3.1. Summing up we give the definition of a quantization of a Borel

kinematics R M (cf. [12] for a similar "axiomatization"):

Definition 2
Let M Dbe a differentiable manifold.
A triple (H,E,P) is called a guantum Borel kinematics on M iff

H 1is a separable Hilbert space,
E is an elementary spectral measure on & (M) in H
(cf£. (2),(6}), 3.1.3.) ,

P : XﬁC(M) 3 SA(H) 1is a map with the following pro-

perties:

a} for every Xer,C(M) , P(¥%) is the infinitesimal
generator of a unitary one-parameter group of "shifts"
along X (cf. (9),(10)) ,

b) P is local (cf. (14)) ,

¢c) P is a partial Lie homomorphism (cf. (15)) ,

and the domain

© a p a 3
N A N g@m 'peo oo Pee ™
fec®M,R) Apree,a €N
Xe%.c(M) (51,..,($ne N
nelN
ig dense in H (cf. (7) for the definition of the Q’'s).
3.3.2. In order to divide quantum Borel kinematics into classes of

physically equivalent ones we introduce an equivalence relation by
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Definition 3
Two quantum Borel kinematics (Hj,E.,Pj), j=1,2, on M are called

J
equivalent iff there exists a unitary map

g : H, -3 H

1 2
such that
U E, (BIUT = B, (B) for all B e % (M)
ue, v = e, (x) for all XeX_(w) .
4. Properties of Quantum Borel Kinematics

There is, up to unitary equivalence, exactly one spectral mea-
sure E on & (M) which can serve to be part of a guantum Borel kine-
matics (H,E,P) on M. The abstract relations between the probability
measures (5) and the momentum observables P(X) vyield relations be-
tween the operators &(B), Q(f), and P(X); a general form for the
shift operators (9) can be derived relative to a "standard" represen-
tation of [E.

4.1. Uniqueness of the Position Observables

4.1.1. Consider (H,E,P) on M. Since E 1is elementary (cf. Def. 2)
the general spectral theorem ([8] § 50) ensures the existence of a

o-finite Borel measure v on M and of a unitary map
(16a) U : H —> L2(M,v)

of H onto the Hilbert space of square- vw-integrable complex functions
on M, such that

(16b) UEBU 'y = X,

for all BeéG'(M),ueLZ(M,v) ’

where X,B denotes the indicator function of B. The measure class

[v] of v is uniquely determined by [E, because
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(17) E(B) = 0 & )(,B =0 &> v(B) =0 , Be &M ,

% must not be trivial, otherwise (5) vanishes for all TeS8T(H).

4.1.2. Let X be a complete vectorfield on M.

Since P(X) 1is the infinitesimal generator of a group of shift opera-

X | JitP(X)

tors alonq X, 1i.e. \Nt (cf. (9),(10)), we obtain for every

B€ & (M) and every state TeST(H), teR:

I

Tr (TeW e E(B)W)) = Tr (Wie TV e E(B)) = (upo@’ ) (B) (cf. (9))

i}

Tr(TeE(@ X (B))
which is equivalent to

X X X
(18) \V__toE‘(B)e\Vt = ﬂi.‘(cp__t(B)) , Be B(M) , t€eR

Together with (17) this implies

(19)  v(B) =0 (€3 EB) = 0 &= E(¢- (8)) = 0)
X
& vier () =0 .
Be&(M) , teR

A Borel measure on M is called flow quasi=-invariant if it has the pro-
perty (19) for all X e %b(M).

We show that there is only one non-trivial flow guasi-invariant measure

class on M. For this we recall that a smooth Borel measure on M is

a Borel measure A on M which, in local coordinates, has a strictly
positive density of class C®™ with respect to the standard Borel mea-
sure in Rn, n = dim M:

u

(20) locally dA = k" dx,...dx xUe c®u,Rr")

U any coordinate neighbourhood on M ’
(cf. e.g. [9] 16.22).

Theorem 1
Let M be a differentiable manifold.

There exists a non-trivial o-finite flow guasi-invariant Borel measure
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on M. All non-trivial o-finite flow guasi-invariant Borel measures
on M are equivalent, i.e. they have the same null~-sets.
The (unigue) measure class on M, which contains all these Borel

measures, also contains all smooth Borel measures on M.

This can be proven following "locally" the proof of the well known result
stating that, on Rn, the standard Borel measure is the only transla-
tion invariant non-trivial o-finite Borel measure (cf. e.g. [2] Theorem
8.19 and [10] for a detailed proof).

Together with the result of 4.1.1. we obtain
Theorem 2 (Unigueness theorem)

Let M be a differentiable manifold and (H,E,P) be a guantum Borel

kinematics on M. Then, up to unitary equivalence, the following holds:

I.
(21) H = LZ(M, v} o, v being an arbitrary smooth Borel
measure on M ,
E(B) 3 = 'XB'q, for all B€ &(M), 3y € H ’
II. [E  is unique.
Proof:

Part I follows from (16) and from Thecrem 1:

the measure v in (16a) is equivalent to every smooth Borel measure
on M, and changing v into an equivalent measure does not affect
(16b) . Concerning part II we observe that, given [E and E’, both
in a representation (21) with measures v , ' resp., the map

dv, 1/2

W LZ(M,v ) — L2(M,v‘), Y — a?) k17 is unitary and trans-

forms £ into E’.

(21) will be called a standard representation in the sequel.

Note that Theorem 2 relates the interpretation of (5) as probability
measures for localization in the framework of guantum Borel kinematics
to the correspondence between pure states and sguare-v -integrable
wave~functions with their square moduli being interpreted as probability
densities for localization, which is usually assumed in quantum mecha-

nics. This is because in a representation (21) one has for pure states
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Twﬁ ST (H) r W ¥ 0 ’
by, (B) < TE(T e B(B)) - ol 72 ®(B) 4. )
=yl ™2 J i 2av Be & (M) .
B

4.1.3. It is easily checked that the position observables Q(f) which

were introduced in 3.1.4., in a standard representation have the form

(22) Q(f) 4 = £y
we 9(@IE) = {§e H| £-4€8} ,

for all fe C®M,R).

Any common domain for all Q(f) , f eCc®(M,R), has to be contained in
the space of square~v -integrable functions which vanish outside a com-~
pact subset of M:

Fix € () @) , then f £2 14 ]% av < oo
f e Cc®(M,R) M
for all fecC®M,R), and since every real valued continuous function
on M can be uniformly approximated by a sequence in C%(M,R), we
have
jr g2 lirlz dv <
M

for all real continuous functions g. This implies [qu v  to have
compact support ([9] 13.19.3) or equivalently, that %qlz vanishes
outside some compact set because of (20).

Note that this result also applies to the domain {7“’ (cf. Def. 2);
it will be useful later.

4.2. Operator Equations and Shift Operators

4.2.1. In a standard representation (21) an explicit form for the shift
groups generated by the momentum observables P (X) can be obtained star-
ting from (18) and using similar arguments as in the proof of Theorem
9.11 in [2}. We find



it P{X X
(23) T PG swfy -k

yeH, te€rR ,

for every X e ¥ (M)
X € X

kt is a measurable complex function on M with modulus 1, and gXt
denotes the Radon-Nikodym derivative of the shifed measure v
with respect to v

For fixed Xe xC(M) the map t -———> Wﬁ is a unitary representation
of the additive group of real numbers (cf. (9)); this property relates
the functions ki for different t wvia a cocycle relation (cf. [2]
Ch. XI.5.).

The form (23) of the shift operators is in agreement with the flow mo-
del:

1f 4 e L°(M,») is localized in Be %), |%!?[ B) = 0, then

X . . . X X 2 X
Vi % is localized in ¢ B , |V, » | [ (~ep £(B) =0

4.2.2. Now the following operator equations are valid for the position
and momentum observables:

Lemma:

Let (H,E,P) be a quantum Borel kinematics on M. Then, for all

Be % (M) , feC®M,R) , XexC(M) , t €R:
X X X
(24) v, E(B) V. = E(e_, (B))
X ) X
(25) Ve QUE) Wi = QUf el )
(26) P(X), Q(f)] = i Q(Xf) on I

(24) and (25) are equivalent.

Procf:

(24) is identical with (18).

(25) follows from (24) and the fact that, according to (7), the spec-
tral measures of the selfadjoint operators Q(f) and G(focpft) are

eE*E) (a) = (£ ()
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X
and S ) () =m0 X)) (2D

i)
&3]
.e
-
o
i
D

’

D€ $(R), respectively.

To prove (25) :=% (24) we observe that (25} implies

f der(T«E‘.(q))_(t(.))) = f idpd Tr(TaE((f°<p§)-1(-)))
M R
= Tr(Te@(f 0 @X,)) = Trwliemev® o aif))

1

i}

f idg @ Tr(Wie Tow: o B(£7' (1))

H

jfarrmevy o BV

t

for all bounded fé€ C®M,R), Te&ST{H). This gives

[ gammeef o = [ garz@wiyec)v))

M M

X
t
for all bounded continuous functions g on M (see also 4.1.3.), hence
X X, _ X
Tr(T-W_ 0 E(B)«\vt) = Tr{TeE(g _t(B)))
for all BE€ (M), TeST{(H), which is equivalent to (24).
To prove (26) consider (H,E,P) in a standard representation. Let

¥ € J*. Then i'q, | 2 vanishes outside some compact set KcM
(4.1.3.). For Xe XC(M) and feC™M,R), the function

£ E (¥ (m) - £(m))+ (XE) (m)t4O
R x M®(t,m) ~———> F({t,m} =

0 ,£=0

is differentiable, hence ¥ K F is bounded on [-1,1] x XK and one

easily obtains



186

lim llt_1(Q(f°cP)_(t) v - Q(f)y) + QL) 2
t—30
= lim J tre,m |2 |y m]2av =0 . i.e.
t=—30 K
a X
S 1 Qlfe @i )y = - AXE)y

t=0

in the norm topology of H.

On the other side,

(- RXE)y, ) = lim (7 (@(feo ™) = AIE)) %, %)

L >0
= im (7 WE QW - Qif)) )
{2 e O
= 1in { @ @E - My, eV )
o3> Q

st - vE) atha, V4]

[}

(L [PX), QUEY] %, %) (cf. (10)) '

and because 1 can vary over the dense domain ﬁao , we get (26).
(24) is some kind of imprimitivity relation for E and the one-para-
meter groups of shift operators.

(26) generalizes the Heisenberg commutation relations for position and

momentum operators in the case M = Rn.

5. Differentiable Quantum Borel Kinematics

and Momentum Observables

It was shown in section 4 that the position observables E(B)
{and G{f)) of a quantum Borel kinematics on a differentiable manifold
M are uniquely determined up to unitary equivalence. A similar result
for the momentum observables does not seem to hold in general but is
desirable for the construction of explicit quantum Borel kinematics;

some further restrictions on the P(X) are necessary.
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A physically motivated postulate is explained and formulated in sec~
tion 5.1. It yields explicit expressions for momentum oOperators in sec-
tion 5.2..

5.1. On Differential Operators and Domains

5.1.1. The best known example of a guantum Borel kinematics is the
Schrédinger representation of position and momentum observables for a
guantum mechanical system with confiquration space M = R™. By

v. Neumann’s Theorem ({11]) it can be shown that, for a quantum Borel
kinematics on R in a standard representation (21), the maximal inva-
riant domain Y% is equal to the set C?(Rn,m) of complex valued,
compactly supported smooth functions on R? and that the momentum ob~
servables are first order differential operators, if (15b) is assumed
to hold in its "integrated form"

e1sP{Y) e1tP(X) e‘lSP(Y) - e;LtP(ZS) s, ter ,

. ; Y X ¥ %
with Zs defined by P g Pr Pg = QLS v s,teR .

Since every differentiable manifold M is locally diffeomorphic to

Rn, it is plausible to postulate an analogous condition to be satisfied
locally in a guantum Borel kinematics.

The idea is to select dense sets of functions in LZ(M,v ), the ele-
ments of which can be interpreted to be smooth compactly supported maps
with respect to a differentiable structure D on M x € , and to
assume, that one of these distinguished subspaces of LZ(M,V ) is con-
tained in % (cf. Def.2) and is an invariant domain for the P(X)}’'s;

the P{X)’'s are then possibly differential operators.
5.1.2. A reasonable method of selection of dense sets of "differen-
tiable" functions in LZ(M,v } makes use of the concept of complex

line bundles with hermitean metric and is described below:

a) Fibration of M x € over M

There is a natural correspondence between complex valued functions

s : M ————y
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and sections
o : M ———— Mz C ,
pr,eo = idM '
of the fibration
Neo = (M x €, pr1,M)
with pr, being the natural projection of M x € onto M,

(27) S ey (5

o(m) = (m,s(m)) , mée&M ,
and it is easy to show that

s 1is Borel-measurable

—
¢ 1is Borel-measurable (with respect to the
o-Algebra B (M) @ & (C) of subsets on M x C
(cf.[22] Chapt. VII).

b) L2 (M,») as a space of sections
With
-1 -1
<,>O:U pr1(m)xpr1(m)————-——-——~>c
me M
((m,z) , {m,z")) -————e3> 7.2’

(27) yields, for every smooth Borel measure » on M, a natural

correspondence between L2 (M, v) and the space

2
Lo(m i <> ) =
{o: M —s mxc lprjoc = id, , o measurable,

J <o,o>O dw< m}

in-which, as usual, v =-almost everywhere identical sections are

identified. With the scalar product

(0,2) = § <o > av
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L2(1LO,<,>O, v ) is a Hilbert space, isometrically isomorphic to
LM, v) by (27).

c) Line bundle structures on M x € over M

A differentiable structure D = {(T,0) on M x € is a pair con-
sisting of a lcsc Hausdorff topology T for M x € and a maxinmal
c®-atlas OL of charts compatible with T ; it turns the point set
M x € into a differentiable manifold, symbolically (M x €,D).

Note tnat the structure of a product manifold on M x € inherited
from the differentiable manifolds M and € 1is always one possible
differentiable structure on the point set M x €. However, there

are in general additional ones, as will be shown now:
Theorem 3

Let M be a differentiable manifold and <,>o be defined as above.
f 7 = (E,x ,M,C) is a complex line bundle over M with hermitean
metric <,>, then there exists a differentiable structure D = (T ,O)

on the point set M x €, such that
D
'YL o = {({M x (EID) ' P3~'1r MIC)

is a complex line bundle over M with hermitean metric <>y which
is isometrically isomorphic to 7 ; D can be chosen so that the
c-algebra & (M x €,7T) generated by T is equal to the product al-
gebra,

(28) LMxe,T) = &HM o k(o) .

Proof:

Let { Uj,je:N } be an open covering of M and let

-1
. . U‘ tE s svsm——S U
xj 5 X st | 3)

7

<&j(m,z) ,xj(m,z’)> = ZeZ

be isometric local trivializations of 7 , j€WN. Then
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are mutually disjoint Borel sets, which cover M, and the map

v—-———-—er“v:x.; vy . if mvevy .

is bijective. Hence [ induces a differentiable structure D = (T ,O)
on the point set M x € turning M x € into a differentiable manifold
(M x ¢,p), diffeomorphic to E via | @ .

, belongs to c®((M x €,D),M), and (M x €,D)
is locally trivializable over M with respect to pI, via the maps

Since pr, = P pr
| ) ;g_j , j€ N. Finally <,>, is easily seen to be a differentiable
metric on the line bundle n 2 = {{M x ¢,D), pr1,M,C) because [~ maps
the fibres of 7 linearly onto the fibres of "22 and is isometric,

<F‘v,("v>o=<v,v> , VE€E .

Concerning the compatibility (28) of D with the natural product Borel
structure on M x € we observe that on Vj x €

nj,r’" =id , jeN ,
and therefore

(xtmwés-(f:))n(vjx@}=&(ch,t)n{vjxc} ; Jewm

hence (28) is obtained, taking into account Vj ¥ Ce&iM @ B(C)n
LMxe,T) , jen.

d} Domains of smooth elements of L2 (M, » )

To every differentiable structure D = (T ,®) on the point set
M x € there corresponds a set

U,= {o:m—>mMxc prpec = id, , ceC®M, (M x €,D)) ,

o has compact support }

of compactly supported "D-differentiable" sections of = oF if
the o-algebra & (M x €,7T) of Borel sets generated by T is lar-
ger than the product algebra & (M) ® £(€) (cf. a), then 'JD
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is contained in L2(710,<,>o,v ). For those D introduced in
Theorem 3 we obtain

Theorem 4
Let M be a differentiable manifold. Suppose D = (T ,0t) is a diffe-
rentiable structure on the point set M x € such that

b
7, = ((MxC,D), pr,,M,.C)

is a complex line bundle with hermitean metric <,>o, and that (28) is
satisfied.

Then the complex vector space
_ -] D
¥ = Sec ()

of compactly supported differentiable sections of = 2 is dense in
2

L (no,<,>o,v)-

For a proof cf. [10].

This theorem shows that there is, in general, a large number of diffe-
rentiable structures on M x € which generate dense sets of "differen-
tiable" functions in LZ(QO,<,>O,V) resp. in L2(M,v).

5.1.3. We will now single out those quantum Borel kinematics on M
which have the following property of "differentiability":

(29) In a standard representation (21),

= D oo
Sec(m ) ¢ J and

D D
P (X) Sec:('rl o) < Sec'::(fq o) , X eXC(M) ’

where D 1is a differentiable structure on M x €, such
that

D _
N, = (Mxc,D) , pr,,M,C)

is a complex line bundle over M with hermitean metric
<,>O, and (28) is satisfied.
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Definition 4
Let M be a differentiable manifold.

A quantum Borel kinematics on M is called differentiable if it satis-

fies (29); it is called standard if, in addition, 7 2 is trivializable.

The above discussion shows that there is no essential difference between
the description of guantum systems by square integrable “"wave functions®
and by square integrable "wave sections" of some complex line bundle:
functions and sections can be thought of as elements of different dense

sets in a common Hilbert space of measurable maps.

In the following section we shall discuss differentiable guantum Borel

kinematics only.

5.2. Momentum Operators for Differentiable Quantum Borel Kipematics

5.2.1. Consider a differentiable guantum Borel kinematics (H,E,P) on
M. Then, by definition, there is a complex line bundle
m = (E,¥,M,C) over M with hermitean metric <,> and a smooth

Borel measure v on M such that {up to equivalence}
2
(30) H =1 (12 1<y> .Y )
={y :M—> E] ey = idy, . % measurable, J<@}>dv<«ﬁ
E(B)y = X ;v ' 4 € H, Be & M) .,
oS o0 o o
sec () s 0%, P(X) Secl(m) ¢ Secl(n) , XeX M)

- pD :
(m=m7g4 <>, o+ cf. Thm. 3) .
How do the momentum operators look like?

In order to answer this question, we choose a hermitean linear connec-
tion ¥ on % {(cf. [24] p 76) and, for every X € XC(M), we define
the linear operator

S(X) : Sec:(q) B e 4 Sec:(q)
Fxy= iV + 5 (@ivyx)-

where, locally



I
(31) divv(j; a,

dv = ke+dx,...dx_ ,
1 n

Straightforward calculations show that

is a symmetric operator in H

(32) B(x), a(f)
for all fe CPM,R)
{33a) P(x + ay)

for all X,Y € XC(M)
and

(33b) B (xy, By)

for all X,Y e X.C(M) v

ERVAN

It follows from (22),

(B(X) - P(X))(f-y)

i

= 1 Q(X£

(cf. (22))

7

]

(26},

B(xy + a B(Y)

)

.

) 59— (a k)
j=1 Xj
= dim M , {cf. (20)) .

13

for all Xe X_(M), P (X)

and satisfies

(<~
on Seco(’z )

Furthermore one has

a € R, whenever

on Secg( 7 )]

X + ayY exc(M) 7

=1 B(Ix,¥]) + i G(£L(X,¥))  on Sech(q)

whenever

o~

iﬁY]'q,=-V

[X,Y] € XC(M) , where KL is the diffe~

rential curvature-2-form of 6 defined by

{x,Ylu'

+ i ﬁ(X,Y) ¥

(30) and (32) that

£B(X) - P(X))y

fec™M,R), W € Secl(m) .

hence E(x) - P(X) is a symmetric differential operator of order zero

on % , 1.e. there exists a function

{cf. (22})

(34) P(X) = B(X) + Q(& (X))

w (X)e ¢®(M,R) such that

o
on sec_(7m)

Combining (33) with (15) yields for all X,Y € X.C(M), a€eRr,

{35a) & (X + ay)

HX) + a Sy
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whenever X + a¥ € ¥_(M), and
(35b) X &Y) - ¥ &(X) - S(ix,Y]) = Q(X,¥)
whenever [X,Y] e XC(M).

Consider now a complete vectorfield X on M which vanishes on the
open set U ¢ M. According to the locality (14) of ®, we have

0= (PO)y,%) = (P(X) %, %)
= BX) + ABE)) %, ) = (DX -y, )
for those wy € Sec:(q ) whose support is contained in U,
Thus one obtains
(36) supp & (X) ¢ supp X, X € ¥C(M) R
("locality"), and because of this, the map
©@ X (M) ———> CM,R) , X ———> B(X)

can be uniquely extended to an R-linear map (also denoted by &)

~

(37) WD : K% (M) e3> C®(M,R)

which satisfies (36) for all vectorfields on M (X% (M) denotes the set
of all vectorfields on M). It is then easy to show that the extension

& also satisfies (35b) for all vectorfields X,Y on M.

~

5.2.2. Our postulates for (H,E,P) imply that @ is the sum of a
differential 1-form w , dw = ot , and a R-linear 1-~form proportio-
nal to div,X

Theorem 5

Let M be a differentiable manifold, v a smooth Borel measure on

M, and S a differential 2-form on M.

If S : X (M) ——> c®(M,R)

is a map with the properties (35)~(36), then there exist a differential

1=-form @ on M and a real number ¢, such that
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(38) & (X) = w(X) + c divyX

for all X € ¥ (M); w satisfies

(39) (dw) (X,Y) = Xo(¥) - Yw(X) - o ([X,¥]) = & X1
for all X,Y € ¥{M).

Proof:

& can be viewed as a linear operator sending the smooth sections of
the tangent bundle of M into smooth sections of the trivial real line
bundle over M. Due to its locality (36), there exists, for every
meM, a local chart around m in which & can be written as a diffe-

rential operator of finite order, i.e. locally

~ 2 a .a
o | a, =) = E w . Da., .,
=7 J axj 1aT < p J J

3=1,...,0

n = dim M, where the a’'s are multi-indices of length n (Peetre’s
Theorem, cf. [15] Theorem 6.2).
Inserting this local expression for & into (35b) one obtains by com~

paring coefficients

)

o 2 . 2
= ¢ . = ¢+ — 1n k}.a., + c - div £ a, ——
=1 (@ B )2y vi5E 8y 5
3 ]
(dv =k ~dx1...dxn, cf. (31)) with a real number c¢; a further
simple calculation shows that ¢ does not depend on the choice of the
local chart, hence ¢ is a global constant (M is a connected topolo-

gical space). Therefore
W (X) = &(X) - ¢ divyX

defines a real differential 1-form on M, and {38) holds.

Taking into account

(40} X div,Y - Y div,X ~ divv[X,Y] =0 B
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one easily shows that for every differential 1-form w
(38) = (39) !

this completes the proof of the theorem.

5.2.3. Applying the above theorem to the map (37) we obtain
& (X) = w(X) + cdivyX Xex (M

with a real number ¢ and a differential 1-form w satisfying

An elementary algebraic calculation shows that, through
[ , .
Ve = Vyy - 1LwX)rwy o Xex (M) , yeSec ()

a hermitean linear connection V is defined on m . whose curvature-

2-form L)L vanishes,
O =0-dw =0 .

Using (34) we finally obtain for P(X} on Secg(n):

PX) v =iV, y + 3+ o)Q@ivyx) .

In the following we shall denote by L a complex line bundle % over
M, together with a hermitean metric <,> on % and together with a
hermitean linear connection ¥ on % with vanishing curvature 2-form,
L=1(y P IAVA I

5,2.4. We are now prepared to describe the general structure of diffe-
rentiable quantum Borel kinematics:

Theorem 6
Let M be a differentiable manifold.

I. For every triple (v ,L,c) consisting of a smooth Borel measure

v on M, a complex line bundle over M with hermitean metric
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and hermitean linear connection with vanishing curvature

L = (Q ,<,>,Y 1}, and a real number ¢ ,
{41) H = Lz(rg,<,>,\)) ,
E(B)y = X gy , Be BM) ,
PX) = { (T, + Gro) alaivgxnt secPin)}”

X e XC(M) '

defines a differentiable guantum Borel kinematics (H,E,P) on M.

II. Bvery differentiable quantum Borel kinematics on M 1is equivalent

to one given by (41).

Proof:
I. Let H,E, and P be given by (41}.

H is a separable Hilbert space since M is second countable and locally

compact, and E is an elementary spectral measure ([{2] Chapter IX. 2.).

Concerning the momentum operators we prove:

a} P(X} 1is selfadioint for every Xe )(:C(M) :
Let X e'ﬁc(M) and G{divyX) be given by (22).
Let X be the unique complete vectorfield on the total space
of n which satisfies

~

X X
24 oq)t = ‘Ptv° I . teR ,
\v/ _d X X sec®(m )
x¥ T ar| _, P-eewser o weSeSin)
where 3 is the projection of n i since W is hermitean, the

flow of ¥ is a one-parameter group of linear isometries of m

with respect to the metric <,> ([18] Chap. III.1.}. If we

denote by ¢ i the (smooth) Radon-Nikodym derivative of the shifted

measure W e qli with respect to v then, for every te€R,
I .
. X X, 2 X X
(42) U(t)y = exp(~ ic 1In gt)‘(gt) c@LeueP

defines a unitary operator in H, and it is easy to show that

{U(t)y, terR} is a weakly measurable one-parameter unitary group

in H (cf. [7] Chap VIII.4.). Hence there is a unique selfadjoint
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operator A in H such that

ue) =et PR ter ,
with
Cmy - Lim L) =T
t—>0 t

whenever this limit exists.

For =~ € Sec:(q) '

\ U(e) - 1 . . i .
t}i;no —_— =i { 1VX'q, + (5 + ) GdivyX)y }
t
. . d X .
in the norm topology of H (using HE, gy = - div X) ,
therefore £=0
o0 . i .
/2N rSeco(r;z) = {i VX + (5 c)- aldivy x)} r Sec:(n)

Since all the ingredients for the definition of U(t) are arbitra-

rily differentiable, U(t)-Seco(m) ¢ Seco(y) , and this proves
P(x) = {&alsec®n)} ™ =n (7] Thm. VIII.11.).

The map X ———3> P(X) is a partial Lie homomorphism:
The required operator identities ({15) hold on the dense domain

Secg(q), since ¥ has vanishing curvature and (40) holds.

The map X ———3> P(X) 1is local:
The locality of P follows from (42) and from the locality of
D 4 divVX.

For every X € XE(M), P(X) is the infinitesimal generator of a
unitary "shift group":

The "shift property" follows from (42).

The set J® for H,E, and P is dense in H because it contains

00
the dense set Seco(n).

Finally we show that (H,E,P) is differentiable in the sense of
Definition 4:
We observe that there exists a differentiable structure D on

M x €, such that 7n 2 = ((M x C,D), pr1,M,C) is a complex line
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bundle with hermitean metric <,>O which is isometrically iso-
morphic to 1y while (28) is satisfied {(Theorem 3). But every iso-
metric isomorphism 7 of 7w, onto 7 2 induces a unitary map

r 2 2
U : H =———> L, ('QO,<,>O,v } o LT(M,v )

via
UP'LP= r‘a'q, .

"

Obvicusly, U transforms (H,E,P) into a standard representation

{(21) and maps Sec:('q') onto Sec?:( "lg) .

II. It has already been proven in sections 5.2.1.-5.2.3. that, after
applying a suitable unitary transformation, every differentiable
quantum Borel kinematics (H,E,P) can be written with H and E
given by (41) and P satisfying

[~] . i . D
P (X) FSecO(Q) = {1V + (5 + c)r QUdivyX)) FSeCQ('vL)

for a suitable complex line bundle L with metric and connection

{curvature = 0} and a suitable c¢ eR. But as shown above,

(P(X}I\Secg(Q )f‘ = P(X), and this completes the proof of the se~-

cond part of this theorem.

6. Parametrization of All Inequivalent Differentiable

Quantum Borel Kinematics

It was shown above that for a pair (H,E} given by (21} there
are various choices of P such that {(H,E,P) becomes a differentiable-
guantum Borel kinematics on M. More precisely, (41) defines a map
which assigns to every triple (v ,L,c) consisting of a smooth Borel
measure v on M, a complex line bundle L over M with hermitean
metric and hermitean linear connection with vanishing curvature, and a
real number ¢, a differentiable quantum Borel kinematics on M.
Theorem 6 II. states that this map induces a surjective map from the
set of these triples onto the set of equivalence classes of differen~-
tiable quantum Borel kinematics on M.

In this section we will study the problem how this set of eqguivalence

classes can be parametrized and be described in terms of global topology.
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6,1. Eguivalent Differentiable Quantum Borel Kinematics

6.1.1. We start with a technical

Lemma
Let (H,E,P) be a differentiable quantum Borel kinematics of type (41)
on M. Then

J* = Secg(n)

(cf. Definition 2).

Proof:
. @ <«
Obviously Seco(tQ) ¢ o holds.
In order to prove J%° ¢ Sec:(oz) we fix a ¢ € I® .
Since X,C(M) contains all compactly supported vectorfields on M there

are, for every meM and KeW, vectorfields X X € X(:(M) '

n = dim M, such that
o =3 :P(xj)ZK

SR

g1

is a differential operator which is elliptic and of order 2K at least

in a neighbourhood of m. D is well defined on I , hence
Dy e L2(1z,<,>,v ) = H . But this implies that %4 is at least
(2K - [%] - 1) -~ times differentiable in a neighbourhood of m ([16]

p.1708 Cor. 4). K and m c¢an be chosen arbitrarily, hence vy e Sec“ﬁlq).
The proof is completed by the observation that 3 has to have compact
support (cf. 4.1.3.).

6.1.2. Consider now two quantum Borel kinematics

{ j’Ej'Pj)' 3=1,2, of type (41) on M characterized by (vj,Lj,cj) .
Lj = (7er<r>jlvj) ¢ J=1,2

a) Suppose Cy =cy =cC and that there is an isomorphism [ of M4

onto m , which is isometric and maps V1 inte ¥V °.

Then (H1,E1,P1) and (HZ,E are equivalent:

21®,)

Let g 12 be the (smooth) Radon-Nikodym derivative of v 1 with

respect to v 2 Then
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Hy ®% ——> Uy = exp(~ ic In 912)\l 312'(!"«1‘,) € H,

is an isometric isomorphism of Hilbert spaces which obviously
transforms the spectral measure €, inta E2. Straightforward
calculation gives

-1 . 2 - 1 12,4 :
UP,(X)U0 'y =1 Vo + { itic - 5) Xlng +(%+c) le\HX}-‘q.

= -1 06 .
for all X e%_(M), y € Sec(n,) (U \,eSecO(ﬁ“)!) ;

it can be derived directly from (20} and {31) that the expression

in brackets is equal to (%+c) divv X. Therefore we obtain
2

-1
ue, x| Secg"(qz) = By (x) [secl(n,)

this is an identity of essentially selfadjoint operators {(cf. proof
of Theorem 6), thus

-1
L84 IP1 (X)u = TP2(X) ’ X € XC(M) ,

and (H‘I’El’P1) and (Hz,QEZ,[Pz) have been shown to be eguivalent.

Suppose that (I«I],WJE:1 ’Pl) and (H2,!E,),(P2) are equivalent. What are
the relations between (v 1 ,L1 ,01) and (v 2,L2,c:2) ?

Let U be an isometric isomorphism U of H1 onto H2 such that

(43) UE, @ = E,(B) , Be®M)

1

it

U ll?1 (X} !PZ(X) r X € )QC(M)

According to our Lemma,

I

«© «© @ oo
U sec_(q ) =0 d = T, = Sec (7,) p
and, using the position operators Q(f) {cf. (22}},

U(f-%) =0 G (f)y = G (H)Uy = £-Uxy

for all fec®M,R) , Y € Sec‘:( lr“). These properties of © imply

the existence of an isomorphism 7 of m, onto 7 o such that
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- oo
(44) WUy = Moy ) W € Seco('oz1) '

and since U is isometric, it can be shown that [ is isometric

with respect to the hermitean metrics on = ; and m . Inserting

(44) into (43) we obtain
1

i.P°V;(|ﬂ* g ) + (%+C1)'(div X) y = WU 91(X)U—1u

\$!
=B,y =i Viy + (b, (aivy %)% ;
equivalently
(V2 _rov el iy =i Loy aivy X - c1-divv1x} Y
for all Xe)ﬁc(M), Y € Sec:’('rzz). For fixed 9 , the 1l.h.s. of

the last equation is linear over C:(M,R) in X, whereas the

r.h.s. has this property if and only if Cy =cy =c (cE. (31)).
Therefore we arrive at

c,=c¢,=c
and 72 =reylep! X e % (M)

X X ! c -

Summarizing we have

Theorem 7 (Equivalence theorem)
Let M be a differentiable manifold.
Two differentiable quantum Borel kinematics (Hj,Ej,Pj) of type (41)

on M, characterized by ( vj,Lj,cj) , 3=1,2, are eqgquivalent if and
only if cy =cy and if there is an isometric isomorphism of L1 onto
LZ’ which transforms the connections into each other.

6.2. The Set of Equivalence Classes of Differentiable
Quantum Borel Kinematics

Combining our Theorems 6 and 7 with a result of Kostant on

hermitean line bundles with flat connection we obtain the final result,
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Theorem 8

Let

M be a differentiable manifold and let v be a smooth Borel mea-

sure on M.

I.

II.

III.

6.3.

For every pair (L,c) consisting of a complex line bundle with
hermitean metric and hermitean linear connection with vanishing
curvature, L = (m,<,>,V}, and a real number ¢, the formulas

{41) define a differentiable guantum Borel kinematics on M.

Every differentiable quantum Borel kinematics on M 1is equivalent
to one of type (41).

The set of equivalence classes of differentiable gquantum Borel
kinematics on M can be mapped bijectively onto the cartesian pro-
duct

ac1(M)* x R .

where 3:1(M) denotes the fundamental group of M and 3t1(M)

its group of characters.

For the proof see Theorems 6,7, and [23].

Standard Quantum Borel Kinematics

In Definition 4 we introduced the notion of standard guantunm

Borel kinematics on a manifold M for those guantum Borel kinematics

which, up to eguivalence, satisfy

Ho= L2, v)

EBy = X,y , Be % (M),
-4 o

com,e) & A

o0
P(X)Cl(M,C) & c';(M,m) X e X (M.

Concerning the explicit form of ®(X) we obtain from the discussion

in section 5.2. as a necessary and sufficient condition for

P X (M) ———> SA(H)
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to constitute, together with H and E, a standard guantum Borel

kinematics on M:

P(x) = { (i (X - im(x))+(% + o) Qaivyx)f e, e) ¥

- pl@rc)y , X €% (M) ,

with a closed (real) differential 1-form w and a real number c.

~

Two such guantum kinematics (H,E,P((o’c)) and (H,E,P(“J’C)) are
equivalent, if and only if
c=¢ and w - G is logarithmically exact, i.e.
(w=-&)(x) = i n xn
with a function hec®w,s'), s’ = {zec | lzl=13 .

Hence the equivalence classes of standard gquantum Borel kinematics on

M are in one-to-one correspondence with the elements of

( Z1(M)//L1(M) ) % R ,

where Z1(M) denotes the abelian group of closed differential 1-forms

on M and L1(M) its subgroup of logarithmically exact 1-forms on M.
If fundamental group 3t1(M) is finitely generated, Z1(M)/L1(M) can
be shown to be isomorphic to

by
® Uu() =~ 311(M)
: / x
3=1 U“n1(MH

*

where b, denotes the first Betti number of M and [" f¢ (M) is the
subgroup of Jt1(M) generated by all its elements of finite order

(cf. [17]).

In [13] and [14] quantized versions of Borel kinematics were discussed
which, in this approach, turn out to be standard guantum Beorel kinema-
tics (with ¢ = 0}.
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6.4. Quantum Borel Kinematics and Homology

Concluding the technical discussion we add that, according to
the Hurewicz theorem, the parametrization of classes of equivalent
differentiable guantum Borel kinematics can also be given in terms of

(Cech) cohomology theory:

One has
s () & H, M,2) = 5l,u(1))

for the general case (cf. Thm. 8) and
*
:t1(M) *
- = (BH)1(M,Z)
(Maxe, (4}
for the "standard" case {(with finitely generated Jt1(M)), where

(BH)](M,Z) denotes the subgroup of H1(M,Z) consisting of all ({(non-

trivial) elements of infinite order and O.

This result shows clearly that differentiable gquantum Borel kinematics
depend on the global structure of the underlying configuration space M.
Because these are mathematical models for physical systems which can be
tested by local experiments in a laboratory, these local experiments
can "feel” the global physical space similarly as one can "hear the
shape of a drum" (Mark Kac).

APPENDIX

Abstract Quantum Mechanics

1. Let S be a physical system.
It is generally assumed that, at least in principle, the set of all ele-
mentary propositions of the form

(1) "S has the property A" o A"
can be embedded into an orthocomplemented o-lattice L gt and that
every state of S, i.e. every result P of a series of physical mani-

pulations on 8, gives rise to a unique function
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(2a) p:JCS—-——->[0,1]:{reRIOér$1} ,

such that p(A) can be interpreted as the probability for obtaing the
outcome (1) in an experiment in which the interaction with the measu-
ring apparatus forces S either toc show the property A or not, after
S has been brought into the state P.

The functions (2a) are assumed to have the properties

(2b) p(l) =1

p(V A = ) p(ay
jemN I JeN J

for sequences (Aj) c ‘ZS with

4L .
AjsAk P 3 F R,

and they are called state functions or shortly states of 2 S
(resp. of S), here " <" denotes the partial ordering relation on JCS
and "V" the induced supremum-operation, 1 1is the unit element of .‘(,S,

and Al denotes the orthocomplement of A (cf. [19]).

In this context one defines an observable of & to be a set

(3a) e={e(A) | Aea'é([R)}C ‘ZS

of properties (resp. propositions, cf. (1)), which satisfy

(3b) e(R) =1
e(lU a = Z eldA))
jeN  J jEN J
e®\A) = e(a)t

(6 (R) denotes the o-algebra of Borel subsets of R), and e{A) is
interpreted to represent the property < the observable e has a value

in A > (resp. the associated proposition, cf. (1)).

cf. [2],[20],[21].
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2. A physical system S 1is called a guantum mechanical system,

if its "logic", i.e. its lattice &£ g can ce chosen to be isomorphic
to the orthocomplemented o-lattice L (H) of projection operators of
a separable complex Hilbert space H. The partial ordering in such a
lattice is given by the usual ordering relation for bounded operators,
the orthocomplement EL of a projection IE is defined to be the pro-

jection 1 - E .

Theorem

Let H be a complex separable Hilbert space, dim H »3.

I. For every state p of & (H) (cf. {(2)) there is a unique
bounded positive operator T with trace equal to one such that

(4) p(E) = Tr(TeE) for all E e L(H) .

Every bounded positive operator T with trace equal to one
defines a state of &£ (H) via (4).

II. Every observable e of X (H) (cf. (3)) 1is equal to the spec-
tral measure of a unique selfadjoint operator in H, and vice

versa.

Proof: [2].
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