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1 Introduction

In classical mechanics, constraints in the configuration space of a mechanical system can
be treated using d’Alembert’s principle [1]. The procedure of Lagrange which eliminates
holonomic time-independent constraints by introducing generalized coordinates can be
given natural geometric interpretation in terms of an imbedding i: M — R" of a manifold
M (defined as the locus of the constraints) in the original configuration manifold R™.

As a rule, the d’Alembert principle is considered as an axiom which is a posteriori
empirically justified by its successful application to mechanical systems. It can, however,
be given theoretical derivation by replacing constraints by a potential which grows large
when the system deviates from M [2].

In quantum mechanics, it is apparently impossible to eliminate constraints in this way.
However, on the basis of the given holomomic time-independent constraints

qy:O’ y:D+l,...,n, (1)

we expect that the Schrodinger equation can be separated inte two parts: the first part
depending only on Lagrange’s generalized coordinates ¢®,b=1,...,D, while the other on
the mechanically redundant coordinates q¥. The second part would describe arbitrarily
rapid oscillations of small amplitude relative to the constraint submanifold M. From
the strict quantum mechanical standpoint these oscillations cannot be let frozen like in
classical mechanics, since then the Heisenberg uncertainty relations would be violated.

In our note we describe a model situation where a quantum mechanical system in R"
is confined by a strong potential force to a tubular neighborhood W, of constant radius
e of a given submanifold M in R™. Since the quantal system cannot be strictly localized
on M, we investigate whether the restoring forces in the neighbourhood of M would
affect the motion of the system along M. We find that the quantum mechanical coupling
of transversal motion with the constrained motion leads to a peculiar dependence of the
constrained Schrodinger equation (in the zeroth approximation in ¢) on the internal as well
as external curvature of the submanifold M in R™. The additional “quantum potential”
—(h?/2m)U vanishes in the classical limit, so it cannot be obtained via the correspondence
principle - it represents a purely quantal effect.

We derive the quantum potential in the general case of a compact submanifold M of
dimension D embedded in R®, D < n. The cases D = 1,n = 2, and D = 2,n = 3 were
considered in [3], D = 1,n = 3 in [4]. Our general resulting U reduces exactly to the
results obtained for those special values of D and n.
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In order to expose the essential idea in a simple setting, we first consider the case of
a particle moving along a planar curve (3] (Sect. 2), and then turn to the general case in
Sect.3.

2 Quantum Potential for a Particle Bound to a Planar curve

Let a C* curve C in R? be given in parametric form

7= (21,22) = d(g), (2)

where ¢' is the Euclidean length (d7)? = (dg')?. We assume that C admits a tubular neigh-
bourhood W, of constant radius ¢. Points of W, can be parametrized by (¢, ¢2), 14%| < e,
such that

7= d(g') + ¢*alq"), (3)
where 7i(q) denotes the unit normal of C at ¢*. The constraining potential with infinitely
high equidistant walls

12y 0 }qzl < d <E
V(q’Q)—_{DO |q2]>d (4)
will be replaced by the boundary conditions
\I’(q17d) =0= lp(qlv_d)v (5)

satisfied by ¥ € L*(W,, dz,dz,) - solution of the Schrédinger equation

h2
-~ 5= A¥ = EY (6)

The Laplacian A = (0%/9z}) + (670 2) and the Lebesgue measure dz,dz, will be
transformed from Cartesian coordinates (z;,z;) to orthogonal curvilinear coordinates
(¢',¢®) in W,. For this, we calculate the components g;; of the metric tensor in new

coordinates [5]. Using differential equations for the tangent vector £ = dd/dq' and the
normal 7,

d  _ di . .

gq—lz—T]Tl, d—q—l-z'l]t, tfi=0, (7)

in terms of the curvature n = 1/R, R being the radius of curvature, we obtain

oF\* ro8a ,o0m\?® . - 2
m = (57) = (5 +05m) = (e = (Lt g,
8
[ OF 2 qz or  or (8)
m= () =7 =1, 1270 = Gt g =

Then, denoting g = det(g;;), 8; = 8/0q", we have ¢1/2 = 1+ 427 in W, where l?n(g*)| < 1
and ’

A =g 2, (g7%,) + g7 1%8,(4M25,),

(9)
dzidzy = (g11922)"2dg dg® = g*/%dg  dg?.
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In order to have consistent probabilistic interpretation along the curve

[1w1%dz,den = | ( [ : i@\quz) dg’ (10)

after integrating over the transversal parameter q*, we perform the unitary transformation
& = gt/tg. (11)
Then also the singular term 8,9 is eliminated from the Schrodinger equation; we obtain
1 0*®  2¢°n' 0%
g (8q1 ) g3/ 8¢
qznu 5 - S(qzn/)z 32@ ,,72

_ 3 T 3. 12
2g3/2° T 4g2 +(5qz)2+4g (12)

N C )

In the limit d — 0, i. e. ¢> — 0, g — 1, only three terms of zeroth order in ¢ survive,
resulting in an approximate separated Schrodinger equation

1 142 hz 2
+ () ) & - 033 = B8, (13)

Solving (13), (5) by the separation of variables 3(q*, ¢%) = x(¢")p(¢?) yields

77.2 h2
_2—'X’/ - 2__Ux - E1X3
hz "
_57;1'(10 - E?‘Pa
where ¢(+d) = 0, E = E; + E,, and the quantum potential is
h2 h2 1y2
Ry _hale) (15)
2m 8m

The probability density to find the particle somewhere along C is given (if v is normalized)
by

d 2
x(a)l? [ feta®)] da* = IxP*. (16)
For instance, the normalized ground state wave function of transversal oscillation is
o = d~'/% cos(m¢*/2d) (17)

with divergent behaviour of ¢/(d) ~ d~*/ when d — 0, and

h2 T 2
Eo=——{=] . 18
2 2m <2d> (18)
Let us note that similar results can be obtained with a constraining oscillator potential
U = iw?(¢?)? in the limit w — oo.
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3 Quantum Potential for a General Submanifold

Let a C'™ manifold M of dimension D < n be isometrically embedded in a bigger con-
figuration space R™ equipped with Euclidean metric. We also assume that M admits a
tubular neighbourhood W, of constant radius ¢ (W, excists for some ¢ > 0 whenever M
is compact).

If z,, p=1,...,n, are Cartesian coordinates in R™, and M is covered by a system of
coordinate neighbourhoods (V, ¢%, a = 1,..., D), then the points of M can be represented
locally by

Ty = au(qb)a or 7= ‘—i(qb) (19)
in vector notation. We shall identify vector fields X in M and their images 7,X under the
embedding i: M — R"; if X € X(M) and is locally given by X = X%0,, 0, = 0/9q¢%, then
X can also be expressed in X'(R") as

X = B'X%,, where 0, = 0/0z,, Bl = dya,. (20)
For the Euclidean metric 4, the induced metric § on M is

8(1”, c’)a;

g G §,,BL'B2 = By - B,. (21)

gba =4
In W, C R™ we introduce special local coordinates ¢*, i = 1,...,n, based on M [6]:
zu=0u(¢®) + ¢y (y=D+1,...,n) (22)

where {7} is a moving orthonormal frame in the normal bundle over M,
v

In these coordinates, the metric tensor g takes the form

[ 9a O
(9;‘{)—( 8 ) (24)

6y
where 2. 3
_ .’Bp ) _ - - -~ z —
Gba = a—qba_q“&” = (aba + qy5b3> : (3.1& +q 6(17;') : (25)

The constraining potential with infinitely high equidistant walls is replaced by the bound-
ary condition

¥(¢') =0 whenever g¢Y¢, =d? d<e¢, (26)
imposed on ¥ € LYW, d"z) — solution of the Schrédinger equation

h2
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The Laplacian A = §,8, and the Lebesgue measure d"z are transformed from Cartesian
coordinates z, to the coordinates ¢* in W,:

AT = g—l/Zab (gb“gl/zﬁall’> + g‘l/zé‘y (g1/25yl1,) ,

(28)
d"z = ¢'/%d"q

where g = det(gsq), (¢*) = (gpa) 2.
For a consistent probabilistic interpretation on M we factorize g = g7 and perform a
unitary transformation

/|@|2d"z:/(/q

This transformation also eliminates the terms 8,% in the Schrédinger equation which are
divergent in the limit d — 0. Using (24), (28), the Schrédinger equation (27) takes the
form

& =449 (29)
so that
|®2dgP+ ... dg" ) 51%dgt .. . dgP. (30)

yqy <d?

h2

_ En_é—l/z_r—utzab (gba§1/271/26a(7——1/4(§)) _
hZ ) 1 . 1 9 (31)
—5; <<9y§+ {—Zéyln-y—ﬁ(ayln'y)}@) = E®,
y
which separates in the limit ¢¥ — 0:
h . h? h?
- ——A<I> — U@ -~ Z 81% = E8. (32)
Here the quantum potential is given by
hZ h? 2
- —U=—1 In Oy In
3l = g S 3107+ (0, 107 (33)
where
v = 5! det [(aba+ qyab';'i> - (Bad + q-‘”aag)} . (34)

Further calculation of (33) uses the Weingarten formula [7] for X € TM, ¢ € TM-,
decomposing V x £ uniquely into its tangent and normal parts,

Vxé = -A¢ X + Dx¢ (35)
with
§(AeX,Y) = g(H(X,Y),¢), (36)
H(X,Y) = (VxY), being the second fundamental form of M in R™
H:TM x TM — TM+*: (€,8) ~ Hy, = Hy i, (37)

Since all normal fields 7 can be chosen parallel in the normal bundle, D X'n, = 0, we find
y

in our local coordinates

Ocfi = ~Ha B, (38)



273

where the coefficients of the second fundamental form are given by

chb = (0.00@) - 7L

y

We calculate -
aygba = —213&: + (gbc‘gac + -gbc-gac)qzv

3§gba = 2-gbcHaca

s0, since Oylng = gb“aygba, we obtain
lim Bylng = -2Tr H, H = (Hpa)
y

Z(a In g) —-4ZTrH

Qy Y

y
Z@zlng— —22']31‘ ).

gy—0

Inserting this into (33) we finally have the quantum potential

72 R,
=-—Y [ITr (H?) -
2mU 2m 4 [2 (y )

-i—(Tr H)?| .

y
It can be expressed in terms of the intrinsic scalar curvature of M

R=H,}'H, - H, H"
v y Y Y

(41)

(43)

and the extrinsic mean curvature of M in R™ n = (77- 7)!/2, or the mean curvature vector

1
P LH.F
1 Dy y

as

K 12 B2
e U= —R - —
ol = T 8m Dy

Upon using the separation Ansatz ® = x(g2)p(q¥) we get

h2
~5-2. 0,3 =E%, E=FE +E
y

Then the probability to find the system localized in a subset B of M is given by

/B\X(qa”zﬁl/zd%/lsa(qy)lquD“...dq" =fB‘xl2§1/2qu

depending only on the embedding of M (provided ¢ is normalized).

(44)

(45)

(46)

(47)
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Table 1: Quantum potential in special cases

(Rp = principal radii of curvature)

hZ
D n -—U
2m
h2
1 s
" 8m17

0 ] h2<1 1)2
8m Rl Rz

21 Rm /2
~1 -y =y -
m " dm & Rg+8m Z:le

Sn=1 | g (n-1)(n-3)

5% | R® 0
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