Vol. 20 (1984) REPORTS ON MATHEMATICAL PHYSICS No. 2

QUANTUM MECHANICS IN A DISCRETE SPACE-TIME

P. Stovicek
Technical University of Prague, Prague, Czechoslovakia

and

J. ToLAR*
International Centre for Theoretical Physics, Trieste, Italy

(Received November 30, 1979)

A complete description of quantum kinematics in the sense of Mackey and Weyl is
presented for the elass of systems whose underlying configuration spaces are finite sets
equipped with the structure of finite Abelian groups. For a given finite Abelian group
there is a unique class of unitarily equivalent, irreducible imprimitivity systems in a finite-
dimensional Hilbert space. Schwinger’s tensor product decomposition is extended to this
“class of systems. The finite analogue of the Galilei group over the finite space-time lattice
yields a discrete time evolution operator which is proposed to be the free Hamiltonian.

1. Introduction

Models of discrete space-time have attracted the attention of physicists for a
long time, either from the fundamental point of view — what is the true nature of
the physical space-time manifold [1], or with the aim to get rid of the infinities
present in conventional field theories [2].

A possible technique to introduce discreteness into space-time is to assume that
the points in a space-time manifold do not form a continuum but a discrete set of
points on a lattice. On the other hand, for continuous models this often represents
a suitable kind of approximation. Such approximations are successfully used in
solid state physics and quantum chemistry, in statistical physics and quantum field
theory. For instance, lattice gauge field theories [3] presently provide one of the
most promising approaches toward a unified theory of elementary particles since

the lattice formulation allows an analysis on a non-perturbative level.

* On leave of absence from the Faculty of Nuclear Science and Physical Engineering, Technical -
University of Prague, Czechoslovakia.
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In this paper we restrict our considerations to finite lattices. In order to
formulate quantum kinematics of a system over a configuration space M consist-
ing of a finite number of n points (Sect. 2) we need an extra structure providing
momentum observables. One possibility — which we are using in this paper — is
a transitive action of a group G on the set M making from M a homogeneous
space of G. Since we want to keep in close analogy with the continuous Euclidean
situation we equip M with the structure of a finite Abelian group G of order n. .
The group structure of M allows for the natural G-action on M via group
multiplication, which is used in the sequel in constructing quantum kinematics
over M.

In the special case of a cyclic group G = Z, this problem was considered by H.
Weyl [4]. He constructed a set of unitary operators in a Hilbert space of
dimension n in complete analogy with the Weyl system over the Euclidean
configuration space. The structure of these Weyl operators was further investigated
by J. Schwinger [5] and T. S. Santhanam [6]. '

We use G. W. Mackey’s theory of quantum kinematics on homogeneous spaces
[7] to exhibit the irreducible systems of imprimitivity and the corresponding
irreducible Weyl systems for an arbitrary finite Abelian.group. Schwinger’s tensor
product decompositions of the Weyl operators turn out to be a simple consequ-
ence of the structure theorem for finite Abelian groups. We are thus able to extend
Schwinger’s treatment to arbitrary Weyl systems in finite-dimensional Hilbert
spaces. As a by-product we obtain the Stone-von Neumann uniqueness theorem
which in this case is also a trivial corollary to Mackey’s generalization of this
theorem to any locally compact Abelian group [8].

To keep the essential features of the usual non-relativistic quantum mechanics,
we construct in Sect. 3 a free, discrete-time evolution operator with the property
that it combines with the Weyl operators into a representation of a finite analogue
of the quantal Galilei group in one dimension. Since this construction is unique, it
leads to a unique matrix replacing the Laplace differential operator.

2. Quantum kinematics on finite Abelian groups

2.1. Configuration spaces. We investigate systems over configuration spaces M
given by finite sets. As explained in the Introduction, we equip a set M consisting
of n elements with the structure of a finite Abelian group of order n. The
investigation of the general case can be reduced to a simpler analysis for cyclic
groups because of a theorem describing the structure of finite Abelian groups [9].

THEOREM. Any finite Abelian group is isomorphic to the direct product
Z,, % ...%xZ, of a finite number of cyclic groups for integers my, ..., m, greater
than 1, each of which is a power of a prime (m, =n, where the primes n,, r
=1,...,f, need not be mutually different). :
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Hence in the first step it is sufficient to consider only the cyclic groups. Given a
positive integer n, let the configuration space M be the finite set
M=2Z,={0e=0,1,...,n—1}

with additive group law modulo n. Since there is a natural transitive action of Z,
on itself, we may suppose that M is a homogeneous space of G = Z,,

G=2Z,={jlj=0,1,...,n=1),

realized as an additive group modulo n with the action

GxM - M: (j, o) > o+j(modn)
and the isotropy subgroup H = {0}.

2.2. Systems of imprimitivity. According to Mackey [7] quantum kinematics of
a system on a locally compact space M = G/H is determined by a transitive
system of imprimitivity (%, &) for G based on M in a Hilbert space »#. Here %
= {U(g)lg e G} is a unitary representation of G in # and & = {E(S)|S Borel subset
of M} is a projection-valued measure in J# satisfying

U@EBS)U(g)™' =E@™ 9. (1)

For the finite set M, (1) simplifies to

U()E(@U(j)"* = E(¢—j(modn)), (2)
where geM, jeG, E(g) = E({¢}) and E(S)=) E(o).
eeS

Complete classification of transitive systems of imprimitivity up to simulta-
neous unitary equivalence of both # and & is obtained from Mackey’s
Imprimitivity Theorem [7]. Its application to our system yields:

If (%, &) acts irreducibly in 5, then there is, up to unitary equivalence, only
one system of imprimitivity, where

(1) A is a Hilbert space of dimension n with the inner product

n—1
(@, ¥) = ZO VA

where ¢,, ¥,, 0 =0, 1,...,n—1, denote the components of ¢, ¥ in a standard
basis;

(i) % is the induced representation % = Ind§I called the (right) regular
representation

[U(J) l//]a = l//g+j(mod n) (.]EG),
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its matrix form in the standard basis is
(U(j))oa = 5Q+j(mod n‘.a; (3)
(i) & is given by

[E (Q) w]a = 500’ Wm Le. (E(Q))o't = 509 51:@ (Q € M) (4)

2.3. Physical interpretation. This unique system of imprimitivity has a simple
physical meaning. The one-dimensional projectors E(g) project on the eigenvectors
e®e # corresponding to the positions ¢ =0,1,...,n—1. In the above matrix
realization (3), (4) the set {e¢} forms the standard basis of #. Then in a normalized
state Y = (Y, ..., ¥,_,) the probability to measure the position ¢ is equal to

(¥, E(@W) = IW,I*
The unitary operators U (j) act as displacement operators

U(])eg — eg—j(mod n);

they are given by cyclic matrices generated via U(j) = U(1Y from

o1 0. .0
001 ..0
A=UW=1|. . . . ..
000 . .1
(100 .. 0

2.4. Coordinate and momentum representations. The above matrix form may be
called the coordinate representation. The transition to the momentum represen-
tation is provided by a transformation diagonalizing the commuting set {U (j)}.
This Z,-analogue of the Fourier transformation is given by the unitary Sylvester
matrix

g/t .
Sje = N g = e,
in the form S™': ¢ -/, ie.
1 "2l
Yj=— Z ey,

It is easily checked that S™'AS = B, where B is the diagonal matrix
B = diag(l,¢,...,&"" 1),
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hence

Uk)y=8S1UKk)S = B~ (5)
The momentum eigenstates — ecigenstates of {U(k)} with eigenvalues {g¥}, j
=0,1,...,n—1 — are

o Loy
N

and the associated one-dimensional projectors F(j): ¥ — (f’, ¥) f7 serve as the
spectral projectors for U (k),

3

n—-1
Uk)= ) e9F(j)
j=0

The spectral family F'(j)=S ' F(j)S over G in # may be regarded as
belonging to a complementary imprimitivity system over momenta (in the momen-
tum representation). For, suppose that M = Z, acts on G = Z, by the action

MxG—G: (g, j)—j—eo(modn).

Then there is again a unique (up to unitary equivalence) imprimitivity system
(v, #) for M on G in . In the momentum representation it has a similar form
as (%, &) had in the coordinate representation, i.e.

(F'(Dt = 04055 V'(e)=V'(1)°, V()=4"1,
V(e) =SV'(6)S™ ' = Z e E(o (6)
We thus have two representations, the coordinate representation where E(g)
and V(o) = B’ are diagonal, and the momentum representation where F’(j) and
U'(k) = B* are diagonal. The transition between the two representations is given

by the discrete Fourier transform S: 3¢ — #. The Weyl relations for the con-
tinuous case

eiéP eir]Q — eién einQ eié‘P
are replaced by the discrete Weyl system (%, ¥") with

U V(e)=e"V(aU()) (7

or

A'B? =gt B A, (8)
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Remark. One can also define the Weyl system in terms of unitary matrices

_1 1
W(j,0 =¢ 2°U(j)V(o) =¢ 2° A4 Be

with the product law

I
W(j, 9W(J, @) =2 T W(j+], e +0).
These n? operators supply, as Schwinger [5] has shown, a complete operator basis

for a physical system possessing n states:

nTe(W(j, 9 W(J, @)*) = 6;; 6

ee’
and for any matrix Y

R YW, ) YW(, 0 = 1 TrY,

J.e

2.5. Coordinate and momentum operators. In analogy with the continuous
case the matrices Q and P can be defined via

ianP 2n

Uky=en", Vi)=en"

in the coordinate representation. (This definition differs somewhat from [6] where
the transition to the continuous case was treated.) The spectral decomposition (6)
implies that the eigenvalues of Q are g, = ¢(modn); we choose

Q =diag(0, 1,...,n—1).
Similarly, eq. (5) yields the eigenvalues of P, p; = j(modn). Choosing again
P =S !'PS =diag(0, 1,...,n—1),

one easily finds

n—1

T for o =0,

5 ro=o
P,, = 1

e for o #0.

The commutator is tracefree,

0 for o =0,
[0, Pl ={ L N
e -1
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2.6. Tensor product decompositions. Quantum kinematics on the configuration
spaces Z, derived in the preceding sections can be directly extended to any direct
product of the form

M=2Z, x ... mef.

The corresponding transitive system of imprimitivity for G = Z, x ... mef on
M is the tensor product of the imprimitivity systems (%,, &,) for Z,, , and acts in
the Hilbert space #,® ... ®#, of dimension m, ... m,. Each such system of
imprimitivity is irreducible if and only if each (%,, &,) is irreducible, hence if
irreducible, it is unique up to unitary equivalence. Then, according to the structure
theorem for finite Abelian groups (Sect. 2.1) it is sufficient to put m, = n' (n, > 1,
prime, r = 1, ..., f) to obtain the quantum kinematics for any finite Abelian group.
In the special case of Z, the structure theorem actually implies' the unique
decomposition
Zy=Zp X oo XLy, 9)
where m, = n,", and n=n{'...n/ is the unique prime decomposition of n with
distinct primes n, > 1. Thus the system of imprimitivity for Z, is equivalent to the
tensor product system with distinct primes n,, as discovered by Schwinger [5], in
the form

U=U®...0U;,, ¥V =V10...0%, (10)

where each Weyl system (%,, ¥°,) acts in #, of dimension n,". An independent
proof of this result is given in Appendix 1.

One may give physical meaning to these tensor product decompositions as if
they describe quantum degrees of freedom in relation to the prime periods in a
prime decomposition of n = dim .

3. Galilean quantum dynamics on finite Abelian groups

3.1. Evolution operators. The reversible time evolution of an isolated quantum
system is determined by a strongly continuous one-parameter group of unitary
operators {L(t)jt € R} acting in some Hilbert space. According to Stone’s theorem
there exists exactly one self-adjoint operator H — the Hamiltonian — such that

L(t) = e " H*VD (1 R)
where V is an arbitrary real constant.
! Indeed, Z, contains elements of order n and, conversely, if a group G of order n has an element
of order n, then G = Z,. This is the case for the direct product (9) only if the primes n, are mutually

different, since if x, y from G, H have orders p, g, respectively, then (x, y)€ G x H has order equal to the
lowest common multiple of p and gq. )
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In the Hilbert space # of finite dimension n, Hamiltonian time evolutions can
be completely classified since each one corresponds to a one-parameter subgroup
of the unitary group U(n). Now every such subgroup of U(n) is generated by a
Hermitian matrix, hence it is characterized (up to a unitary similarity transform-
ation) by its n real eigenvalues which we denote E,, E,, ..., E,_,. Thus the general
form of L(t) 1s

L(t)=Yexp(—itHy) Y1,

where Ye U(n), H, = diag(E,y, E,,...,E,_;), and the constant ¥ has been
included in H,.

3.2. Free Hamiltonian. In the following we shall carry on the discrete analogy
of the continuous situation in quantum dynamics. The first question which
naturally arises concerns the form of Hamiltonian time evolution which could play
the role of free evolution. We propose here the discrete analogue of the one-

parameter group
. p2
L(t) = exp<—it <——+ Vl)) (teR) (11)
2m

describing the Galilean free evolution in the Euclidean space. In this section we
shall list the main properties of (11) regarded as evolution operator of a system
based on the cyclic group M =Z,.

Let us assume that (11) in fact describes a time evolution in the n-dimensional
Hilbert space 5, with the operator P defined in Sect. 2.5. Using the spectral
decomposition of (11) we can write the action of L(r) on all the eigenvectors f”

L(f)fj — e—it[(p]‘2/2m)+V]fj
where p; = j(modn). We observe the following properties:
1
(A) If we restrict V' to the values V= TW, weZ, then L(¢) is periodic with the

m
period T =4mm, i.e. L(t)y =y for all ye#.

(B) The ambiguity in the eigenvalues p; =j(modn) of P leads to different
continuous-time evolutions. This amblgulty can, however, be removed by restrict-

ing 1€ R to the discrete time values ¢, = —s, seZ, with the time unit t/n = 4mm/n.
n
Then the evolution periodically repeats after every n steps. We shall denote it by

—i%’is(P2+w1)

T(s) = L(t) = e

(C) s > T(s) 1s a unitary representation of Z,, T(s)=T(1), s=1,...,n—1,
T(1)'=T(O0 =1.
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(D) The matrix elements of T(s) in the coordinate representation

n—1

T(s),y = (¢%, T(s)e?) =n~1 Y g (0F+wstio-oi (12)

i=0

have the property characteristic for a circulant matrix

T(S)aa = T(S)e+ 1(mod n),a+ 1(mod n) *

(E) Let us introduce C via T(1) =&~ " C. Then in addition to 4’ B® = &/¢ B® A/,
the relations

AC=CA and BeC =¢ 9 A% C B (13)

hold.
(F) The discrete-time Schrodinger equation for free evolution takes the differ-
ence form

W(s+ D)=y (s) =(TM)-1)¢ ().

Notice that the time evolution has been made independent of (mod n)-
ambiguity just by considering only the times ¢,. In the next section we shall show
the connection of T(s) with the Z,-analogue of the Galilei group in one dimension.

3.3. Finite Galilei group. In the usual quantum mechanics the solution of the
free particle problem is equivalent to the construction of an irreducible unitary
representation of the quantal Galilei group Gz. We shall proceed in this way for a
system based on M = Z,, and find its free dynamical group.

Let us recall the definition of the quantal Galilei group G5 in one dimension
[10]. It is a nilpotent Lie group with the multiplication law

O;u,v,t)(0; 0, vV, t)=(O0+0 +vu' +3t'v*; u+u' +t' v, v+0, t+1).
Here 6, u, v and t are real parameters corresponding to the Abelian subgroups of
phase transformations, space translations, pure Galilei transformations and time
translations, respectively. The group Gg can be written as a semidirect product Gg
=G, ®G, with g, =(;u,0,0)eG;, ¢g,=(0;0,0,0eG,, and (0: u, 0, 1)
(0; 0,v,0 =(0; u, v, t). The irreducible unitary representations of Gy are well
known (see e.g. [10]). They are labelled by the invariants meR and V=H
2

P R
——¢R,
2m

[U0; u, v, 1) f1(p) = e~ "m0+ @2 /2ms Vel (), (14)

where fe L?(R, dp).
The finite analogue G,z of Gy is constructed by replacing each of the
continuous Abelian subgroups by Z,. We shall show that



166 P. STOVICEK and J. TOLAR

(1) the set of operators {¢°l, U(j), V(g), T(s)} generates an irreducible unitary
representation of G,z in #, and

(i) this representation is uniquely determined (within an unphysical constant
phase factor) once the Weyl system (%, ¥7) is given.

The transition to discrete transformations is performed by putting

2 2 4
m0=—na, u=—nj, mv = g, t=—En—15, (15)
n n n

where «, j, o, seZ,. In this way we arrive at the finite Galilei group G, of order
n* with elements (a; j, ¢, s) and the multiplication law
(a; j, 0,9, ¢,5)=(a+ad +g +50% j+j+250, e+@', s+5)

where all sums are modulo n. »
Since GnE = Gn1®Gn2 with g1 = (a, ja 07 S)EGnlaAQZ = (Oa 0: g, O)EGnZ, and g
={(a; j, 0, S) = ¢g19,, one verifies that :

Ula; j, 0,8)=¢"U(NT(s) V(o)

is an irreducible unitary representation of G, in . In the momentum represen-
tation, this representation is equivalent to the formula obtained from (14) with the
aid of (15) and setting p=keZ,:

. g—(i2 :
[Ul(a; ]5 Q’ S) l//]k =& a-frwistjk l///k—g(mod n)*

Note that the subgroup of order n* formed by all elements (a; j, 0, 0) is the
discrete Heisenberg group (with the discrete centre Z,), and that the Weyl system
(%, v) determines its unique irreducible unitary representation in #,

Ula; j, 0, 0 =" U(j) V(0.
Given this representation via U(j) = 4’ and V(g) = B® with AB = ¢BA, relations
AC=CA, BC=¢"'A’CB (16
determine a unitary C uniquely. up to a phase factor e (for the proof see
Appendix 2). The candidate ¢~ * A’ €** C* B¢ for U (a; j, ¢, s) can, however, fulfil the

group law of G,; only if & = ¢~* for some integer w. This result reminds us of the
uniqueness of Nelson’s extensions in the continuous case [10].

4. Conclusions

We have shown in this paper that one can formulate a finite space-time lattice
analogue of non-relativistic quantum mechanics while preserving the main features
of the continuous situation, as embodied in the Galilei dynamical group in one
dimension. Our approach was based on the replacement of the continuous Abelian
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group of configuration space translations by one of the finite Abelian groups.
From the transitive group action the unique class of unitarily equivalent, irredu-
cible quantum kinematics was constructed in terms of a transitive imprimitivity
system in a finite-dimensional Hilbert space, This method of quantization was
developed by Wightman and Mackey, and is closely related to the quantum logic
of propositional caléulus.

The coordinate and momentum operators arising from this framework then
served to define a candidate for the free Hamiltonian evolution operator. We
discovered a remarkable fact that this operator emerges naturally and uniquely
from the unitary irreducible representation of the finite analogue of the Galilei
group over finite space-time lattice. As Appendix 3 shows, the corresponding finite-
difference Schrédinger equation turns out to differ substantially from the difference
equation with the commonly assumed second order difference operator replacing
the Laplacian [2], [11].

Since our approach can accomodate potentials as well as external gauge fields,
it can provide a suitable starting point for the approximate solution of the
continuous Schrodinger equation. In this connection we found instructive the
papers [12] on the numerical solution of the inverse scattering problem, and
Montroll’s method in molecular and solid state physics [13].

Our results on quantum kinematics may be viewed from a somewhat different
angle. Namely, one could apply them to the quantization of classical “spin-up-or-
down” systems which represent an important class of models in statistical
mechanics [14]. Since the configuration spaces of these systems are essentially
Z,x ... xZ,, their Weyl systems take the tensor product form (10) with
A,B,+ B, A, = 0, generating the two-dimensional representation of the standard
Clifford algebra. Thus our results include a uniqueness theorem for anticommu-
tation relations and commutation relations of finite quantum spin systems [15].
Let us mention that the Weyl systems considered in this paper are closely
connected with the representations of generalized Clifford algebras [16].
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Appendix 1

PrROPOSITION. Let the Weyl system (%, V") be given over M=Z, If n
=n... n"ff is the unique prime decomposition with mutually distinct primes n, > 1,
then we have U = U\ ® ... QU;, ¥ =1 Q... QY ,, where each pair (%,, 1)
acts in #, of dimension n.".

Proof: Let n=pr,p>1,r>1;let #, #? and #, be Hilbert spaces with
orthonormal bases {e{'’}, k=0,1,...,p—1 for #V, &}, 1=0,1,...,r—1 for

p o
AP and {e’®e?| for H#,; then H#, = #AVRA#P. The clements of #, are
p—1r—1
(1 2
Z Z ay e’ @e?  (a,€C).
k=0 1=0

Now, if p, r ' have no common divisors, then 4 = 4,®4,, ie.

1 2) . (1 (2)
Ae;c )®e§ ) = e;c—) 1 (mod p)®el— 1(mod r) *

This follows from the statement: A%el’®ey’, s=0,1,...,n—1, runs just once
through all the vectors e’ ®e!® if and only if the following sets are the same

{(s(mod p), s(mod r))[s =0,1,...,n—1} = {(k, DFZtmpm b

Obviously the inclusion < holds since n = pr; it is sufficient to show that the
equality (s(mod p), s(modr)) = (t(mod p), t(modr)) implies s =t. Indeed, both p

and r are divisible by |s—¢ and |s—te{0.1,.... n—1!. If p and r have no
common divisor, then their lowest common multiple is pr = n, hence [s—1t] = 0.
Denoting now d, = A’ ®e, it follows that d,.....d,., is an orthonormal

basis in #,, and Ad; =d,_ .4, holds.

Appendix 2

Proof that relations (16) determine the unitary matrix C uniquely up to a
factor €, € R. Since C commutes with the maximal commuting set |A*} it can be

n—1
written as a linear combination C = ) #, A“. Then the second equation in (16)
k=0
takes the form
n—1
Z G Mk~ 2(mod ny — M) A =0,
k=0

which holds on any element of »# if and only if all coefficients are zero (take e.g.
the basis {f’/} of s#). Now the relation

_ k+1
M+ 2(mod m) = € M
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is equivalent to

— (2= 1)+ (2k=3)+ ..+ 1 K2

N 2k(mod m Mo =& Mo

and

= (k=D + k-4 + .42 k(k— 1)

N2k~ 1(mod n) n =€ Hy-

Hence the solution i1s

2
Nok = Mp—2k = e* Ho (n odd),
Nae =0, M1 = gtk b

2
Mok =€ Nos Nag+1 =0 (n=2m, m even).

n, (n=2m, m odd),

Since relations (16) imply that C" commutes with the complete set {4’ B}, C" is
proportional to the unit matrix. By a suitable choice of n4(orn,) C" =1, hence the
eigenvalues {o;] of C belonging to {f’} satisfy a} = 1, i.e. a;'s are powers of ¢ and
C is unitary. Relations (16) and unitarity leave only the freedom of multiplying C
by €, aeR. If furthermore C" =1, ¢* is restricted to ¢™", weZ.

Appendix 3
Time evolution matrices C in the coordinate representation for n =2, 3, 4, 5
and 6:
n=2 lO IJ n=>5 T
1 0 4 4
I 1 & ¢ ¢
NG e et 1 & ¢
V2 e & & 1 &t
e e gt 1]
n=3 ) 1 ¢ ¢ B
_ e c
\/3 £ ¢
| n==6 [0 &¢* 0 1 0 &*]
n=4 (1 0 i 0] &0 ¢ 0 1 0
1—i |01 0 i i |0 ¢ 0 & 0 1
2 ]li 010 o o0 oo
0 i 0 1 0 1 0 & 0 ¢
e 0 1 0 ¢ 0 ]
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