
CORBA: Common Object Request Broker
Architecture in Software Engineering
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What is CORBA?

▶ CORBA stands for Common Object Request Broker
Architecture.

▶ It is a middleware standard developed by the Object
Management Group (OMG).

▶ CORBA allows different applications (even in different
programming languages) to communicate with each other.

▶ It supports distributed, cross-platform computing by enabling
different objects within a network to easily interact and work
together.



Who is OMG?

▶ The Object Management Group (OMG) is an international
technology standards consortium.

▶ Founded in 1989, OMG creates and maintains standards for
distributed systems and software interoperability.

▶ OMG is best known for developing CORBA, UML (Unified
Modeling Language), and BPMN (Business Process Model
and Notation).

▶ It includes a wide range of members, from large companies to
small organizations, working together to define technology
standards.



Why CORBA?

▶ Problem: Applications written in different programming
languages and running on different platforms often struggle to
communicate.

▶ Solution: CORBA provides a unified way to allow these
diverse systems to talk to each other, as if they were part of
the same application.

▶ How it works: CORBA abstracts the complexities of network
communication, so developers can focus on the logic of their
applications rather than the technical details of making
different systems work together.

▶ Goal: Enable seamless interoperability in distributed
systems, making it easier to build scalable, flexible, and
reusable software components.



Key Concepts of CORBA

▶ ORB (Object Request Broker): Core component that
enables communication between clients and servers.

▶ IDL (Interface Definition Language): Language-neutral
specification of interfaces.

▶ Stubs and Skeletons: Generated code that mediates
between the client and the server.

▶ GIOP/IIOP: Protocols used by CORBA for communication
over networks.



The Problem CORBA Solves

▶ Imagine chefs from different countries want to share recipes.

▶ They each speak different languages, use different
ingredients, and have unique cooking techniques.

▶ The chefs want to collaborate but can’t understand each
other directly.

▶ CORBA is like an international system that helps these chefs
exchange recipes easily.



The Chefs Analogy

▶ Each chef represents a different software program:
▶ Chef A speaks English and uses American techniques.
▶ Chef B speaks French and uses French techniques.
▶ Chef C speaks Chinese and uses Chinese techniques.

▶ They need a system that can translate recipes and requests
between them.

▶ This system is CORBA.



ORB: The Translator (Middleman)

▶ ORB (Object Request Broker) acts like a translator.

▶ Chef A can send a recipe request to Chef B in French, but the
ORB handles translating it from English to French.

▶ Chef B sends back the recipe in French, and the ORB
translates it to English for Chef A.

▶ No matter which language the chefs use, the ORB ensures
they understand each other.



IDL: The Universal Recipe Format

▶ Just like every chef needs to understand the basic structure of
a recipe, CORBA uses IDL (Interface Definition
Language).

▶ IDL is a universal format that describes the ingredients, steps,
and tools needed for a recipe.

▶ No matter what language or cooking style the chef uses, IDL
makes sure the recipe can be understood by everyone.

▶ In technical terms, IDL defines how programs
communicate, no matter what language they are written in.



Client and Server: The Recipe Exchange

▶ In CORBA terms:
▶ Chef A is the client, requesting a recipe.
▶ Chef B is the server, providing the recipe.

▶ The ORB (translator) acts as the middleman, ensuring both
chefs can communicate smoothly.

▶ The chefs don’t need to know each other’s cooking tools or
location—CORBA handles it all.



Object Request Broker (ORB)

▶ ORB is the middleware that handles communication between
objects.

▶ It locates the server objects, passes requests from client to
server, and returns results back to the client.

▶ ORB abstracts details like network communication, providing
seamless communication between applications.

▶ It uses GIOP (General Inter-ORB Protocol) and IIOP
(Internet Inter-ORB Protocol) to send and receive
messages over the internet.



Interface Definition Language (IDL)

▶ IDL is a language-agnostic specification for defining the
interfaces of objects.

▶ It ensures that different programming languages can
understand the interfaces and communicate.

▶ For each IDL interface, CORBA generates stubs (client-side)
and skeletons (server-side) in the required programming
language.

▶ Programmers write an IDL file that specifies the methods and
data types for the objects they want to use.

▶ Example of an IDL interface:

IDL Example

interface Calculator {
int add(in int a, in int b);

int subtract(in int a, in int b);

}



How Stubs and Skeletons Work

▶ Stubs:
▶ On the client’s side.
▶ When the client calls a remote object (on another computer),

the stub prepares the request.
▶ The stub sends the request to the server, making it seem like

the object is local.

▶ Skeletons:
▶ On the server’s side.
▶ The skeleton receives the request from the client (via the stub).
▶ It unpacks the request and makes sure the correct method on

the server is called.
▶ Then, it sends the result back to the client.



GIOP - General Inter-ORB Protocol

▶ GIOP (General Inter-ORB Protocol) defines the abstract
communication protocol for CORBA ORBs (Object Request
Brokers).

▶ It allows for standardized communication between
CORBA-compliant systems.

▶ GIOP is designed to be independent of the transport layer,
making it flexible across different networks.

▶ Ensures interoperability between CORBA ORBs across
different vendors and platforms.



IIOP - Internet Inter-ORB Protocol

▶ IIOP (Internet Inter-ORB Protocol) is a concrete
implementation of GIOP over TCP/IP networks.

▶ It allows CORBA-based systems to communicate over the
Internet.

▶ IIOP defines how GIOP messages are exchanged using the
TCP/IP protocol stack.

▶ With IIOP, CORBA objects can be accessed across distributed
systems, regardless of location.



IOR - Interoperable Object References

▶ IOR (Interoperable Object References) are unique
identifiers for CORBA objects.

▶ An IOR contains all the necessary information for a client to
locate and communicate with a CORBA object.

▶ Structure of an IOR:
▶ Object Key: Uniquely identifies the object on the server.
▶ Protocol and Address Information: Specifies the protocol (e.g.,

IIOP) and the address of the server hosting the object.
▶ Optional components: Include information such as security

attributes.

▶ IORs are essential for making remote CORBA objects
accessible and usable in a distributed system.

▶ Encoding and Transmission:
▶ IORs are encoded in a string format for easy transmission.
▶ They can be passed between clients and servers to enable

remote method invocation.



Static vs. Dynamic Invocation in CORBA

Static Invocation

▶ Definition: Method calls
are determined at compile
time.

▶ Use Case: When method
signatures are known
beforehand.

▶ Advantages:
▶ Better performance due

to compile-time
optimizations.

▶ Strong type checking,
reducing runtime errors.

▶ Example: Using stubs
generated from IDL files to
call methods directly.

Dynamic Invocation

▶ Definition: Method calls
are determined at runtime.

▶ Use Case: When methods
or interfaces may change, or
are unknown at compile
time.

▶ Advantages:
▶ Greater flexibility and

adaptability to changes.
▶ Supports loose coupling

and service discovery.

▶ Example: Invoking methods
using the Dynamic
Invocation Interface (DII)
without prior knowledge of
method signatures.



CORBA architecture

Formal specification of CORBA-based distributed objects and behaviors -
Scientific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/Components-of-the-CORBA-
architecture-and-their-interconnectionsf ig14187856[accessed14Oct2024]



CORBA Implementation

▶ CORBA is a Specification: It is not a language or a specific
software product, but a standard.

▶ Middleware Implementations: Many vendors provide their
own implementations of the CORBA specification, such as:
▶ ORB implementations (e.g., TAO, Orbix, JavaORB).
▶ These ORBs handle communication and follow the CORBA

standards to ensure interoperability between applications.

▶ Platform-Neutral: CORBA enables communication across
different operating systems and hardware, abstracting the
underlying details of how this happens.



Example of CORBA using OmniORB:
A high-performance CORBA Object Request Broker

that supports C++ and Python.



IDL File: Defining the Interface

The IDL file defines the interface for communication between the
client and server.

IDL Example

module MyModule {

interface MyInterface {

string sayHello(in string name);

};

};

Explanation:

▶ The module defines a namespace.

▶ The interface defines the methods available to the client.

▶ The method sayHello takes an input string and returns a
string.



Server Code: ORB Initialization
The server initializes the ORB and registers the servant object.

import sys

from omniORB import CORBA

import MyModule_idl

class MyInterface_impl(MyModule_idl.MyInterface):

def sayHello(self, name):

return "Hello, " + name

orb = CORBA.ORB_init(sys.argv)

poa = orb.resolve_initial_references("RootPOA")

poa_manager = poa._get_the_POAManager()

my_interface_impl = MyInterface_impl()

obj_ref = poa.servant_to_reference(my_interface_impl)

ior = orb.object_to_string(obj_ref)

with open("ior.txt", "w") as f:

f.write(ior)

poa_manager.activate()

orb.run()



Client Code: Accessing the Server

The client initializes the ORB, reads the IOR, and communicates
with the server.

import sys

from omniORB import CORBA

import MyModule_idl

orb = CORBA.ORB_init(sys.argv)

with open("ior.txt", "r") as f:

ior = f.read().strip()

obj = orb.string_to_object(ior)

my_interface = obj._narrow(MyModule_idl.MyInterface)

result = my_interface.sayHello("World")

print(result)



CORBA Use Cases

▶ Distributed Systems: CORBA facilitates communication
between objects across different locations.

▶ Heterogeneous Environments: Allows integration of
systems written in different programming languages.

▶ Enterprise Systems: CORBA is commonly used in large,
distributed enterprise applications.

▶ Legacy Systems Integration: CORBA helps bridge old and
new systems.



Advantages of CORBA

▶ Language and Platform Independence: Facilitates
interoperability across different languages and systems.

▶ Distributed Objects: Makes it easier to build distributed,
object-oriented systems.

▶ Scalability: Suitable for large enterprise applications.



Disadvantages of CORBA

▶ Complexity: Setting up and managing CORBA systems can
be complex.

▶ Performance Overhead: Communication between
distributed objects can introduce latency.

▶ Obsolescence: Modern technologies like RESTful APIs,
gRPC, and microservices have reduced CORBA’s relevance.



CORBA vs. Modern Alternatives

▶ CORBA was widely used in the 1990s and early 2000s.

▶ Modern alternatives like gRPC, RESTful APIs, and SOAP
have become more popular.

▶ CORBA is still used in some legacy systems but has largely
been replaced by simpler, more efficient technologies.



Conclusion

▶ CORBA played a significant role in enabling distributed
object-oriented computing.

▶ Its language and platform independence were key benefits in
heterogeneous environments.

▶ Despite its decline in use, understanding CORBA is important
for working with legacy systems and appreciating the
evolution of distributed computing architectures.
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