
CORBA: Common Object Request Broker
Architecture in Software Engineering

Samuel Jurśık, Martin Mašek

October 15, 2024



Outline
Introduction to CORBA

The Object Management Group (OMG)

Intuition Behind CORBA

Key Concepts

Object Request Broker (ORB)

Interface Definition Language (IDL)

How Stubs and Skeletons Work

GIOP - General Inter-ORB Protocol

IIOP - Internet Inter-ORB Protocol

IOR - Interoperable Object References

How is CORBA Implemented?

CORBA Use Cases

Advantages and Disadvantages

CORBA vs. Modern Alternatives

Conclusion



What is CORBA?

▶ CORBA stands for Common Object Request Broker
Architecture.

▶ It is a middleware standard developed by the Object
Management Group (OMG).

▶ CORBA allows different applications (even in different
programming languages) to communicate with each other.

▶ It supports distributed, cross-platform computing by enabling
different objects within a network to easily interact and work
together.



Who is OMG?

▶ The Object Management Group (OMG) is an international
technology standards consortium.

▶ Founded in 1989, OMG creates and maintains standards for
distributed systems and software interoperability.

▶ OMG is best known for developing CORBA, UML (Unified
Modeling Language), and BPMN (Business Process Model
and Notation).

▶ It includes a wide range of members, from large companies to
small organizations, working together to define technology
standards.



Why CORBA?

▶ Problem: Applications written in different programming
languages and running on different platforms often struggle to
communicate.

▶ Solution: CORBA provides a unified way to allow these
diverse systems to talk to each other, as if they were part of
the same application.

▶ How it works: CORBA abstracts the complexities of network
communication, so developers can focus on the logic of their
applications rather than the technical details of making
different systems work together.

▶ Goal: Enable seamless interoperability in distributed
systems, making it easier to build scalable, flexible, and
reusable software components.



Key Concepts of CORBA

▶ ORB (Object Request Broker): Core component that
enables communication between clients and servers.

▶ IDL (Interface Definition Language): Language-neutral
specification of interfaces.

▶ Stubs and Skeletons: Generated code that mediates
between the client and the server.

▶ GIOP/IIOP: Protocols used by CORBA for communication
over networks.



The Problem CORBA Solves

▶ Imagine chefs from different countries want to share recipes.

▶ They each speak different languages, use different
ingredients, and have unique cooking techniques.

▶ The chefs want to collaborate but can’t understand each
other directly.

▶ CORBA is like an international system that helps these chefs
exchange recipes easily.



The Chefs Analogy

▶ Each chef represents a different software program:
▶ Chef A speaks English and uses American techniques.
▶ Chef B speaks French and uses French techniques.
▶ Chef C speaks Chinese and uses Chinese techniques.

▶ They need a system that can translate recipes and requests
between them.

▶ This system is CORBA.



ORB: The Translator (Middleman)

▶ ORB (Object Request Broker) acts like a translator.

▶ Chef A can send a recipe request to Chef B in French, but the
ORB handles translating it from English to French.

▶ Chef B sends back the recipe in French, and the ORB
translates it to English for Chef A.

▶ No matter which language the chefs use, the ORB ensures
they understand each other.



IDL: The Universal Recipe Format

▶ Just like every chef needs to understand the basic structure of
a recipe, CORBA uses IDL (Interface Definition
Language).

▶ IDL is a universal format that describes the ingredients, steps,
and tools needed for a recipe.

▶ No matter what language or cooking style the chef uses, IDL
makes sure the recipe can be understood by everyone.

▶ In technical terms, IDL defines how programs
communicate, no matter what language they are written in.



Client and Server: The Recipe Exchange

▶ In CORBA terms:
▶ Chef A is the client, requesting a recipe.
▶ Chef B is the server, providing the recipe.

▶ The ORB (translator) acts as the middleman, ensuring both
chefs can communicate smoothly.

▶ The chefs don’t need to know each other’s cooking tools or
location—CORBA handles it all.



Object Request Broker (ORB)

▶ ORB is the middleware that handles communication between
objects.

▶ It locates the server objects, passes requests from client to
server, and returns results back to the client.

▶ ORB abstracts details like network communication, providing
seamless communication between applications.

▶ It uses GIOP (General Inter-ORB Protocol) and IIOP
(Internet Inter-ORB Protocol) to send and receive
messages over the internet.



Interface Definition Language (IDL)

▶ IDL is a language-agnostic specification for defining the
interfaces of objects.

▶ It ensures that different programming languages can
understand the interfaces and communicate.

▶ For each IDL interface, CORBA generates stubs (client-side)
and skeletons (server-side) in the required programming
language.

▶ Programmers write an IDL file that specifies the methods and
data types for the objects they want to use.

▶ Example of an IDL interface:

IDL Example

interface Calculator {
int add(in int a, in int b);

int subtract(in int a, in int b);

}



How Stubs and Skeletons Work

▶ Stubs:
▶ On the client’s side.
▶ When the client calls a remote object (on another computer),

the stub prepares the request.
▶ The stub sends the request to the server, making it seem like

the object is local.

▶ Skeletons:
▶ On the server’s side.
▶ The skeleton receives the request from the client (via the stub).
▶ It unpacks the request and makes sure the correct method on

the server is called.
▶ Then, it sends the result back to the client.



GIOP - General Inter-ORB Protocol

▶ GIOP (General Inter-ORB Protocol) defines the abstract
communication protocol for CORBA ORBs (Object Request
Brokers).

▶ It allows for standardized communication between
CORBA-compliant systems.

▶ GIOP is designed to be independent of the transport layer,
making it flexible across different networks.

▶ Ensures interoperability between CORBA ORBs across
different vendors and platforms.



IIOP - Internet Inter-ORB Protocol

▶ IIOP (Internet Inter-ORB Protocol) is a concrete
implementation of GIOP over TCP/IP networks.

▶ It allows CORBA-based systems to communicate over the
Internet.

▶ IIOP defines how GIOP messages are exchanged using the
TCP/IP protocol stack.

▶ With IIOP, CORBA objects can be accessed across distributed
systems, regardless of location.



IOR - Interoperable Object References

▶ IOR (Interoperable Object References) are unique
identifiers for CORBA objects.

▶ An IOR contains all the necessary information for a client to
locate and communicate with a CORBA object.

▶ Structure of an IOR:
▶ Object Key: Uniquely identifies the object on the server.
▶ Protocol and Address Information: Specifies the protocol (e.g.,

IIOP) and the address of the server hosting the object.
▶ Optional components: Include information such as security

attributes.

▶ IORs are essential for making remote CORBA objects
accessible and usable in a distributed system.

▶ Encoding and Transmission:
▶ IORs are encoded in a string format for easy transmission.
▶ They can be passed between clients and servers to enable

remote method invocation.



Static vs. Dynamic Invocation in CORBA

Static Invocation

▶ Definition: Method calls
are determined at compile
time.

▶ Use Case: When method
signatures are known
beforehand.

▶ Advantages:
▶ Better performance due

to compile-time
optimizations.

▶ Strong type checking,
reducing runtime errors.

▶ Example: Using stubs
generated from IDL files to
call methods directly.

Dynamic Invocation

▶ Definition: Method calls
are determined at runtime.

▶ Use Case: When methods
or interfaces may change, or
are unknown at compile
time.

▶ Advantages:
▶ Greater flexibility and

adaptability to changes.
▶ Supports loose coupling

and service discovery.

▶ Example: Invoking methods
using the Dynamic
Invocation Interface (DII)
without prior knowledge of
method signatures.



CORBA architecture

Formal specification of CORBA-based distributed objects and behaviors -
Scientific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/Components-of-the-CORBA-
architecture-and-their-interconnectionsf ig14187856[accessed14Oct2024]



CORBA Implementation

▶ CORBA is a Specification: It is not a language or a specific
software product, but a standard.

▶ Middleware Implementations: Many vendors provide their
own implementations of the CORBA specification, such as:
▶ ORB implementations (e.g., TAO, Orbix, JavaORB).
▶ These ORBs handle communication and follow the CORBA

standards to ensure interoperability between applications.

▶ Platform-Neutral: CORBA enables communication across
different operating systems and hardware, abstracting the
underlying details of how this happens.



Example of CORBA using OmniORB:
A high-performance CORBA Object Request Broker

that supports C++ and Python.



IDL File: Defining the Interface

The IDL file defines the interface for communication between the
client and server.

IDL Example

module MyModule {

interface MyInterface {

string sayHello(in string name);

};

};

Explanation:

▶ The module defines a namespace.

▶ The interface defines the methods available to the client.

▶ The method sayHello takes an input string and returns a
string.



Server Code: ORB Initialization
The server initializes the ORB and registers the servant object.

import sys

from omniORB import CORBA

import MyModule_idl

class MyInterface_impl(MyModule_idl.MyInterface):

def sayHello(self, name):

return "Hello, " + name

orb = CORBA.ORB_init(sys.argv)

poa = orb.resolve_initial_references("RootPOA")

poa_manager = poa._get_the_POAManager()

my_interface_impl = MyInterface_impl()

obj_ref = poa.servant_to_reference(my_interface_impl)

ior = orb.object_to_string(obj_ref)

with open("ior.txt", "w") as f:

f.write(ior)

poa_manager.activate()

orb.run()



Client Code: Accessing the Server

The client initializes the ORB, reads the IOR, and communicates
with the server.

import sys

from omniORB import CORBA

import MyModule_idl

orb = CORBA.ORB_init(sys.argv)

with open("ior.txt", "r") as f:

ior = f.read().strip()

obj = orb.string_to_object(ior)

my_interface = obj._narrow(MyModule_idl.MyInterface)

result = my_interface.sayHello("World")

print(result)



CORBA Use Cases

▶ Distributed Systems: CORBA facilitates communication
between objects across different locations.

▶ Heterogeneous Environments: Allows integration of
systems written in different programming languages.

▶ Enterprise Systems: CORBA is commonly used in large,
distributed enterprise applications.

▶ Legacy Systems Integration: CORBA helps bridge old and
new systems.



Advantages of CORBA

▶ Language and Platform Independence: Facilitates
interoperability across different languages and systems.

▶ Distributed Objects: Makes it easier to build distributed,
object-oriented systems.

▶ Scalability: Suitable for large enterprise applications.



Disadvantages of CORBA

▶ Complexity: Setting up and managing CORBA systems can
be complex.

▶ Performance Overhead: Communication between
distributed objects can introduce latency.

▶ Obsolescence: Modern technologies like RESTful APIs,
gRPC, and microservices have reduced CORBA’s relevance.



CORBA vs. Modern Alternatives

▶ CORBA was widely used in the 1990s and early 2000s.

▶ Modern alternatives like gRPC, RESTful APIs, and SOAP
have become more popular.

▶ CORBA is still used in some legacy systems but has largely
been replaced by simpler, more efficient technologies.



Conclusion

▶ CORBA played a significant role in enabling distributed
object-oriented computing.

▶ Its language and platform independence were key benefits in
heterogeneous environments.

▶ Despite its decline in use, understanding CORBA is important
for working with legacy systems and appreciating the
evolution of distributed computing architectures.


	Introduction to CORBA
	The Object Management Group (OMG)
	Intuition Behind CORBA
	Key Concepts
	Object Request Broker (ORB)
	Interface Definition Language (IDL)
	How Stubs and Skeletons Work
	GIOP - General Inter-ORB Protocol
	IIOP - Internet Inter-ORB Protocol
	IOR - Interoperable Object References
	How is CORBA Implemented?
	CORBA Use Cases
	Advantages and Disadvantages
	CORBA vs. Modern Alternatives
	Conclusion

