
Design Patterns

Authors:

Iuliia Shestopalova

Jozef Hrdý 



What Are Design Patterns?

Templates

Solve recurring problems in the 
design of software applications.

Object-Oriented

Describe interactions between 
classes and objects in object-
oriented programming.

Flexible

Can be adapted to various 
programming languages and 
specific project needs.

Proven

These solutions have been tested 
and refined through real-world 
application.



A Brief History of Design Patterns

1 1960s: Architectural Roots

Christopher Alexander introduces pattern language for architectural 
design.

2 1987: OOPSLA Conference

First mention of design patterns in computing at Orlando conference.

3 1994: Gang of Four Book

Publication of "Design Patterns: Elements of Reusable Object-Oriented 
Software" by Gamma et al.



The Gang of Four (GoF) Patterns
23 Patterns
The GoF book introduced 23 fundamental design patterns.

Three Categories
Patterns are classified as Creational, Structural, or Behavioral.

Universal Application
These patterns have proven applicable across various 
programming languages and domains.



Design Patterns vs. Algorithms

Algorithms

• Step-by-step instructions for solving tasks

• Focus on efficiency and performance

• Examples: Sorting, Searching, Graph 
Traversal

Design Patterns

• Reusable solutions for common problems

• Provide blueprints for structuring code

• Examples: Singleton, Factory, Observer

JS



Benefits of Using Design Patterns

Reusability
Code reuse, reduced 
development time.

Maintainability
Easier to modify and update.

Scalability
Adapt to growing needs.

Consistency
Unified design across project.

Efficiency
Improved performance and resource usage.



Creational Patterns in 
Software Engineering
Creational patterns are design patterns that provide a standardized way 
to create objects. They aim to simplify object creation, improve code 
reusability, and enhance flexibility in designing complex systems.



Introduction to Creational Patterns

1 Object Creation

Creational patterns address 
the problem of object 

creation, offering a 

structured approach to 

handle object instantiation 

in software applications.

2 Flexibility and Reusability

These patterns promote 
code reusability by 

abstracting object creation 

logic, allowing for flexible 

and adaptable object 

construction.

3 Maintainability

They improve the 

maintainability of code by 

providing a consistent 

and predictable way to 

create objects, 

simplifying code 
modifications and 

enhancements.



The Abstract Factory Pattern

Centralized Creation

The Abstract Factory pattern 
provides a central point for 
creating families of related 
objects, ensuring consistency and 

adherence to specific design 

requirements.

Interchangeable Factories

Different implementations of the 
abstract factory can be used 

interchangeably, allowing for 
flexibility in choosing the 

appropriate factory for a specific 

context.

Product Families

The pattern enables the creation of 
families of related objects, such as UI 
elements, database connections, or 
different types of documents, each 

with their own specific characteristics.



Abstract Factory: Cross platform UI app

The Abstract Factory can be used to create, for example, a user interface that needs to work 
across different operating systems (Windows, macOS, Linux). Each system can 
have its own specific implementations of buttons and text fields.

 
The Abstract Factory helps by defining an abstract interface for creating these 
elements, and then individual concrete factories ensure that the
correct implementations are produced for the respective operating system.



We define a common 
interface for factories as 
well as for products (e.g., 
buttons and text fields).

1



We define a common interface 
for factories as well as for 
products (e.g., buttons and text 
fields).

2



Each factory returns the 
appropriate products for 
the given operating 
system.

3



The client code works 
only with abstract 
factories and products, 
without knowing which 
specific products it is 
using.

4



Benefits of the Abstract Factory Pattern

Reduced Coupling

By abstracting object creation, the 

Abstract Factory pattern 

decouples the code that uses 

objects from the specific details of 
their creation.

Improved Testability

The separation of object creation 

logic makes it easier to test 

different implementations of the 

factory without affecting the code 
that uses them.

Enhanced Flexibility

The Abstract Factory pattern 

allows for easy switching between 

different product families by 

simply changing the factory 
implementation.



The Builder Pattern

Step-by-Step Construction

The Builder pattern allows for the creation of complex objects step-by-step, building them incrementally 

rather than all at once.

Flexible Object Creation

It provides a way to create objects with different configurations by specifying the construction steps in a 

flexible and adaptable manner.

Separate Construction Logic

The pattern separates the construction logic from the object itself, enhancing code modularity and making 

it easier to modify the construction process.



Key Components of the Builder Pattern
Component Description

Builder Defines the interface for constructing the object.

Concrete Builder Implements the builder interface and provides specific methods for 

constructing the object.

Director Orchestrates the construction process by calling methods on the concrete 

builder to assemble the object.

Product Represents the complex object being constructed.



Builder: Computers

The Builder pattern is used when we want to create a complex 
object (e.g., a car, a house, a computer) that consists of many parts. 

Instead of assembling the object directly within a single class, we break the process 
down into smaller steps. These steps are handled by a separate object (the Builder), 
which is responsible for the step-by-step construction of the object.



Computer – represents 
the final product that we 
are building.

ComputerBuilder – 
defines the interface for 
constructing different 
parts of the product.

1



GamingComputerBuilder and 
OfficeComputerBuilder – different 
implementations of the Builder, each constructing 
a different type of computer.

ComputerDirector – manages the process of how 
the individual parts are assembled together.

2



ComputerDirector – directs 
the process of assembling 
the individual parts of the 
computer in the correct 
order.

This approach makes it 
easy to create different 
types of computers using 
the same construction 
process.

3



The Prototype Pattern

Cloning Objects

The Prototype pattern allows for 

creating new objects by cloning 
existing prototype objects, reducing 

the need for repetitive object creation 

logic.

Faster Instantiation

Cloning existing objects can be 

significantly faster than using 
traditional object creation methods, 

particularly for complex objects.

Code Reusability

The Prototype pattern promotes code 

reusability by allowing you to reuse 
existing object instances to create 

new ones, reducing duplication of 

code.



Advantages of the Prototype Pattern

1 Reduced Code Duplication

The Prototype pattern 

eliminates the need to write 

repetitive code for object 

creation, leading to more 

concise and maintainable code.

2 Performance Optimization

Cloning existing objects can be 

faster than traditional object 

creation methods, especially for 

complex objects with many 

attributes.

3 Flexible Object Creation

The Prototype pattern allows 

you to create objects with 

different configurations by 

modifying the prototype object 

before cloning it.



Prototype: Example – Creating multiple objects

Following code will solve the problem of creating objects with complex structures 
or configurations efficiently and independently. Instead of building new objects from 
scratch every time, it allows cloning predefined prototypes, ensuring that each cloned object 
can be modified without affecting the original. 

This approach is particularly useful when object creation is resource-intensive 
or when multiple variations of an object are needed.



We define a common 
interface for factories as 
well as for products (e.g., 
buttons and text fields).

The clone method creates 
a deep copy of the object 
using the copy module to 
ensure that sub-objects 
are also copied, avoiding 
shared references.

2



2

The Prototype class defines 
an abstract clone 
method that all concrete 
prototypes must 
implement.

The clone method is 
responsible for creating a 
copy of the object.



3

Two prototypes 
(basic_product and 
advanced_product) 
created

Two new products are 
created by cloning the 
prototypes using the 
create_product method.
A cloned product's 
(product1) attribute is 
modified, which does not 
affect the original 
prototype (basic_product), 
as the copy is independent.



The Singleton Pattern

1 Controlled Instantiation

The Singleton pattern ensures that a class has only one instance and provides a global point of access to it.

2 Global Access

The Singleton pattern provides a global point of access to the single instance, allowing different parts of 

the application to access it easily.

3 Resource Management

The Singleton pattern can be used to manage resources like database connections or configuration 

settings efficiently.



Conclusion and Key Takeaways
Creational patterns are valuable tools for simplifying object creation and enhancing code reusability. By mastering these 

patterns, developers can build more flexible, maintainable, and efficient software applications.



Structural Patterns in 
Software Engineering
Structural patterns in software engineering focus on 
organizing and composing classes and objects to form 
larger, flexible structures. They enhance code 
maintainability by simplifying relationships, promoting 
reuse, and improving clarity in complex systems.



Adapter Pattern

Key Components:

1 Target Interface

2 Adaptee

3 Adapter 

Transforms a class 
interface into another 
expected by clients.

Implementation types

Object Adapter Class Adapter



Object Adapter: Structure

Key Components:

1 Client

2 Client Interface

3 Service 

4 Adapter

5 Decoupling
Object Adapter design pattern structure diagram. Image from refactoring.guru



Class Adapter: Structure

Class Adapter design pattern structure diagram. Image from refactoring.guru



Object Adapter Implementation
Class Adapter Implementation

Adapter



Decorator Pattern Dynamically adds functionality 
to objects without subclassing.

Python Decorator VS Decorator Design Pattern



Decorator: Structure

Key Components:

1 Component

2 Concrete Component

3 Decorator 

4 Concrete Decorator



Decorator 
Implementation in Python

1 Component

2 Concrete Component



Decorator 
Implementation in Python

3 Decorator

4 Concrete Decorator



Decorator Implementation in Python
Main Client Code



Composite Pattern Organizes objects into 
tree structures.

When to Use
1 Hierarchical Structures 

Employ when creating tree-like systems where elements share common handling.

2 Complex Relationships
Ideal for managing intricate connections among objects and simplifying software 
structures.

3 Unified Element Management
The Singleton pattern can be used to manage resources like database connections 
or configuration settings efficiently.



Composite: Structure

Key Components:

1 Component Interface

2 Leaf

3 Composite 



Composite Implementation in Python

1 Component Interface

2 Leaf



Composite Implementation in Python
3 Composite



Composite 

Implementation 

in Python

Main Client Code



Facade Pattern

When to Use
1 Simplified Interface 

Employ it for straightforward access to intricate subsystems, shielding users from
complexities.

2 Managing Complex Subsystems
Use it to streamline access to commonly used subsystem features, reducing client 
configuration and code.

3 Layered Subsystem Structure
Apply it to create clear entry points in subsystem layers, reducing inter-subsystem 
coupling via centralized communication.

Simplifies access to complex subsystems 
with a unified interface.



Facade: Structure

Key Components:

1 Facade Class

2 Additional Facades

3 Complex Subsystem 

4 Subsystem Classes

5 Client 



Facade 
Implementation in Python

1 Subsystem Classes

2 Implement Facade Class



Facade Implementation in Python

3 Utilize Facade in Client Code



Proxy Pattern

When to Use
1 Expensive Object Loading 

When dealing with complex or resource-intensive objects, consider the 
Virtual Proxy. It acts as a placeholder, loading the full object on demand, 
and optimizing resource usage.

2 Remote Object Access
If the original object is in a different address space and you need local-like 
interaction, opt for the Remote Proxy. It manages connection details, making 
remote objects appear local.

3 Enhanced Security
Employ the Proxy pattern for added security. The Protection Proxy enforces 
controlled access based on client rights, safeguarding sensitive resources.

Acts as a placeholder to control access 
to another object.



Proxy: Structure

Key Components:

1 Proxy Interface

2 Real Subject

3 Proxy 



Caching Proxy for Database Queries



Behavioral Patterns 
in Software 
Engineering
Behavioral patterns focus on communication and interactions 

between objects in a system. These patterns provide robust solutions 

for managing complex object relationships and ensuring code 
reusability and flexibility.

JH by Jozef Hrdý



Introduction to Behavioral 
Patterns

1 Defining Behavior

Behavioral patterns 

address how objects 

interact and collaborate 

within a system.

2 Object Interactions

These patterns provide 

well-defined frameworks 

for managing complex 

relationships and 

interactions.

3 Flexibility and 
Reusability

Behavioral patterns 

promote code reuse and 

adaptability to changing 

requirements.

4 Common Patterns

Examples include Iterator, 

Mediator, Observer, Chain 

of Responsibility, and 
Command patterns.



The Iterator Pattern

Traversal Logic

Encapsulates the logic for iterating over a collection of objects.

Consistent Interface

Provides a unified way to access elements regardless of the underlying data structure.

Client Independence

Allows clients to access elements without knowing the internal structure of the collection.



Benefits of the Iterator Pattern

Enhanced Code Structure

Separates traversal logic from the 

collection itself, promoting clean and 
organized code.

Improved Reusability

Allows for flexible iteration over 

various data structures with a single 
iterator interface.

Reduced Complexity

Simplifies client code by hiding the 

intricacies of data structure traversal.



The Mediator Pattern

1 Centralized Communication

Defines a central mediator object that handles 

communication between other objects.

2 Loose Coupling

Objects don't directly interact with each other, reducing 

dependencies and complexity.

3 Simplified Management

Centralized communication management makes it 

easier to modify interactions and behavior.



Advantages of the Mediator Pattern

Reduced Coupling

Objects are independent of each 
other, allowing for easier 

modification and extension.

Enhanced Flexibility

The mediator can adapt to 
changing communication 

requirements without affecting 

the interacting objects.

Simplified Maintenance

Changes in object interactions can 
be easily managed through the 

central mediator.



The Observer Pattern
Subject Notifies observers of changes.

Observer Receives notifications and 

updates from the subject.



Implementing the Observer 
Pattern

Observer Interface

Defines the methods that 

observers must implement to 

receive updates.

Attach/Detach Methods

Subject provides methods for 

observers to subscribe and 

unsubscribe to updates.

Notify Method

Subject calls this method to 

notify observers when its state 

changes.

Update Method

Observers implement this 

method to handle updates from 

the subject.



Observer: Weather app
Imagine a weather tracking application that collects data from a weather 
station (temperature, humidity, pressure) and displays it on different types of 
devices, such as a mobile app, a web dashboard, or IoT devices.

Whenever any meteorological data changes, all connected devices must be 
automatically notified so they can display the updated information.



Instead of having each device poll the station for changes, we use the 
Observer pattern, where:
The weather station is the subject.

All the devices are observers.

Whenever there is a change in the meteorological data, the weather 
station (subject) notifies all registered devices (observers), allowing 
them to update and display the latest information.

1



Subject (WeatherStation):
Maintains a list of observers and 
notifies them about state 
changes.

When the temperature changes 
(via the set_temperature 
method), it notifies all registered 
observers.

2



Comparing the Patterns

Iterator
The Iterator pattern provides a way to 
access the elements of an aggregate 
object sequentially without exposing 
its underlying representation. This is 
particularly useful when dealing with 
complex data structures where direct 
access to elements might be 
inefficient or difficult. The iterator 
encapsulates the traversal logic, 
allowing for flexible iteration and 
decoupling the collection from the 
traversal algorithm.

Mediator
The Mediator pattern defines an object 
that encapsulates how a set of objects 
interact. Instead of objects referring to 
each other explicitly, they 
communicate through the mediator. 
This reduces dependencies between 
objects, making the system more 
flexible and maintainable. Adding new 
objects or modifying existing 
interactions becomes simpler as all 
changes are managed through the 
central mediator.

Observer
The Observer pattern establishes a 
one-to-many dependency between 
objects. A subject maintains a list of its 
dependents (observers) and notifies 
them automatically of any state 
changes. This allows for loose coupling 
between the subject and observers, as 
the subject doesn't need to know the 
specifics of its observers. Observers 
only need to be aware of the update 
mechanism provided by the subject.



Conclusion and Key 
Takeaways
Behavioral patterns provide powerful solutions for handling complex 

object interactions. By understanding these patterns, developers can 

create more flexible, maintainable, and reusable code. Choose the 

appropriate pattern based on the specific communication and 
interaction needs of your system.


