PIXE – principle and main aspects target chamber in Ion Beam Lab

IBAAT FNSPE CTU

Ion Beams Laboratory, Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering

PIXE - PRINCIPLE

Proton (Particle) Induced X-ray Analysis

typicaly protons energy of MeV

energies of X-ray photons are registrated by multichannel analyzer

PIXE - EVALUATION

Energy calibration of the horizontal axis => determination of the elements

Calculation of the peak area

 $c_e \sim \frac{S_e}{Q}$ $S_e - response (peak area)$ Q - beam dose

in principle concentration of the element may be calculated from all known values (angels, cross sections....), in practice calibration by means of standards

ENERGY OF X-RAYS

Z	Sym	Κα	Κβ	L1	Lα	Ln	L	, Lγ		_γ Μα					
6	С	0,28	1111	1111											
7	N	0,39	14.17		141										
8	0	0,52	1111	1111	1111										
9	F//	0,68	Π	Π	111										
10	Ne	0,85	111		111										
11	Na	1,04	1111	1111	1111										
12	Mg	1,25													
13	AI	1,49	1,56												
14	Si	1,74	1,84	Π	111										
15	Р	2,01	2,14		1111										
16	S	2,31	2,46												
17	CI	2,62	2,82	111	111										
18	Ar	2,95	3,19	$\Pi \Pi$	111										
19	K	3,31	3,59												
20	Ca	3,69	4,01	111		111									
21	Sc	4,09	4,46	111	111	111		111							
22	Ti	4,51	4,93	0,4	0	0,4	0	0,53	0	0					
23	V	4,95	5,43	0,45	0	0,45	0	0,59	0	0					
24	Cr	5,41	5,95	0,5	0	0,51	0	0,65	0	0					
25	Mn	5,9	6,49	0,56	0	0,57	0	0,72	0	0					
26	Fe	6,4	7,06	0,62	0,7	0,63	0,72	0,79	0	0					
27	Co	6,93	7,65	0,68	0,78	0,69	0,79	0,87	0	0					
28	Ni	7,48	8,26	0,74	0,85	0,76	0,87	0,94	0	0					
29	Cu	8,05	8,91	0,81	0,93	0,83	0,95	1,02	0	0					
30	Zn	8,64	9,57	0,88	1,01	0,91	1,03	1,11	0	0					
31	Ga	9,25	10,26	0,96	1,1	0,98	1,12	1,19	0	0					
32	Ge	9,89	10,98	1,04	1,19	1,07	1,22	1,29	0	0					
33	As	10,54	11,73	1,12	1,28	1,16	1,32	1,39	0	0					
34	Se	11,22	12,5	1,2	1,38	1,24	1,42	1,49	0	0					
35	Br	11,92	13,29	1,29	1,48	1,34	1,53	1,6	0	0					
36	Kr	12,65	14,11	1,38	1,58	1,44	1,63	1,71	0	0					
37	Rb	13,4	14,96	1,48	1,69	1,54	1,75	1,83	0	0					

ONIZATION CROSS SECTION

BE WINDOW + ABSORBER

suppression of the low energy nois or the response from light elements (specific part of the spectra)

ABSORBER - FUNNY

"Funny filter" - two layers, one has opening

e.g. Ka50µm + My250µm with opening ø1,5 mm [Si(Li) crystal is 5x5mm]

DETECTION LIMITS

Johansson at all.: PIXE

PIXE ANALYSIS - THIN SAMPLE

Beam penetrates with negligible loss of energy of protons

$$c_e = H(E_X).\frac{S_e}{Q}$$

 S_e – response (peak area) Q – beam dose

H(*E*) - determined by standard samples

PIXE THICK SAMPLE

Interactions are taking place in some depth

Reduced proton energy

Attenuation of X-ray photons

Special cases – trace elements in known matrix,

Computer codes, e.g. Gupix

ION BEAM LABORATORY DEPARTMENT OF PHYSICAL ELECTRONICS FACULTY OF NUCLEAR SCIENCES AND PHYSICAL ENGINEERIG CTU IN PRAGUE

Vertical beam from Van de Graaff accelerator: http://www.utef.cvut.cz/about-vdg-lab

BASIC ARRANGEMENT FOR PIXE/RBS

protons or He⁺ 0,7 – 2,2 MeV beam max. Ø 6 (8) mm

in case of the thin sample (beam penetrates through the sample) beam dose is measured directly

PIXE ANALYSIS, THIN SAMPLE

protons 0,7 – 2,2 MeV beam max. Ø 6 (8) mm

energy loss in the target is negligible, beam dose is measured by Faraday cup, evaluation is simple

PIXE ANALYSIS, THICK SAMPLE

protons 0,7 – 2,2 MeV beam max. Ø 6 mm

 without target - calibration of the RBS spectra vs. beam charge
 PIXE analysis simultaneousely with RBS spectra from the foil

3. recalculation of the beam charge

PIXE ANALYSIS NON-CONDUCTIVE SAMPLES

protons 0,7 – 2,2 MeV beam max. Ø 4 mm

 $3 - 10 \text{ Pa N}_2$

CALIBRATION

Thin XRF standards MicroMatter^TM – one or two elements, typically $50\mu g/cm^2 \pm 5\%$

NIST – multielemental

LIMITATIONS

Pulse rate $- \max \sim 1000$ fotons/s, in other case pile-up occures => sometimes long time for acquisition of the spectrum

Overlapping of the spectral lines

Charging of the non-conducting targets

Thermal or radiational load

colouring

EXAMPLE

Layer NaNbO₃ with 1% Pr, approximately 100nm thick on DyScO₃ - very difficult

EXAMPLE

Pr only

EXAMPLE

Listing from Gupix

File:sc018.pix Sec: 2026. uC: 0.391 nA: 0.193 PUcor:1.0007
The last column is a decision on the presence of that element in the spectrum.
Y: present at level of quantization, N: not present at limit of detection
?: may be present near LOD levels (user must decide) H or uC Corr[F]: 1.000
Det Res(eV): 141.8 Chi**2: 2.743 (8.678)

	La	iye	er	Н	Yield	Det.	Filter					
El	ement		Area	Area value		Eff.	Trans.	Conc.	%Stat.	%Fit	LOD	
Z	Sym	#	counts	(-4)	ppm	(-3)	(-5)	ppm	Error	Error	ppm	
-		-							·			-
41	NbK	1	1093.5	340	2.74	960	97500	32072.5	2.82	2 3.16	511.1	Y
41	Nblb	*	70.3	130	310.3	842	3	1540488.9	33.12	28.55	999999.0	?
59	PrLA	1	367.5	195	92.62	975	39201	1360.2	10.54	9.72	222.8	Y
21	ScK	2	67967.1	84	435.2	958	17277	287126.3	0.32	2. 0.46	204.9	Y
66	DyLA	2	439397	267	134.5	985	65035	488064.1	0.15	5 0.19	129.8	Y
(A	"*" ir 	1 1 	the Layer	# colu	umn ind	dicate	es that	elmt NOT	used in	matrix :	iteration)	

REFERENCES

Johansson, Campbell, Malmqvist: Particle Induced X-Ray Emission Spectrometry (PIXE), John Wiley & sons, 1995