
Deep Neural Networks

Jan Drchal

Artificial Intelligence Center

Faculty of Electrical Engineering

Czech Technical University in Prague

Outline

Topics covered in the lecture:

• Deep Architectures

• Convolutional Neural Networks (CNNs)

• Transfer learning

1

Deep Architectures

Learning Paradigms

https://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html

2

https://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html

Why Deep Architectures?

• Is it better to use deep architectures rather than the shallow ones for

complex nonlinear mappings?

• We know that deep architectures evolved in Nature (e.g., cortex)

• Universal approximation theorem: one layer is enough so why to

bother with more layers?

• Mhaskar et al: Learning Functions: When Is Deep Better Than

Shallow, 2016:

• deep neural networks can have exponentially less units than shallow

networks for learning the same function

• functions such as those realized by current deep convolutional neural

networks are considered

• Handcrafted features vs. automatic extraction

• Gradually increasing complexity, intermediate representations: each

successive layer brings higher abstraction

3

Features in Deep Neural Networks

4

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

Features in Deep Neural Networks

4

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

Features in Deep Neural Networks

4

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

Processing Images

32

32

32

32

• Input: grayscale image 32× 32 pixels

• Output: layer of 32× 32 features

• How many parameters do we need when input and output is fully

connected?

322

outputs
× (322

inputs
+ 1

biases
) ≈ 1M

5

Processing Images

32

32

32

32

• Input: grayscale image 32× 32 pixels

• Output: layer of 32× 32 features

• How many parameters do we need when input and output is fully

connected? 322

outputs
× (322

inputs
+ 1

biases
) ≈ 1M

5

Locally Connected Layer

32

32

30

30
3

3

• Motivation: topographical mapping in the visual cortex - nearby cells

process nearby regions in the visual field

• Each neuron has a receptive field of 3× 3 pixels

• It is fully connected only to the corresponding set of 9 inputs

• How many parameters do we need now?

302

outputs
× (32

inputs
+ 1

bias
) = 9k

6

Locally Connected Layer

32

32

30

30
3

3

• Motivation: topographical mapping in the visual cortex - nearby cells

process nearby regions in the visual field

• Each neuron has a receptive field of 3× 3 pixels

• It is fully connected only to the corresponding set of 9 inputs

• How many parameters do we need now? 302

outputs
× (32

inputs
+ 1

bias
) = 9k

6

Multiple Input Channels

3

32

32

30

30
3

3

• We can have more input channels, e.g., colors

• Now the input is defined by width, height and depth: 32× 32× 3

• The number of parameters is 302

outputs
× (3

channels
× 32

inputs
+ 1

bias
) ≈ 25k

7

Sharing Parameters

3

32

32

30

30
3

3

• We can further reduce the number of parameters by sharing weights

• Use the same set of weights and bias for all outputs, define a filter

• The number of parameters drops to 3× 32

inputs
+ 1

bias
= 28

• Translation equivariance

8

Multiple Output Channels

3

32

32

30

30
3

3

4

• Extract multiple different of features

• Use multiple filters to get more feature maps

• For 4 filters we have 4
filters
× (3× 32

inputs
+ 1

bias
) = 112 parameters

• This is the convolutional layer

• Processes volume into volume

9

Convolution in 2D: Example

• Input volume 5×5×3, single 3×3 filter, 3×32 + 1 = 28 parameters

10

2 4 4 2 0

2 0 0 3 4

1 4 1 2 0

4 1 3 0 0

2 2 0 4 4

4 1 4 2 3

2 3 4 0 0

1 2 0 1 4

2 3 1 0 0

3 1 4 4 0

3 2 2 0 0

3 2 0 3 1

4 3 1 4 0

4 4 0 2 0

0 0 4 2 2

0 0 0

-1 1 0

-1 1 -1

b = �3

12 4 7

11 8 14

10 0 16

-1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 1 -1

� � �

+

inputs

weights

output

-3 8 10

Convolution in 2D: Example

• Input volume 5×5×3, single 3×3 filter, 3×32 + 1 = 28 parameters

10

4 1 4 2 3

2 3 4 0 0

1 2 0 1 4

2 3 1 0 0

3 1 4 4 0

3 2 2 0 0

3 2 0 3 1

4 3 1 4 0

4 4 0 2 0

0 0 4 2 2

2 4 4 2 0

2 0 0 3 4

1 4 1 2 0

4 1 3 0 0

2 2 0 4 4

0 0 0

-1 1 0

-1 1 -1

b = �3

-1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 1 -1

� � �

+

inputs

weights

output

12 4 7

11 8 14

10 0 16

-8 5 10

Convolution in 2D: Example

• Input volume 5×5×3, single 3×3 filter, 3×32 + 1 = 28 parameters

10

4 1 4 2 3

2 3 4 0 0

1 2 0 1 4

2 3 1 0 0

3 1 4 4 0

3 2 2 0 0

3 2 0 3 1

4 3 1 4 0

4 4 0 2 0

0 0 4 2 2

2 4 4 2 0

2 0 0 3 4

1 4 1 2 0

4 1 3 0 0

2 2 0 4 4

0 0 0

-1 1 0

-1 1 -1

b = �3

-1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 1 -1

� � �

+

inputs

weights

output

12 4 7

11 8 14

10 0 16

6 -1 5

Convolution in 2D: Example

• Input volume 5×5×3, single 3×3 filter, 3×32 + 1 = 28 parameters

10

4 1 4 2 3

2 3 4 0 0

1 2 0 1 4

2 3 1 0 0

3 1 4 4 0

3 2 2 0 0

3 2 0 3 1

4 3 1 4 0

4 4 0 2 0

0 0 4 2 2

2 4 4 2 0

2 0 0 3 4

1 4 1 2 0

4 1 3 0 0

2 2 0 4 4

0 0 0

-1 1 0

-1 1 -1

b = �3

-1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 1 -1

� � �

+

inputs

weights

output

12 4 7

11 8 14

10 0 16

-1 7 8

Convolution Applied to an Image

11

https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Stride

• Stride hyper parameter, typically S ∈ {1, 2}
• Higher stride produces smaller output volumes spatially

12

S = 1

S = 2

Stride

• Stride hyper parameter, typically S ∈ {1, 2}
• Higher stride produces smaller output volumes spatially

12

S = 1

S = 2

Zero Padding

• Convolutional layer reduces the spatial size of the output w.r.t. the

input

• For many layers this might be a problem

• This is often fixed by zero padding the input

• The size of the zero padding is denoted P

0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0

P = 1, S = 1

13

Convolutional Layer Summary

• Input volume: Winput × Hinput × C

• Output volume: Woutput × Houtput × D

• Having D filters:

• receptive field of F × F units,

• stride S

• zero padding P

Woutput = (Winput − F + 2P)/S + 1

Houtput = (Hinput − F + 2P)/S + 1

• Needs F 2CD weights and D biases

• The number of activations and δs to store: Woutput × Houtput × D

14

Convolution: Weights Visualization

• Filters of the first layer

15

Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks, 2012

Convolutional Layer: Nonlinearities

• In most cases a nonlinearity (sigmoid, tanh, ReLU) is applied to the

outputs of the convolutional layer

• Example: ReLU units

16

Non-Linearity

P  Rectified linear function
– Applied per-pixel
– output = max(0,input)

Input feature map	
 Output feature map	

Black	
 =	
 nega�ve;	
 white	
 =	
 posi�ve	
 values	
 Only	
 non-­‐nega�ve	
 values	

Rob Fergus: MLSS 2015 Summer School

Max Pooling

• Reduces spatial resolution → less parameters → helps with

overfitting

• Introduces translation invariance and invariance to small rotations

• Depth is not affected

2 2 0 4 3 4

0 0 5 0 4 1

4 5 2 5 1 4

5 2 1 0 2 1

2 3 3 3 5 3

0 3 0 4 0 1

2 5 4

5 5 4

3 4 5

F = 2, S = 2

17

Convolutional Neural Networks (CNNs)

http://cs231n.github.io/convolutional-networks/

18

http://cs231n.github.io/convolutional-networks/

LeNet-5 (1998)

• Yann LeCun

• CNN for written character recognition dataset MNIST

• Training set 60, 000, testing set 10, 000 examples

LeCun et al.: Gradient-based learning applied to document recognition, 1998

19

Errors by LeNet-5

• 82 errors of 10k test samples (current best 21)

• Human error expected to be between 20 to 30

LeCun et al.: Gradient-based learning applied to document recognition, 1998

20

ImageNet Dataset

• Dataset of high-resolution color images: 15M training examples, 22k

classes

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC) uses

subset of the ImageNet: 1.3M training, 50k validation, 100k testing

samples, 1000 classes

21

(a) Siberian husky (b) Eskimo dog

Figure 1: Two distinct classes from the 1000 classes of the ILSVRC 2014 classification challenge.

and expensive, especially if expert human raters are necessary to distinguish between fine-grained
visual categories like those in ImageNet (even in the 1000-class ILSVRC subset) as demonstrated
by Figure 1.

Another drawback of uniformly increased network size is the dramatically increased use of compu-
tational resources. For example, in a deep vision network, if two convolutional layers are chained,
any uniform increase in the number of their filters results in a quadratic increase of computation. If
the added capacity is used inefficiently (for example, if most weights end up to be close to zero),
then a lot of computation is wasted. Since in practice the computational budget is always finite, an
efficient distribution of computing resources is preferred to an indiscriminate increase of size, even
when the main objective is to increase the quality of results.

The fundamental way of solving both issues would be by ultimately moving from fully connected
to sparsely connected architectures, even inside the convolutions. Besides mimicking biological
systems, this would also have the advantage of firmer theoretical underpinnings due to the ground-
breaking work of Arora et al. [2]. Their main result states that if the probability distribution of
the data-set is representable by a large, very sparse deep neural network, then the optimal network
topology can be constructed layer by layer by analyzing the correlation statistics of the activations
of the last layer and clustering neurons with highly correlated outputs. Although the strict math-
ematical proof requires very strong conditions, the fact that this statement resonates with the well
known Hebbian principle – neurons that fire together, wire together – suggests that the underlying
idea is applicable even under less strict conditions, in practice.

On the downside, todays computing infrastructures are very inefficient when it comes to numerical
calculation on non-uniform sparse data structures. Even if the number of arithmetic operations is
reduced by 100⇥, the overhead of lookups and cache misses is so dominant that switching to sparse
matrices would not pay off. The gap is widened even further by the use of steadily improving,
highly tuned, numerical libraries that allow for extremely fast dense matrix multiplication, exploit-
ing the minute details of the underlying CPU or GPU hardware [16, 9]. Also, non-uniform sparse
models require more sophisticated engineering and computing infrastructure. Most current vision
oriented machine learning systems utilize sparsity in the spatial domain just by the virtue of em-
ploying convolutions. However, convolutions are implemented as collections of dense connections
to the patches in the earlier layer. ConvNets have traditionally used random and sparse connection
tables in the feature dimensions since [11] in order to break the symmetry and improve learning, the
trend changed back to full connections with [9] in order to better optimize parallel computing. The
uniformity of the structure and a large number of filters and greater batch size allow for utilizing
efficient dense computation.

This raises the question whether there is any hope for a next, intermediate step: an architecture
that makes use of the extra sparsity, even at filter level, as suggested by the theory, but exploits our

3

Szegedy et al.: Going deeper with convolutions, 2014

AlexNet 2012

• Two separate streams for 2 GPUs (GTX 580), 60M parameters

• Data augmentation (increasing dataset size): 224× 224 patches (+

mirrored) of 256× 256 original images, altering RGB intensities

• Uses ReLU and dropout

• Top five error 18.2% for the basic net decreased to 15.4% for an

ensemble of 7 CNNs, pre-CNN best was 25.6%

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

Krizhevsky et al.: ImageNet Classification with Deep Convolutional Neural Networks, 2012

22

Dropout

• Idea: average many neural networks, share weights

• For each training example omit a unit with probability p (often

p = 0.5)

• This is like sampling from 2U networks where U is the number of

units

• Typically only a small amount of 2U networks is actually sampled

• Prevents coadaptation of feature detectors
Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Srivastava et al.: A Simple Way to Prevent Neural Networks from Overfitting, 2014

23

Dropout (contd.)

• How to make predictions with networks using dropout?

• Scale outputs (output weights) of all affected units by p

• For a linear unit taking inputs from the dropout layer we have:

s =
n∑

i=1

wiδixi , p(δi |p) = Ber(δi |p)

E(s) =
n∑

i=1

wiE(δi)xi = p
n∑

i=1

wixi

where the expectation is computed over all 2n configurations

• For general neural networks we still get a good approximation of the

expectation when scaling by p

• See Baldi and Sadowski: The Dropout Learning Algorithm, 2014

24

ZFNet 2013

• Smaller filters for the first convolutional layer CONV1: 7× 7, S = 2

instead of 11× 11, S = 4

• CONV3-5: more depth

• Top five error 16.5%, 14.8% for an ensemble of 6 CNN
Visualizing and Understanding Convolutional Networks

Input Image

stride 2!

image size 224!

3!

96!

5!
2!

110!

55

3x3 max pool
stride 2

96!
3!

1!

26

256!

filter size 7!

3x3 max
pool

stride 2

13
256!

3!
1!

13

384!
3!

1!

13

384!

Layer 1 Layer 2

13

256!

3x3 max
pool

stride 2

6

Layer 3 Layer 4 Layer 5

256!

4096
units!

4096
units!

Layer 6 Layer 7

C
class

softmax!

Output

contrast
norm.

contrast
norm.

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 di↵erent 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 di↵erent 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions). The final layer is a C-way softmax
function, C being the number of classes. All filters and feature maps are square in shape.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4. Evolution of a randomly chosen subset of model features through training. Each layer’s features are displayed
in a di↵erent block. Within each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64].
The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to
pixel space using our deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic
form.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Degrees

P(
tru

e c
las

s)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

��� ��� ��� � �� �� ��
�

1

�

3

�

5

�

7

8

9

��

Vertical Translation (Pixels)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
��	����

African Crocodile
African Grey
Entertrainment Center

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vertical Translation (Pixels)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scale (Ratio)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rotation Degrees

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vertical Translation (Pixels)

P(
tru

e c
las

s)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale (Ratio)

P(
tru

e c
las

s)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

a1#

c1#

a3#

c3# c4#

a4#

1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

Scale (Ratio)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

5

10

15

Rotation Degrees

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

a2#

b3# b4#b2#b1#

c2#

Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the
image is transformed.

Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

25

VGGNet 2014

• Simonyan, Zisserman: Very Deep Convolutional Networks for

Large-Scale Image Recognition, 2014

• Lowering filter spatial resolution (F = 3, S = 1, P = 1), increasing

depth

• A sequence of 3× 3 filters can emulate a single large one

• Top five error 7.3%, 6.8% for an ensemble of 2 CNNs

in
pu
t

co
nv
3-
64

co
nv
3-
64

M
P

co
nv
3-
12
8

co
nv
3-
12
8

M
P

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
25
6

M
P

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

M
P

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

M
P

FC
	-
40
96

FC
	-
40
96

FC
	–
10
00

so
ftm

ax

1.7k 37k 74k 147k 295k 590k 590k 1.2M 2.4M 2.4M 2.4M 2.4M 2.4M 103M 16.7M 4M

3.2M 3.2M 1.6M 1.6M 800k 800k 800k 400k 400k 400k 100k 100k 100k 4096 4096 1000150k 800k 400k 200k 100k 25k 1000

22
4	
x	2

24
	x	
3

22
4	
x	2

24
	x	
64

11
2	
x	1

12
	x	
64

11
2	
x	1

12
	x	
12
8

56
	x	
56
	x	
12
8

56
	x	
56
	x	
25
6

28
	x	
28
	x	
25
6

28
	x	
28
	x	
51
2

14
	x	
14
		5
12

14
	x	
14
	x	
51
2

7	
x	7

	x	
51
2

1	
x	x

1	
x	4

09
6

1	
x	1

	x	
40
96

1	
x	1

	x	
10
00

activations

parameters

26

GoogLeNet 2014

• Use of inception layers instead of pure convolutional ones

• Fully connected output layer preceded by the global average pooling :

the last layer before average pooling has 7× 7× 1024 it is spatially

reduced to 1× 1× 1024

• Only 5M parameters (60M AlexNet)

• Auxiliary classifiers: their losses are added with discount weight

• Top five error 6.7%

27

input

Conv
7x7+

2(S)

M
axPool

3x3+
2(S)

LocalRespNorm

Conv
1x1+

1(V)

Conv
3x3+

1(S)

LocalRespNorm

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

AveragePool
7x7+

1(V)

FC

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax0

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax1

Softm
axActivation

softm
ax2

Figure
3:G

oogL
eN

etnetw
ork

w
ith

allthe
bells

and
w

histles

7

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

Szegedy et al.: Going deeper with convolutions, 2014

ResNet 2015

• He et al.: Deep Residual Learning for Image Recognition, 2015

• 152 layers (2-3 weeks on 8 GPUs)

• Degradation problem ⇒ skip connections

• Batch normalization instead of dropout

• Top five error 3.6% (human performance 5.1% expected)

28

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2


3⇥3, 64
3⇥3, 64

�
⇥2


3⇥3, 64
3⇥3, 64

�
⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

conv3 x 28⇥28


3⇥3, 128
3⇥3, 128

�
⇥2


3⇥3, 128
3⇥3, 128

�
⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥8

conv4 x 14⇥14


3⇥3, 256
3⇥3, 256

�
⇥2


3⇥3, 256
3⇥3, 256

�
⇥6

2
4

1⇥1, 256
3⇥3, 256
1⇥1, 1024

3
5⇥6

2
4

1⇥1, 256
3⇥3, 256
1⇥1, 1024

3
5⇥23

2
4

1⇥1, 256
3⇥3, 256

1⇥1, 1024

3
5⇥36

conv5 x 7⇥7


3⇥3, 512
3⇥3, 512

�
⇥2


3⇥3, 512
3⇥3, 512

�
⇥3

2
4

1⇥1, 512
3⇥3, 512
1⇥1, 2048

3
5⇥3

2
4

1⇥1, 512
3⇥3, 512

1⇥1, 2048

3
5⇥3

2
4

1⇥1, 512
3⇥3, 512
1⇥1, 2048

3
5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

ResNet-18
ResNet-34

18-layer

34-layer

18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3⇥) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2


3⇥3, 64
3⇥3, 64

�
⇥2


3⇥3, 64
3⇥3, 64

�
⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

conv3 x 28⇥28


3⇥3, 128
3⇥3, 128

�
⇥2


3⇥3, 128
3⇥3, 128

�
⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥8

conv4 x 14⇥14


3⇥3, 256
3⇥3, 256

�
⇥2


3⇥3, 256
3⇥3, 256

�
⇥6

2
4

1⇥1, 256
3⇥3, 256
1⇥1, 1024

3
5⇥6

2
4

1⇥1, 256
3⇥3, 256
1⇥1, 1024

3
5⇥23

2
4

1⇥1, 256
3⇥3, 256

1⇥1, 1024

3
5⇥36

conv5 x 7⇥7


3⇥3, 512
3⇥3, 512

�
⇥2


3⇥3, 512
3⇥3, 512

�
⇥3

2
4

1⇥1, 512
3⇥3, 512
1⇥1, 2048

3
5⇥3

2
4

1⇥1, 512
3⇥3, 512

1⇥1, 2048

3
5⇥3

2
4

1⇥1, 512
3⇥3, 512
1⇥1, 2048

3
5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

ResNet-18
ResNet-34

18-layer

34-layer

18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3⇥) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

https://classic.d2l.ai/chapter_convolutional-modern/resnet.html

https://classic.d2l.ai/chapter_convolutional-modern/resnet.html

Convolutional vs. Fully-Connected Layers

• Convolutional layer can be simply transformed to a Fully-connected

layer → sparse weight matrix

• The other direction is also possible:

FC layer of D units following a F × F × C convolutional layer can be

replaced by a 1× 1× D convolutional layer using F × F filters

(P = 0, S = 1)

• In both cases you do not have to recompute the weights, you just

rearrange them

29

Fully-Connected Layer to Convolutional Example

30

FC FC

FC

s
o
f
t
m
a
x

input

CONV, MP
layers

224⇥ 224⇥ 3
4096 4096

10007⇥ 7⇥ 512

Fully-Connected Layer to Convolutional Example

30

input

CONV, MP
layers

224⇥ 224⇥ 3

7⇥ 7⇥ 512

1⇥ 1⇥ 4096 1⇥ 1⇥ 4096

1⇥ 1⇥ 1000

F = 7 F = 1

F = 1

s
o
f
t
m
a
x

Fully-Connected Layer to Convolutional Example

30

input

CONV, MP
layers

F = 7 F = 1

F = 1
384⇥ 384⇥ 3

12⇥ 12⇥ 512

6⇥ 6⇥ 4096 6⇥ 6⇥ 4096

6⇥ 6⇥ 1000

s
o
f
t
m
a
x

Fully-Connected Layer to Convolutional Example

30https://github.com/gabrieldemarmiesse/heatmaps

https://github.com/gabrieldemarmiesse/heatmaps

Transfer Learning

• Idea: use an existing model as a base to solve a similar problem

• Often used when not enough data available to solve the target

problem directly

• Example: reuse an ImageNet network for object localization

• You can:

• cut the original network at various layers,

• fix or not the weights of the original network or use different learning

rates

• use different type of model instead of the output layers, e.g., linear

SVM

31

input

CO
N
V	&

	M
P

class

Transfer Learning

• Idea: use an existing model as a base to solve a similar problem

• Often used when not enough data available to solve the target

problem directly

• Example: reuse an ImageNet network for object localization

• You can:

• cut the original network at various layers,

• fix or not the weights of the original network or use different learning

rates

• use different type of model instead of the output layers, e.g., linear

SVM

31

input

CO
N
V	&

	M
P

(x, y, w, h)

input

CO
N
V	&

	M
P

(x, y, w, h)

class

Transfer Learning

• Idea: use an existing model as a base to solve a similar problem

• Often used when not enough data available to solve the target

problem directly

• Example: reuse an ImageNet network for object localization

• You can:

• cut the original network at various layers,

• fix or not the weights of the original network or use different learning

rates

• use different type of model instead of the output layers, e.g., linear

SVM

31

Transfer Learning

• Idea: use an existing model as a base to solve a similar problem

• Often used when not enough data available to solve the target

problem directly

• Example: reuse an ImageNet network for object localization

• You can:

• cut the original network at various layers,

• fix or not the weights of the original network or use different learning

rates

• use different type of model instead of the output layers, e.g., linear

SVM

31

Road Type Classification by Transfer Learning

32

32

32

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

32

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

32

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

32

32

32

32

32

32

32

32

32

32

32

32

32

30

30
3

3

32

32

32

30

30
3

3

32

3

32

32

30

30
3

3

32

3

32

32

30

30
3

3

32

32

3

32

32

30

30
3

3

4

32

2 4 4 2 0

2 0 0 3 4

1 4 1 2 0

4 1 3 0 0

2 2 0 4 4

4 1 4 2 3

2 3 4 0 0

1 2 0 1 4

2 3 1 0 0

3 1 4 4 0

3 2 2 0 0

3 2 0 3 1

4 3 1 4 0

4 4 0 2 0

0 0 4 2 2

0 0 0

-1 1 0

-1 1 -1

b = �3

12 4 7

11 8 14

10 0 16

-1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 1 -1

� � �

+

inputs

weights

output

-3 8 10

32

4 1 4 2 3

2 3 4 0 0

1 2 0 1 4

2 3 1 0 0

3 1 4 4 0

3 2 2 0 0

3 2 0 3 1

4 3 1 4 0

4 4 0 2 0

0 0 4 2 2

2 4 4 2 0

2 0 0 3 4

1 4 1 2 0

4 1 3 0 0

2 2 0 4 4

0 0 0

-1 1 0

-1 1 -1

b = �3

-1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 1 -1

� � �

+

inputs

weights

output

12 4 7

11 8 14

10 0 16

-8 5 10

32

4 1 4 2 3

2 3 4 0 0

1 2 0 1 4

2 3 1 0 0

3 1 4 4 0

3 2 2 0 0

3 2 0 3 1

4 3 1 4 0

4 4 0 2 0

0 0 4 2 2

2 4 4 2 0

2 0 0 3 4

1 4 1 2 0

4 1 3 0 0

2 2 0 4 4

0 0 0

-1 1 0

-1 1 -1

b = �3

-1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 1 -1

� � �

+

inputs

weights

output

12 4 7

11 8 14

10 0 16

6 -1 5

32

4 1 4 2 3

2 3 4 0 0

1 2 0 1 4

2 3 1 0 0

3 1 4 4 0

3 2 2 0 0

3 2 0 3 1

4 3 1 4 0

4 4 0 2 0

0 0 4 2 2

2 4 4 2 0

2 0 0 3 4

1 4 1 2 0

4 1 3 0 0

2 2 0 4 4

0 0 0

-1 1 0

-1 1 -1

b = �3

-1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 1 -1

� � �

+

inputs

weights

output

12 4 7

11 8 14

10 0 16

-1 7 8

32

32

32

S = 1

S = 2

32

S = 1

S = 2

32

0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0

P = 1, S = 1

32

32

Non-Linearity

P  Rectified linear function
– Applied per-pixel
– output = max(0,input)

Input feature map	
 Output feature map	

Black	
 =	
 nega�ve;	
 white	
 =	
 posi�ve	
 values	
 Only	
 non-­‐nega�ve	
 values	

32

2 2 0 4 3 4

0 0 5 0 4 1

4 5 2 5 1 4

5 2 1 0 2 1

2 3 3 3 5 3

0 3 0 4 0 1

2 5 4

5 5 4

3 4 5

F = 2, S = 2

32

32

32

32

32

(a) Siberian husky (b) Eskimo dog

Figure 1: Two distinct classes from the 1000 classes of the ILSVRC 2014 classification challenge.

and expensive, especially if expert human raters are necessary to distinguish between fine-grained
visual categories like those in ImageNet (even in the 1000-class ILSVRC subset) as demonstrated
by Figure 1.

Another drawback of uniformly increased network size is the dramatically increased use of compu-
tational resources. For example, in a deep vision network, if two convolutional layers are chained,
any uniform increase in the number of their filters results in a quadratic increase of computation. If
the added capacity is used inefficiently (for example, if most weights end up to be close to zero),
then a lot of computation is wasted. Since in practice the computational budget is always finite, an
efficient distribution of computing resources is preferred to an indiscriminate increase of size, even
when the main objective is to increase the quality of results.

The fundamental way of solving both issues would be by ultimately moving from fully connected
to sparsely connected architectures, even inside the convolutions. Besides mimicking biological
systems, this would also have the advantage of firmer theoretical underpinnings due to the ground-
breaking work of Arora et al. [2]. Their main result states that if the probability distribution of
the data-set is representable by a large, very sparse deep neural network, then the optimal network
topology can be constructed layer by layer by analyzing the correlation statistics of the activations
of the last layer and clustering neurons with highly correlated outputs. Although the strict math-
ematical proof requires very strong conditions, the fact that this statement resonates with the well
known Hebbian principle – neurons that fire together, wire together – suggests that the underlying
idea is applicable even under less strict conditions, in practice.

On the downside, todays computing infrastructures are very inefficient when it comes to numerical
calculation on non-uniform sparse data structures. Even if the number of arithmetic operations is
reduced by 100⇥, the overhead of lookups and cache misses is so dominant that switching to sparse
matrices would not pay off. The gap is widened even further by the use of steadily improving,
highly tuned, numerical libraries that allow for extremely fast dense matrix multiplication, exploit-
ing the minute details of the underlying CPU or GPU hardware [16, 9]. Also, non-uniform sparse
models require more sophisticated engineering and computing infrastructure. Most current vision
oriented machine learning systems utilize sparsity in the spatial domain just by the virtue of em-
ploying convolutions. However, convolutions are implemented as collections of dense connections
to the patches in the earlier layer. ConvNets have traditionally used random and sparse connection
tables in the feature dimensions since [11] in order to break the symmetry and improve learning, the
trend changed back to full connections with [9] in order to better optimize parallel computing. The
uniformity of the structure and a large number of filters and greater batch size allow for utilizing
efficient dense computation.

This raises the question whether there is any hope for a next, intermediate step: an architecture
that makes use of the extra sparsity, even at filter level, as suggested by the theory, but exploits our

3

32

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

32

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

32

Visualizing and Understanding Convolutional Networks

Input Image

stride 2!

image size 224!

3!

96!

5!
2!

110!

55

3x3 max pool
stride 2

96!
3!

1!

26

256!

filter size 7!

3x3 max
pool

stride 2

13
256!

3!
1!

13

384!
3!

1!

13

384!

Layer 1 Layer 2

13

256!

3x3 max
pool

stride 2

6

Layer 3 Layer 4 Layer 5

256!

4096
units!

4096
units!

Layer 6 Layer 7

C
class

softmax!

Output

contrast
norm.

contrast
norm.

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 di↵erent 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 di↵erent 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions). The final layer is a C-way softmax
function, C being the number of classes. All filters and feature maps are square in shape.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4. Evolution of a randomly chosen subset of model features through training. Each layer’s features are displayed
in a di↵erent block. Within each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64].
The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to
pixel space using our deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic
form.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Degrees

P(
tru

e c
las

s)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

��� ��� ��� � �� �� ��
�

1

�

3

�

5

�

7

8

9

��

Vertical Translation (Pixels)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
��	����

African Crocodile
African Grey
Entertrainment Center

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vertical Translation (Pixels)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scale (Ratio)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rotation Degrees

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vertical Translation (Pixels)

P(
tru

e c
las

s)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale (Ratio)

P(
tru

e c
las

s)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

a1#

c1#

a3#

c3# c4#

a4#

1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

Scale (Ratio)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

5

10

15

Rotation Degrees

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

a2#

b3# b4#b2#b1#

c2#

Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the
image is transformed.

32

in
pu
t

co
nv
3-
64

co
nv
3-
64

M
P

co
nv
3-
12
8

co
nv
3-
12
8

M
P

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
25
6

M
P

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

M
P

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

M
P

FC
	-
40
96

FC
	-
40
96

FC
	–
10
00

so
ftm

ax

1.7k 37k 74k 147k 295k 590k 590k 1.2M 2.4M 2.4M 2.4M 2.4M 2.4M 103M 16.7M 4M

3.2M 3.2M 1.6M 1.6M 800k 800k 800k 400k 400k 400k 100k 100k 100k 4096 4096 1000150k 800k 400k 200k 100k 25k 1000

22
4	
x	2

24
	x	
3

22
4	
x	2

24
	x	
64

11
2	
x	1

12
	x	
64

11
2	
x	1

12
	x	
12
8

56
	x	
56
	x	
12
8

56
	x	
56
	x	
25
6

28
	x	
28
	x	
25
6

28
	x	
28
	x	
51
2

14
	x	
14
		5
12

14
	x	
14
	x	
51
2

7	
x	7

	x	
51
2

1	
x	x

1	
x	4

09
6

1	
x	1

	x	
40
96

1	
x	1

	x	
10
00

activations

parameters

32

input

Conv
7x7+

2(S)

M
axPool

3x3+
2(S)

LocalRespNorm

Conv
1x1+

1(V)

Conv
3x3+

1(S)

LocalRespNorm

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

AveragePool
7x7+

1(V)

FC

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax0

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax1

Softm
axActivation

softm
ax2

Figure
3:G

oogL
eN

etnetw
ork

w
ith

allthe
bells

and
w

histles

7

32

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

32

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2


3⇥3, 64
3⇥3, 64

�
⇥2


3⇥3, 64
3⇥3, 64

�
⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

conv3 x 28⇥28


3⇥3, 128
3⇥3, 128

�
⇥2


3⇥3, 128
3⇥3, 128

�
⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥8

conv4 x 14⇥14


3⇥3, 256
3⇥3, 256

�
⇥2


3⇥3, 256
3⇥3, 256

�
⇥6

2
4

1⇥1, 256
3⇥3, 256
1⇥1, 1024

3
5⇥6

2
4

1⇥1, 256
3⇥3, 256
1⇥1, 1024

3
5⇥23

2
4

1⇥1, 256
3⇥3, 256

1⇥1, 1024

3
5⇥36

conv5 x 7⇥7


3⇥3, 512
3⇥3, 512

�
⇥2


3⇥3, 512
3⇥3, 512

�
⇥3

2
4

1⇥1, 512
3⇥3, 512
1⇥1, 2048

3
5⇥3

2
4

1⇥1, 512
3⇥3, 512

1⇥1, 2048

3
5⇥3

2
4

1⇥1, 512
3⇥3, 512
1⇥1, 2048

3
5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

ResNet-18
ResNet-34

18-layer

34-layer

18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3⇥) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

32

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2


3⇥3, 64
3⇥3, 64

�
⇥2


3⇥3, 64
3⇥3, 64

�
⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

2
4

1⇥1, 64
3⇥3, 64

1⇥1, 256

3
5⇥3

conv3 x 28⇥28


3⇥3, 128
3⇥3, 128

�
⇥2


3⇥3, 128
3⇥3, 128

�
⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥4

2
4

1⇥1, 128
3⇥3, 128
1⇥1, 512

3
5⇥8

conv4 x 14⇥14


3⇥3, 256
3⇥3, 256

�
⇥2


3⇥3, 256
3⇥3, 256

�
⇥6

2
4

1⇥1, 256
3⇥3, 256
1⇥1, 1024

3
5⇥6

2
4

1⇥1, 256
3⇥3, 256
1⇥1, 1024

3
5⇥23

2
4

1⇥1, 256
3⇥3, 256

1⇥1, 1024

3
5⇥36

conv5 x 7⇥7


3⇥3, 512
3⇥3, 512

�
⇥2


3⇥3, 512
3⇥3, 512

�
⇥3

2
4

1⇥1, 512
3⇥3, 512
1⇥1, 2048

3
5⇥3

2
4

1⇥1, 512
3⇥3, 512

1⇥1, 2048

3
5⇥3

2
4

1⇥1, 512
3⇥3, 512
1⇥1, 2048

3
5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

ResNet-18
ResNet-34

18-layer

34-layer

18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3⇥) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

32

32

FC FC

FC
s
o
f
t
m
a
x

input

CONV, MP
layers

224⇥ 224⇥ 3
4096 4096

10007⇥ 7⇥ 512

32

input

CONV, MP
layers

224⇥ 224⇥ 3

7⇥ 7⇥ 512

1⇥ 1⇥ 4096 1⇥ 1⇥ 4096

1⇥ 1⇥ 1000

F = 7 F = 1

F = 1

s
o
f
t
m
a
x

32

input

CONV, MP
layers

F = 7 F = 1

F = 1
384⇥ 384⇥ 3

12⇥ 12⇥ 512

6⇥ 6⇥ 4096 6⇥ 6⇥ 4096

6⇥ 6⇥ 1000

s
o
f
t
m
a
x

32

32

32

input

CO
N
V	&

	M
P

class

32

32

input

CO
N
V	&

	M
P

(x, y, w, h)

32

32

input

CO
N
V	&

	M
P

(x, y, w, h)

class

32

32

32

	Deep Architectures

