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Topics covered in the lecture:

• Decision and Regression Trees

• Ensembles: Bagging

• Random Forests

• Ensembles: Boosting

• Gradient Boosting Trees
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Decision and Regression Trees

• Supervised machine learning model

• Interpretable

• Supports both classification (decision trees) and regression

(regression trees)

• Binary/multi-valued/continuous inputs

• Can deal with missing values

• Fast training and prediction
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Decision Trees



Decision Tree Example

• Will John play tennis?

3
Example and figures by Victor Lavrenko

IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Copyright © 2011 Victor Lavrenko 

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$



Decision Tree Example
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D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
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D13 & &Overcast & &Normal & &Weak &Yes&
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&
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Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&
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split$further$

4$yes$/$0$no$
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Decision Tree Example
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Decision Tree Example

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Humid $Wind$
D4 &High& &Weak&
D5 &Normal &Weak&
D10 &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Wind&

Weak& Strong&

Day $Humid $Wind$
D6 &Normal &Strong&
D14 &High& &Strong&
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9$yes$/$5$no$

Outlook&

Sunny& Rain&

Overcast&

Humidity&

High& Normal&

Wind&

Weak& Strong&

no$

yes$

yes$ yes$ no$
New&data:& &Day $Outlook $Humid $Wind&

& & &D15 &&Rain& &High& &Weak&

9$/$5$

2$/$3$ 3$/$2$

4$/$0$

0$/$3$ 2$/$0$ 3$/$0$ 0/$2$

&Yes&
Copyright © 2011 Victor Lavrenko 

ID3&algorithm&
•  Split&(node,&{examples}&):&

1.  A&&the&best&a;ribute&for&spli`ng&the&{examples}&

2.  Decision&a;ribute&for&this&node&&A&
3.  For&each&value&of&A,&create&new&child&node&
4.  Split&training&{examples}&to&child&nodes&

5.  If&examples&perfectly&classified:&STOP&
else:&iterate&over&new&child&nodes&
& &Split&(child_node,&{subset&of&examples}&)&

•  Ross&Quinlan&(ID3:&1986),&(C4.5:&1993)&

•  Breimanetal&(CaRT:&1984)&from&sta>s>cs&
Copyright © 2011 Victor Lavrenko 

Which&a;ribute&to&split&on?&

•  Want&to&measure&“purity”&of&the&split&
– more&certain&about&Yes/No&aier&the&split&

•  pure&set&(4&yes&/&0&no)&=>&completely&certain&(100%)&
•  impure&(3&yes&/&3&no)&=>&completely&uncertain&(50%)&

– can’t&use&P(“yes”&|&set):&
•  must&be&symmetric:&4&yes&/&0&no&as&pure&as&0&yes&/&4&no&

Wind&

Weak& Strong&

9$yes$/$5$no$

6$yes$/$2$no$ 3$yes$/$3$no$

Outlook&

Sunny& Rain&Overcast&

9$yes$/$5$no$

2$yes$/$3$no$ 3$yes$/$2$no$4$yes$/$0$no$

Copyright © 2011 Victor Lavrenko 
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Decision Tree Example

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Humid $Wind$
D4 &High& &Weak&
D5 &Normal &Weak&
D10 &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Wind&

Weak& Strong&

Day $Humid $Wind$
D6 &Normal &Strong&
D14 &High& &Strong&
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9$yes$/$5$no$

Outlook&

Sunny& Rain&

Overcast&

Humidity&

High& Normal&

Wind&

Weak& Strong&

no$

yes$

yes$ yes$ no$
New&data:& &Day $Outlook $Humid $Wind&

& & &D15 &&Rain& &High& &Weak&

9$/$5$

2$/$3$ 3$/$2$

4$/$0$

0$/$3$ 2$/$0$ 3$/$0$ 0/$2$

&Yes&
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Continuous Inputs

4
Example and figure by Michael S. Lewicki

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Observations

• Any boolean function can be represented by a decision tree.

• not good for all functions, e.g.:

- parity function: return 1 iff an even number of inputs are 1

- majority function: return 1 if more than half inputs are 1

• best when a small number of attributes provide a lot of information

• Note: finding optimal tree for arbitrary data is NP-hard.
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Decision trees with continuous values

12

years at 
current job

# missed 
payments

defaulted?

7 0 N

0.75 0 Y

3 0 N

9 0 N

4 2 Y

0.25 0 N

5 1 N

8 4 Y

1.0 0 N

1.75 0 N

Predicting credit risk

• Now tree corresponds to order and placement of boundaries

• General case: 

- arbitrary number of attributes: binary, multi-valued, or continuous

- output: binary, multi-valued (decision or axis-aligned classification trees), or
           continuous (regression trees) 

years at current job

#
 m

is
se

d
 p

ay
m

en
ts

!

"

!

!" """

"

""

>1.5
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Output Empirical Distribution

• We can output whole distribution instead of just the prevalent class

5
Criminisi et al.: Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, 2011

22 Classification forests

Fig. 3.1: Classification: training data and tree training. (a) In-
put data points. The ground-truth label of training points is denoted
with di↵erent colours. Grey circles indicate unlabelled, previously un-
seen test data. (b) A binary classification tree. During training a set of
labelled training points {v} is used to optimize the parameters of the
tree. In a classification tree the entropy of the class distributions asso-
ciated with di↵erent nodes decreases (the confidence increases) when
going from the root towards the leaves.

Given a labelled training set learn a general mapping which as-

sociates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-
available” test data is typical of inductive tasks.1 In classification the
desired output is of discrete, categorical, unordered type. Consequently,
so is the nature of the training labels. In fig. 3.1a data points are de-
noted with circles, with di↵erent colours indicating di↵erent training
labels. Testing points (not available during training) are indicated in
grey.

More formally, during testing we are given an input test data v
and we wish to infer a class label c such that c 2 C, with C = {c

k

}.
More generally we wish to compute the whole distribution p(c|v). As

1
As opposed to transductive tasks. The distinction will become clearer later.



Why Greedy Learning?

• How many distinct decision trees with n Boolean attributes for

binary classification?

• at least as many as boolean functions of n attributes

• = number of distinct truth tables with 2n rows: 22n

• For 6 Boolean attributes at least

18,446,744,073,709,551,616 trees!

• Learning is NP-complete: [Hyafil and Rivest 1976]

• ⇒ we need heuristics ⇒ greedy approach

• Recursively choose the ”most important” attribute to find a small

tree consistent with the training data

• Split points:

• nominal attribute: try all possibilities

• ordinal/continuous attribute: try attribute values based on all

training data samples or their subset
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Entropy

• Measure of unpredictability used by information theory

• Lossless compression ⇒ compressed information has more entropy

per character

• Entropy of a random variable Y with possible values {y1, y2, . . . , yn}:

H(Y ) = −
n∑

i=1

P(Y = yi ) log2 P(Y = yi )

• Tossing a fair coin:

H(Y ) = −P(head) log2 P(head)− P(tail) log2 P(tail)

= −1

2
log2

1

2
− 1

2
log2

1

2
= 1 bit

• Two-heads coin: H(Y ) = 0 bits
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Entropy Example

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

English character strings revisited: A-Z and space

21

Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Credit risk revisited

22

• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813

Figure by Michael S. Lewicki
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Entropy of Classification

9

• We can use entropy as an impurity measure

• P(def = Y) = 3
10

• P(def = N) = 7
10

• Entropy:

H(def) = −
n∑

y∈{Y,N}

P(def = y) log2 P(def = y) =

= − 3

10
log2

3

10
− 7

10
log2

7

10
≈ 0.8813

• We get zero entropy for a pure dataset

Example and figure by Michael S. Lewicki

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

English character strings revisited: A-Z and space

21
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• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
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= �0.3 log2 0.3� 0.7 log2 0.7
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Conditional Entropy

• Conditional entropy is the amount of uncertainty remaining about Y

after X is known

• We first define the specific conditional entropy :

H(Y |X = x) = −
∑
y

P(Y = y |X = x) logP(Y = y |X = x)

• The conditional entropy is then:

H(Y |X ) = Ex(H(Y |X = x)) =
∑
x

P(X = x) H(Y |X = x)

10



Mutual Information (Information Gain)

• Mutual information is a symmetric measure:

I (Y ;X ) =
∑
y

∑
x

P(X = x ,Y = y) log

(
P(X = x ,Y = y)

P(X = x)P(Y = y)

)
= H(X )− H(X |Y ) = H(Y )− H(Y |X )

• It quantifies an information gain for a random variable when other

random variable gets involved

11



Maximizing Information Gain

• Consider the splitting attribute j and the split point s, we get a pair

of half-planes RL(j , s) and RR(j , s)

• We seek for j and s maximizing the information gain:

Is(Y ;Xj) = H(Y )− Hs(Y |Xj)

where for ordinal attributes we have:

Hs(Y |Xj) = P(Xj ≤ s) H(Y |Xj ≤ s) + P(Xj > s) H(Y |Xj > s)

while for the nominal attributes:

Hs(Y |Xj) = P(Xj = s) H(Y |Xj = s) + P(Xj 6= s) H(Y |Xj 6= s)

12



Maximizing Information Gain Example

13

• H(def|2yrs = Y) = −1

4
log2

1

4
− 3

4
log2

3

4
≈ 0.8113

• H(def|2yrs = N) = −2

6
log2

2

6
− 4

6
log2

4

6
≈ 0.9183

• H(def|2yrs) ≈ 4

10
× 0.8113 +

6

10
× 0.9183 ≈ 0.8755

• H(def|miss = Y) = −2

3
log2

2

3
− 1

3
log2

1

3
≈ 0.9183

• H(def|miss = N) = −6

7
log2

6

7
− 1

7
log2

1

7
≈ 0.5917

• H(def|miss) ≈ 3

10
× 0.9183 +

7

10
× 0.5917 ≈ 0.69

• H(def)− H(def|2yrs) ≈ 0.8813− 0.8755 = 0.0058

• H(def)− H(def|miss) ≈ 0.8813− 0.69 = 0.1913

Example and figure by Michael S. Lewicki

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

English character strings revisited: A-Z and space
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Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Credit risk revisited
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• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813



Maximizing Information Gain Example (contd.)

14

• I (def; 2yrs) = H(def)− H(def|2yrs) ≈ 0.0058

• I (def; miss) = H(def)− H(def|miss) ≈ 0.1913

Example and figure by Michael S. Lewicki
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English character strings revisited: A-Z and space
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Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.
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Credit risk revisited

22

• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Information gain

27

bad: 3
good: 7

missed 
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years 
at current 

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

Missed payments are the 
most informative attribute 

about defaulting.

H(defaulted) � H(defaulted|< 2 years)
0.8813 � 0.8763 = 0.0050

H(defaulted) � H(defaulted|missed)
0.8813 � 0.6897 = 0.1916

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Example (from Andrew Moore): Predicting miles per gallon

28
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Copyright © Andrew W. Moore Slide 31

A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

40 
Records

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe

Copyright © Andrew W. Moore Slide 32

Look at all 
the 

information 
gains…

Suppose we want to 
predict MPG.

http://www.autonlab.org/tutorials/dtree.html



Tree Learning Algorithm

BUILD-TREE(S)

1 i = IMPURITY(S)

2 î , ĵ , ŝ, ŜL, ŜR = 0, 0, 0, ∅, ∅ // current best kept in these

3 for j ∈ {1, . . . , p} // iterate over attributes

4 for s ∈ SPLIT-POINTS(S , j) // iterate over all split points

5 SL,SR = SPLIT(S , j , s)

6 iL = IMPURITY(SL)

7 iR = IMPURITY(SR)

8 if iL + iR < î and |SL| > 0 and |SR | > 0

9 î , ĵ , ŝ, ŜL, ŜR = (iL + iR), j , s,SL,SR
10 if î < i

11 NL = BUILD-TREE(ŜL)

12 NR = BUILD-TREE(ŜR)

13 return DECISION-NODE(ĵ , ŝ,NL,NR)

14 else return LEAF-NODE(S)

15



When to Stop Splitting?

• Split while impurity decreases

• no assurance of zero impurity at leafs (e.g., for two samples x i = x j ,

yi 6= yj)

• when all leaves are pure then tree becomes a lookup table ⇒
overfitting!

• Check generalization error using validation set, stop when validation

error starts to increase

• Use threshold β: stop splitting when maximum possible gain drops

below β

• uses all training data unlike the previous approach

• leaves at different depths: adapts to complexity in input distribution

• drawback: hard to set β

16



When to Stop Splitting? (contd.)

• Stop when the node represents less than n (e.g., 10) samples or less

then a percentage of total samples (e.g., 5%)

• Trade complexity for test accuracy, minimize:

α · size +
∑

l∈leaves

IMPURITY(Sl)

where α > 0 and size can be the number of tree nodes or links

• Check statistical significance of the impurity reduction, e.g. using

chi-squared test:

• when a candidate split does not reduce the impurity significantly,

splitting is stopped

• does a candidate split significantly differ from a random split?

17



Pruning

• The previously stopping methods may stop tree growth prematurely

due to the greedy approach

• Pruning: reduce a fully grown tree starting at leaves

• All pairs of sibling leaf nodes are considered for merge

• Any pair whose elimination yields a satisfactory (small) increase in

impurity is eliminated

• Computationally costly but preferred for smaller problems

• Rule pruning: simplifying rules defined by conjunction of tests on a

way from the root to leaves ⇒ better interpretability

18



Decision Tree Methods

• CART (Classification And Regression Trees): described in previous

slides (some extensions beyond were shown)

• ID3 (Interactive Dichotomizer 3)

• Quinlan: Induction of Decision Trees, 1986

• nominal (unordered inputs), uses binning for continuous variables

• multiway

• depth ≤ number of input variables

• no pruning originally

• C4.5 (Quinlan)

• multiway for nominal data

• pruning based on statistical significance tests

• missing features different that CART p. 412

• rule-based prunning

• C5.0 (Quinlan): patented, faster, less memory, boosting support

• CHAID (CHi-square Automatic Interaction Detector)

19



Regression Trees



Regression Trees

• Nodes at the same level correspond to mutually exclusive subsets of

the original training data as well as mutually exclusive subsets of the

input space X
• Inner node further splits its subset

20
Criminisi et al.: Hastie et al.: The Elements of Statistical Learning, 2009
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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Regression Trees (contd.)

• Training set: T m = {(x i , yi ) | i = 1, . . . ,m}, x i = (xi1, xi2, . . . , xip)

• Input space split into regions defined in leaves: Rr , r ∈ {1, . . . ,M}
• We can model region responses by constants cr , r ∈ {1, . . . ,M} but

other possibilities, e.g., linear regression are possible

• Prediction:

h(x) =
M∑
r=1

cr I{x ∈ Rr}

• For sum of squares loss function
∑m

i=1(yi − h(x i ))2 we set the

responses to be the averages over regions:

ĉr =
1

|Sr |
∑

(x i ,yi )∈Sr

yi

where Sr = {(x i , yi ) : (x i , yi ) ∈ T m ∧ x i ∈ Rr}
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Ensemble Methods

• Inspired in Wisdom of the crowd

• (weighted) averaging or taking majority vote

• cancelling effect of noise of individual opinions,

• examples: politics, trial by jury (vs. trial by judge), sports (figure

skating, gymnastics), Wikipedia, Quora, Stack Overflow, . . .

• Learning and aggregating multiple predictors

• Ensemble may be built using single or different types of predictors

22

Wikimedia Commons



Ensembling Approaches

• Bagging (Bootstrap AGGregatING):

• sample different training sets from the original training set

• train high variance low bias predictors based on these sets and

average them

• exploits independence between predictors

• Boosting:

• sequentially train low variance high bias predictors

• subsequent predictors learn to fix the mistakes of the previous ones

• exploits dependence between learners

23



Stacking and Mixture of Experts

• Combine base-learners with meta-learner

24
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Prediction Problem: Expected Risk and Error Decomposition

Expected risk for data generated by p(x , y):

R(h) = E(x,y)∼p

[
`(y , h(x))

]

• The best attainable (Bayes) risk is R∗ = infh∈YX R(h)

• The best predictor in H is hH ∈ Argminh∈H R(h)

• The predictor hm = A(T m) learned from T m has risk R(hm)

Excess error measures deviation of the learned predictor from the best

one: (
R(hm)− R∗

)
︸ ︷︷ ︸

excess error

=

(
R(hm)− R(hH)

)
︸ ︷︷ ︸

estimation error

+

(
R(hH)− R∗

)
︸ ︷︷ ︸

approximation error

25



Predictors Averaged over Datasets

• Let us define a model averaged over all possible datasets:

gm(x) = ET m

[
hm(x)

]
• Unlike individual hm models, gm has an access to the whole p(x , y)

• Note: in general gm 6= hH due to training algorithm A involved in

hm.

• Also: gm can’t be actually evaluated for infinite number of T m

datasets

26



Bias-Variance Decomposition for Regression

• Consider a regression problem with data generated as follows:

y = h∗(x) + ε

where ε is noise: E[ε] = 0 and Var(ε) = σ2, e.g., ε ∼ N (0, σ2)

• Use squared loss:

`(y , h(x)) =
(
h(x)− y

)2

• The optimal predictor h∗(x) has a nonzero risk (for σ2 > 0):

R∗ = Ex,y

[(
h∗(x)− y

)2
]

= Eε
[
ε2
]

= Var(ε) = σ2

27



Bias-Variance Decomposition for Regression 2

• The expected risk for hm can be decomposed:

ET m

[
R(hm)

]
= Ex,y ,T m

[(
hm(x)− y

)2
]

= · · ·

= Ex,T m

[(
hm(x)− gm(x)

)2
]

︸ ︷︷ ︸
variance

+

+ Ex

[(
gm(x)− h∗(x)

)2
]

︸ ︷︷ ︸
bias2

+ σ2︸︷︷︸
noise

• The error splits into three terms

• variance: difference of hm from the averaged predictor gm,

• bias2: difference of the averaged predictor gm from the optimal one,

• noise: irreducible determined by data

28



Pointwise Bias-Variance

We can express the bias and variance as function of x by not integrating

over in expected values

Ey |x,T m

[
`(y , hm(x))

]
= Ey |x,T m

[(
hm(x)− y

)2
]

= VarT m

(
hm(x)

)
︸ ︷︷ ︸

variance(x)

+

+
(
gm(x)− h∗(x)

)2

︸ ︷︷ ︸
bias(x)2

+σ(x)2︸ ︷︷ ︸
noise

29



Bias-Variance: Example

• Polynomial regression with a varying degree of polynomial

30

58 random forests

x

y

Degree = 1

x

error(x)

bias2 (x)

var(x)

noise(x)

x

y

Degree = 5

x

x

y

Degree = 15

x

Figure 4.2: Bias-variance decomposition of the expected generalization error
for polynomials of degree 1, 5 and 15.

Also, because of low complexity, none of them really fits the trend of
the training points, even approximately, which implies that the aver-
age model is far from approximating the Bayes model. This results in
high bias. On the other hand, polynomials of degree 15 (right) suffer
from overfitting. In terms of bias and variance, the situation is the
opposite. Predictions have low bias but high variance, as shown in
the lower right plot of Figure 4.2. The variability of the predictions is
large because the high degree of the polynomials (i.e., the high model
complexity) captures noise in the learning set. Indeed, compare the
gray line with the blue dots – they almost all intersect. Put other-
wise, small changes in the learning set result in large changes in the
obtained model and therefore in its predictions. By contrast, the av-
erage model is now quite close from the Bayes model, which results
in low bias1. Finally, polynomials of degree 5 (middle) are neither too
simple nor too complex. In terms of bias and variance, the trade-off is
well-balanced between the two extreme situations. Bias and variance
are neither too low nor too large.

4.1.2 Classification

In direct analogy with the bias-variance decomposition for the squared
error loss, similar decompositions have been proposed in the litera-
ture for the expected generalization error based on the zero-one loss,
i.e., for EL{EY|X=x{1('L(x) 6= Y)}} = PL,Y|X=x('L(x) 6= Y). Most no-

1 Note however the Gibbs-like phenomenon resulting in both high variance and high
bias at the boundaries of X.

Gilles Louppe: Understanding Random Forests: From Theory to Practice, 2014



Bias and Variance of Decision Trees

• Small changes of training data lead to big differences in final trees

• Decision trees grown deep enough have typically:

• low bias

• high variance

⇒ overfitting

• Idea: average multiple models to reduce variance while (happily) not

increasing bias much

31



Averaging Models

• Define bagging model b as an average of K component models:

b(x) =
1

K

K∑
i=1

h(i)
m (x)

trained using a set of i.i.d. datasets of size m: Dm = {T m
1 , . . . , T m

K }
so h

(1)
m (x) is trained using T m

1 , h
(2)
m (x) using T m

2 , etc.

• Note that b(x) approximates the averaging model :

gm(x) = ET m

[
hm(x)

]

32



Averaging Models: Bias

• Bias remains unchanged when compared to a single model:

bias(x)2 =
(
gm(x)− h∗(x)

)2

=

(
EDm

[
b(x)

]
− h∗(x)

)2

=

(
EDm

[
1

K

K∑
i=1

h(i)
m (x)

]
− h∗(x)

)2

=

(
1

K

K∑
i=1

ET m
i

[
h(i)
m (x)

]
− h∗(x)

)2

=

(
ET m

[
hm(x)

]
− h∗(x)

)2

where ET m

[
hm(x)

]
corresponds to the averaging model as defined

for any particular component model hm(x)
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Averaging Models: Variance

• For uncorrelated component models h
(i)
m (x):

VarDm

(
b(x)

)
= VarDm

(
1

K

K∑
i=1

h(i)
m (x)

)

=
1

K 2

K∑
i=1

VarT m
i

(
h(i)
m (x)

)
=

1

K
VarT m

(
hm(x)

)
which is a great improvement based on the very strong assumption

• There is no improvement for maximum correlation, i.e., for all

component models equal: h
(i)
m (x) = hm(x) for i = 1, . . . ,K , we get:

VarDm

(
b(x)

)
= VarDm

(
1

K

K∑
i=1

h(i)
m (x)

)
= VarT m

(
hm(x)

)
⇒ we need to train uncorrelated (diverse) component models while

keeping their bias reasonably low
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Bootstrapping

• In practice we have only a single training dataset T m

• Bootstrapping is a method producing datasets T m
i for i = 1, . . .K

by sampling T m uniformly with replacement

• Bootstrap datasets have the same size as the original dataset

|T m
i | = |T m|

• T m
i is expected to have the fraction 1− 1

e ≈ 63.2% of unique

samples from T m, others are duplicates

35



Bagging

• Bagging = Bootstrap AGGregating [Breiman 1994]:

1. Use bootstrapping to generate K datasets

2. Train a model h
(i)
m (x) on each dataset T m

i

3. Average the models getting the bagging model b(x)

• When decision trees are used as the models ⇒ random forests

• Low bias is achieved by growing the trees to maximal depth

• Trees are decorrelated by:

• training each tree on a different bootstrap dataset

• randomization of split attribute selection

36



Random Forest Algorithm

1. For i = 1 . . .K :

1.1 draw a bootstrap dataset T m
i from T m, |T m

i | = |T m| = m

1.2 grow a tree h
(i)
m using T m

i by recursively repeating the following, until
the minimum node size nmin is reached:

1.2.1 select k attributes at random from the p attributes

1.2.2 pick the best attribute and split-point among the k

1.2.3 split the node into two daughter nodes

2. Output ensemble of trees b(x) averaging h
(i)
m (x) (regression) or

selecting a majority vote (classification)

• Node size nmin is the number of the training dataset samples

associated with the node, limits tree depth

37



Random Forest Summary

• Easy to use method: robust w.r.t. parameter settings (K , node size)

• While statistical consistency is proven for decision trees (both

regression and classification) we have only proofs for simplified

versions of random forests [Breiman, 1984]

• Related methods: boosted trees

38



Boosting

• Sequentially train weak learners/predictors low variance high bias

• Subsequent predictors fix the mistakes of the previous ones reducing

bias

• Methods discussed here:

• Forward Stagewise Additive Modeling

• Gradient Boosting Machine

• Gradient Boosted Trees

39



Forward Stagewise Additive Modeling (FSAM)

1. Initialize f0(x) = 0

2. For k = 1 to K :

2.1 Find

(βk , θk) = argmin
β,θ

m∑
i=1

`
(
yi , fk−1(xi ) + βb(xi ; θ)

)
where b(xi ; θk) is the basis function and βk the corresponding

coefficient

2.2 Set fk(x) = fk−1(x) + βkb(x ; θk)

3. Return hm(x) = fK (x)

40



FSAM and Gradient Descent

• FSAM update looks very similar to the gradient descent one:

fk(x) = fk−1(x) + βkb(x ; θk)

• Just think of

• βk ≈ step size (learning rate)

• b(xi ; θk) ≈ the negative of gradient

41



FSAM for Squared Loss

• Again consider regression with the squared loss:

`(y , f (x)) = (y − f (x))2

• For FSAM we get:

`(yi , fk(xi )) = `(yi , fk−1(xi ) + βkb(xi ; θk))

= (yi − fk−1(xi )− βkb(xi ; θk))2

= (rik − βkb(xi ; θk))2

where rik = yi − fk−1(xi ) is the residual of the current model for the

i-th sample

• The task of FSAM is to fit the model βkb(xi ; θk) to match the

residuals

• The method is sometimes called the least-squares boosting
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Gradient Boosting for Regression

• In case of regression with squared loss we minimize:

L =
m∑
i=1

`(yi , f (xi )) =
m∑
i=1

1

2
(yi − f (xi ))2,

which is same as minimization of the empirical risk

• We can treat f (x1), f (x2), . . . , f (xm) as parameters and take

derivatives:

∂L
∂f (xi )

=
∂
(∑m

j=1 `(yj , f (xj))
)

∂f (xi )
=
∂`(yi , f (xi ))

∂f (xi )

= f (xi )− yi = −ri

• The least-squares boosting hence takes steps in the negative

gradient direction where ri = − ∂L
∂f (xi )

• This approach can be generalized for any differentiable loss function!
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Gradient Boosting Machine

1. Initialize f0(x) = 0 or f0(x) = argminγ
∑m

i=1 `(yi , γ)

2. For k = 1 to K :

2.1 Compute:

g k =

[
∂`(yi , fk−1(xi ))

∂fk−1(xi )

]m
i=1

2.2 Fit a regression model b(·; θ) to −g k using squared loss:

θk = argmin
θ

m∑
i=1

[(−g k)i − b(xi ; θ)]2

2.3 Choose a fixed step size βk = β > 0 or use line search:

βk = argmin
β>0

m∑
i=1

`
(
yi , fk−1(xi ) + βb(xi ; θk)

)
2.4 Set fk(x) = fk−1(x) + βkb(x ; θk)

3. Return hm(x) = fK (x)
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Multinominal Classification: Gradient Boosting Machine

• Train one GBM per target class

• Use softmax to get probability distribution

• Use multinominal cross-entropy as the loss
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Gradient Boosted Trees

• Gradient Boosting Tree is GBM where all weak learners are decision

or regression trees

• Use limit on depth/number of leaves/node size for the weak learners

⇒ high bias

• Often single-level tree: decision stump

• Meta-parameters such as K (number of trees) and β (learning rate)

have to be found using cross validation

• Model is built sequentially (unlike random forests)

• Highly optimized algorithms based on Gradient Boosting Trees:

• XGBoost, LightGBM

• parallelization, scalability, regularization
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IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Copyright © 2011 Victor Lavrenko 

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$
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IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Copyright © 2011 Victor Lavrenko 

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$
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IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Copyright © 2011 Victor Lavrenko 

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Humid $Wind$
D4 &High& &Weak&
D5 &Normal &Weak&
D10 &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Wind&

Weak& Strong&

Day $Humid $Wind$
D6 &Normal &Strong&
D14 &High& &Strong&

Copyright © 2011 Victor Lavrenko 

9$yes$/$5$no$

Outlook&

Sunny& Rain&

Overcast&

Humidity&

High& Normal&

Wind&

Weak& Strong&

no$

yes$

yes$ yes$ no$
New&data:& &Day $Outlook $Humid $Wind&

& & &D15 &&Rain& &High& &Weak&

9$/$5$

2$/$3$ 3$/$2$

4$/$0$

0$/$3$ 2$/$0$ 3$/$0$ 0/$2$

&Yes&
Copyright © 2011 Victor Lavrenko 

ID3&algorithm&
•  Split&(node,&{examples}&):&

1.  A&&the&best&a;ribute&for&spli`ng&the&{examples}&

2.  Decision&a;ribute&for&this&node&&A&
3.  For&each&value&of&A,&create&new&child&node&
4.  Split&training&{examples}&to&child&nodes&

5.  If&examples&perfectly&classified:&STOP&
else:&iterate&over&new&child&nodes&
& &Split&(child_node,&{subset&of&examples}&)&

•  Ross&Quinlan&(ID3:&1986),&(C4.5:&1993)&

•  Breimanetal&(CaRT:&1984)&from&sta>s>cs&
Copyright © 2011 Victor Lavrenko 

Which&a;ribute&to&split&on?&

•  Want&to&measure&“purity”&of&the&split&
– more&certain&about&Yes/No&aier&the&split&

•  pure&set&(4&yes&/&0&no)&=>&completely&certain&(100%)&
•  impure&(3&yes&/&3&no)&=>&completely&uncertain&(50%)&

– can’t&use&P(“yes”&|&set):&
•  must&be&symmetric:&4&yes&/&0&no&as&pure&as&0&yes&/&4&no&

Wind&

Weak& Strong&

9$yes$/$5$no$

6$yes$/$2$no$ 3$yes$/$3$no$

Outlook&

Sunny& Rain&Overcast&

9$yes$/$5$no$

2$yes$/$3$no$ 3$yes$/$2$no$4$yes$/$0$no$

Copyright © 2011 Victor Lavrenko 
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Humid $Wind$
D4 &High& &Weak&
D5 &Normal &Weak&
D10 &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Wind&

Weak& Strong&

Day $Humid $Wind$
D6 &Normal &Strong&
D14 &High& &Strong&

Copyright © 2011 Victor Lavrenko 

9$yes$/$5$no$

Outlook&

Sunny& Rain&

Overcast&

Humidity&

High& Normal&

Wind&

Weak& Strong&

no$

yes$

yes$ yes$ no$
New&data:& &Day $Outlook $Humid $Wind&

& & &D15 &&Rain& &High& &Weak&

9$/$5$

2$/$3$ 3$/$2$

4$/$0$

0$/$3$ 2$/$0$ 3$/$0$ 0/$2$

&Yes&
Copyright © 2011 Victor Lavrenko 

ID3&algorithm&
•  Split&(node,&{examples}&):&

1.  A&&the&best&a;ribute&for&spli`ng&the&{examples}&

2.  Decision&a;ribute&for&this&node&&A&
3.  For&each&value&of&A,&create&new&child&node&
4.  Split&training&{examples}&to&child&nodes&

5.  If&examples&perfectly&classified:&STOP&
else:&iterate&over&new&child&nodes&
& &Split&(child_node,&{subset&of&examples}&)&

•  Ross&Quinlan&(ID3:&1986),&(C4.5:&1993)&

•  Breimanetal&(CaRT:&1984)&from&sta>s>cs&
Copyright © 2011 Victor Lavrenko 

Which&a;ribute&to&split&on?&

•  Want&to&measure&“purity”&of&the&split&
– more&certain&about&Yes/No&aier&the&split&

•  pure&set&(4&yes&/&0&no)&=>&completely&certain&(100%)&
•  impure&(3&yes&/&3&no)&=>&completely&uncertain&(50%)&

– can’t&use&P(“yes”&|&set):&
•  must&be&symmetric:&4&yes&/&0&no&as&pure&as&0&yes&/&4&no&

Wind&

Weak& Strong&

9$yes$/$5$no$

6$yes$/$2$no$ 3$yes$/$3$no$

Outlook&

Sunny& Rain&Overcast&

9$yes$/$5$no$

2$yes$/$3$no$ 3$yes$/$2$no$4$yes$/$0$no$

Copyright © 2011 Victor Lavrenko 
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Observations

• Any boolean function can be represented by a decision tree.

• not good for all functions, e.g.:

- parity function: return 1 iff an even number of inputs are 1

- majority function: return 1 if more than half inputs are 1

• best when a small number of attributes provide a lot of information

• Note: finding optimal tree for arbitrary data is NP-hard.

11

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Decision trees with continuous values

12

years at 
current job

# missed 
payments

defaulted?

7 0 N

0.75 0 Y

3 0 N

9 0 N

4 2 Y

0.25 0 N

5 1 N

8 4 Y

1.0 0 N

1.75 0 N

Predicting credit risk

• Now tree corresponds to order and placement of boundaries

• General case: 

- arbitrary number of attributes: binary, multi-valued, or continuous

- output: binary, multi-valued (decision or axis-aligned classification trees), or
           continuous (regression trees) 

years at current job

#
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d
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ay
m
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!" """
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22 Classification forests

Fig. 3.1: Classification: training data and tree training. (a) In-
put data points. The ground-truth label of training points is denoted
with di↵erent colours. Grey circles indicate unlabelled, previously un-
seen test data. (b) A binary classification tree. During training a set of
labelled training points {v} is used to optimize the parameters of the
tree. In a classification tree the entropy of the class distributions asso-
ciated with di↵erent nodes decreases (the confidence increases) when
going from the root towards the leaves.

Given a labelled training set learn a general mapping which as-

sociates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-
available” test data is typical of inductive tasks.1 In classification the
desired output is of discrete, categorical, unordered type. Consequently,
so is the nature of the training labels. In fig. 3.1a data points are de-
noted with circles, with di↵erent colours indicating di↵erent training
labels. Testing points (not available during training) are indicated in
grey.

More formally, during testing we are given an input test data v
and we wish to infer a class label c such that c 2 C, with C = {c

k

}.
More generally we wish to compute the whole distribution p(c|v). As

1
As opposed to transductive tasks. The distinction will become clearer later.
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

English character strings revisited: A-Z and space

21

Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Credit risk revisited

22

• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

English character strings revisited: A-Z and space

21

Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Credit risk revisited

22

• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

English character strings revisited: A-Z and space

21

Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Credit risk revisited

22

• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813

46



Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

English character strings revisited: A-Z and space

21

Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Credit risk revisited

22

• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Information gain

27

bad: 3
good: 7

missed 
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years 
at current 

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

Missed payments are the 
most informative attribute 

about defaulting.

H(defaulted) � H(defaulted|< 2 years)
0.8813 � 0.8763 = 0.0050

H(defaulted) � H(defaulted|missed)
0.8813 � 0.6897 = 0.1916

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Example (from Andrew Moore): Predicting miles per gallon

28

16

Copyright © Andrew W. Moore Slide 31

A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

40 
Records

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe
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Look at all 
the 

information 
gains…

Suppose we want to 
predict MPG.

http://www.autonlab.org/tutorials/dtree.html
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306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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58 random forests
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Figure 4.2: Bias-variance decomposition of the expected generalization error
for polynomials of degree 1, 5 and 15.

Also, because of low complexity, none of them really fits the trend of
the training points, even approximately, which implies that the aver-
age model is far from approximating the Bayes model. This results in
high bias. On the other hand, polynomials of degree 15 (right) suffer
from overfitting. In terms of bias and variance, the situation is the
opposite. Predictions have low bias but high variance, as shown in
the lower right plot of Figure 4.2. The variability of the predictions is
large because the high degree of the polynomials (i.e., the high model
complexity) captures noise in the learning set. Indeed, compare the
gray line with the blue dots – they almost all intersect. Put other-
wise, small changes in the learning set result in large changes in the
obtained model and therefore in its predictions. By contrast, the av-
erage model is now quite close from the Bayes model, which results
in low bias1. Finally, polynomials of degree 5 (middle) are neither too
simple nor too complex. In terms of bias and variance, the trade-off is
well-balanced between the two extreme situations. Bias and variance
are neither too low nor too large.

4.1.2 Classification

In direct analogy with the bias-variance decomposition for the squared
error loss, similar decompositions have been proposed in the litera-
ture for the expected generalization error based on the zero-one loss,
i.e., for EL{EY|X=x{1('L(x) 6= Y)}} = PL,Y|X=x('L(x) 6= Y). Most no-

1 Note however the Gibbs-like phenomenon resulting in both high variance and high
bias at the boundaries of X.
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