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Topics covered in the lecture:

Decision and Regression Trees

Ensembles: Bagging

Random Forests

Ensembles: Boosting

Gradient Boosting Trees



Decision and Regression Trees

Supervised machine learning model

Interpretable

Supports both classification (decision trees) and regression
(regression trees)

Binary/multi-valued /continuous inputs

Can deal with missing values

Fast training and prediction



Decision Trees



Decision Tree Example

e Will John play tennis?

Training examples: 9 yes / 5 no

- s

Day Outlook Humidity Wind Play
D1 Sunny High Weak No
D2 Sunny High Strong  No
D3 Overcast High Weak Yes
D4 Rain High Weak Yes
D5 Rain Normal Weak Yes
D6 Rain Normal Strong  No
D7 Overcast| Normal Strong  Yes
D8 Sunny High Weak No
D9 Sunny Normal Weak Yes
D10 Rain Normal Weak Yes
D11 Sunny Normal Strong  Yes
D12 Overcast High Strong  Yes
D13 Overcast Normal Weak Yes
D14 Rain High Strong  No
New data:™™™™™™"™"

D15 Rain High Weak ?

Example and figures by Victor Lavrenko



Decision Tree Example

9yes/5no

Overcy
Day Outlook Humid
D3 Overcast High Weak
p ~ D7 Overcast Normal Strong /"/ Rain N\
‘\ Sunny /‘ D12 Overcast High Strong \ //
e D13 Overcast Normal Weak —

Wind

Day Outlook ‘/—P-i-u-mid\i Wind Day Outlook Humid Wind
D1 Sunny :ngh i Weak 4 yes/o no D4 Rain High Weak
D2 Sunny ;ngh i Strong pure subset D5 Rain Normal Weak
D8 Sunny | ngh i Weak D6 Rain Normal Strong
D9 Sunny | Normal { Weak D10 Rain Normal Weak
D11 Sunny | Normal i Strong D14 Rain High Strong
2yes/3no 3vyes/2no
split further split further

Example and figures by Victor Lavrenko



Decision Tree Example

9yes/5no

/ h N
‘\; Overcast )
— -

Day Outlook Humid Wind
D3 Overcast High Weak -
s . D7 Overcast Normal Strong Rai
\ . ( ain
( Sunny ) D12 Overcast High Strong  \._
\
~_ D13 Overcast Normal Weak —

N
)

Day Outlook Humid
4 yes /0 no D4 Rain  High
pure subset D5 Rain Normal { Weak
D6 Rain Normali Strong
I ) D10 Rain Normal | Weak

. . ™ / N
\\H'_gh/ wal/ D14 Rain  High | Strong

Day Humid Wind Day Humid Wind 2
D1 High Weak D9 Normal Weak 3 VFS/ no
D2 High  Strong D11 Normal Strong split further
D8 High Weak

Example and figures by Victor Lavrenko



Decision Tree Example

9yes/5no

Day Outlook Humid Wind
D3 Overcast High Weak B
D7 Overcast Normal Strong ~

/
(

4 7 ™ ) Rain
L Sunny ), D12 Overcast High Strong \\ /

D13 Overcast Normal Weak

e Qoo ) (e ) (oo )
Day Humid Wind Day Humid Wind Day Humid Wind Day Humid Wind
D1 High Weak D9 Normal Weak D4 High Weak D6 Normal Strong
D2 High Strong D11 Normal Strong D5 Normal Weak D14 High Strong
D8 High Weak D10 Normal Weak

Example and figures by Victor Lavrenko



Decision Tree Example

9/5

~

Y N

wst/o 3/M

no yes yes no

New data: Day Outlook Humid Wind
D15 Rain High Weak => Yes

Example and figures by Victor Lavrenko



Continuous Inputs

Predicting credit risk

Example and figure by Michael S. Lewicki

years ;}t # missed defaulted?
current job | payments

7 0 N

0.75 0 Y 4]

5

3 0 N g
9 0 N g "
4 2 Y 2

0.25 0 N 2
- €
5 ! N H+ v
8 4 Y

1.0 0 N

1.75 0 N VXYW v v v

<| years at current job

>|.5



Output Empirical Distribution

e We can output whole distribution instead of just the prevalent class

Classification tree {V } 75
! =

Data in feature space
training

To
?
°
ce e
e’ o o
° .
° 0, ?. °
e o ,° e® ©
Y L *
. ® %

Criminisi et al.: Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, 2011



Why Greedy Learning?

e How many distinct decision trees with n Boolean attributes for
binary classification?
e at least as many as boolean functions of n attributes
e = number of distinct truth tables with 2" rows: 22"
e For 6 Boolean attributes at least
18,446,744,073,709,551,616 trees!

Learning is NP-complete: [Hyafil and Rivest 1976]
e = we need heuristics = greedy approach

Recursively choose the "most important” attribute to find a small

tree consistent with the training data

Split points:
e nominal attribute: try all possibilities
e ordinal/continuous attribute: try attribute values based on all
training data samples or their subset



e Measure of unpredictability used by information theory

Lossless compression = compressed information has more entropy
per character

Entropy of a random variable Y with possible values {y1,y2,...,¥n}:

H(Y) = —ZP(Y =y;)log, P(Y = y;)

Tossing a fair coin:

H(Y) = —P(head) log, P(head) — P(tail) log, P(tail)

1 1 1 1 .
:—§|0g2§—§|0g2§:1b|t

Two-heads coin: H(Y) = 0 bits



Entropy Example

Hi = 4.76 bits/char

Haz = 4.03 bits/char

H, = 2.8 bits/char

1.

2.

5.

Zero-order approximation. (The symbols are independent and
equiprobable.)

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ

FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

First-order approximation. (The symbols are independent. Fre-
quency of letters matches English text.)

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

Fourth-order approximation. (The frequency of quadruplets of let-
ters matches English text. Each letter depends on the previous
three letters. This sentence is from Lucky’s book, Silicon Dreams
[183])

THE GENERATED JOB PROVIDUAL BETTER TRAND THE
DISPLAYED CODE, ABOVERY UPONDULTS WELL THE
CODERST IN THESTICAL IT DO HOCK BOTHE MERG.

Figure by Michael S. Lewicki



Entropy of Classification

e We can use entropy as an impurity measure
Predicting credit risk

° P(def = Y) - ]% <2 years at missed defaulted?
° P(def _ N) _ % current job? [ payments?
N N N
e Entropy: ; " ;
H(def) = — Z P(def = y) log, P(def = y) = N N N
ye{Y,N} N N N
N Y Y
3 3 7 7 Y N N
=—— — — — — ~ 0.8813
10 %210 10 “%210 N | v |
e We get zero entropy for a pure dataset N . .
Y N N
Y N N

Example and figure by Michael S. Lewicki



Conditional Entropy

e Conditional entropy is the amount of uncertainty remaining about Y
after X is known

e We first define the specific conditional entropy:

HYIX =x) ==Y P(Y =y|X = x)logP(Y = y|X = x)
y

e The conditional entropy is then:

H(Y|X) = E (H(Y|X = x)) ZIP’ H(Y|X = x)

10



Mutual Information (Information Gain)

e Mutual information is a symmetric measure:

10iX) = S ST PX =0 Y = e (e )

= H(X) = H(X|Y) = H(Y) — H(Y|X)

e |t quantifies an information gain for a random variable when other
random variable gets involved

11



Maximizing Information Gain

e Consider the splitting attribute j and the split point s, we get a pair
of half-planes R.(j,s) and Rgr(j,s)

e We seek for j and s maximizing the information gain:
L(Y; X)) = H(Y) = Hy(Y1X)
where for ordinal attributes we have:
H(Y1X)) = B(X; < s) H(Y|X) < 5) + B(X; > 5) H(Y|X; > s)
while for the nominal attributes:

He(Y1X)) = B(X; = ) H(Y|X; = 5) + B(X; #5) H(Y|X) # 5)

12



Maximizing Information Gain Example

1 1 3 3
e H(defl2yrs=Y) = log, — — — log, — ~ 0.8113
;l ;l i j Predicting credit risk
e H(def|2yrs = N) = 6 log, — 6 6 log, 6 ~ 0.9183 :Jf!;"f;‘, P;‘;:Zf“:s? defaulted?
4 6
o H(def|2yrs) ~ — x 0.8113 + — x 0.9183 ~ 0.8755 N N N
10 10 . N N
N N N
N N N
. 2 2 1 1 N Y Y
e H(deflmiss=Y) = —3 log, = 373 log, 3~ 0.9183 - - -
. 6 6 1 1
o H(def|miss = N) = - log, = -z log, 7~ 0.5917 : : :‘
7
o H(def|miss) ~ 1% x 0.9183 + 10 % 0.5917 ~ 0.69 Y N N
Y N N

Example and figure by Michael S. Lewicki

o H(def) — H(def|2yrs) ~ 0.8813 — 0.8755 = 0.0058
e H(def) — H(def|miss) ~ 0.8813 — 0.69 = 0.1913 13



Maximizing Informati

o [(def; 2yrs) = H(def) — H(def|2yrs) ~ 0.0058
o /(def; miss) = H(def) — H(def|miss) ~ 0.1913

Missed payments are the
most informative attribute
about defaulting.

missed
N /' payments? Y

bad: |
good: 6

N / <2years \ y
at current
job?

good: 3

bad: 0
good: 3

bad: | ’

Example (contd.)

Predicting credit risk

:ﬁ ry;risolt? P;ri::‘:s? defaulted?
N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
Y N N

Example and figure by Michael S. Lewicki

14



Tree Learning Algorithm

BUILD-TREE(S)

© 0 N O a0 W N

e el
A W NN RO

i =IMPURITY(S)
1,J,5,5,5 =0,0,0,0,0 // current best kept in these
forje{1,...,p} // iterate over attributes

for s € SPLIT-POINTS(S, ) // iterate over all split points

5[_, SR = SPLIT(S,j, S)
i = IMPURITY(S,)
ir = IMPURITY(SR)
if i +ir <17 and |S;|>0 and |Sg|>0
;\,f, S, §L7 §R = (iL +ir),J,s,S1, Sr
if i <i
N, = BUILD-TREE(S))
Ng = BUILD-TREE(Sg)
return DECISION-NODE(J, 8, N, Ng)
else return LEAF-NODE(S)

15



When to Stop Splitting?

e Split while impurity decreases
e no assurance of zero impurity at leafs (e.g., for two samples x; = x;,
Yi # Y5)
e when all leaves are pure then tree becomes a lookup table =
overfitting!
e Check generalization error using validation set, stop when validation
error starts to increase
e Use threshold S: stop splitting when maximum possible gain drops
below
e uses all training data unlike the previous approach

e leaves at different depths: adapts to complexity in input distribution
e drawback: hard to set 8

16



When to Stop Splitting? (contd.)

e Stop when the node represents less than n (e.g., 10) samples or less
then a percentage of total samples (e.g., 5%)

e Trade complexity for test accuracy, minimize:

a-size+ Y IMPURITY(S)
I€ leaves
where o > 0 and size can be the number of tree nodes or links

e Check statistical significance of the impurity reduction, e.g. using
chi-squared test:
e when a candidate split does not reduce the impurity significantly,
splitting is stopped
e does a candidate split significantly differ from a random split?

17



e The previously stopping methods may stop tree growth prematurely
due to the greedy approach

e Pruning: reduce a fully grown tree starting at leaves

e All pairs of sibling leaf nodes are considered for merge

e Any pair whose elimination yields a satisfactory (small) increase in
impurity is eliminated

e Computationally costly but preferred for smaller problems

e Rule pruning: simplifying rules defined by conjunction of tests on a
way from the root to leaves = better interpretability

18



Decision Tree Methods

CART (Classification And Regression Trees): described in previous

slides (some extensions beyond were shown)
ID3 (Interactive Dichotomizer 3)

Quinlan: Induction of Decision Trees, 1986

nominal (unordered inputs), uses binning for continuous variables
multiway

depth < number of input variables

no pruning originally

C4 5 (Quinlan)

multiway for nominal data

pruning based on statistical significance tests
missing features different that CART p. 412
rule-based prunning

C5.0 (Quinlan): patented, faster, less memory, boosting support
CHAID (CHi-square Automatic Interaction Detector)

19



Regression Trees




Regression Trees

e Nodes at the same level correspond to mutually exclusive subsets of
the original training data as well as mutually exclusive subsets of the
input space X

e Inner node further splits its subset

20
Criminisi et al.: Hastie et al.: The Elements of Statistical Learning, 2009



Regression Trees (contd.)

e Training set: 7™ = {(x;,yi) | i=1,...,m}, xi = (Xi1, Xj2, - - ., Xip)

e Input space split into regions defined in leaves: R,, r € {1,..., M}

e We can model region responses by constants ¢,, r € {1,..., M} but
other possibilities, e.g., linear regression are possible

e Prediction: "
h(x) =) cI{x € R}
r=1

e For sum of squares loss function Y i (yi — h(x;))? we set the
responses to be the averages over regions:

R 1
Cr = i
51 2 Y
(xi,yi)€S,

where S, = {(x;,vi) : (x;,y;) € T" A x; € R}

21



Ensembles




Ensemble Methods

e Inspired in Wisdom of the crowd
e (weighted) averaging or taking majority vote
e cancelling effect of noise of individual opinions,
e examples: politics, trial by jury (vs. trial by judge), sports (figure
skating, gymnastics), Wikipedia, Quora, Stack Overflow, ...
e Learning and aggregating multiple predictors

e Ensemble may be built using single or different types of predictors

ikimedia Commons

22



Ensembling Approaches

e Bagging (Bootstrap AGGregatING):
e sample different training sets from the original training set
e train high variance low bias predictors based on these sets and
average them
e exploits independence between predictors
e Boosting:
e sequentially train low variance high bias predictors
e subsequent predictors learn to fix the mistakes of the previous ones
e exploits dependence between learners

23



Stacking and Mixture of Experts

e Combine base-learners with meta-learner

Training data

Gating 25_

Network 16u(4)-1

Training data Predictions

]

Ul
/

lodel B

Predictions

Training data

Model C V=01y1+92¥2+ g3y3

Expert Y3
Network 3

\

Level 0 Level 1

https://www.commonlounge.com/discussion/9331c0d004704e89bd4d1da08fd7c7bc

24


https://www.commonlounge.com/discussion/9331c0d004704e89bd4d1da08fd7c7bc

Prediction Problem: Expected Risk and Error Decomposition

Expected risk for data generated by p(x, y):

R(K) = Ecy)p £y (X))

e The best attainable (Bayes) risk is R* = inf,cyx R(h)
e The best predictor in H is hy € Argmin,,, R(h)
e The predictor h, = A(T™) learned from 7™ has risk R(hp,)

Excess error measures deviation of the learned predictor from the best
one:

(R(hm) - R*) = <R(hm) - R(th)> + (R(hﬂ) - R*)

€Xcess error estimation error approximation error

25



Predictors Averaged over Datasets

Let us define a model averaged over all possible datasets:
gn(x) = Ern | hn(x)]

Unlike individual h,, models, g,, has an access to the whole p(x, y)

Note: in general g,, # hy due to training algorithm A involved in
hm.

Also: g, can't be actually evaluated for infinite number of 7™

datasets

26



Bias-Variance Decomposition for Regression

e Consider a regression problem with data generated as follows:
y=h"(x)+e

where ¢ is noise: E[e] = 0 and Var(e) = 02, e.g., € ~ N (0,0?)

e Use squared loss:

ty.h60) = (hx) —y)’

e The optimal predictor h*(x) has a nonzero risk (for o > 0):

R* = E,, [(h*(x) - yﬂ —E, H = Var(e) = 0?

27



Bias-Variance Decomposition for Regression 2

e The expected risk for h,, can be decomposed:

En [R(hm)| = Exy,rn {(”m(x) - ﬂ

=B (o) — &) | +

variance

+Ex {(gm(X) - h*(X))T +32

noise

bias?
e The error splits into three terms
e variance: difference of h, from the averaged predictor gm,
e bias?: difference of the averaged predictor g from the optimal one,
e noise: irreducible determined by data

28



Pointwise Bias-Variance

We can express the bias and variance as function of x by not integrating
over in expected values

Eyju 7o | L0V hn(X))] = By 7n [(”m(x) —Y )2}

= Varyn (hm(x)> +

—_——

variance(x)

+ (&m0~ 1(9) + o

noise

bias(x)?

29



Bias-Variance: Example

e Polynomial regression with a varying degree of polynomial

Degree =1 Degree =5 Degree = 15

error(z)
—  bias’ (z)

—  var(z)

noise(z)

x x x 30

Gilles Louppe: Understanding Random Forests: From Theory to Practice, 2014



Bias and Variance of Decision Trees

e Small changes of training data lead to big differences in final trees
e Decision trees grown deep enough have typically:

e low bias
e high variance

= overfitting

e ldea: average multiple models to reduce variance while (happily) not
increasing bias much

31



Averaging Models

e Define bagging model b as an average of K component models:
1o
b(x) = ¢ S H(x)
i=1
trained using a set of i.i.d. datasets of size m: D™ = {7;",..., T}

so hf,})(x) is trained using 7;", hg)(x) using 7", etc.

e Note that b(x) approximates the averaging model:

gn(x) = Ern | hn(x)]

32



Averaging Models: Bias

e Bias remains unchanged when compared to a single model:

bias(x)? = (gm(X) - h*(X))2

where E7n [h,(x)] corresponds to the averaging model as defined
for any particular component model h,,(x)
33



Averaging Models: Variance

e For uncorrelated component models h,(,';)(x):
1
Varpm (b(x)) = Varpn (K Z; h§,g>(x)>

= % EK: Varzm (hf,?(X)) = %VarTm (hm(X)>
i=1

which is a great improvement based on the very strong assumption
e There is no improvement for maximum correlation, i.e., for all
component models equal: h,(,'q)(x) = hm(x) fori=1,..., K, we get:

Varpm (b(x)) = Varpm (!1( ZK: Al (x)) = Varym (hm(x))

= we need to train uncorrelated (diverse) component models while
keeping their bias reasonably low

34



Bootstrapping

In practice we have only a single training dataset 7™

Bootstrapping is a method producing datasets 7,” for i =1,... K
by sampling 7™ uniformly with replacement

Bootstrap datasets have the same size as the original dataset
[T =T

e 7. is expected to have the fraction 1 — % ~ 63.2% of unique
samples from 7™, others are duplicates

35



Bagging

e Bagging = Bootstrap AGGregating [Breiman 1994]:

1. Use bootstrapping to generate K datasets
2. Train a model hf,',)(x) on each dataset 7;”
3. Average the models getting the bagging model b(x)

When decision trees are used as the models = random forests

e Low bias is achieved by growing the trees to maximal depth

Trees are decorrelated by:

e training each tree on a different bootstrap dataset
e randomization of split attribute selection

36



Random Forest Algorithm

1. Fori=1...K:
1.1 draw a bootstrap dataset 7;” from 7™, |[T,"| = |T™| = m
1.2 grow a tree A% using 7;™ by recursively repeating the following, until
the minimum node size Nmin is reached:
1.2.1 select k attributes at random from the p attributes
1.2.2 pick the best attribute and split-point among the k
1.2.3 split the node into two daughter nodes
2. Output ensemble of trees b(x) averaging hf,',)(x) (regression) or
selecting a majority vote (classification)

e Node size np, is the number of the training dataset samples
associated with the node, limits tree depth

37



Random Forest Summary

e Easy to use method: robust w.r.t. parameter settings (K, node size)

e While statistical consistency is proven for decision trees (both
regression and classification) we have only proofs for simplified
versions of random forests [Breiman, 1984]

e Related methods: boosted trees

38



e Sequentially train weak learners/predictors low variance high bias

e Subsequent predictors fix the mistakes of the previous ones reducing
bias

e Methods discussed here:

e Forward Stagewise Additive Modeling
e Gradient Boosting Machine
e Gradient Boosted Trees

39



Forward Stagewise Additive Modeling (FSAM)

1. Initialize fy(x) =0
2. For k=1 to K:
2.1 Find

(e, 0¢) = axgmin 3 £y, fie1 () + Bb(x:0))
’ i=1

where b(x;; 0x) is the basis function and Sk the corresponding
coefficient
2.2 Set fi(x) = fu1(x) + Brb(x; Ok)

3. Return hp(x) = fk(x)

40



FSAM and Gradient Descent

e FSAM update looks very similar to the gradient descent one:

fi(x) = fi1(x) + Bib(x; Ok)

e Just think of
e [y ~ step size (learning rate)
e b(x;; 0k) =~ the negative of gradient

41



FSAM for Squared Loss

e Again consider regression with the squared loss:

Uy, f(x)) = (v = f(x))?

e For FSAM we get:

Uy, fu(xi)) = Ui, fu—1(xi) + Bib(xi; Ox))

= (yi — fe1(x) — Bib(xi; 0k))?

= (rik — Bb(xi; 0k))?
where rix = yi — fx_1(x;) is the residual of the current model for the
i-th sample

e The task of FSAM is to fit the model 5 b(x;; k) to match the
residuals

e The method is sometimes called the least-squares boosting

42



Gradient Boosting for Regression

e In case of regression with squared loss we minimize:

'C:Z y:» I Z
i=1

i=1

yi — f(xi)) ,

l\)\n—-

which is same as minimization of the empirical risk

e We can treat f(x1), f(x2),...,f(xm) as parameters and take
derivatives:
or 3(2}11 Uy, f(Xj))) oy, F(x))
8f(x,-) B af(X,) n 8f(x,)
=f(x)—yi=—n
e The least-squares boosting hence takes steps in the negative
gradient direction where r; = —%

e This approach can be generalized for any differentiable loss function!

43



Gradient Boosting Machine

1. Initialize fo(x) = 0 or fo(x) = argmin, >, £(y;,~)
2. For k=1 to K:
2.1 Compute:

g — {M(%‘, fk—l(xi))}m
8fk,1(x,-) =1
2.2 Fit a regression model b(-;0) to —g using squared loss:

Ok = arg;ninz [(—g«)i — b(xi; 0))

i=1
2.3 Choose a fixed step size Sk = 8 > 0 or use line search:
= argmin O yvi, fi—1(xi) + Bb(xi; 0
B = argmin 3 €y s () + 055 ))
2.4 Set fi(x) = fu1(x) + Brb(x; Ok)
3. Return hp(x) = fx(x

~—

44



Multinominal Classification: Gradient Boosting Machine

e Train one GBM per target class
e Use softmax to get probability distribution

e Use multinominal cross-entropy as the loss

45



Gradient Boosted Trees

e Gradient Boosting Tree is GBM where all weak learners are decision
or regression trees

e Use limit on depth/number of leaves/node size for the weak learners
= high bias

e Often single-level tree: decision stump

e Meta-parameters such as K (number of trees) and /3 (learning rate)
have to be found using cross validation

e Model is built sequentially (unlike random forests)

e Highly optimized algorithms based on Gradient Boosting Trees:

e XGBoost, LightGBM
e parallelization, scalability, regularization

46
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Training examples: 9 yes / 5 no

__________

Day Outlook
D1 Sunny
D2 Sunny
D3 Overcast
D4 Rain

D5 Rain

D6 Rain

D7 Overcast
D8 Sunny
D9 Sunny
D10 Rain
D11 Sunny
D12 Overcast
D13 Overcast
D14 Rain
New data:™™™™™""™"
D15 Rain

Humidity
High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

High

Wind
Weak
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Strong

Weak

Play
No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No

?

46



D1 Sunny
D2 Sunny
D8 Sunny
D9 Sunny
D11 Sunny

2vyes /3 no
split further

9vyes /5no

Day Outlook Humid
D3 Overcast High
D7 Overcast Normal
D12 Overcast High
D13 Overcast Normal

4yes [0no
pure subset

Day Outlook

D4 Rain
D5 Rain
D6 Rain
D10 Rain
D14 Rain

Wind
Weak
Weak
Strong
Weak
Strong

3vyes/2no
split further

46



Day Humid
D1 High
D2 High
D8 High

9vyes/5no
<

Outlook

Day Outlook Humid Wind
D3 Overcast High Weak
D7 Overcast Normal Strong
D12 Overcast High Strong
D13 Overcast Normal Weak

PN 4 yes /0 no

Humidity D4 Rain
pure subset D5 Rain
D6 Rain
D10 Rain
D14 Rain
Wind Day Humid Wind

Weak D9 Normal Weak
Strong D11 Normal Strong
Weak

Day Outlook Humid

{ Wind

High i Weak

Normal | Weak

Normal E Strong

Normal | Weak

High i Strong
3yes/2no

split further

46



Day Humid
D1 High
D2 High
D8 High

9vyes/5no
N

Outlook

Day Outlook Humid Wind
D3 Overcast High Weak
D7 Overcast Normal Strong
D12 Overcast High Strong
D13 Overcast Normal Weak

T
Humidity

Wind Day Humid Wind Day Humid Wind Day Humid Wind
Weak D9 Normal Weak D4 High Weak D6 Normal Strong
Strong D11 Normal Strong D5 Normal Weak D14 High Strong
Weak D10 Normal Weak

46



New data:

yes

yes
Day Outlook Humid Wind

D15 Rain High Weak = Yes

46



Predicting credit risk

corrent b | payments | Sl
7 0 N
0.75 0 Y
3 0 N
9 0 N
4 2 Y
0.25 0 N
5 | N
8 4 Y
1.0 0 N
1.75 0 N

# missed payments

v X

vw v

v

4

<|  yearsat current job

>|.5
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Data in feature space

Classification tree
training

{v}
|

46



H| = 4.76 bits/char

H» = 4.03 bits/char

H, = 2.8 bits/char

1.

2.

5.

Zero-order approximation. (The symbols are independent and
equiprobable.)

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ

FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

First-order approximation. (The symbols are independent. Fre-
quency of letters matches English text.)

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

Fourth-order approximation. (The frequency of quadruplets of let-
ters matches English text. Each letter depends on the previous
three letters. This sentence is from Lucky’s book, Silicon Dreams
[183].)

THE GENERATED JOB PROVIDUAL BETTER TRAND THE
DISPLAYED CODE, ABOVERY UPONDULTS WELL THE
CODERST IN THESTICAL IT DO HOCK BOTHE MERG.
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Predicting credit risk

<2 years at
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N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
Y N N

46



Predicting credit risk

<2 years at

missed

current job? | payments? defaulced?
N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
Y N N

46



Predicting credit risk

<2 years at

missed

current job? | payments? defaulced?
N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
Y N N

46



<2 years
at current
job?

missed
payments?

Missed payments are the
most informative attribute
about defaulting.
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Training data

Training data Predictions Predictions
—_— Generalizer

Training data

Level O Level 1
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Gating
Network

v

Expert
Network 1

Expert
Network 2

Expert
Network 3

Y3

Etﬁ:i Gulx)=1

Y =011+ 92¥2+ 93y
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Degree =1

Degree =5 Degree = 15

error(z)
bias® (z)

var(z)

noise(x)
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