Deep Bayesian Learning

Viclav Smidl,

Winter school of machine learning,
Czech Technical University
vasek.smidl@gmail.com

January 22, 2020

Overview

Extract from Hierarchical Bayesian Models, FJFI summer

Lecture 1: How to be a Bayesian
Lecture 2: Approximations and computational tools

Lecture 3: Application to Deep Active Learning

Overview

Extract from Hierarchical Bayesian Models, FJFI summer

Lecture 1: How to be a Bayesian
Lecture 2: Approximations and computational tools

Lecture 3: Application to Deep Active Learning

Lecture 3:
Variational autoencoder
» Density estimation
» Generative model
Bayesian NN
» Uncertainty, prediction
» Active Learning
» Sampling methods

Density estimation

Inverse task to sampling

» We are given set of samples
X - {Xi};,:lr

» We want to find a generating
distribution p(x).

» mean, variance

Density estimation

|nverse task to Sampling marginal p(m,s|x1=1.5x2=2, 1=5, a=2, =3, ¢=1
s ,

» We are given set of samples
X - {Xi};,:ll

» We want to find a generating
distribution p(x).

» mean, variance

s
marginal

» complex distributions

> high dimensional distribution Foea]

» Application in anomaly
detection (out of sample)
» Classical methods

» one class SVM
> kernel density estimator
» mixture of Gaussians

Variational Autoencoder

Generative model
x; = f(z) + e, zi ~ N(0,1),
e ~N(0,0l),
where z is the latent variable, and e is noise.

» The power comes from the ()
» For f(z) = z/10 + z/||z||

=2/10+2/,
. p@) s x=2/10+21llz|
1 A
e
0.5
No ¥ 0
-0.5
kN
-1 i
.
5 -1.5
5 0 5 2 1 0
z1 x1

> Given samples X = {x}}_,, find f().

VAE: optimization problem

Choose parametric form fy(z)
p(x|2) :N(f9(zf)>al)> p(2) :N(Ovl)v
We seek 0"

0" = argmax [po). po(x) = / plxlz, 0)p(2)dz,

i

How to match data to an unknown solution of the integral? Mix. of Dirac?

VAE: optimization problem

Choose parametric form fy(z)

p(x|2) :N(f9(zf)>al)> p(2) :N(Ov),
We seek 6*
0" = arg max [pa(x), po(x) = / plxlz, 0)p(2)dz,
9 .
How to match data to an unknown solution of the integral? Mix. of Dirac?
Bayes rule
p(x|z)p(z)
zZ|x) = ————=,
p(zh) = PEOE

ELBO for approximating distribution g(x|z):
KL(gy (z]x)[|pe(z]x)) = Eq(zix) (log qip(z|x) — log pa(x|z) — log p(z))+log ps(x)
Key idea: qy(z|x) is flexible to approach pg(z|x) => (KL = 0)

0%, = arg max Eq(zlx) (= log gy (z|x) + log po(x|z) + log p(z))

Autoencoding Variational Bayes

Key idea: q(z|x,1) is flexible to approach p(z|x) => (KL->0)
07,47 = argmax Eq(zi (— log qu(2]x) + log po(x|2) + log p(2))

= arg max Eqi (08 po(x]2)) — KL (a0 (210)|p(2))

> fy(z) is a NN with parameters 6,
> gu(z|x) = N(uy(x), diag(a?,(x))) where py(x) and oy (x) are NN.
> KL(qy(z|x)||p(2)) has analytical form!
77{07#)+ py(x —1—2|ogaw(x)}
> log-likelihood

L~ ha)y

log po(x12) =

Reparametrization trick

Minimization:
* * . 1
0", = argminEqap (5 (x = f(2)°) + 7300 + o)’ — 1~ 2log oy(x),

we need to compute the expectation.

Reparametrization trick

Minimization:

* * . 1
0", = argminEqap (5 (x = f(2)°) + 7300 + o)’ — 1~ 2log oy(x),
we need to compute the expectation.

Reparametrization trick:

n

1 i
qu(zh) ~ =D 3z —27),

i=1
zi = py(x) +ou(x) o e, e~ N(0,1)

Final cost (for NN training)

n

0" = rgpin 3 (2 = s) + aut) o)) +

D (0506) + pu(x)* = 1= 2log oy (x)) ,

i=1

Variational Autoencoder

19(x), 06(x) fo(2)

» Extension of classical Autoencoders
> “just” another regularization of AE

v

Useful for generation of artificial samples: z = randn

v

Allows dimensionality reduction

v

Special case: Probabilistic PCA Principal Component analysis,

x = Az +e, z ~ N(0,1),

Examples of use

Exactp(z)

=g(x))

p(z

p(z|z = g())

15

10

05

-0.5

-1.0

-15

Drawbacks and extensions

1. Joint density estimation and dimensionality reduction
2-stage VAE: Decomposition of 2 VAE: x -z — x and z — u — z.
2. Transformation of Gaussian problematic for multivariate densities.

Wasserstein AE: We may transform multi-modal prior p(z). KL
intractable. In practice, common approximation is

MMD(p, q) = [|Ex~p((x)) = Ey~a((y))]2-

works with any distribution, as long as we can sample
from it.

3. Combinations: VAE-GAN loss, Stein, Relevance VAE,

Detection of Alfven Eigenmodes

1.202 1.204 1.206 1.028 1.030 1.032
t [s] t [s]

Data:

> 10° unlabeled spectrograms
» 400 labels

Detection of Alfven Eigenmodes

encoder decoder
es(X) fo(2)
E— — |
Conv. + Dense +
Dense Tr. Conv.
X c R128><128><1 zZc Rd)’t c R128><128><1
opt. criteria classifier AUC prec@50
MSE kNN 0.80+0.07 0.88+0.10
KLD kNN 0.80+0.08 0.85+0.11
MMD kNN 0.91+0.06 0.94+0.05
GAN kNN 0.83+0.07 0.87+0.10
MMD + GAN kNN 0.86 = 0.07 0.91£0.10
MSE GMM 0.75+0.06 0.80+0.10
KLD GMM 0.7440.06 0.834+0.11
MMD GMM 0.66+0.12 0.72+0.12
GAN GMM 0.74+0.06 0.82+0.11

MMD - GAN GNNMM 07640 0A N RA+-0 10

Bayesian Neural Networks

Consider regression problem

y =fo(x) +e,
for known x and y. (If y € {0,1} it is classification).

> Classical SGD learns
» |s it worrying?
> not if we have enough “good” data,

» not if data are i.i.d,
> we need labels!

» Bayesian approach

» makes use of all your data,
> allows active learning

Deep classification: trivialized

probability?

— e
— rruck
~ van

[— wievews

/' " FuLLY

" INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING y LATTEN PULLY o SOFTMAX

HIDDEN LAYERS CLASSIFICATION

Objective, cost function (cross-entropy):

L(y,x) == yif(x,0) + (1 — yi) log(1 — F(x:,),
=1
Training with (stochastic) gradient
énew _ éold _ nveﬁ(),

n

J
VoL() =V Y Nyix) = Y Volly, %),
j=1

i=1

where j are i.i.d. samples from {1....n}.

Deep classification: toy data

Labeled Data

5

Prediction with Deep-NN

“"‘ 1‘-‘,4 -l-i-

\i:;:%q- %5 o

P e S
o St 00 s
>e %30

= otp

025 050 075 100

Deep classification: toy data

Labeled Data

1.00 1-‘1{‘“ ‘1-*‘ & Be ﬂi:- o Tv'o a0
& g
h?ﬂ:." * :,,'; " ?? JT

v
v ® “J.o :=
050 ﬁfo&fﬁ%:‘%&‘ﬁ' “0f -g,:
1\“"._%,‘ P:O: ... L) .,"z."..
e Al R
1:-..-.',;*:-8- ’ "' "Q“.‘i

0.00 025 050 o7

Prediction with Deep-NN

“"‘ 1‘-‘,4 -l-i-

\i:;:%q- %5 o

&
o P S
-l?‘- :.‘: .

Deep

classification: toy data

Labeled Data

True labels

T el &8 5 :_H-'_ ﬂ": ..-lh’f“’" %0
A AR M R AT LD
o7 "‘f-r. % o & é," .5F
o S IR g Ao A T4
B T e T
ERARY KT AT
“’t"%" f. .o .o.- .‘z. ’..’

0.00 .‘;“..4:‘*...& ’ ... ;‘#“..i

0.00 025 050 o7 0

+
e

Prediction with Deep-NN

“"‘ 1‘-‘,4 -l-i-

\i:;:%q- %5 o

Active Learning

seen

Knowledge: data seen so far X***", y
Unknown: labels y"" at points X", network weights

Decision: select “most-interesting” point x™ in X™" for an evaluator
(oracle) to obtain y*.

Active Learning

Knowledge: data seen so far X", y*¢"
Unknown: labels y"" at points X", network weights

Decision: select “most-interesting” point x™ in X™" for an evaluator
(oracle) to obtain y*.

Expected utility:

* seen seen
x" =arg max E{U(x y)| X,y
xeXnew

0
=arg max > U(x,y)p(y = jIX*", y=")
j=1

where U is utility function and p(y = j|-) is a posterior
predictive probability.

Active Learning

Knowledge: data seen so far X", y*¢"
Unknown: labels y"" at points X", network weights

Decision: select “most-interesting” point x™ in X™" for an evaluator
(oracle) to obtain y*.

Expected utility:

X" = arg max E {U(x, y)| X", y*=="}
xeXnew

xEXnew

0
=arg max > U(x,y)p(y = jIX*", y=")
j=1

where U is utility function and p(y = j|-) is a posterior
predictive probability.

Utility: to learn about the true problem as much as possible

Expected Utility as Acquisition function

Utility: to learn about the true problem as much as possible

» mutual information between D" = {y"™" x""} and
D — {Xseen,yseen}

(D™, D) = KL (p(D, D) [p(D)p(D™™")).

Expected Utility as Acquisition function

Utility: to learn about the true problem as much as possible

» mutual information between D" = {y"™" x""} and
D — {Xseen,yseen}

(D™, D) = KL (p(D, D) [p(D)p(D™™")).

> proxy:

» variance U(x,y) = (y(x) — y¥(x)),
> entropy U(x,y) = log(y(x))

Acquisition function:

x
I

= arg max a(x,y)
XeXnew
0
a(x,y) = Y U(x,y)p(y = jIX=0, y**=")

j=t

Benchmark: Active Learning

1. Fit parametric model including
hyperparameters

p(y|)<known7 yknown)

2. Find point with maximum
probability of improvement,

x* = arg Tea)i(E (y2 — E(yz))

3. Evaluate y* and add x* to
anown and y* to yknown

4. GOTO 1.

Benchmark: Active Learning

1. Fit parametric model including
hyperparameters

p(y|anown , yknown)

2. Find point with maximum
probability of improvement,

x" = arg Tea;((E (y2 - E(yz))

3. Evaluate y* and add x* to
anown and y* to yknown

4. GOTO 1.

Benchmark: Active Learning

. Fit parametric model including
hyperparameters

p(y|anown , yknown)

. Find point with maximum
probability of improvement,

x" = arg Tea;((E (y2 - E(yz))

. Evaluate y* and add x* to
anown and y* to yknown

. GOTO 1.

Benchmark: Active Learning

1. Fit parametric model including
hyperparameters

p(y|)<known7 yknown)

2. Find point with maximum
probability of improvement,

x* = arg Tea;(E (y2 - E(y2))

3. Evaluate y* and add x* to
anown and y* to yknown

4. GOTO 1.

0,16

0.08

0.04

Benchmark: Active Learning

1. Fit parametric model including
hyperparameters

p(y|)<known7 yknown)

2. Find point with maximum
probability of improvement,

x* = arg Tea;(E (y2 - E(y2))

3. Evaluate y* and add x* to
anown and y* to yknown

4. GOTO 1.

Benchmark: Active Learning

1. Fit parametric model including
hyperparameters

p(y|anown , yknown)

2. Find point with maximum
probability of improvement,

x" = arg Tea;((E (y2 - E(yz))

3. Evaluate y* and add x* to
anown and y* to yknown

4. GOTO 1.

Benchmark: Active Learning

1. Fit parametric model including
hyperparameters

p(y|anown , yknown)

2. Find point with maximum
probability of improvement,

x" = arg Tea;((E (y2 - E(yz))

3. Evaluate y* and add x* to
anown and y* to yknown

4. GOTO 1.

Probability is crucial!
HMC [Neal, 1993]: golden standard. Beautiful. Expensive!

SGLD [Welling, Teh, 2011]: extension of SGD
0" = 6% — nVoL() + /e, e ~N(0,1),

is a valid MCMC algorithm with Langevin kernel.

» Acceptance rate->1 with decreasing 7.
» Hard to tune.

SGD is Baysian [Mandt et.al., 2017]: SGD is discretization of stochastic
Ornstein-Uhlenbeck process:

do(t) = —eg(0)dt + %BdW(t)

Using properties of OU, calibration of SGD is, C = B' B,
énew _ éold _ Hve[,(),
S
H~ NC’
Gt =pCea + (1= p)var(VeL())

Many others: MC dropout...

How well Deep Bayes methods work?

» Not as good as we would like. Ensembles are often better.
> Loss of Landscape [Fort et. al., 2019]

Ensembles indentify different modes
but ignore local uncertainty and might
Variational methods capture not pick the best point from ecach mode

Validation

-
* -

Space of solutions

'l‘mi.ning

How well Deep Bayes methods work?

» Not as good as we would like. Ensembles are often better.
> Loss of Landscape [Fort et. al., 2019]

Ensembles indentify different modes
but ignore local uncertainty and might
Variational methods capture not pick the best point from ecach mode
Validation

-
* -

Space of solutions

Training

Deep Ensemble Filter [Ulrych, Smidl, 20207] deep ensemble with inflation and
localization steps.

DEnFi: Active Learning

DENFi

Found minimum
bob
o o

10 20 30 40
Requests

50

Found minimum

SGLD
10 1.00
09
08
075
07
06
05 0.50
04
03 0.25
02
01 000
0.00 025 050 075
DE DEnFi
. 05
£ 00
2 -05
E
£ 10
£ -15
o .
g 20
3 -25
w .30
-35
10 20 30 40 50 10 20 30 40
Requests Requests

Real-world data: Active text classification

AUC and Learning lterations dependent on choice of new training data
100 {

0.95 1

=
o
=]

0.85

AUC metrics

0.80 4
— Passive Learning AUC evolution mean
— Active Learning AUC evolution mean

0.75 4

T T T T T
o 25 50 EE 100 125 150 175 200
Learning lterations

Take home message

» Bayesian methods are useful when data are not complete or not i.i.d.

> few data samples,
> active learning
> robust decision are required

» This happens in deep learning

» Plenty of work to be done

> approximate inference
> conjecture: redundancy in deep learning can be exploited to obtain Bayesian
inference

	Deep Bayesian Learning
	Active Learning

