List of topics

Definitions and theorems from the lecture (including proofs):

Z1. Sparse vectors, compressible vectors, best s-term approximation

Z2. (P_0) , (P_1) , NP-complexity of (P_0) (definition, theorem)

Z3. Fast and discrete Fourier transform

Z4. Null Space Property, definition, NSP \Leftrightarrow (P_1)

Z5. RIP, RIP \implies NSP, sketch of the proof

Z6. 2-stability of $\mathcal{N}(0,1)$, concentration of measure

Z7. RIP for one fixed point, nets on the sphere

Z8. Gauss matrices have RIP - theorem

Z9. Lemma of Johnson and Lindenstrauss

Topics - extension

- R1. Prony method proof
- R2. Stable NSP, proof

R3. RIP \implies NSP, full proof

R4. Gauss matrices have RIP - full proof

R5. Optimality of the number of measurements in the reconstruction of sparse vectors

R6. Details of http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/