List of topics

Definitions and theorems from the lecture (including proofs):

- 1. Sparse vectors, compressible vectors, best s-term approximation
- 2. (P_0) , (P_1) , NP-complexity of (P_0) (definition, theorem)
- 3. Null Space Property, definition, NSP \Leftrightarrow (P₁)
- 4. Stable and Robust NSP definitions
- 5. RIP, RIP \implies NSP
- 6. 2-stability of $\mathcal{N}(0,1)$, concentration of measure
- 7. RIP for one fixed point, nets on the sphere
- 8. Gauss matrices have RIP
- 9. Lemma of Johnson and Lindenstrauss
- 10. Optimality of the number of measurements in the reconstruction of sparse vectors
- 11. Fast and discrete Fourier transform
- 12. Prony method proof
- 13. Reconstruction of matrices with small rank from Gaussian measurements
- 14. (OMP), (CoSaMP), (IHT)