1. Let X_1, \ldots, X_n be random variables. Show that the matrix

$$C = (\operatorname{Cov}(X_j, X_k))_{j,k=1}^n = (\mathbb{E}(X_j - \mathbb{E}X_j)(X_k - \mathbb{E}X_k))_{j,k=1}^n$$

is positive semidefinite.

- 2. Let X_1, X_2, \ldots be independent random variables. Decide, if the variables
 - a) $Y_n = \max(X_1, \ldots, X_n)$
 - b) $Z_n = X_1 + \dots + X_n$
 - c) $W_n = X_1 \cdot \ldots \cdot X_n$

are Markov processes.

- 3. Let X_1, X_2, \ldots be independent random variables with $\mathbb{P}(X_i = +1) = p$ and $\mathbb{P}(X_i = -1) = q = 1 p$ and put $S_n = X_1 + \cdots + X_n$. Show that
 - a) $\mathbb{E}X_i = p q$, $\mathbb{E}S_n = n(p q)$, $\operatorname{Var}[X_n] = 4pq$, $\operatorname{Var}[S_n] = 4npq$,
 - b) $\mathbb{P}(S_{2n+1} = 2k) = \mathbb{P}(S_{2n} = 2k+1) = 0$ for $k \in \mathbb{Z}$ and $n \in \mathbb{N}$,
 - c) $\mathbb{P}(S_n = k) = 0$ for |k| > n,

d)
$$\mathbb{P}(S_{2n} = 2k) = {\binom{2n}{n+k}} p^{n+k} q^{n-k}, \mathbb{P}(S_{2n+1} = 2k+1) = {\binom{2n+1}{n+k+1}} p^{n+k+1} q^{n-k} \text{ for } |k| \le n.$$

- 4. Calculate the expected value and the autocovariance function for the following processes.
 - a) Let φ be a random uniformly distributed vector on the unit circle in \mathbb{R}^2 and $X_t = t \cdot \varphi, t \ge 0$;
 - b) S_n is the random walk with parameters p, q = 1 p;
 - c) $\theta \in \mathbb{R}$ is fixed, $Y, Z \sim \mathcal{N}(0, 1)$ and $X(t) = Y \cos(\theta t) + Z \sin(\theta t)$;
 - d) Y is uniformly distributed random variable on (0, 1) and $X_t = te^Y$;
 - e) Let $Y_n, n \in \mathbb{Z}$ be independent random variables with zero mean and variance $\sigma^2, m \in \mathbb{N}$ is a fixed positive integer and

$$X_n = \frac{1}{2m+1} \sum_{l=n-m}^{n+m} Z_l;$$

- f) $N = (N_t)_{t \ge 0}$ is the Poisson process;
- g) $W = (W_t)_{t>0}$ is the Wiener process;
- h) $B_t = W_t tW_1, t \in [0, 1]$ is the Brownian bridge.