List of topics

1. Basic facts about matrices: Spectral norm, Frobenius norm, trace, singular value decomposition, orthogonal matrices
2. Random matrices, Gaussian orthogonal ensemble, $\varrho(H)=\varrho\left(H_{1,1}, H_{1,2}, \ldots, H_{N, N}\right)$
3. Rotational invariance of GOE
4. Wigner's surmise $(N=2)$: δ-function notation, classical reformulation
5. Distance function from X_{1}, \ldots, X_{N} i.i.d. variables on $[0,1]$, limit for $N \rightarrow \infty$
6. $\operatorname{jpdf} \varrho\left(x_{1}, \ldots, x_{N}\right)$
7. Wigner's surmise $(N=2)$ from $\varrho\left(x_{1}, x_{2}\right)$
8. Definition of the spectral density $\varrho(x)$ from $\varrho\left(x_{1}, \ldots, x_{N}\right)$, counting function $n(x), n(A), \mathbb{E} n(A)$
9. Weak limit of $n_{N}(x)$, Wigner's semicircle law (statement)
10. volumes and areas A_{n-1}, V_{n} in \mathbb{R}^{n}, "volume" \mathbb{V}_{n} and (directly) \mathbb{V}_{2}
11. Vandermond: $|J(H \rightarrow\{x, O\})|$ - formulation of the general problem; $|J(H \rightarrow\{x, O\})|$ for $N=2$
12. jpdf $\varrho\left(x_{1}, \ldots, x_{N}\right)$ from $\varrho\left(H_{1,1}, \ldots, H_{N, N}\right)$: statement and sketch of the proof
13. Exponential of a matrix: definition, basic properties, spectrum, ordering of matrices
14. Trace and "trace is cyclic", Lie product formula, Golden-Thompson inequality (statement)
15. Scalar Bernstein inequality (with proof)
16. Non-commutative Bernstein inequality - statement and basic idea of the proof
17. Matrix sparsification - setting, the algorithm, error estimate
18. Matrix multiplication - setting, the algorithm, error estimate
19. Singular value decomposition - setting and the algorithm

Topics: extensions

R1. Vandermond: $|J(H \rightarrow\{x, O\})|-$ details for general N
R2. Lie product formula \& Golden-Thompson inequality (with notes)
R3. Non-commutative Bernstein inequality - details of the proof
R4. Matrix sparsification - proof and numerical implementation
R5. Non-commutative Bernstein inequality from the Lieb's theorem
R6. Lieb's theorem - proof
R7. Randomized matrix multiplication - proof and implementation
R8. Randomized SVD - proof and implementation

