
Annals of Mathematics 178 (2013), 443–452
http://dx.doi.org/10.4007/annals.2013.178.2.2

Optimal asymptotic bounds
for spherical designs

By Andriy Bondarenko, Danylo Radchenko, and Maryna Viazovska

Abstract

In this paper we prove the conjecture of Korevaar and Meyers: for each

N ≥ cdt
d, there exists a spherical t-design in the sphere Sd consisting of N

points, where cd is a constant depending only on d.

1. Introduction

Let Sd be the unit sphere in Rd+1 with the Lebesgue measure µd normal-

ized by µd(Sd) = 1.

A set of points x1, . . . , xN ∈ Sd is called a spherical t-design if∫
Sd
P (x) dµd(x) =

1

N

N∑
i=1

P (xi)

for all polynomials in d+ 1 variables, of total degree at most t. The concept of

a spherical design was introduced by Delsarte, Goethals, and Seidel [12]. For

each t, d ∈ N, denote by N(d, t) the minimal number of points in a spherical

t-design in Sd. The following lower bound,

(1) N(d, t) ≥



Ç
d+ k

d

å
+

Ç
d+ k − 1

d

å
if t = 2k,

2

Ç
d+ k

d

å
if t = 2k + 1,

is proved in [12].

Spherical t-designs attaining this bound are called tight. The vertices of a

regular t+1-gon form a tight spherical t-design in the circle, so N(1, t) = t+1.

Exactly eight tight spherical designs are known for d ≥ 2 and t ≥ 4. All

such configurations of points are highly symmetrical, and optimal from many
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different points of view (see Cohn, Kumar [10] and Conway, Sloane [11]). Un-

fortunately, tight designs rarely exist. In particular, Bannai and Damerell [2],

[3] have shown that tight spherical designs with d ≥ 2 and t ≥ 4 may exist only

for t = 4, 5, 7, or 11. Moreover, the only tight 11-design is formed by minimal

vectors of the Leech lattice in dimension 24. The bound (1) has been improved

by Delsarte’s linear programming method for most pairs (d, t); see [22].

On the other hand, Seymour and Zaslavsky [20] have proved that spherical

t-designs exist for all d, t ∈ N. However, this proof is nonconstructive and

gives no idea of how big N(d, t) is. So, a natural question is to ask how N(d, t)

differs from bound (1). Generally, to find the exact value of N(d, t) even for

small d and t is a surprisingly hard problem. For example, everybody believes

that 24 minimal vectors of the D4 root lattice form a 5-design with minimal

number of points in S3, although it is only proved that 22 ≤ N(3, 5) ≤ 24;

see [6]. Further, Cohn, Conway, Elkies, and Kumar [9] conjectured that every

spherical 5-design consisting of 24 points in S3 is in a certain 3-parametric

family. Recently, Musin [17] has solved a long standing problem related to this

conjecture. Namely, he proved that the kissing number in dimension 4 is 24.

In this paper we focus on asymptotic upper bounds on N(d, t) for fixed

d ≥ 2 and t → ∞. Let us give a brief history of this question. First, Wag-

ner [21] and Bajnok [1] proved that N(d, t) ≤ Cdt
Cd4 and N(d, t) ≤ Cdt

Cd3 ,

respectively. Then, Korevaar and Meyers [14] have improved these inequalities

by showing that N(d, t) ≤ Cdt
(d2+d)/2. They have also conjectured that

N(d, t) ≤ Cdt
d.

Note that (1) implies N(d, t) ≥ cdt
d. Here and in what follows we denote by

Cd and cd sufficiently large and sufficiently small positive constants depending

only on d, respectively.

The conjecture of Korevaar and Meyers attracted the interest of many

mathematicians. For instance, Kuijlaars and Saff [19] emphasized the im-

portance of this conjecture for d = 2 and revealed its relation to minimal

energy problems. Mhaskar, Narcowich, and Ward [16] have constructed posi-

tive quadrature formulas in Sd with Cdt
d points having almost equal weights.

Very recently, Chen, Frommer, Lang, Sloan, and Womersley [7], [8] gave a

computer-assisted proof that spherical t-designs with (t + 1)2 points exist in

S2 for t ≤ 100.

For d = 2, there is an even stronger conjecture by Hardin and Sloane [13]

saying that N(2, t) ≤ 1
2 t

2 + o(t2) as t → ∞. Numerical evidence supporting

the conjecture was also given.

In [4], we have suggested a nonconstructive approach for obtaining asymp-

totic bounds for N(d, t) based on the application of the Brouwer fixed point

theorem. This led to the following result:
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For each N ≥ Cdt
2d(d+1)

d+2 , there exists a spherical t-design in Sd

consisting of N points.

Instead of the Brouwer fixed point theorem, in this paper we use the

following result from the Brouwer degree theory [18, Ths. 1.2.6 and 1.2.9].

Theorem A. Let f : Rn → Rn be a continuous mapping and Ω an open

bounded subset, with boundary ∂Ω, such that 0 ∈ Ω ⊂ Rn. If 〈x, f(x)〉 > 0 for

all x ∈ ∂Ω, then there exists x ∈ Ω satisfying f(x) = 0.

We employ this theorem to prove the conjecture of Korevaar and Meyers.

Theorem 1. For each N ≥ Cdt
d, there exists a spherical t-design in Sd

consisting of N points.

Note that Theorem 1 is slightly stronger than the original conjecture be-

cause it guarantees the existence of spherical t-designs for each N greater than

Cdt
d.

This paper is organized as follows. In Section 2 we explain the main idea

of the proof. Then in Section 3 we present some auxiliary results. Finally, we

prove Theorem 1 in Section 4.

2. Preliminaries and the main idea

Let Pt be the Hilbert space of polynomials P on Sd of degree at most t

such that ∫
Sd
P (x)dµd(x) = 0,

equipped with the usual inner product

〈P,Q〉 =

∫
Sd
P (x)Q(x)dµd(x).

By the Riesz representation theorem, for each point x ∈ Sd, there exists a

unique polynomial Gx ∈ Pt such that

〈Gx, Q〉 = Q(x) for all Q ∈ Pt.

Then a set of points x1, . . . , xN ∈ Sd forms a spherical t-design if and only if

(2) Gx1 + · · ·+GxN = 0.

The gradient of a differentiable function f : Rd+1 → R is denoted by

∂f

∂x
:=

Ç
∂f

∂ξ1
, . . . ,

∂f

∂ξd+1

å
, x = (ξ1, . . . , ξd+1).

For a polynomial Q ∈ Pt, we define the spherical gradient

(3) ∇Q(x) :=
∂

∂x

Ç
Q

Ç
x

|x|

åå
,

where | · | is the Euclidean norm in Rd+1.
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We apply Theorem A to the open subset Ω of a vector space Pt:

(4) Ω :=

ß
P ∈ Pt

∣∣∣∣ ∫
Sd
|∇P (x)|dµd(x) < 1

™
.

Now we observe that the existence of a continuous mapping F : Pt → (Sd)N ,

such that for all P ∈ ∂Ω

(5)
N∑
i=1

P (xi(P )) > 0, where F (P ) = (x1(P ), . . . , xN (P )),

readily implies the existence of a spherical t-design in Sd consisting of N points.

Indeed, consider a mapping L : (Sd)N → Pt defined by

(x1, . . . , xN )
L−→ Gx1 + · · ·+GxN ,

and the following composition mapping f = L ◦ F : Pt → Pt. Clearly

〈P, f(P )〉 =
N∑
i=1

P (xi(P ))

for each P ∈ Pt. Thus, applying Theorem A to the mapping f , the vector

space Pt, and the subset Ω defined by (4), we obtain that f(Q) = 0 for some

Q ∈ Pt. Hence, by (2), the components of F (Q) = (x1(Q), . . . , xN (Q)) form a

spherical t-design in Sd consisting of N points.

The most naive approach to construct such F is to start with a certain well-

distributed collection of points xi (i = 1, . . . , N), put F (0) := (x1, . . . , xN ), and

then move each point along the spherical gradient vector field of P . Note that

this is the most greedy way to increase each P (xi(P )) and make
∑N

i=1 P (xi(P ))

positive for each P ∈ ∂Ω. Following this approach we will give an explicit

construction of F in Section 4, which will immediately imply the proof of

Theorem 1.

3. Auxiliary results

To construct the corresponding mapping F for each N ≥ Cdt
d, we exten-

sively use the following notion of an area-regular partition.

Let R = {R1, . . . , RN} be a finite collection of closed sets Ri ⊂ Sd such

that ∪Ni=1Ri = Sd and µd(Ri ∩Rj) = 0 for all 1 ≤ i < j ≤ N . The partition R
is called area-regular if µd(Ri) = 1/N , i = 1, . . . , N . The partition norm for R
is defined by

‖R‖ := max
R∈R

diamR,

where diamR stands for the maximum geodesic distance between two points

in R. We need the following fact on area-regular partitions (see Bourgain,

Lindenstrauss [5] and Kuijlaars, Saff [15]).
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Theorem B. For each N ∈ N, there exists an area-regular partition R =

{R1, . . . , RN} with ‖R‖ ≤ BdN
−1/d for some constant Bd large enough.

We will also use a result that is an easy corollary of Theorem 3.1 in [16].

Theorem C. There exists a constant rd such that for each area-regular

partition R = {R1, . . . , RN} with ‖R‖ < rd
m , each collection of points xi ∈ Ri

(i = 1, . . . , N ), and each polynomial P of total degree m, the inequality

(6)
1

2

∫
Sd
|P (x)|dµd(x) ≤ 1

N

N∑
i=1

|P (xi)| ≤
3

2

∫
Sd
|P (x)|dµd(x)

holds.

Theorem 3.1 in [16] was stated for slightly different definition of an area-

regular partition. Namely, it was additionally assumed that each Ri is a spher-

ical region. However the proof clearly works for our more general definition as

well; see [16, §3.3].

Corollary 1. For each area-regular partition R = {R1, . . . , RN} with

‖R‖ < rd
m+1 , each collection of points xi ∈ Ri (i = 1, . . . , N ), and each polyno-

mial P of total degree m,

(7)
1

3
√
d

∫
Sd
|∇P (x)|dµd(x) ≤ 1

N

N∑
i=1

|∇P (xi)| ≤ 3
√
d

∫
Sd
|∇P (x)|dµd(x).

Proof. For a point x = (ξ1, . . . , ξd+1) ∈ Sd, we get by (3) that

|∇P (x)| =
»
P 2
1 (x) + · · ·+ P 2

d+1(x),

where

Pj(x) :=
∂P

∂ξj
(x)−

d+1∑
k=1

ξjξk
∂P

∂ξk
(x)

are polynomials of total degree at most m+ 1. Thus, using a simple inequality

1√
d+ 1

d+1∑
k=1

|Pk(xi)| ≤

Ã
d+1∑
k=1

P 2
k (xi) ≤

d+1∑
k=1

|Pk(xi)|

and then applying (6) to polynomials Pk, we obtain the statement of the corol-

lary. �

4. Proof of Theorem 1

In this section we construct the map F introduced in Section 2 and thereby

finish the proof of Theorem 1.

For d, t ∈ N, take Cd > (54dBd/rd)d, where Bd is as in Theorem B and rd is

as in Theorem C, and fix N ≥ Cdt
d. Now we are in a position to give an exact
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construction of the mapping F : Pt → (Sd)N , which satisfies condition (5).

Take an area-regular partition R = {R1, . . . , RN} with

(8) ‖R‖ ≤ BdN
−1/d <

rd
54dt

as provided by Theorem B, and choose an arbitrary xi ∈ Ri for each i =

1, . . . , N . Put ε = 1
6
√
d
, and consider the function

hε(u) :=

u if u > ε,

ε otherwise.

Take a mapping U : Pt × Sd → Rd+1 such that

U(P, y) =
∇P (y)

hε(|∇P (y)|)
.

For each i = 1, . . . , N , let yi : Pt × [0,∞) → Sd be the map satisfying the

differential equation

(9)
d

ds
yi(P, s) = U(P, yi(P, s))

with the initial condition

yi(P, 0) = xi

for each P ∈ Pt. Note that each mapping yi has its values in Sd by definition

of spherical gradient (3). Since the mapping U(P, y) is Lipschitz continuous in

both P and y, each yi is well defined and continuous in both P and s, where

the metric on Pt is given by the inner product. Finally, put

(10) F (P ) = (x1(P ), . . . , xN (P )) :=

Å
y1(P,

rd
3t

), . . . , yN

Å
P,
rd
3t

ãã
.

By definition, the mapping F is continuous on Pt. So, as explained in Section 2,

to finish the proof of Theorem 1 it suffices to prove

Lemma 1. Let F : Pt → (Sd)N be the mapping defined by (10). Then for

each P ∈ ∂Ω,

1

N

N∑
i=1

P (xi(P )) > 0,

where Ω is given by (4).

Proof. Fix P ∈ ∂Ω; that is,∫
Sd
|∇P (x)|dµd(x) = 1.
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For the sake of simplicity, we write yi(s) in place of yi(P, s). By the Newton-

Leibniz formula, we have

1

N

N∑
i=1

P (xi(P )) =
1

N

N∑
i=1

P (yi(rd/3t))(11)

=
1

N

N∑
i=1

P (xi) +

∫ rd/3t

0

d

ds

[
1

N

N∑
i=1

P (yi(s))

]
ds.

Now to prove Lemma 1, we first estimate the value∣∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣∣
from above and then estimate the value

d

ds

[
1

N

N∑
i=1

P (yi(s))

]

from below for each s ∈ [0, rd/3t]. We have∣∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
i=1

∫
Ri

P (xi)− P (x) dµd(x)

∣∣∣∣∣∣ ≤
N∑
i=1

∫
Ri

|P (xi)− P (x)|dµd(x)

≤ ‖R‖
N

N∑
i=1

max
z∈Sd: dist(z,xi)≤‖R‖

|∇P (z)|,

where dist(z, xi) denotes the geodesic distance between z and xi. Hence, for

zi ∈ Sd such that dist(zi, xi) ≤ ‖R‖ and

|∇P (zi)| = max
z∈Sd: dist(z,xi)≤‖R‖

|∇P (z)|,

we obtain ∣∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣∣ ≤ ‖R‖N
N∑
i=1

|∇P (zi)|.

Consider another area-regular partition R′ = {R′1, . . . , R′N} defined by R′i =

Ri ∪ {zi}. Clearly ‖R′‖ ≤ 2‖R‖ and so, by (8), we get ‖R′‖ < rd/(27 d t).

Applying inequality (7) to the partition R′ and the collection of points zi, we

obtain that

(12)

∣∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣∣ ≤ 3
√
d ‖R‖

∫
Sd
|∇P (x)|dµd(x) <

rd

18
√
d t
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for any P ∈ ∂Ω. On the other hand, the differential equation (9) implies

d

ds

[
1

N

N∑
i=1

P (yi(s))

]
=

1

N

N∑
i=1

|∇P (yi(s))|2

hε(|∇P (yi(s))|)
(13)

≥ 1

N

∑
i: |∇P (yi(s))|≥ε

|∇P (yi(s))|

≥ 1

N

N∑
i=1

|∇P (yi(s))| − ε.

Since ∣∣∣∣∣ ∇P (y)

hε(|∇P (y)|)

∣∣∣∣∣ ≤ 1

for each y ∈ Sd, it follows again from (9) that
∣∣∣dyi(s)ds

∣∣∣ ≤ 1. Hence we arrive at

dist(xi, yi(s)) ≤ s.

Now for each s ∈ [0, rd/3t], we consider the area-regular partition R′′ =

{R′′1 , . . . , R′′N} given by R′′i = Ri ∪ {yi(s)}. By (8), we have

‖R′′‖ < rd
54dt

+
rd
3t
,

so we can apply (7) to the partition R′′ and the collection of points yi(s). This

and inequality (13) yield

d

ds

[
1

N

N∑
i=1

P (yi(s))

]
≥ 1

N

N∑
i=1

|∇P (yi(s))| −
1

6
√
d

(14)

≥ 1

3
√
d

∫
Sd
|∇P (x)|dµd(x)− 1

6
√
d

=
1

6
√
d

for each P ∈ ∂Ω and s ∈ [0, rd/3t]. Finally, equation (11) and inequalities (12)

and (14) imply

(15)
1

N

N∑
i=1

P (xi(P )) >
1

6
√
d

rd
3t
− rd

18
√
d t

= 0.

Lemma 1 is proved. �
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