Modern Approximation Theory

Summer term 2022

Exercises: 4. Sheet

- 1. Let t > 0 be a real number and let $d \ge 2$ be an integer. Show that there exists $\mathcal{M} \subset \mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : \|x\|_2 = 1\}$ such that
 - (i) $\#\mathcal{M} \leq (1+2/t)^d$,
 - (ii) $\forall z \in \mathbb{S}^{d-1} \exists x \in \mathcal{M} : ||x z||_2 \le t.$

Hint: Take $x^1 \in \mathbb{S}^{d-1}$ arbitrarily. If $x^1, \ldots, x^j \in \mathbb{S}^{d-1}$ were already chosen, take $x^{j+1} \in \mathbb{S}^{d-1}$ arbitrarily such that $||x^{j+1} - x^l||_2 > t$ for all $l = 1, \ldots, j$. Repeat this, as long as it goes. Then use that $B(x^i, t/2)$ are all disjoint and included in B(0, 1 + t/2) and compare the volumes.

2. Let $\omega \sim \mathcal{N}(0,1)$ be a standard Gaussian variable. Show that

$$\mathbb{E}e^{\lambda\omega^2} = \frac{1}{\sqrt{1-2\lambda}}, \quad -\infty < \lambda < 1/2.$$

3. Let $\lambda = (\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m$ and let $\omega_1, \ldots, \omega_m \sim \mathcal{N}(0, 1)$ be independent. Show that

$$\langle \lambda, \omega \rangle = \lambda_1 \omega_1 + \dots + \lambda_m \omega_m \sim \|\lambda\|_2 \cdot \mathcal{N}(0, 1) = \mathcal{N}(0, \|\lambda\|_2^2).$$

4. Prove the Lemma of Johnson and Lindestrauss: Let $0 < \varepsilon < 1$ and let m, N and d be positive integers with

$$m \ge 4\left(\varepsilon^2/2 - \varepsilon^3/3\right)^{-1} \ln N.$$

Then for every set $\{x^1, \ldots, x^N\} \subset \mathbb{R}^d$ there is a mapping $f : \mathbb{R}^d \to \mathbb{R}^m$ with

$$(1-\varepsilon)\|x^{i}-x^{j}\|_{2}^{2} \leq \|f(x^{i})-f(x^{j})\|_{2}^{2} \leq (1+\varepsilon)\|x^{i}-x^{j}\|_{2}^{2}, \quad i,j \in \{1,\ldots,N\}.$$

Hint: Choose f(x) = Ax, where A is a Gaussian matrix. Then use the concentration inequality for one Az with $z = (x^i - x^j)/||x^i - x^j||_2$ and the union bound.

5. Finish the proof of the RIP for Gaussian matrices, i.e., show that if C' > 0 is given then there exists C > 0 such that if

$$m \ge C\delta^{-2} \left(s \ln\left(\frac{eN}{s}\right) + \ln\left(\frac{2}{\varepsilon}\right) \right),$$
$$\binom{N}{s} \cdot 9^s \cdot 2 \exp(-C'm\delta^2) < 1.$$

then