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ABSTRACT

In this talk we summarize the results of our recent work [4, 5]
Let us assume thatis a continuous function defined on a con-
vex body inR¢, of the formf(z) = g(Ax), whereA is ak x d
matrix andg is a function ofk variables fork <« d. Using
only a limited number of point evaluation&«;), we would
like to construct a uniform approximation ¢f Under certain
smoothness and variation assumptions on the fungtiand an
arbitrary choice of the matrip4, we present a randomized algo-
rithm, where the sampling poin{g:; } are drawn at random and
which recovers a uniform approximation gfwith high proba-
bility.

We start with the case, whenf(zy,...,zq)
9(Xiy, ..., 24, ), where the indiced < iy < ip < - - <ip <d
are unknown. Later on, we study the case, when= 1,
ie. f(zr) = gla-x) anda € R? is compressible and
finally the problem as stated above witharbitrary and A
with compressible rows. Due to the arbitrarinessAfthe

(€iy,---,ei, ), Wheree;, are the canonical vectors, i.e.
el
i1
A= (2)
A
and
@) = f(er,. o @) = gleiy, o w) = glar). (3)

Here the sef = {i1,...,ix} C {1,...,d} collects thek
(unknown) active coordinatésg.

e k=1,i.e.
f(@) =gla- ),

wherea € R? is a given vector.

(4)

First, let us give a brief overview of known results. Funoso

choice of the sampling points will be according to suitableOf type (3) were recently studied using deterministic atipons

random distributions and our results hold with overwhefmin
probability. Our approach uses tools taken fromabmpressed

in [3]. In particular, the authors of [3] describe, how to epp
imate f uniformly to accuracy|g||Liph by evaluating the func-

sensing framework, recent Chernoff bounds for sums oftionon2(k+1)e**'h~*log, d adaptively chosen points. Here,

positive-semidefinite matrices, and classical stabilibuds
for invariant subspaces of singular value decompositions.

Keywords— high dimensional function approximation,

h > 0 is the chosen precision amgds assumed to be Lipschitz
with its Lipschitz norm denoted byyg||vi,. The non-adaptive
choice of points was further treated in [7]. Furthermorq, [2
studies the functions of type (4).

compressed sensing, Chernoff bounds for sums of positive- Our approach is different. We give a probabilistic algarith

semidefinite matrices, stability bounds for invariant ares
of singular value decompositions.

1. INTRODUCTION

We study the recovery of the function
r e R4,

f(z) = g(Az), 1)

whereA is ak x d matrix andyg is a function ofk variables for
k < d. Important special cases include the following.

e A is a projection of R? onto a linear span of

which gives a good approximation gfwith high probability.

It uses the ideas afoncentration of measur@nd compressed
sensingcombined with recent Chernoff bounds for sums of
positive-semidefinite matrices, and classical stabiliyitds for
invariant subspaces of singular value decompositions.

2. ACTIVE COORDINATES

Let us start with functions of type (3) defined {in1]¢, where
A is given by (2). Similarly to the approach described in [2, 4]
we rely on numerical approximations of directional derives
g—i (x). For this reason, we assume tlfas actually defined on
a small neighborhood d6, 1]¢, namely onD = (—¢, 1 + €)4.



Forz € [0,1]¢, ¢ € R? with ||¢]|o := max; |¢;] < rand  Theorem 1. Let f : R? — R be a sparse function as described
e, 7 € Ry, with re < €, we get by Taylor expansion the identity in (3) that is defined and twice continuously differentiable on
af a small neighborhood of0, 1]?. For L < d, a positive real
Vg(Az)" Ap = == () number, the randomized algorithm described above recdkiers
9 k unknown active coordinates ¢fwith probability at leastl —
_ flz+ 6%;) —fl@) %[@TVQJC(CW] (5) 6 exp(—L) using only
for a suitable((z, ») € D. We apply (5) to the set of points
X = {2/ € [0,1]¢ : j = 1,...,mx} drawn uniformly at
random with respect to the Lebesgue measure and the set
directions® = {p? € R?: j =1,...,ma}, where

i1/ yme with prob. 1/2,
Yo = —1/ms  with prob. 1/2 Wedconsiderfunction$ : Bra — R of type (4) with||af|,a = 1
an

O(k(L 4 log k)(L + log d)) (10)
%z;[\mples off.

3. ONE DIMENSIONAL CASE

foreveryj € {1,...,mqg} and every € {1,...,d}. Actually d . 1/q
we identify® with them. x d matrix whose rows are the vectors lallea := Z |a| <y (11)
()T, We rewrite themy x mg instances of (5) in matrix i=1

notation as for some0 < ¢ < 1. Here, Bga stands for the unit ball aR?.
X =Y +¢&, (6)  As before, we suppose th#tus defined on some neighbor-

whereY andé€ are theme x ma matrices defined entry-wise hood ofB, i.e. (1 + €) B. Furthermore, we assume that
by

) ) . max |[[Dglloc < Co (12)
f(@ +ep') = f(a?) Osas2
Yij = ; (7)
e € . and
Eij = —5[(<PZ)TV2f(<ij)<PZ], (8) ,
| . a= [ IVI@IE e (0
andX is thed x ma matrix with:-th row Sd-t
i 89 1 ag i = / B |g/(a . x)|2d‘u§d—l($) > 0, (13)
X' = <a—Zl(A:17 ),...,aZi (Ax )) , sd

whereS?~! is the sphere 0Bg. andug.—: is the normalized
gurface measure dif .

We modify the approach presented above. We consider again
the Taylor expansion (5). This time, we choose the points

fori € I and all other rows equal to zero.

Now we can already describe the idea, how to recover th
(unknown) indices € I. The discussion above shows that it
is enough to identify the non zero rows &f. Multiplying (6)

with &7 from the left-hand side, we get {27 €[0,1]%: j =1,...,mx} generated at random &
with respect tqus«—1. The matrix® is generated as before and
»Tox =Ty 4+ o7¢€. (9)  we obtain (6) again.

. L . _ _ However, the matrixX' has a different structure determined
This identity is crucial for our algorithm. Observe thetis by the form of 4, namelyX = a7G7, whereG = (¢(a -

obtained by sampling’ as described by (7), usinggnyme #1),....¢'(a - 2™*))T. Let us observe thak and®X are

function evalugtions, an®”Y can be calcu_lated by a matrix 5w matrices with rank one. The assumptions (12) and (13)
product. Looking at the random construction®f & we see ., ypined with the usual Hoeffding’s inequality imply immied
that in expectation it is identical to thé x d identity matrix. ately that there exists at least ofiec {1,...,mx} such that

Thus we can expect it to behave essentially like that when ap-/(, . i\l is larger then/a(1 — 5). 0 < s < 1 with high
plied to the rank: matrix X, i.e. ?7®X ~ X. Finally, ®7¢& H;égabg?”t))l, (depegnding om::(s o 2’1,ng). § g

shom;ld be sr?all as Iong asvas ChPSe” small enough, leading ™ | ot 5 now describe, how we use the techniques of com-
to®'Y ~ ®* & X. Putting these pieces together we get that pressed sensing to construct an approximatiasf a. Each

7Y ~ X, column of X has the formX; = ¢/(a-27)a™ and for this (com-
pressible) vector the theory of compressed sensing imihias
meaning that to identify the active componentsfofwe just  if ® was drawn at random as described above, an approximation
need to select theelargest rows ofb”Y" in the maximum norm. X of X; may be obtained through @p minimization problem
Expressed in a mathematical way, we need to estimate thgith the error
probability that thek largest rows of®”Y in the maximum
norm coincide with the: non-vanishing rows of. This was . me ~( ) €
done in [5], where the following theorem was proved. 15 = Xilleg S (10 ) + (14)
: g(d/me) + 1 NG

Q=
=




with high probability. Here the constants involved do not de Proposition 1. Let us fix\M € N and assume that: Bg — R
pend onmg or d, but depend oy, Cs, ¢ and other parameters. is CM*2-differentiable in an open neighborhodd of 0 and
We refer to [4] for an extensive track of the constants. dd_’;g(o) =0for¢=1,...,M. Then

It turns out that the estimate (14) transfers immediatetly in ¢
the estimate ofa — a||,« for a = X /|| X;|| .., i.e. a is a good B I'(d/2) L gy 43
approximation ofa. With these tools at hand we obtain the a(d) = /20 ((d — 1)/2) / 9" I —y7) = dy

) -1
following result. = 0@d™™M), ford — oo.

Theorem 2. Letus fix0 < s < 1,0 < ¢ < 1, my > 1
and1l < mg < d. Under the assumptions and potations fixed 4. GENERAL DIMENSION
above, with high probabilitythere exists a vectak ; obtained
by ¢, minimization, such that foi = X; /|| X} ||« the function  We describe briefly the modification necessary if 1, namely
. o if f(z)=g(Az)andA is ak x d matrix. We suppose that the
flz) = g(a-x), (15 rows of A are compressible
defined by means of

1/q
d

o L p(AT _ _

gy)=fla'y), ye(-(1+e,1+e), (16) > il <0 (18)
has the approximation property =1

p _ € for every: € {1,...,k} and (without loss of generality) that
- < _— . . . i "
1f = flloe < 2C2(1+9) a(l—s)—¢ (17) AAT is the identity operator oiR*. The regularity condition
. . . 12) is replaced b
whereé is the right hand side of14). (12)is rep y
Let us summarize the algorithm. We evaluate the function ﬂlg [D%glloc < Cs. (19)
f as described in (7) and construct the mafrix Using the =
techniques of compressed sensing (i.e. with the help ofin-  Instead of the condition (13), we consider the matrix
imization) we recover the corresponding approximationfor
each column¥X;; of X. We fix thej, for which || X;|| ,« is max- H = / V)V f(x) duga(z). (20)
2 gd—1

imal. Then we put: = X, /|| X;]|,+ and defingj by (16). The
error estimate (17) then follows.” Due to the randomness of One may observe th&t/ is a positive semi-definite-rank ma-
and corresponding concentration effects, in praxis it wdag  trix. For the problem to be well-conditioned we demand that t
sufficient to choose thgto be the index of the largest row B, the singular values of the matri{/ satisfy

The approximation performances of our learning strategy ar ¢ ¢
basically determined by the constant o(H") > - >0x(H') > a>0. (21)

_ 1 (a- 2)[2d (2) Using (5) with the same choice ot and ®, we obtain
“= a1 gRa- L) Algd-1 ). again (6). The form ofX is now X = ATG”, whereG =

T T\T H R H
Due to symmetry reasons this quantity does not depend on tt‘fﬁvgmxl) |- IVg(Azm, )")" collects again the derivatives
g.

particular choice ofi. As clarified in [4], under the legitimate

assumption thaNaHeg — 1, the measureis._: determines a Using again the techniques of compressed sensing applied to

each columnX; of X separately, we obtain

push-forward measure; = %(1 — )T L on
the unit intervalBg, for which X = X|lr S vmaé, (22)
a= [ lla o) Pdusss(a) where
Sd—l 7(171) )

1@ g s g_k(—% ) UL (o

T TA((d—1)/2) /,1 g )1 = y7) = dy. log(d/ma) + 1 NG
We observe that is determined by the interplay between theand|| - || is the Frobenius norm of a matrix.
variation properties of and the measurg,. The most impor- Hoeffding’s inequality may be generalized to sums of ran-

tant property ofu; is that it concentrates around zero exponen-dom semidefinite matrices, cf. [1] and [6]. In combinationtwi
tially fast asd — oco. Hence, the asymptotic behavior@fex-  (21) it follows thato (X) > /mxa(1 — s) with high proba-
clusively depends on the behavior of the functidin a neigh-  pjlity. The matrix A (which then serves as an approximation of
borhood of0. To illustrate this phenomenon more precisely, we 4) is obtained as a part of the singular value decomposition of
present the following result. X. This is then combined with results on stability of singular

1the probability of failure decays exponentiallyrifs andm x are increas- Valu_e decomposit.ion to Obt.ain an estimateffdr— Al .
ing. Finally, the main approximation results looks as follows.




Theorem 3. Letus fix0 < s < 1,0 < ¢ < 1,mxy > 1and

1 < mg < d. Underthe assumptions and notations fixed above,
let X be thed x mx matrix whose columns are the vectors
Xj obtained by/; minimization and write the singular value
decomposition of its transpose” as

; oA S0 VT
XT:(Ul U2)(01 22><‘%T>7

where3; contains the largest singular values. Then with high
probability the matrixA = V;!' satisfies that the function

f(z) = 9(Az), (24)

defined by means of

9(y) = f(ATy), ye€ Bp(1+9), (25)

has the approximation property

1 = flloo < 2C2VE(1 + ) ., (26)

all—s)—¢
wheres is as in(23).

The discussion on tractability can proceed exactly as in

the casek = 1 with the push-forward measurg, =
d—2—k .
%(1 - ||y||§,2c) >~ LF of pge1 on the unit ball

Bpr instead ofu .
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