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ABSTRACT

In this talk we summarize the results of our recent work [4, 5].
Let us assume thatf is a continuous function defined on a con-
vex body inRd, of the formf(x) = g(Ax), whereA is ak × d
matrix andg is a function ofk variables fork ≪ d. Using
only a limited number of point evaluationsf(xi), we would
like to construct a uniform approximation off . Under certain
smoothness and variation assumptions on the functiong, and an
arbitrary choice of the matrixA, we present a randomized algo-
rithm, where the sampling points{xi} are drawn at random and
which recovers a uniform approximation off with high proba-
bility.

We start with the case, whenf(x1, . . . , xd) =
g(xi1 , . . . , xik

), where the indices1 ≤ i1 < i2 < · · · < ik ≤ d
are unknown. Later on, we study the case, whenk = 1,
i.e. f(x) = g(a · x) and a ∈ Rd is compressible, and
finally the problem as stated above withk arbitrary andA
with compressible rows. Due to the arbitrariness ofA, the
choice of the sampling points will be according to suitable
random distributions and our results hold with overwhelming
probability. Our approach uses tools taken from thecompressed
sensing framework, recent Chernoff bounds for sums of
positive-semidefinite matrices, and classical stability bounds
for invariant subspaces of singular value decompositions.

Keywords— high dimensional function approximation,
compressed sensing, Chernoff bounds for sums of positive-
semidefinite matrices, stability bounds for invariant subspaces
of singular value decompositions.

1. INTRODUCTION

We study the recovery of the function

f(x) = g(Ax), x ∈ R
d, (1)

whereA is ak × d matrix andg is a function ofk variables for
k ≪ d. Important special cases include the following.

• A is a projection of Rd onto a linear span of

(ei1 , . . . , eik
), whereeij are the canonical vectors, i.e.

A =







eT
i1
...

eT
ik






(2)

and

f(x) = f(x1, . . . , xd) = g(xi1 , . . . , xik
) = g(xI). (3)

Here the setI = {i1, . . . , ik} ⊆ {1, . . . , d} collects thek
(unknown) active coordinatesiℓ.

• k = 1, i.e.
f(x) = g(a · x), (4)

wherea ∈ Rd is a given vector.

First, let us give a brief overview of known results. Functions
of type (3) were recently studied using deterministic algorithms
in [3]. In particular, the authors of [3] describe, how to approx-
imatef uniformly to accuracy‖g‖Liph by evaluating the func-
tion on2(k+1)ek+1h−k log2 d adaptively chosen points. Here,
h > 0 is the chosen precision andg is assumed to be Lipschitz
with its Lipschitz norm denoted by‖g‖Lip. The non-adaptive
choice of points was further treated in [7]. Furthermore, [2]
studies the functions of type (4).

Our approach is different. We give a probabilistic algorithm,
which gives a good approximation off with high probability.
It uses the ideas ofconcentration of measureandcompressed
sensingcombined with recent Chernoff bounds for sums of
positive-semidefinite matrices, and classical stability bounds for
invariant subspaces of singular value decompositions.

2. ACTIVE COORDINATES

Let us start with functions of type (3) defined on[0, 1]d, where
A is given by (2). Similarly to the approach described in [2, 4],
we rely on numerical approximations of directional derivatives
∂f
∂ϕ (x). For this reason, we assume thatf is actually defined on

a small neighborhood of[0, 1]d, namely onD = (−ǭ, 1 + ǭ)d.



For x ∈ [0, 1]d, ϕ ∈ Rd with ‖ϕ‖∞ := maxi |ϕi| ≤ r and
ǫ, r ∈ R+, with rǫ < ǭ, we get by Taylor expansion the identity

∇g(Ax)T Aϕ =
∂f

∂ϕ
(x)

=
f(x + ǫϕ) − f(x)

ǫ
− ǫ

2
[ϕT∇2f(ζ)ϕ] (5)

for a suitableζ(x, ϕ) ∈ D. We apply (5) to the set of points
X = {xj ∈ [0, 1]d : j = 1, . . . , mX} drawn uniformly at
random with respect to the Lebesgue measure and the set of
directionsΦ = {ϕj ∈ Rd : j = 1, . . . , mΦ}, where

ϕj
ℓ =

{

1/
√

mΦ with prob. 1/2,

−1/
√

mΦ with prob. 1/2

for everyj ∈ {1, . . . , mΦ} and everyℓ ∈ {1, . . . , d}. Actually
we identifyΦ with themΦ×d matrix whose rows are the vectors
(ϕi)T . We rewrite themX × mΦ instances of (5) in matrix
notation as

ΦX = Y + E , (6)

whereY andE are themΦ × mX matrices defined entry-wise
by

yij =
f(xj + ǫϕi) − f(xj)

ǫ
, (7)

εij = − ǫ

2
[(ϕi)T∇2f(ζij)ϕ

i], (8)

andX is thed × mX matrix with i-th row

X i :=

(

∂g

∂zi
(Ax1), . . . ,

∂g

∂zi
(AxmX )

)

,

for i ∈ I and all other rows equal to zero.
Now we can already describe the idea, how to recover the

(unknown) indicesi ∈ I. The discussion above shows that it
is enough to identify the non zero rows ofX . Multiplying (6)
with ΦT from the left-hand side, we get

ΦT ΦX = ΦT Y + ΦTE . (9)

This identity is crucial for our algorithm. Observe thatY is
obtained by samplingf as described by (7), using2mXmΦ

function evaluations, andΦT Y can be calculated by a matrix
product. Looking at the random construction ofΦT Φ we see
that in expectation it is identical to thed × d identity matrix.
Thus we can expect it to behave essentially like that when ap-
plied to the rankk matrix X , i.e. ΦT ΦX ≈ X . Finally, ΦTE
should be small as long asǫ was chosen small enough, leading
to ΦT Y ≈ ΦT ΦX . Putting these pieces together we get that

ΦT Y ≈ X,

meaning that to identify the active components off , we just
need to select thek largest rows ofΦT Y in the maximum norm.

Expressed in a mathematical way, we need to estimate the
probability that thek largest rows ofΦT Y in the maximum
norm coincide with thek non-vanishing rows ofX . This was
done in [5], where the following theorem was proved.

Theorem 1. Letf : Rd → R be a sparse function as described
in (3) that is defined and twice continuously differentiable on
a small neighborhood of[0, 1]d. For L ≤ d, a positive real
number, the randomized algorithm described above recoversthe
k unknown active coordinates off with probability at least1−
6 exp(−L) using only

O(k(L + log k)(L + log d)) (10)

samples off .

3. ONE DIMENSIONAL CASE

We consider functionsf : BRd → R of type (4) with‖a‖ℓd
2

= 1
and

‖a‖ℓd
q

:=

( d
∑

j=1

|aj |q
)1/q

≤ C1 (11)

for some0 < q ≤ 1. Here,BRd stands for the unit ball ofRd.
As before, we suppose thatf us defined on somēǫ neighbor-
hood ofB, i.e. (1 + ǭ)B. Furthermore, we assume that

max
0≤α≤2

‖Dαg‖∞ ≤ C2 (12)

and

α =

∫

Sd−1

‖∇f(x)‖2
ℓd
2

dµSd−1(x)

=

∫

Sd−1

|g′(a · x)|2dµSd−1(x) > 0, (13)

whereSd−1 is the sphere ofBRd andµSd−1 is the normalized
surface measure onSd−1.

We modify the approach presented above. We consider again
the Taylor expansion (5). This time, we choose the pointsX =
{xj ∈ [0, 1]d : j = 1, . . . , mX} generated at random onSd−1

with respect toµSd−1 . The matrixΦ is generated as before and
we obtain (6) again.

However, the matrixX has a different structure determined
by the form ofA, namelyX = aTGT , whereG = (g′(a ·
x1), . . . , g′(a · xmX ))T . Let us observe thatX and ΦX are
now matrices with rank one. The assumptions (12) and (13)
combined with the usual Hoeffding’s inequality imply immedi-
ately that there exists at least onej ∈ {1, . . . , mX} such that
|g′(a · xj)| is larger then

√

α(1 − s), 0 < s < 1 with high
probability (depending onmX , s, α andC2).

Let us now describe, how we use the techniques of com-
pressed sensing to construct an approximationâ of a. Each
column ofX has the formXj = g′(a ·xj)aT and for this (com-
pressible) vector the theory of compressed sensing impliesthat
if Φ was drawn at random as described above, an approximation
X̂j of Xj may be obtained through anℓ1 minimization problem
with the error

‖Xj − X̂j‖ℓd
2

.

(

mΦ

log(d/mΦ) + 1

)−( 1

q −
1

2 )
+

ǫ√
mΦ

(14)



with high probability. Here the constants involved do not de-
pend onmΦ ord, but depend onC1, C2, q and other parameters.
We refer to [4] for an extensive track of the constants.

It turns out that the estimate (14) transfers immediately into
the estimate of‖a − â‖ℓd

2

for â = X̂j/‖X̂j‖ℓd
2

, i.e. â is a good
approximation ofa. With these tools at hand we obtain the
following result.

Theorem 2. Let us fix0 < s < 1, 0 < q ≤ 1, mX ≥ 1
and1 ≤ mΦ ≤ d. Under the assumptions and notations fixed
above, with high probability1 there exists a vector̂Xj obtained
by ℓ1 minimization, such that for̂a = X̂j/‖X̂j‖ℓd

2

the function

f̂(x) = ĝ(â · x), (15)

defined by means of

ĝ(y) := f(âT y), y ∈ (−(1 + ǭ), 1 + ǭ), (16)

has the approximation property

‖f − f̂‖∞ ≤ 2C2(1 + ǭ)
ε̂

√

α(1 − s) − ε̂
. (17)

whereε̂ is the right hand side of(14).

Let us summarize the algorithm. We evaluate the function
f as described in (7) and construct the matrixY . Using the
techniques of compressed sensing (i.e. with the help ofℓ1 min-
imization) we recover the corresponding approximationX̂j for
each columnXj of X . We fix thej, for which‖X̂j‖ℓd

2

is max-

imal. Then we put̂a = X̂j/‖X̂j‖ℓd
2

and definêg by (16). The
error estimate (17) then follows. Due to the randomness ofΦ
and corresponding concentration effects, in praxis it would be
sufficient to choose thej to be the index of the largest row ofY .

The approximation performances of our learning strategy are
basically determined by the constant

α =

∫

Sd−1

|g′(a · x)|2dµSd−1(x).

Due to symmetry reasons this quantity does not depend on the
particular choice ofa. As clarified in [4], under the legitimate
assumption that‖a‖ℓd

2

= 1, the measureµSd−1 determines a

push-forward measureµ1 = Γ(d/2)
π1/2Γ((d−1)/2)

(1 − y2)
d−3

2 L1 on
the unit intervalBR, for which

α =

∫

Sd−1

|g′(a · x)|2dµSd−1(x)

=
Γ(d/2)

π1/2Γ((d − 1)/2)

∫ 1

−1

|g′(y)|2(1 − y2)
d−3

2 dy.

We observe thatα is determined by the interplay between the
variation properties ofg and the measureµ1. The most impor-
tant property ofµ1 is that it concentrates around zero exponen-
tially fast asd → ∞. Hence, the asymptotic behavior ofα ex-
clusively depends on the behavior of the functiong′ in a neigh-
borhood of0. To illustrate this phenomenon more precisely, we
present the following result.

1the probability of failure decays exponentially ifmΦ andmX are increas-
ing.

Proposition 1. Let us fixM ∈ N and assume thatg : BR → R

is CM+2-differentiable in an open neighborhoodU of 0 and
dℓ

dxℓ g(0) = 0 for ℓ = 1, . . . , M . Then

α(d) =
Γ(d/2)

π1/2Γ((d − 1)/2)

∫ 1

−1

|g′(y)|2(1 − y2)
d−3

2 dy

= O(d−M ), for d → ∞.

4. GENERAL DIMENSION

We describe briefly the modification necessary ifk > 1, namely
if f(x) = g(Ax) andA is ak × d matrix. We suppose that the
rows ofA are compressible





d
∑

j=1

|aij |q




1/q

≤ C1 (18)

for every i ∈ {1, . . . , k} and (without loss of generality) that
AAT is the identity operator onRk. The regularity condition
(12) is replaced by

sup
|α|≤2

‖Dαg‖∞ ≤ C2. (19)

Instead of the condition (13), we consider the matrix

Hf :=

∫

Sd−1

∇f(x)∇f(x)T dµSd−1(x). (20)

One may observe thatHf is a positive semi-definitek-rank ma-
trix. For the problem to be well-conditioned we demand that the
the singular values of the matrixHf satisfy

σ1(H
f ) ≥ · · · ≥ σk(Hf ) ≥ α > 0. (21)

Using (5) with the same choice ofX and Φ, we obtain
again (6). The form ofX is now X = ATGT , whereG =
(∇g(Ax1)

T | . . . |∇g(AxmX
)T )T collects again the derivatives

of g.
Using again the techniques of compressed sensing applied to

each columnXj of X separately, we obtain

‖X − X̂‖F .
√

mX ε̂, (22)

where

ε̂ = k

(

mΦ

log(d/mΦ) + 1

)−( 1

q −
1

2 )
+

k2ǫ√
mΦ

(23)

and‖ · ‖F is the Frobenius norm of a matrix.
Hoeffding’s inequality may be generalized to sums of ran-

dom semidefinite matrices, cf. [1] and [6]. In combination with
(21) it follows thatσk(X) ≥

√

mXα(1 − s) with high proba-
bility. The matrixÂ (which then serves as an approximation of
A) is obtained as a part of the singular value decomposition of
X̂. This is then combined with results on stability of singular
value decomposition to obtain an estimate for‖A − Â‖F .

Finally, the main approximation results looks as follows.



Theorem 3. Let us fix0 < s < 1, 0 < q ≤ 1, mX ≥ 1 and
1 ≤ mΦ ≤ d. Under the assumptions and notations fixed above,
let X̂ be thed × mX matrix whose columns are the vectors
X̂j obtained byℓ1 minimization and write the singular value
decomposition of its transposêXT as

X̂T =
(

Û1 Û2

)

(

Σ̂1 0

0 Σ̂2

) (

V̂ T
1

V̂ T
2

)

,

whereΣ̂1 contains the largestk singular values. Then with high
probability the matrixÂ = V̂ T

1 satisfies that the function

f̂(x) = ĝ(Âx), (24)

defined by means of

ĝ(y) := f(ÂT y), y ∈ BRk(1 + ǭ), (25)

has the approximation property

‖f − f̂‖∞ ≤ 2C2

√
k(1 + ǭ)

ε̂
√

α(1 − s) − ε̂
, (26)

whereε̂ is as in(23).

The discussion on tractability can proceed exactly as in
the casek = 1 with the push-forward measureµk =

Γ(d/2)
πk/2Γ((d−k)/2)

(1 − ‖y‖2
ℓk
2

)
d−2−k

2 Lk of µSd−1 on the unit ball
BRk instead ofµ1.
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