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Preface

This cumulative habilitation thesis presents the work done in 14 research articles and one survey
chapter. The summary has two parts. The first one introduces the mathematical background of
the subject and contains a historical survey of decomposition techniques in the frame of function
spaces and an overview of the techniques of sparse recovery. After that, in the second part, the
results of the above mentioned papers are discussed. Although I tried to comment also on the
proofs of the results and put them into the historical perspective given before, I would like to
point the reader to the original papers for full proofs and further references.
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Part I

Introduction

The main subject of this habilitation thesis is to follow the historical path from decomposition
techniques in function spaces to sparse decompositions and sparse recovery, which finally resulted
into the novel area of compressed sensing. We start with a brief historical overview of function
spaces and their decomposition properties, which we use also to introduce some basic notation.
As we are not able to cover all the topics of the theory of function spaces in this short survey,
we refer to [2, 3, 72, 83, 84, 111, 96, 116] for much more details and further references. Our
selection of the topics is mainly governed by our interest in decomposition techniques. In the
second part, we sketch the basic aspects of the area of compressed sensing. The material in
these two parts is by no means new and is essentially taken over from [126] and [14].

Decomposition techniques

The very first traces of the study of function spaces may be found already in the second half
of eighteen century. This period was devoted to the study of classical spaces of continuous and
continuously differentiable functions. A new era of function spaces started with the pioneering
work of Sobolev [108, 109, 110] (with some forerunners [55, 102]). The theory of distributions
became an essential tool, which allowed to achieve new results (e.g. embedding theorems)
applicable in the study of partial differential equations.

In later years, the area became an object of a vastly growing interest. More and more function
spaces were defined with the help of explicit norms. In the parallel, the advantages of the
techniques of Fourier analysis (like Littlewood-Paley theory) became evident. In this connection,
the Hardy spaces Hp(∆) (cf. Section 1.2) played a crucial role.

During the 60’s and 70’s of the last century, the well structured scales of Besov and Triebel-
Lizorkin spaces, cf. Definition 1.1, emerged from the variety of function spaces available so far.
They exhibit several advantages. Many classical spaces may be identified as Besov or Triebel-
Lizorkin spaces for a special choice of parameters. Furthermore, their definition is given in
terms of distributions and Fourier analysis and these spaces have “good” properties from the
Fourier-analytic point of view, cf. [117, Section 2.2.3]. Also the spaces with fractional (or even
negative) smoothness could be incorporated easily into these two scales. On the other hand, the
definition of Besov and Triebel-Lizorkin spaces involves a certain smooth dyadic decomposition
of unity, which makes it look much more complicated than that of Sobolev spaces.

Further essential breakthrough was achieved in the work of Frazier and Jawerth [53] and [54]
(with an important forerunner being [28]). It was discovered that spaces of functions and
distributions may be characterized in terms of their decomposition properties. They considered
the decomposition formula f =

∑
Q〈f, ϕQ〉ψQ for all f ∈ S′(Rd), where Q runs over all dyadic

cubes of Rd and ϕQ and ψQ are shifts of dilations of special functions ϕ and ψ.

A similar approach was then followed in all other decomposition techniques, which appeared
afterwards. They all say, roughly speaking, that a function (or a distribution) f belongs to a
certain function space (say Bs

p,q(Rd)) if, and only if, it may be written in a form

f =
∑
j,m

λj,maj,m, (0.1)

where λj,m are (real or complex) scalars and aj,m are certain special building blocks. Fur-
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thermore, the (quasi-)norm of f in the given function space is in some sense equivalent to the
(quasi-)norm of the sequence λ = (λj,m)j,m in an appropriate sequence space (i.e. bsp,q in the
case of Besov spaces).

Of course, the formula (0.1) gives arise to many questions, like the uniqueness of the decompo-
sition or the linearity of the dependence of λ on f . For example, in the decomposition of Frazier
and Jawerth the mapping f → {〈f, ϕQ〉}Q is linear, but it is not an isomorphism between the
given function space and the corresponding sequence space.

But three properties of the building blocks aj,m appearing already in [53] and [54] are common
to most of all the known decomposition techniques. Those are smoothness, vanishing moment
conditions and localization.

• Quite naturally, the basic building blocks are supposed to exhibit at least the same degree of
smoothness as the functions (or distributions) in the function space under consideration. Due
to the very weak convergence of (0.1) (which is usually assumed to converge in S′(Rd)), the
smoothness of the building blocks is not limited from above. As the classical Haar wavelets are
not even continuous, the question of minimal smoothness required in (0.1) has also been studied,
cf. [119].

• The necessity of the moment conditions becomes clear when dealing with singular distributions.
Therefore, the number of moment conditions needed grows with s (the smoothness of the space)
decreasing, cf. Theorem 1.8. Let us point out that one possible way how to achieve (even an
infinite number of) vanishing moments is to work with a function, whose Fourier transform has
its support bounded away from zero.

• Finally, the localization of the building blocks is also necessary. One may observe that for
p > 1 overlapping building blocks would allow to consider decompositions of f with arbitrarily
small norm of the sequence of coefficients λ = (λj,m)j,m. This corresponds to no localization
conditions needed in the decomposition theorem of Hp(Rd), 0 < p ≤ 1 of Coifman [28], cf.
Theorem 1.4.

During last two decades, various different decomposition techniques appeared. They are usually
named after the building blocks used, so that we speak about atomic, molecular, quarkonial
or wavelet decomposition. Furthermore, these decompositions were adapted to a number of
different function spaces (anisotropic spaces, spaces with dominating mixed smoothness, spaces
of Morrey and Campanato type, . . . ). Last, but not least, the methods were adapted to spaces
on domains.

We want to point out, how the theory of decomposition techniques is helping to deal with
problems in the theory of function spaces. It turns out (and it has been like that since the work
of Frazier and Jawerth) that many classical problems may be much more easily formulated and
handled in the language of sequence spaces. We shall deal here mainly with Sobolev and trace
embeddings of function spaces and their properties.

Sparse recovery

The huge interest in these techniques was driven by the large number of applications based on
or making a use of them, i.e. signal processing in many disciplines (like medicine or geology),
algorithm design, data compression or numerical analysis to name at least a few of them. Actu-
ally, the theory of decompositions developed into a subject on its own under the term of “frame
theory”. The corresponding tools became more and more important with another driving force
of applied science - the growing dimensionality of the problems we deal with nowadays. The
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necessity of processing larger and larger data sets (which can be often interpreted as larger and
larger decompositions of continuous objects) lead to the development of special techniques. The
most important tools in this area make a heavy use of the following observations: Although
the dimensionality of the underlying problem grows rapidly with our ability to measure more
and more data, its intrinsic dimension stays low. The highdimensional data sets are therefore
well structured - and the most simple structural assumption on a vector in Rn is that most of
its coordinates are zero, or at least very small. This observation is nowadays a basis for many
algorithms in electric engineering, including the well known JPEG2000 format.

The real breakthrough in this field came with the advent of theory of compressed sensing of
Donoho [41] and Candés, Romberg, and Tao [17, 19], cf. also [18]. In its most simple form,
this theory proves that a sparse vector x ∈ Rn can be recovered effectively (i.e. in the polyno-
mial time) from a small number m of carefully chosen linear and non-adaptive measurements
〈ai, x〉, i = 1, . . . ,m, where m grows only linearly in the number of non-zero components of x
and logarithmically in the dimension n. Furthermore, the recovery is stable with respect to noise
and to small defects of sparsity, cf. [16, 20]. And last, but not least, the recovery is provided
by the very well known LASSO algorithm of Tibshirani [114]. The methods used in this area
combine powerful techniques of concentration of measure [74], geometry of Banach spaces [75],
optimization theory and linear programming [56]. Following our survey chapter [14], we give
more details on compressed sensing in Section 2.

The plan of this survey is as follows. In Section 1, we present a historically oriented overview of
decomposition techniques in function spaces, Section 2 introduces the basic concepts of sparse
recovery and compressed sensing. Finally, Section 3 discusses the results of the papers, which
are part of this cumulative thesis. As mentioned already above, the material in the Sections 1
and 2 is essentially taken over from [126] and [14].

1 Decomposition techniques in function spaces

1.1 Definitions and basic notation

In this section we give the necessary notation and the definitions of the function spaces considered
in this work.

We denote by R the set of all real numbers and by Rd the d-dimensional Euclidean space.
Furthermore, N stands for the set of all natural numbers, Z for the set of all integers and C for
the set of all complex numbers.

We denote by S(Rd) the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions equipped with the usual topology and its dual by S′(Rd).
The Fourier transform of ϕ ∈ S(Rd) is given by

Fϕ(ξ) =
1

(2π)d/2

∫
Rd
ϕ(x)e−iξ·xdx, ξ ∈ Rd

with ins inverse denoted by

F−1ϕ(ξ) =
1

(2π)d/2

∫
Rd
ϕ(x)eiξ·xdx, ξ ∈ Rd.

Both F and F−1 are extended to S′(Rd) by duality. We often write ϕ̂ as a shortcut for Fϕ and
ϕ∨ for F−1ϕ.

Although we are mainly interested in function spaces of Besov and Triebel-Lizorkin type (as
defined in Section 1.1.2), we first collect the definitions of (some of) the classical function spaces.
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1.1.1 Classical spaces

(i) The space of all complex-valued bounded and uniformly continuous functions is denoted
by C(Rd) and is equipped with the norm ‖f |C(Rd)‖ = supx∈Rd |f(x)|.
Let m ∈ N. Then we denote by Cm(Rd) the space of all functions on Rd, such that Dαf ∈
C(Rd) for all multiindices α with |α| ≤ m. The norm is then given by ‖f |Cm(Rd)‖ =
max|α|≤m ‖Dαf |C(Rd)‖.

(ii) The Lebesgue spaces Lp(Rd), 0 < p ≤ ∞ are spaces of measurable functions, for which

‖f |Lp(Rd)‖ :=


(∫

Rd
|f(x)|pdx

)1/p

, if 0 < p <∞

ess supx∈Rd |f(x)|, if p =∞

is finite. Sometimes, we write only ‖f‖p instead of ‖f |Lp(Rd)‖ for short.

(iii) Let 1 ≤ p ≤ ∞ and k ∈ N0. Then the Sobolev space W k
p (Rd) is defined by

W k
p (Rd) = {f ∈ S′(Rd) : Dαf ∈ Lp(Rd) if |α| ≤ k}.

Here, the derivatives are interpreted in the distributional sense. One of the cornerstones of
the theory of Sobolev spaces is the embedding property (usually called Sobolev embedding)

W k0
p0 (Rd) ↪→W k1

p1 (Rd) (1.1)

if 0 ≤ k1 ≤ k0 are non-negative integers, 1 ≤ p0 ≤ p1 <∞ and

k0 −
d

p0
= k1 −

d

p1
. (1.2)

When considering the spaces on domains, then (under conditions which we shall discuss
in detail later) (1.1) becomes even compact.

(iv) An essential effort was devoted to the extension of the theory of function spaces also to
spaces with fractional (or even negative) smoothness. One of the reasons for that is hidden
already in (1.2) - for given p0, p1 and k0, the optimal k1 may be a fractional real number.
The classical way is represented by Hölder spaces Cs(Rd). Let s > 0 be not an integer.
Then we define

Cs(Rd) =

{
f ∈ C [s](Rd) : (1.3)

‖f |Cs(Rd)‖ := ‖f |C [s](Rd)‖+
∑
|α|=[s]

sup
x 6=y

|Dαf(x)−Dαf(y)|
|x− y|{s}

<∞

}
.

Here, s = [s] + {s} with 0 ≤ {s} < 1 is a decomposition of s into its integer and fractional
part.

The closely related Zygmund spaces Cs(Rd) are obtained by replacing the first order by
second order differences in (1.3). The definition of the (classical) Besov spaces reflects a
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similar idea. It works with the decomposition of the smoothness parameter s = [s]−+{s}+,
where 0 < {s}+ ≤ 1. Let s > 0 and 1 ≤ p, q <∞. Then

Λsp,q(Rd) =

{
f ∈W [s]−(Rd) : ‖f |Λsp,q(Rd)‖ := ‖f |W [s]−(Rd)‖ (1.4)

+
∑
|α|=[s]−

(∫
Rd
|h|−{s}+q‖∆2

hD
αf‖qp

dh

|h|d

)1/q

<∞

}
, (1.5)

where ∆2
hg are the usual second order differences of g. If q =∞, only notational changes

are necessary. Let us refer to [117, Section 2.2] for other spaces (i.e. Slobodeckij spaces
and Bessel potential spaces) with fractional smoothness.

1.1.2 Besov and Triebel-Lizorkin spaces

We give a Fourier-analytic definition of Besov and Triebel-Lizorkin spaces, which relies on the
so-called smooth dyadic resolution of unity. Let ϕ ∈ S(Rd) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 3

2
. (1.6)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x) for j ∈ N and x ∈ Rd. This leads to the
identity

∞∑
j=0

ϕj(x) = 1, x ∈ Rd.

Definition 1.1. (i) Let s ∈ R and 0 < p, q ≤ ∞. Then Bs
pq(Rd) is the collection of all f ∈ S′(Rd)

such that

‖f |Bs
pq(Rd)‖ =

( ∞∑
j=0

2jsq‖(ϕj f̂)∨|Lp(Rd)‖q
)1/q

(1.7)

is finite (with the usual modification for q =∞).

(ii) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. Then F spq(Rd) is the collection of all f ∈ S′(Rd) such
that

‖f |F spq(Rd)‖ =

∥∥∥∥( ∞∑
j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(Rd)
∥∥∥∥ (1.8)

is finite (with the usual modification for q =∞).

Remark 1.2. (i) The spacesBs
pq(Rd) and F spq(Rd) are independent on the choice of the function

ϕ as soon as it satisfies (1.6). Unfortunately, if p =∞ in the F -case (which was excluded
in Definition 1.1), then this is no longer true and a different approach is necessary. We
shall not go into details and refer to the recent monograph [134].

(ii) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. Then the embedding

Bs
p,min(p,q)(R

d) ↪→ F sp,q(Rd) ↪→ Bs
p,max(p,q)(R

d).

is an easy consequence of the Definition 1.1.
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(iii) Let −∞ < s1 < s0 <∞, 0 < p0 < p1 <∞, 0 < q0 ≤ q1 ≤ ∞ with

s0 −
d

p0
= s1 −

d

p1
.

Then the classical Sobolev embedding (1.1) has its counterpart also for Besov and Triebel-
Lizorkin spaces

Bs0
p0,q0(Rd) ↪→ Bs1

p1,q1(Rd) and F s0p0,∞(Rd) ↪→ F s1p1,q0(Rd). (1.9)

Furthermore, the Jawerth-Franke embedding [52, 63] states that

F s0p0,∞(Rd) ↪→ Bs1
p1,p0(Rd) and Bs0

p0,p1(Rd) ↪→ F s1p1,q0(Rd). (1.10)

(iv) The books [117, 96, 13] describe the stage of the theory of function spaces of Besov and
Triebel-Lizorkin type as it stood in the late 1970’s. For the more modern aspects of this
theory we refer to the books of Triebel [118, 121, 122] and to [134].

(v) We use this place to introduce the symbols

σp = max(1/p− 1, 0), σpq = max(1/p− 1, 1/q − 1, 0)

and
σdp = dmax(1/p− 1, 0), σdpq = dmax(1/p− 1, 1/q − 1, 0).

These quantities play an important role in the theory of this spaces and shall be used
frequently later on.

(vi) Definition 1.1 covers many of the classical spaces defined by derivatives and/or differences
(cf. Section 1.1.1 for some examples). Especially,

Bs
∞,∞(Rd) = Cs(Rd) if s > 0,

Bs
∞,∞(Rd) = Cs(Rd) if s > 0, s 6∈ N,

Bs
p,q(Rd) = Λsp,q(Rd) if s > 0, 1 ≤ p <∞, 1 ≤ q ≤ ∞,

F sp,2(Rd) = W s
p,2(Rd) if s > 0, s ∈ N, 1 < p <∞.

(vii) Definition 1.1 of isotropic Besov and Triebel-Lizorkin spaces has numerous modifications
and extensions, which lead to specific function spaces, for example anisotropic spaces,
spaces of generalized smoothness or spaces of variable smoothness and/or integrability.

1.2 Hardy spaces

The history of atomic decompositions is closely related to Hardy spaces Hp. In its original form,
the Hardy space Hp(∆) is a space of holomorphic functions on the unit disc ∆ := {z ∈ C : |z| <
1} satisfying

‖f |Hp(∆)‖ := sup
0<r<1

(
1

2π

∫ 2π

0
|f(reit)|pdt

)1/p

<∞.

This definition (which goes back to F. Riesz) was extended to functions of real variables by C.
Fefferman and E. M. Stein in [46]. The space Hp(Rd), 0 < p ≤ ∞ is a space of f ∈ S′(Rd), such
that

(MΦf)(x) := sup
t>0
|(f ∗ Φt)(x)|, x ∈ Rd
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is in Lp(Rd). Here Φ ∈ S(Rd) with
∫
Rd Φ(x)dx = 1 is arbitrary and Φt(x) = t−dΦ(x/t).

Furthermore,
‖f |Hp(Rd)‖ := ‖MΦf |Lp(Rd)‖

is a quasinorm on Hp(Rd). Different choices of Φ lead to equivalent quasinorms. If 1 < p <∞,
then Hp(Rd) coincides with Lp(Rd). But for 0 < p ≤ 1, one obtains new function spaces of
distributions on Rd.
The first atomic decomposition of Hp(Rd) with d = 1 and 0 < p ≤ 1 was given in [28] and
generalized to d > 1 in [73]. It uses the notion of p-atoms on the real line.

Definition 1.3. Let 0 < p ≤ 1. A p-atom is a real-valued function b on R such that∫∞
−∞ b(x)xkdx = 0, 0 ≤ k ≤ [1/p] − 1, k ∈ N0, and the support of which is contained in an

interval I for which supx∈R |b(x)| ≤ |I|−1/p.

The quantity [1/p] is the integer part of 1/p. The corresponding decomposition theorem then
takes the following form.

Theorem 1.4. ([28]) A distribution f lies in Hp(R), 0 < p ≤ 1 if, and only if, it can be written
in the form

f =
∞∑
i=0

αibi,

where αi are in R, bi are p-atoms for i ∈ N and

A‖f |Hp(R)‖p ≤
∞∑
i=0

|αi|p ≤ B‖f |Hp(R)‖p.

Here the constants A,B > 0 depend only on p.

1.3 Besov and Triebel-Lizorkin spaces

M. Frazier and B. Jawerth extended in [53, 54] the method of Coifman to a huge variety of other
function spaces. They studied the decomposition formula f =

∑
Q〈f, ϕQ〉ψQ for f ∈ S′(Rd).

Here, Q runs over all dyadic cubes of Rd and ϕQ and ψQ arise through shifting and dilating of
special functions ϕ and ψ. These functions are smooth, rapidly decreasing and possess compactly
supported Fourier transform. The mapping

Sϕ : f → (〈f, ϕQ〉)Q

is called ϕ-transform. Theorem 2.2 of [54] then states that Sϕ maps the homogenous Triebel-
Lizorkin space Ḟ sp,q(Rd) into a special sequence space ḟsp,q, which is defined through the (quasi)norm

‖λ|ḟsp,q‖ :=

∥∥∥∥∥∥∥
∑

Q

(|Q|−s/n−1/2|λQ|)qχQ(·)

1/q
∥∥∥∥∥∥∥
p

,

where the sum runs again over all dyadic cubes of Rd, |Q| stands for the Lebesgue measure of
Q and χQ is the characteristic function of Q.

Furthermore, the inverse ϕ-transform defined as

Tψ : λ = (λQ)Q →
∑
Q

λQψQ

maps ḟsp,q onto Ḟ sp,q(Rd) and Tψ ◦ Sϕ is the identity on Ḟ sp,q(Rd).
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Remark 1.5. • Frazier and Jawerth worked mainly with the homogenous function spaces
and stated only in Section 12 of [54] the necessary modifications needed to deal with
inhomogeneous spaces.

• Unfortunately, the ϕ-transform Sϕ is no isomorphism between Ḟ sp,q(Rd) and ḟsp,q, i.e. Sϕ

does not map Ḟ sp,q(Rd) onto ḟsp,q. This was essentially improved using the theory of
wavelets.

• The theory of [54] applies exactly to those function spaces which admit some sort of
Littlewood-Paley characterization. This is in a very good agreement with the the obser-
vation of Triebel (see [117, Section 2.2.3]), who divided the function spaces into good and
bad spaces according to their Fourier-analytic properties. Let us mention on this place
that some prominent function spaces (like L1(Rd), L∞(Rd) or C(Rd)) are considered as
bad function spaces from this point of view.

• The condition on vanishing moments of Coifman is incorporated in [54] through the as-
sumption, that the support of the Fourier transform of ϕ and ψ stays away from zero.
The new condition of [54] is that the building blocks ψQ are essentially localized on the
dyadic cube Q (i.e. rapidly decreasing outside Q). This is reflected in all other decompo-
sition techniques which involve both the vanishing moments condition and some kind of
localization of the building blocks.

The central role in the theory of decomposition of function spaces is played by the atomic
decomposition. We give the version as presented by Triebel in Section 1.5 of [121]. First, we
define the corresponding building blocks. Let us observe that in contrast with Definition 1.3,
the localization of the atoms is required.

Definition 1.6. (i) Let ν ∈ N0 and m ∈ Zd. Then we denote by Qνm the closed cube in
Rd with sides parallel to the coordinate axes, centered at 2−νm, and with side-length 2−ν+1.
Furthermore, cQνm stands for the cube in Rd concentric with Qνm and with side length c 2−ν+1.

(ii) Let K ∈ N0 and c ≥ 1. A continuous function a : Rd → C for which there exist all derivatives
Dαa if |α| ≤ K is called a 1K-atom if

supp a ⊂ cQ0,m for some m ∈ Zd

and
|Dαa(x)| ≤ 1 for |α| ≤ K. (1.11)

(iii) Let K ∈ N0, L ≥ 0, and c ≥ 1. A continuous function a : Rd → C for which there exist all
derivatives Dαa if |α| ≤ K is called an (K,L)-atom if

supp a ⊂ cQνm for some ν ∈ N,m ∈ Zd,

|Dα(x)a| ≤ 2|α|ν for |α| ≤ K, (1.12)

and ∫
Rd
xβa(x)dx = 0 for |β| < L.

Also the sequence spaces used in the frame of Besov and Triebel-Lizorkin spaces are somewhat
more complicated compared to Theorem 1.4. We present a version, which reflects all the three
parameters of the corresponding function spaces.
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Definition 1.7. If 0 < p, q ≤ ∞, s ∈ R and

λ = {λνm ∈ C : ν ∈ N0,m ∈ Zd} (1.13)

then we define

bspq =

{
λ : ‖λ|bspq‖ =

( ∞∑
ν=0

2
ν(s− d

p
)q
( ∑
m∈Zd

|λνm|p
)q/p)1/q

<∞
}

(1.14)

and

fspq =

{
λ : ‖λ|fspq‖ =

∥∥∥∥( ∞∑
ν=0

∑
m∈Zd

|2νsλνmχνm(·)|q
)1/q

|Lp(Rd)
∥∥∥∥ <∞} (1.15)

with the usual modification for p and/or q equal to ∞. Here χνm stands for the characteristic
function of Qνm.

The atomic decomposition of Besov and Triebel-Lizorkin spaces is then given very much in the
spirit of Theorem 1.4 and it goes back in a similar form to [53] and [54].

Theorem 1.8. ([121], Theorem 1.19) (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R. Let
K ∈ N0, L ≥ 0 with

K > s and L > σdp − s

be fixed. Then f ∈ S′(Rd) belongs to Bs
p,q(Rd) if, and only if, it can be represented as

f =
∞∑
ν=0

∑
m∈Zd

λνmaνm, unconditional convergence being in S′(Rd), (1.16)

where for fixed c ≥ 1, aνm are 1K-atoms (ν = 0) or (K,L)-atoms (ν ∈ N) and λ ∈ bspq.
Furthermore,

‖f |Bs
p,q(Rd)‖ ≈ inf ‖λ|bspq‖

are equivalent quasi-norms where the infimum is taken over all admissible representations (1.16).
(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R. Let K ∈ N0, L ≥ 0 with

K > s and L > σdpq − s

be fixed. Then f ∈ S′(Rd) belongs to F sp,q(Rd) if, and only if, it can be represented by (1.16),
where for fixed c ≥ 1, aνm are 1K-atoms (ν = 0) or (K,L)-atoms (ν ∈ N) and λ ∈ fsp,q.
Furthermore,

‖f |F sp,q(Rd)‖ ≈ inf ‖λ|fspq‖
are equivalent quasi-norms where the infimum is taken over all admissible representations (1.16).

Nowadays, a large variety of decomposition techniques is available in the literature. We shall
present (a variant of) one of the most important one - the wavelet decomposition theorem. It
removes some of the obstacles of Theorem 1.8. The first is the implicit definition of atoms - atoms
are building blocks satisfying certain properties but may vary from one function to the other.
The other sometimes inconvenient feature of Theorem 1.8 is the dependence of the coefficients
λ in the optimal decomposition (1.16) on the distribution f . Due to some applications it would
be desirable that this dependence is linear. Unfortunately, this does not follow from the theory
of atomic decompositions.

We do not aim to give an overview of the vast area of wavelets. We recall only the minimum
needed later on and point to [36, 85, 132] as standard references. The following theorem of
Daubechies ensures the existence of compactly supported wavelets.
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Theorem 1.9. ([35, 36]) For any k ∈ N there are real-valued compactly supported functions

ψ0, ψ1 ∈ Ck(R)

satisfying ∫
R
tαψ1(t)dt = 0, α = 0, 1, . . . , k − 1,

such that
{2ν/2ψνm : ν ∈ N0,m ∈ Z}

with

ψνm(t) =

{
ψ0(t−m) if ν = 0,m ∈ Z,
2−

1
2ψ1(2ν−1t−m) if ν ∈ N,m ∈ Z

is an orthonormal basis in L2(R).

Wavelets on Rd may be obtained as tensor products of one-dimensional wavelets. With their
help we obtain the following characterization of Besov and Triebel-Lizorkin spaces.

Theorem 1.10. ([120], Theorem 19) Let 0 < p, q ≤ ∞, s ∈ R and k ∈ N with k >
max(s, σdp−s). Let ψ0, ψ1 be the Daubechies wavelets of smoothness k. Let E = {0, 1}d\(0, . . . , 0).
For e = (e1, . . . , ed) ∈ E let

Ψe(x) =
d∏
j=1

ψej (xj), x = (x1, . . . , xd) ∈ Rd.

(i) Then 
Ψ(x−m) =

d∏
j=1

ψ0(xj −mj) m = (m1, . . . ,md) ∈ Zd,

2
ν−1
2
dΨe(2

ν−1x−m) e ∈ E, ν ∈ N,m ∈ Zd

is an orthonormal basis in L2(Rd).
(ii) Let f ∈ S′(Rd). Then f ∈ Bs

pq(Rd) if, and only if, it can be represented as

f =
∑
m∈Zd

λmΨ(x−m) +
∑
ν∈N

∑
e∈E

∑
m∈Zd

λeνm2−νd/2Ψe(2
ν−1x−m), convergence in S′(Rd) (1.17)

with

‖λ|bspq‖ =
( ∑
m∈Zd

|λm|p
) 1
p

+

( ∞∑
ν=1

2
ν(s− d

p
)q
∑
e∈E

( ∑
m∈Zd

|λeνm|p
) q
p

) 1
q

<∞

appropriately modified if p = ∞ and/or q = ∞. The representation in (1.17) is unique, the
complex coefficients (λm)m∈Zd and (λeνm)e∈E,ν∈N0,m∈Zd depend linearly on f and the mapping,

which associates to f ∈ Bs
pq(Rd) the sequence of coefficients, is an isomorphic map of Bs

pq(Rd)
onto bspq.

(iii) Let f ∈ S′(Rd). Then f ∈ F spq(Rd) if, and only if, it can be represented as

f =
∑
m∈Zd

λmΨ(x−m) +
∑
ν∈N

∑
e∈E

∑
m∈Zd

λeνm2−νd/2Ψe(2
ν−1x−m), convergence in S′(Rd) (1.18)
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with

‖λ|fspq‖ =
( ∑
m∈Zd

|λm|p
) 1
p

+

∥∥∥∥∥∥∥
 ∞∑
ν=1

2
ν(s− d

p
)q
∑
e∈E

∑
m∈Zd

|λeνm|qχνm(x)

1/q
∥∥∥∥∥∥∥
p

<∞

appropriately modified if p = ∞ and/or q = ∞. The representation in (1.18) is unique, the
complex coefficients (λm)m∈Zd and (λeνm)e∈E,ν∈N0,m∈Zd depend linearly on f and the mapping,

which associates to f ∈ F spq(Rd) the sequence of coefficients, is an isomorphic map of F spq(Rd)
onto fspq.

Remark 1.11. The wavelet decomposition has several very convenient advantages. The decompo-
sition (1.17) is unique and its coefficients depend in a linear way on f . Furthermore, it provides
an isomorphism between the corresponding function and sequence spaces. On the other hand,
the structure of the compactly supported wavelets from Theorem 1.9 is rather complicated. For
example, it is known that the their support must grow linearly with k. In particular, there are
no compactly supported infinitely differentiable wavelets.

1.4 Spaces on domains

Let Ω be a bounded domain. Then one may easily modify the definitions given in Section 1.1.1 to
obtain function spaces on Ω. Unfortunately, Definition 1.1 relies essentially on the use of Fourier
transform and does not allow such an easy modification. Therefore, the Besov and Triebel-
Lizorkin spaces on Ω are usually defined by restriction. Let D(Ω) = C∞0 (Ω) be the collection of
all complex-valued infinitely-differentiable functions with compact support in Ω and let D′(Ω)
be its dual - the space of all complex-valued distributions on Ω.

Let g ∈ S′(Rd). Then we denote by g|Ω its restriction to Ω:

(g|Ω) ∈ D′(Ω), (g|Ω)(ψ) = g(ψ) for ψ ∈ D(Ω).

Definition 1.12. Let Ω be a bounded domain in Rd. Let s ∈ R, 0 < p, q ≤ ∞ with p < ∞ in
the F -case. Let Aspq stand either for Bs

pq or F spq. Then

Aspq(Ω) = {f ∈ D′(Ω) : ∃g ∈ Aspq(Rd) : g|Ω = f}

and
‖f |Aspq(Ω)‖ = inf ‖g|Aspq(Rd)‖,

where the infimum is taken over all g ∈ Aspq(Rd) such that g|Ω = f.

Although Definition 1.12 is an easy and convenient way how to define function spaces on domains,
an intrinsic characterization of these spaces is necessary on many occasions. It turns out that
under only minor regularity assumptions on Ω (i.e. Lipschitz boundary), the spaces may be
characterized by differences (in a fashion similar to Section 1.1.1). As this will not be needed in
the sequel, we only refer to [121, Section 1.11] for details and further references.

We shall later need the existence of a universal extension operator as it was given by Rychkov
[104]. This result (with many forerunners for which we refer to references given in [104]) states,
that if Ω has Lipschitz boundary then there is a common bounded linear extension operator Ext :
Asp,q(Ω)→ Asp,q(Rd) for all admissible s, p and q. Another important fact will be the existence of
atomic and wavelet decomposition techniques adapted to function spaces on domains. We shall
return to this point in Section 1.2.
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2 Sparse recovery and compressed sensing

2.1 Introduction and notation

Compressed sensing is a novel method of signal processing, which was introduced in [41] and
[18] and which profited from its very beginning from fruitful interplay between mathematicians,
applied mathematicians, and electrical engineers. The mathematical concepts are inspired by
ideas from a number of different disciplines, including numerical analysis, stochastic, combina-
torics, and functional analysis. On the other hand, the applications of compressed sensing range
from image processing [42], medical imaging [79], and radar technology [12] to sampling theory
[88, 123], and statistical learning.

In this section we collect the basic mathematical ideas from numerical analysis, stochastic, and
functional analysis used in the area of compressed sensing to give an overview of basic notions,
including the Null Space Property and the Restricted Isometry Property, and the relations be-
tween them. Most of the material in this section can be proven with elementary methods from
approximation theory and stochastic and we refer to [14] for details. We hope that this presenta-
tion will make the mathematical concepts of compressed sensing appealing and understandable
both to applied mathematicians and electrical engineers. In this and that form, similar material
appeared already in many one-semester courses around the world, including my lectures given
in Berlin and Prague. Let us stress that the material presented in this section is by no means
new or original, actually it is nowadays considered classical, or “common wisdom” throughout
the community.

We refer also to more extensive summaries of compressed sensing [34, 49, 51] for more details
and further references.

As the mathematical concepts of compressed sensing rely on the interplay of ideas from linear
algebra, numerical analysis, stochastic, and functional analysis, we start with an overview of
basic notions from these fields. We shall restrict ourselves to the minimum needed in the sequel.

By `np we denote the space Rn equipped with the (quasi-)norm

‖x‖p =


( n∑
j=1

|xj |p
)1/p

, p ∈ (0,∞);

max
j=1,...,n

|xj |, p =∞.
(2.1)

If x ∈ Rn, we can always find a permutation σ : {1, . . . , n} → {1, . . . , n}, such that the nonin-
creasing rearrangement x∗ ∈ [0,∞)n of x, defined by x∗j = |xσ(j)| satisfies

x∗1 ≥ x∗2 ≥ · · · ≥ x∗n ≥ 0.

If T ⊂ {1, . . . , n} is a set of indices, we denote by |T | the number of its elements. We shall
complement this notation by denoting the size of the support of x ∈ Rn by

‖x‖0 = | supp(x)| = |{j : xj 6= 0}|.

Note, that this expression is not even a quasinorm. The notation is justified by the observation,
that

lim
p→0
‖x‖pp = ‖x‖0 for all x ∈ Rn.

Let k be a natural number at most equal to n. A vector x ∈ Rn is called k-sparse, if ‖x‖0 ≤ k
and the set of all k-sparse vectors is denoted by

Σk = {x ∈ Rn : ‖x‖0 ≤ k}.
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Finally, if k < n, the best k-term approximation σk(x)p of x ∈ Rn describes, how well can x be
approximated by k-sparse vectors in the `np -norm. This can be expressed by the formula

σk(x)p = inf
z∈Σk

‖x− z‖p =


( n∑
j=k+1

(x∗j )
p
)1/p

, p ∈ (0,∞);

x∗k+1, p =∞.
(2.2)

Linear operators between finite-dimensional spaces Rn and Rm can be represented with the help
of matrices A ∈ Rm×n. The entries of A are denoted by aij , i = 1, . . . ,m and j = 1, . . . , n. The
transpose of a matrix A ∈ Rm×n is a matrix AT ∈ Rn×m with entries (AT )ij = aji. The identity
matrix in Rn×n or Cn×n will be denoted by I.

There is a number of ways how to discover the landscape of compressed sensing. The point of
view, which we shall follow in this section, is that we are looking for sparse solutions x ∈ Rn of a
system of linear equations Ax = y, where y ∈ Rm and the m× n matrix A are known. We shall
be interested in underdetermined systems, i.e. in the case m ≤ n. Intuitively, this corresponds
to solving the following optimization problem

min
z
‖z‖0 subject to y = Az. (P0)

Unfortunately, it can be shown that this problem is numerically intractable if m and n are
getting larger. Then we introduce the basic notions of compressed sensing, showing that for
specific matrices A and measurement vectors y, one can recover the solution of (P0) in a much
more effective way.

2.2 Basis pursuit

The minimization problem (P0) can obviously be solved by considering first all index sets T ⊂
{1, . . . , n} with one element and employing the methods of linear algebra to decide if there is
a solution x to the system with support included in T . If this fails for all such index sets, we
continue with all index sets with two, three, and more elements. The obvious drawback is the
rapidly increasing number of these index sets. Indeed, there is

(
n
k

)
index sets T ⊂ {1, . . . , n}

with k elements and this quantity grows (in some sense) exponentially with k and n.

We shall start our tour through compressed sensing by discussing that even every other al-
gorithm solving (P0) suffers from this drawback. This will be formulated in the language of
complexity theory as the statement, that the (P0) problem is NP-hard. Before we come to that,
we introduce the basic terms used in the sequel. We refer for example to [6] for an introduction
to computational complexity.

The P-class (“polynomial time”) consists of all decision problems that can be solved in polyno-
mial time, i.e. with an algorithm, whose running time is bounded from above by a polynomial
expression in the size of the input.

The NP-class (“nondeterministic polynomial time”) consists of all decision problems, for which
there is a polynomial-time algorithm V (called verifier), with the following property. If, given
an input α, the right answer to the decision problem is “yes”, then there is a proof β, such that
V (α, β) = yes. Roughly speaking, when the answer to the decision problem is positive, then the
proof of this statement can be verified with a polynomial-time algorithm.

Let us reformulate (P0) as a decision problem. Namely, if the natural numbers k,m, n, m × n
matrix A and y ∈ Rm are given, decide if there is a k-sparse solution x of the equation Ax = y.
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It is easy to see that this version of (P0) is in the NP-class. Indeed, if the answer to the problem
is “yes” and a certificate x ∈ Rn is given, then it can be verified in polynomial time if x is
k-sparse and Ax = y.

A problem is called NP-hard if any of its solving algorithms can be transformed in polynomial
time into a solving algorithm of any other NP-problem. We shall rely on a statement from
complexity theory, that the following problem is both NP and NP-hard.

Exact cover problem
Given as the input a natural number m divisible by 3 and a system {Tj : j = 1, . . . , n} of
subsets of {1, . . . ,m} with |Tj | = 3 for all j = 1, . . . , n, decide, if there is a subsystem of
mutually disjoint sets {Tj : j ∈ J}, such that

⋃
j∈J Tj = {1, . . . ,m}. Such a subsystem is

frequently referred to as exact cover.

Let us observe, that for any subsystem {Tj : j ∈ J} it is easy to verify (in polynomial time) if
it is an exact cover or not. So the problem is in the NP-class. The non-trivial statement from
computational complexity is that this problem is also NP-hard. The exact formulation of (P0)
looks as follows.

`0-minimization problem
Given natural numbers m,n, an m × n matrix A and a vector y ∈ Rm as input, find the
solution of

min
z
‖z‖0 s.t. y = Az.

Theorem 2.1. The `0-minimization problem is NP-hard.

The `0-minimization problem is NP-hard, if all matrices A and all measurement vectors y are
allowed as inputs. The theory of compressed sensing shows nevertheless, that for special matrices
A and for y = Ax for some sparse x, the problem can be solved efficiently.

In general, we replace the ‖z‖0 in (P0) by some ‖z‖p for p > 0. To obtain a convex problem, we
need to have p ≥ 1. To obtain sparse solutions, p ≤ 1 is necessary, cf. Figure 1.

z1

z2

Az = y

S1

z1

z2

Az = y

S2

Figure 1: Solution of Sp = argmin
z∈R2

‖z‖p s.t. y = Az for p = 1 and p = 2

We are therefore naturally led to discuss under which conditions the solution to (P0) coincides
with the solution of the following convex optimization problem called basis pursuit

min
z
‖z‖1 s.t. y = Az, (P1)
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which was introduced in [25]. But before we come to that, let us show, that in the real case
this problem may be reformulated as a linear optimization problem, i.e. as the search for the
minimizer of a linear function over a set given by linear constraints, whose number depends
polynomially on the dimension. We refer to [56] for an introduction to linear programming.

Indeed, let us assume that (P1) has a unique solution, which we denote by x ∈ Rn. Then the
pair (u, v) with u = x+ and v = x−, i.e. with

uj =

{
xj , xj ≥ 0,

0, xj < 0,
and vj =

{
0, xj ≥ 0,

−xj , xj < 0,

is the unique solution of

min
u,v∈Rn

n∑
j=1

(uj + vj) s.t. Au−Av = y and uj ≥ 0 and vj ≥ 0 for all j = 1, . . . , n. (2.3)

If namely (u′, v′) is another pair of vectors admissible in (2.3), then x′ = u′−v′ satisfies Ax′ = y
and x′ is therefore admissible in (P1). As x is the solution of (P1), we get

n∑
j=1

(uj + vj) = ‖x‖1 < ‖x′‖1 =

n∑
j=1

|u′j − v′j | ≤
n∑
j=1

(u′j + v′j).

If, on the other hand, the pair (u, v) is the unique solution of (2.3), then x = u− v is the unique
solution of (P1). If namely z is another admissible vector in (P1), then u′ = z+ and v′ = z− are
admissible in (2.3) and we obtain

‖x‖1 =
n∑
j=1

|uj − vj | ≤
n∑
j=1

(uj + vj) <
n∑
j=1

(u′j + v′j) = ‖z‖1.

Very similar argument works also in the case when (P1) has multiple solutions.

2.3 Null Space Property

If T ⊂ {1, . . . , n}, then we denote by T c = {1, . . . , n} \ T the complement of T in {1, . . . , n}.
If furthermore v ∈ Rn, then we denote by vT either the vector in R|T |, which contains the
coordinates of v on T , or the vector in Rn, which equals v on T and is zero on T c. It will be
always clear from the context, which notation is being used.

Finally, if A ∈ Rm×n is a matrix, we denote by AT the m × |T | sub-matrix containing the
columns of A indexed by T . Let us observe, that if x ∈ Rn with T = supp(x), that Ax = ATxT .

We start the discussion of the properties of basis pursuit by introducing the notion of Null Space
Property, which first appeared in [26].

Definition 2.2. Let A ∈ Rm×n and let k ∈ {1, . . . , n}. Then A is said to have the Null Space
Property (NSP) of order k if

‖vT ‖1 < ‖vT c‖1 for all v ∈ ker A \ {0} and all T ⊂ {1, . . . , n} with |T | ≤ k. (2.4)

Remark 2.3. (i) The condition (2.4) states that vectors from the kernel of A are well spread, i.e.
not supported on a set of small size. Indeed, if v ∈ Rn \ {0} is k-sparse and T = supp(v), then
(2.4) shows immediately, that v can not lie in the kernel of A.
(ii) If we add ‖vT c‖1 to both sides of (2.4), we obtain ‖v‖1 < 2‖vT c‖1. If then T are the
indices of the k largest coordinates of v taken in the absolute value, this inequality becomes
‖v‖1 < 2σk(v)1.
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Theorem 2.4. Let A ∈ Rm×n and let k ∈ {1, . . . , n}. Then every k-sparse vector x is the
unique solution of (P1) with y = Ax if, and only if, A has the NSP of order k.

Remark 2.5. Theorem 2.4 states that the solutions of (P0) may be found by (P1), if A has the
NSP of order k and if y ∈ Rm is such that, there exists a k-sparse solution x of the equation
Ax = y. Indeed, if in such a case, x̂ is a solution of (P0), then ‖x̂‖0 ≤ ‖x‖0 ≤ k. Finally, it
follows by Theorem 2.4, that x̂ is also a solution of (P1) and that x = x̂.

In the language of complexity theory, if we restrict the inputs of the `0-minimization problem to
matrices with the NSP of order k and to vectors y, for which there is a k-sparse solution of the
equation Ax = y, the problem belongs to the P-class and the solving algorithm with polynomial
running time is any standard algorithm solving (P1), or the corresponding linear problem (2.3).

2.4 Restricted Isometry Property

Although the Null Space Property is equivalent to the recovery of sparse solutions of under-
determined linear systems by basis pursuit in the sense just described, it is somehow difficult
to construct matrices satisfying this property. We shall therefore present a sufficient condition
called Restricted Isometry Property, which was first introduced in [18], and which ensures that
the Null Space Property is satisfied.

Definition 2.6. Let A ∈ Rm×n and let k ∈ {1, . . . , n}. Then the restricted isometry constant
δk = δk(A) of A of order k is the smallest δ ≥ 0, such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all x ∈ Σk. (2.5)

Furthermore, we say that A satisfies the Restricted Isometry Property (RIP) of order k with the
constant δk if δk < 1.

Remark 2.7. The condition (2.5) states that A acts nearly isometrically when restricted to
vectors from Σk. Of course, the smaller the constant δk(A) is, the closer is the matrix A to
isometry on Σk. We will be therefore later interested in constructing matrices with small RIP
constants. Finally, the inequality δ1(A) ≤ δ2(A) ≤ · · · ≤ δk(A) follows trivially.

The following theorem shows that RIP of sufficiently high order with a constant small enough
is indeed a sufficient condition for NSP.

Theorem 2.8. Let A ∈ Rm×n and let k be a natural number with k ≤ n/2. If δ2k(A) < 1/3,
then A has the NSP of order k.

Combining Theorems 2.4 and 2.8, we obtain immediately the following corollary.

Corollary 2.9. Let A ∈ Rm×n and let k be a natural number with k ≤ n/2. If δ2k(A) < 1/3,
then every k-sparse vector x is the unique solution of (P1) with y = Ax.

2.5 RIP for random matrices

From what was said up to now, we know that matrices with small restricted isometry constants
fulfill the null space property, and sparse solutions of underdetermined linear equations involving
such matrices can be found by `1-minimization (P1). We discuss in this chapter a class of matrices
with small RIP constants. It turns out that the most simple way is to construct these matrices
by taking its entries to be independent standard normal variables.
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We denote until the end of this section

A =
1√
m

 ω1,1 . . . ω1n
...

. . .
...

ωm1 . . . ωmn

 , (2.6)

where ωij , i = 1, . . . ,m, j = 1, . . . , n, are i.i.d. standard normal variables. We shall show that
such a matrix satisfies the RIP with reasonably small constants with high probability.

2.5.1 Concentration inequalities

If ω1, . . . , ωm are (possibly dependent) standard normal random variables, then E(ω2
1 + · · · +

ω2
m) = m. If ω1, . . . , ωm are even independent, then the value of ω2

1 + · · ·+ω2
m concentrates very

strongly around m. This effect is known as concentration of measure, cf. [74, 75, 87].

Lemma 2.10. Let m ∈ N and let ω1, . . . , ωm be i.i.d. standard normal variables. Let 0 < ε < 1.
Then

P(ω2
1 + · · ·+ ω2

m ≥ (1 + ε)m) ≤ e−
m
2

[ε2/2−ε3/3]

and
P(ω2

1 + · · ·+ ω2
m ≤ (1− ε)m) ≤ e−

m
2

[ε2/2−ε3/3].

Using 2-stability of the normal distribution, Lemma 2.10 shows immediately that A defined as
in (2.6) acts with high probability as isometry on one fixed x ∈ Rn.

Theorem 2.11. Let x ∈ Rn with ‖x‖2 = 1 and let A be as in (2.6). Then

P
(∣∣∣‖Ax‖22 − 1

∣∣∣ ≥ t) ≤ 2e−
m
2

[t2/2−t3/3] ≤ 2e−Cmt
2

(2.7)

for 0 < t < 1 with an absolute constant C > 0.

Remark 2.12. (i) Observe, that (2.7) may be easily rescaled to

P
(∣∣∣‖Ax‖22 − ‖x‖22∣∣∣ ≥ t‖x‖22) ≤ 2e−Cmt

2
, (2.8)

which is true for every x ∈ Rn.
(ii) A slightly different proof of (2.7) is based on the rotational invariance of the distribution
underlying the random structure of matrices defined by (2.6). Therefore, it is enough to prove
(2.7) only for one fixed element x ∈ Rn with ‖x‖2 = 1. Taking x = e1 = (1, 0, . . . , 0)T to be the
first canonical unit vector allows us to use Lemma 2.10 without the necessity of applying the
2-stability of normal distribution.

2.5.2 RIP for random Gaussian matrices

The proof of restricted isometry property of random matrices generated as in (2.6) is based on
two main ingredients. The first is the concentration of measure phenomenon described in its
most simple form in Lemma 2.10, and reformulated in Theorem 2.11. The second is the following
entropy argument, which allows to extend Theorem 2.11 and (2.7) from one fixed x ∈ Rn to the
set Σk of all k-sparse vectors.

Lemma 2.13. Let t > 0. Then there is a set N ⊂ Sn−1 = {x ∈ Rn : ‖x‖2 = 1} with
(i) |N | ≤ (1 + 2/t)n and
(ii) for every z ∈ Sn−1, there is a x ∈ N with ‖x− z‖2 ≤ t.
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With all these tools at hand, we can now state the main theorem of this section, whose proof
follows closely the arguments of [7].

Theorem 2.14. Let n ≥ m ≥ k ≥ 1 be natural numbers and let 0 < ε < 1 and 0 < δ < 1 be
real numbers with

m ≥ Cδ−2
(
k ln(en/k) + ln(2/ε)

)
, (2.9)

where C > 0 is an absolute constant. Let A be again defined by (2.6). Then

P
(
δk(A) ≤ δ

)
≥ 1− ε.

2.5.3 Lemma of Johnson and Lindenstrauss

Concentration inequalities similar to (2.7) play an important role in several areas of mathematics.
We shall present their connection to the famous result from functional analysis called Johnson-
Lindenstrauss lemma, cf. [64]. The lemma states that a set of points in a high-dimensional
space can be embedded into a space of much lower dimension in such a way that the mutual
distances between the points are nearly preserved. The connection between this classical result
and compressed sensing was first highlighted in [7], cf. also [71].

Lemma 2.15. Let 0 < ε < 1 and let m,N and n be natural numbers with

m ≥ 4(ε2/2− ε3/3)−1 lnN.

Then for every set {x1, . . . , xN} ⊂ Rn there exists a mapping f : Rn → Rm, such that

(1− ε)‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖22 ≤ (1 + ε)‖xi − xj‖22, i, j ∈ {1, . . . , N}. (2.10)

2.6 Stability and robustness

The ability to recover sparse solutions of underdetermined linear systems by quick recovery al-
gorithms as `1-minimization is surely a very promising result. On the other hand, two additional
features are obviously necessary to extend this results to real-life applications, namely

• Stability: We want to be able to recover (or at least approximate) also vectors x ∈ Rn,
which are not exactly sparse. Such vectors are called compressible and mathematically they
are characterized by the assumption that their best k-term approximation decays rapidly
with k. Intuitively, the faster the decay of the best k-term approximation of x ∈ Rn is,
the better we should be able to approximate x.

• Robustness: Equally important, we want to recover sparse or compressible vectors from
noisy measurements. The basic model here is the assumptions that the measurement
vector y is given by y = Ax+ e, where e is small (in some sense). Again, the smaller the
error e is, the better we should be able to recover an approximation of x.

We shall show that the methods of compressed sensing can be extended also to this kind of
scenario. There is a number of different estimates in the literature, which show that the technique
of compressed sensing is stable and robust. We will present only one of them. Its proof is a
modification of the proof of Theorem 2.8, and follows closely [16].
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Inspired by the form of the noisy measurements just described, we will concentrate on the
recovery properties of the following slight modification of (P1). Namely, let η ≥ 0, then we
consider the convex optimization problem

min
z∈Rn

‖z‖1 s.t. ‖Az − y‖2 ≤ η. (P1,η)

If η = 0, (P1,η) reduces back to (P1).

Theorem 2.16. Let δ2k <
√

2− 1 and ‖e‖2 ≤ η. Then the solution x̂ of (P1,η) satisfies

‖x− x̂‖2 ≤
Cσk(x)1√

k
+Dη, (2.11)

where C,D > 0 are two universal positive constants.

2.7 Optimality of bounds

When recovering k-sparse vectors one obviously needs at least m ≥ k linear measurements. Even
when the support of the unknown vector would be known, this number of measurements would
be necessary to identify the value of the non-zero coordinates. Therefore, the dependence of
the bound (2.9) on k can possibly only be improved in the logarithmic factor. Theorem 2.18
that even that is not possible and that this dependence is already optimal as soon as a stable
recovery of k-sparse vectors is requested. The approach presented here is essentially taken over
from [51].

The proof is based on the following combinatorial lemma, which plays also a fundamental role
in coding theory.

Lemma 2.17. Let k ≤ n be two natural numbers. Then there are N subsets T1, . . . , TN of
{1, . . . , n}, such that

(i) N ≥
( n

4k

)k/2
,

(ii) |Ti| = k for all i = 1, . . . , N and

(iii) |Ti ∩ Tj | < k/2 for all i 6= j.

The following theorem shows that any stable recovery of sparse solutions requires at least m
measurements, where m is of the order k ln(en/k).

Theorem 2.18. Let k ≤ m ≤ n be natural numbers, let A ∈ Rm×n be a measurement matrix,
and let ∆ : Rm → Rn be an arbitrary recovery map such that for some constant C > 0

‖x−∆(Ax)‖2 ≤ C
σk(x)1√

k
for all x ∈ Rn. (2.12)

Then
m ≥ C ′k ln(en/k) (2.13)

with some other constant C ′ depending only on C.
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Part II

Results of the thesis

After giving the general background in the first part, we discuss in the second part the results
of the thesis. Essentially, we browse through the included publications one after another and
comment on its main results. Due to the amount of the material, we shall be very brief and
refer to the original publications for details.

For better readability, the results are grouped into four areas, namely

• Function spaces

• Compressed sensing and related topics

• Ridge functions

• Applications in machine learning

3 Results on function spaces

The results in this section deal with function spaces, mostly with its decomposition techniques.
They were published in the following works:

[P1] J. Vyb́ıral, A new proof of Jawerth-Franke embedding, Rev. Mat. Complut. 21 (2008),
75–82.

[P2] J. Vyb́ıral, Widths of embeddings in function spaces, J. Compl. 24 (2008), 545–570.

[P3] J. Vyb́ıral, Sobolev and Jawerth embeddings for spaces with variable smoothness and
integrability, Ann. Acad. Sci. Fenn. Math. 34:2 (2009), 529–544.

[P4] C. Schneider and J. Vyb́ıral, Non-smooth atomic decompositions, traces on Lipschitz do-
mains, and pointwise multipliers in function spaces, J. Funct. Anal. 264 (5) (2013),1197–
1237

[P5] H. Kempka and J. Vyb́ıral, Spaces of variable smoothness and integrability: Characteriza-
tions by local means and ball means of differences, J. Fourier Anal. Appl. 18 (4) (2012),
852–891.

3.1 A new proof of Jawerth-Franke embedding

The classical Sobolev embedding (1.9) is in this frame of function spaces complemented by
the Jawerth-Franke embedding (1.10), which describes the B to F and F to B embedding
in the limiting case. The classical proofs of Jawerth and Franke [52, 63] used heavily the
interpolation theory. We provided an alternative proof. Based on isomorphisms between function
and sequence spaces, it is a straightforward observation that (1.10) holds if, and only if, the same
is true for the sequence spaces bsp,q and fsp,q.

The proof given in [P1] is largely self-contained, without any interpolation theory. The main
ingredient is the fact that the sequence spaces bsp,q and fsp,q have the lattice structure. Namely,

if (λν,m)ν,m and (λ′ν,m)ν,m are two sequences with |λν,m| ≤ |λ′ν,m| for all ν ∈ N0 and m ∈ Zd,
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then ‖λ|bsp,q‖ ≤ ‖λ′|bsp,q‖. This observation allows to use techniques like the non-increasing
rearrangement of a sequence or function.

The main advantage of this technique seems to be its universality. Since its introduction in [P1],
the same approach was used to provide Jawerth-Franke type embeddings for function spaces of
dominating mixed smoothness [58], function spaces defined by their subatomic decompositions
[106] and to spaces built upon Morrey spaces [59].

3.2 Widths of embeddings in function spaces

To describe the properties of infinite-dimensional objects (like function spaces, or operators
between them), one may use several different tools. The prominent role among them is played
by the theory of s-numbers as developed by Pietsch, cf. [100]. Roughly speaking, one associates
to every linear operator T from one (quasi-)Banach space X into another (quasi-)Banach space
Y a (non-increasing) sequence of non-negative real numbers sn(T ). The properties of T are
then reflected in the speed of the decay of sn(T ). This approach takes it motivation from
approximation theory, where it was intuitively used already in the nineteenth century. We refer
to [100, 23] for further details.

Let Ω be a bounded Lipschitz domain and let 0 < p1, p2, q1, q2 ≤ ∞ and s1, s2 ∈ R be real
numbers with

s1 − s2 > d
( 1

p1
− 1

p2

)
+
. (3.1)

Then the embedding
Id : Bs1

p1q1(Ω)→ Bs2
p2q2(Ω) (3.2)

is compact. Using Theorem 1.10 and the existence of a universal extension operator due to
Rychkov [104], the question may be reduced to the corresponding problem on the sequence
space level. We obtain

sn(Id : Bs1
p1q1(Ω)→ Bs2

p2q2(Ω)) ≈ sn(id : bs,Ωpq → bs,Ωpq ), (3.3)

where bs,Ωpq is a certain variant of the spaces bspq as described in Theorem 1.10 adapted to function
spaces on domains.

The discretization technique was used in connection with s-numbers and embeddings of function
spaces already in [80] and [78]. We refer also to [76] and [101] for the survey of the state of
the art as it was in the second half of 1980’s and to [77] for a more modern presentation. The
main aim of the presented paper [P2] was to collect the known facts, to extend the results
to the case of quasi-Banach spaces and to fill some minor gaps left up to that time. Finally,
we remark that the behavior of s-numbers in connection with function spaces with dominating
mixed smoothness was studied in the classical book of Temlyakov [112] and in the more recent
papers [10, 11, 43, 44].

Before we discuss the results, let us define the three most important s-numbers, namely the
approximation, Kolmogorov and Gelfand numbers.

The approximation numbers of the operator T describe, how well may this operator be approx-
imated (in the operator norm) be finite rank operators.

Definition 3.1. Let X,Y be two quasi-Banach spaces and let T ∈ L(X,Y ).

• For n ∈ N, we define the nth approximation number by

an(T ) = inf{‖T − L‖ : L ∈ L(X,Y ), rank(L) < n}. (3.4)
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• For n ∈ N, we define the nth Kolmogorov number by

dn(T ) = inf{‖QYNT‖ : N ⊂⊂ Y, dim(N) < n}. (3.5)

Here, QYN stands for the natural surjection of Y onto the quotient space Y/N .

• For n ∈ N, we define the nth Gelfand number by

cn(T ) = inf{‖TJXM‖ : M ⊂⊂ X, codim(M) < n}. (3.6)

Here, JXM stands for the natural injection of M into X.

This definition goes back to Pietsch [99] and Tikhomirov [115].

Paper [P2] uses the wavelet decomposition techniques to reduce the question to the sequence
space level, cf. (3.3), and the known results on these widths on the sequence space level to
provide asymptotic behaviour of widths of (3.2). As the results depend typically on a number
of parameters, we do not present them here and refer to [P2] for details.

3.3 Sobolev and Jawerth embeddings for spaces with variable smoothness
and integrability

Paper [P3] studies the spaces of variable smoothness and integrability as introduced recently by
L. Diening, P. Hästö, and S. Roudenko in [40].

The definition of these spaces is based on the Lebesgue spaces of variable integrability. The
modern era of interest in these spaces dates back essentially to the paper by Kováčik and
Rákosńık [70].

Definition 3.2. Let p : Rd → (0,∞) be a measurable function. Then the space Lp(·)(Rd)
consists of all measurable functions f : Rd → [−∞,∞] such that ‖f |Lp(·)(Rd)‖ <∞, where

‖f |Lp(·)(Rd)‖ = inf{λ > 0 :

∫
Rd

(
|f(x)|
λ

)p(x)

dx ≤ 1}

is the Minkowski functional of the set {f :
∫
Rd |f(x)|p(x)dx ≤ 1}.

To ensure that Lp(·)(Rd) are quasi-Banach spaces, we assume that

p− := inf
x∈Rd

p(x) > 0.

Furthermore, to avoid the known difficulties of the Triebel-Lizorkin scale for p =∞, we require
also that

p+ = sup
x∈Rd

p(x) <∞,

hence we assume that

0 < p− := inf
z∈Rd

p(z) ≤ p(x) ≤ sup
z∈Rd

p(z) =: p+ <∞, x ∈ Rd. (3.7)

This allows to define Triebel-Lizorkin spaces of variable smoothness and integrability by assum-
ing that s, p and q in Definition 1.1 are (locally integrable) functions of x.
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Definition 3.3. Let s : Rd → R, p : Rd → (0,∞) and q : Rd → (0,∞] be measurable functions.

Then F
s(·)
p(·),q(·)(R

d) is the collection of all f ∈ S′(Rd) such that

‖f |F s(·)p(·),q(·)(R
d)‖ =

∥∥∥∥( ∞∑
j=0

2js(·)q(·)|(ϕj f̂)∨(·)|q(·)
)1/q(·)

|Lp(·)(Rd)
∥∥∥∥ <∞ (3.8)

(with the usual modification for q(x) = ∞). Here, the sequence (ϕj)j∈N0 is the decomposition
of unity used in Definition 1.1.

This definition places (almost) no conditions on the functional parameters s, p and q. Unfor-
tunately, in that case the spaces may depend on the choice of the decomposition of unity - an
effect very well from the theory of F s∞,q-spaces, cf. [134]. Therefore we pose some regularity
restrictions (identical to those made in [40]).

Definition 3.4. Let g be a continuous function on Rd.
(i) We say that g is 1-locally log-Hölder continuous, abbreviated g ∈ C log

1−loc(R
d), if there exists

c > 0 such that

|g(x)− g(y)| ≤ c

log(e+ 1/‖x− y‖∞)
for all x, y ∈ Rd with ‖x− y‖∞ ≤ 1.

Here, ‖z‖∞ = max{|z1|, . . . , |zd|} denotes the maximum norm of z ∈ Rd.

(ii) We say that g is locally log-Hölder continuous, abbreviated g ∈ C log
loc (Rd), if there exists c > 0

such that
|g(x)− g(y)| ≤ c

log(e+ 1/|x− y|)
, x, y ∈ Rd.

(iii) We say that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rd), if it is locally
log-Hölder continuous and there exists c > 0 and g∞ ∈ R such that

|g(x)− g∞| ≤
c

log(e+ |x|)
, x ∈ Rd.

Definition 3.5. (Standing assumptions of [40]). Let p and q be positive functions on Rd

such that 1
p ,

1
q ∈ C

log(Rd) and let s ∈ C log
loc (Rd) with s(x) ≥ 0 and let s(x) have a limit at infinity.

Remark 3.6. Our approach in [P3] was based on the results of [40]. Especially, to ensure that the
norm (3.8) does not depend on the choice of the decomposition of unity, it was necessary to pose
the standing assumptions throughout. Later on, Kempka [66] proved that (3.8) gives equivalent
quasi-norms for different decompositions of unity also for a wider range of parameters.

We introduce the sequence spaces associated with the Triebel-Lizorkin spaces of variable smooth-
ness and integrability. We shall use again the notation of the dyadic cubes as given in Definition
1.6. If

γ = {γjm ∈ C : j ∈ N0,m ∈ Zd},

−∞ < s(x) <∞, 0 < p(x) <∞ and 0 < q(x) ≤ ∞ for all x ∈ Rd, we define

‖γ|fs(·)p(·),q(·)‖ =

∥∥∥∥( ∞∑
j=0

∑
m∈Zd

2js(·)q(·)|γjm|q(·)χjm(·)
)1/q(·)

|Lp(·)(Rd)
∥∥∥∥ (3.9)

=

∥∥∥∥ ∞∑
j=0

∑
m∈Zd

2js(·)|γjm|χjm(·)|Lp(·)(`q(·))
∥∥∥∥.
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Establishing the connection between the function spaces F
s(·)
p(·),q(·)(R

d) and the sequence spaces

f
s(·)
p(·),q(·) was the main aim of [40]. Following [53] and [54], these authors investigated the prop-

erties of the ϕ-transform (as discussed briefly in Section 1.3 and denoted by Sϕ) and obtained
the following result.

Theorem 3.7. ([40], Corollary 3.9) Under the Standing assumptions of [40]

‖f |F s(·)p(·),q(·)(R
d)‖ ≈ ‖Sϕf |fs(·)p(·),q(·)‖

with constants independent of f ∈ F s(·)p(·),q(·)(R
d).

Although the technique of non-increasing rearrangement fails in many aspects in the frame of
variable-exponent Lebesgue spaces, it was possible to use some ideas from [P1] and to prove
the embedding theorem for the sequence spaces. If the first summability index q(·) should be
replaced by ∞ (as one would guess from (1.9)), we have to assume that s0(x) is strictly larger
than s1(x), i.e. infx∈Rd(s0(x)− s1(x)) > 0.

Theorem 3.8. ([P3], Theorems 3.1 and 3.2) Let −∞ < s1(x) ≤ s0(x) < ∞, 0 < p0(x) ≤
p1(x) <∞ for all x ∈ Rd with 0 < p−0 ≤ p

+
1 <∞. Let s0,

1
p0
∈ C log

1−loc(R
d) and

s0(x)− d

p0(x)
= s1(x)− d

p1(x)
, x ∈ Rd.

(i) Let q(x) =∞ for all x ∈ Rd or 0 < q− ≤ q(x) <∞ for all x ∈ Rd. Then

f
s0(·)
p0(·),q(·) ↪→ f

s1(·)
p1(·),q(·).

(ii) Let

ε := inf
x∈Rd

(s0(x)− s1(x)) = d inf
x∈Rd

(
1

p0(x)
− 1

p1(x)

)
> 0. (3.10)

Then, for every 0 < q ≤ ∞,

f
s0(·)
p0(·),∞ ↪→ f

s1(·)
p1(·),q.

Using the theory of [40], our results can be translated immediately into embeddings of function
spaces.

Theorem 3.9. ([P3], Theorem 3.4) Let s0, s1, p0, p1, q, q0 and q1 be continuous functions
satisfying the Standing assumptions of [40] with s0(x) ≥ s1(x) and p0(x) ≤ p1(x) for all x ∈ Rd
and

s0(x)− d

p0(x)
= s1(x)− d

p1(x)
, x ∈ Rd.

(i) Then

F
s0(·)
p0(·),q(·)(R

d) ↪→ F
s1(·)
p1(·),q(·)(R

d).

(ii) If moreover

inf
x∈Rd

(s0(x)− s1(x)) = d inf
x∈Rd

( 1

p0(x)
− 1

p1(x)

)
> 0,

then
F
s0(·)
p0(·),q0(·)(R

d) ↪→ F
s1(·)
p1(·),q1(·)(R

d).
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The proof of Theorem 3.9 follows directly from the corresponding estimates on the sequence
space level (cf. Theorem 3.8) and the properties of the ϕ-transform (cf. Theorem 3.7). One
may observe that the conditions posed on the sequence space level are much milder than those
of Theorem 3.7.

Let us remark that using the recent results of Kempka [66], one can obtain a connection between

F
s(·)
p(·),q(·)(R

d) and f
s(·)
p(·),q(·) for a larger set of parameters, which would then lead to an improvement

of Theorem 3.9.

3.4 Non-smooth atomic decompositions, traces on Lipschitz domains, and
pointwise multipliers in function spaces

There are several definitions of Besov spaces Bs
p,q(Rn) to be found in the literature. Two of

the most prominent approaches are the Fourier-analytic approach using Fourier transforms on
the one hand and the classical approach via higher order differences involving the modulus of
smoothness on the other. These two definitions are equivalent only with certain restrictions on
the parameters, in particular, they differ for 0 < p < 1 and 0 < s ≤ n(1

p − 1), but may otherwise
share similar properties.
In [P4] we focused on the classical approach, which introduces Bs

p,q(Rn) as those subspaces of
Lp(Rn) such that

‖f |Bs
p,q(Rn)‖r = ‖f |Lp(Rn)‖+

(∫ 1

0
t−sqωr(f, t)

q
p

dt

t

)1/q

is finite, where 0 < p, q ≤ ∞, s > 0, r ∈ N with r > s, and ωr(f, t)p is the usual r-th modulus
of smoothness of f ∈ Lp(Rn). Choosing different values of r > s leads to the same space in
the sense of equivalent quasi-norms. These spaces occur naturally in nonlinear approximation
theory, especially in the case p < 1 where they are needed in the description of approximation
classes for the classical methods such as rational approximation and approximation by splines
with free knots.

We developed the so-called non-smooth atomic decompositions of these spaces, where the con-
ditions (1.11) and (1.12) get replaced by the less restrictive ‖a(2−j ·)|Bσ

p (Rn)‖ ≤ 1.

This allowed us to prove

Theorem 3.10. Let n ≥ 2, 0 < p, q ≤ ∞, 0 < s < 1, and let Ω be a bounded Lipschitz domain
in Rn with boundary Γ. Then the operator

tr : B
s+ 1

p
p,q (Ω) −→ Bs

p,q(Γ) (3.11)

is linear and bounded.

Theorem 3.11. Let n ≥ 2 and Ω be a bounded Lipschitz domain with boundary Γ. Then for
0 < s < 1 and 0 < p, q ≤ ∞ there is a bounded (non-linear) extension operator

Ẽxt : Bs
p,q(Γ) −→ B

s+ 1
p

p,q (Ω). (3.12)

The existence of non-smooth atomic decompositions was then further used to characterize the
trace space also in the limiting cases and to derive statements about pointwise multipliers. We
refer to [P4] for details.
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3.5 Spaces of variable smoothness and integrability: Characterizations by
local means and ball means of differences

If

s > σp = n

(
1

min(p, 1)
− 1

)
(3.13)

in the B-case and

s > σp,q = n

(
1

min(p, q, 1)
− 1

)
(3.14)

in the F -case, Besov and Triebel-Lizorkin spaces with constant indices may be characterized
by expressions involving only the differences of the function values without any use of Fourier
analysis. Paper [P5] shows that the same is true also for spaces with variable indices. Let us
first give the necessary notation.

Let f be a function on Rn and let h ∈ Rn. Then we define

∆1
hf(x) = f(x+ h)− f(x), x ∈ Rn.

The higher order differences are defined inductively by

∆M
h f(x) = ∆1

h(∆M−1
h f)(x), M = 2, 3, . . .

This definition also allows a direct formula

∆M
h f(x) :=

M∑
j=0

(−1)j
(
M

j

)
f(x+ (M − j)h). (3.15)

By ball means of differences we mean the quantity

dMt f(x) = t−n
∫
|h|≤t
|∆M

h f(x)|dh =

∫
B
|∆M

thf(x)|dh,

where B = {y ∈ Rn : |y| < 1} is the unit ball of Rn, t > 0 is a real number and M is a natural
number.

Let us now introduce the (quasi-)norms, which shall be the main subject of our study. We define

‖f |F s(·)p(·),q(·)(R
n)‖∗ := ‖f |Lp(·)(Rn)‖ (3.16)

+

∥∥∥∥∥
(∫ ∞

0
t−s(x)q(x)

(
dMt f(x)

)q(x) dt

t

)1/q(x) ∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
and its partially discretized counterpart

‖f |F s(·)p(·),q(·)(R
n)‖∗∗ := ‖f |Lp(·)(Rn)‖ (3.17)

+

∥∥∥∥∥∥
( ∞∑
k=−∞

2ks(x)q(x)
(
dM2−kf(x)

)q(x)

)1/q(x) ∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥
= ‖f |Lp(·)(Rn)‖+

∥∥∥∥(2ks(x)dM2−kf(x)
)∞
k=−∞

∣∣∣∣Lp(·)(`q(·))∥∥∥∥ .
The norm ‖f |F s(·)p(·),q(·)(R

n)‖∗∗ admits a direct counterpart also for Besov spaces, namely

‖f |Bs(·)
p(·),q(·)(R

n)‖∗∗ := ‖f |Lp(·)(Rn)‖+

∥∥∥∥(2ks(x)dM2−kf(x)
)∞
k=−∞

|`q(·)(Lp(·))
∥∥∥∥ , (3.18)
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where `q(·)(Lp(·)) is the (quasi-)Banach space of sequences of functions introduced in [5].

Using the notation introduced above, we may now state the main result of [P5].

Theorem 3.12. (i) Let p, q ∈ P log(Rn) with p+, q+ < ∞ and s ∈ C log
loc (Rn). Let M ∈ N with

M > s+ and let

s− > σp−,q− ·
[
1 +

clog(s)

n
·min(p−, q−)

]
. (3.19)

Then
F
s(·)
p(·),q(·)(R

n) = {f ∈ Lp(·)(Rn) ∩ S ′(Rn) : ‖f |F s(·)p(·),q(·)(R
n)‖∗ <∞}

and ‖ · |F s(·)p(·),q(·)(R
n)‖ and ‖ · |F s(·)p(·),q(·)(R

n)‖∗ are equivalent on F
s(·)
p(·),q(·)(R

n). The same holds for

‖f |F s(·)p(·),q(·)(R
n)‖∗∗.

(ii) Let p, q ∈ P log(Rn) and s ∈ C log
loc (Rn). Let M ∈ N with M > s+ and let

s− > σp− ·
[
1 +

clog(1/q)

n
+
clog(s)

n
· p−

]
. (3.20)

Then
B
s(·)
p(·),q(·)(R

n) = {f ∈ Lp(·)(Rn) ∩ S ′(Rn) : ‖f |Bs(·)
p(·),q(·)(R

n)‖∗∗ <∞}

and ‖ · |Bs(·)
p(·),q(·)(R

n)‖ and ‖ · |Bs(·)
p(·),q(·)(R

n)‖∗∗ are equivalent on B
s(·)
p(·),q(·)(R

n).

Remark 3.13. Let us comment on the rather technical conditions (3.19) and (3.20).

• If min(p−, q−) ≥ 1, then (3.19) becomes just s− > 0. Furthermore, if p, q and s are
constant functions, then (3.19) coincides with (3.14).

• If p− ≥ 1, then (3.20) reduces also to s− > 0 and in the case of constant exponents we
again recover (3.13).

We refer to [P5] for the proof of this assertion. We only mention that it is based on the local
mean characterization. In the isotropic case, this tool goes back to Rychkov [103], for spaces
with variable indices it was developed in [P5].

4 Compressed sensing and related topics

In this part we review the results of this thesis, which are connected directly to the theory of
compressed sensing. They were published in one survey chapter and four research papers:

[P6] H. Boche, R. Calderbank, G. Kutyniok, and J. Vyb́ıral, A Survey of Compressed Sensing,
First chapter in Compressed Sensing and its Applications, Birkäuser, Springer, 2015

[P7] A. Hinrichs and J. Vyb́ıral, Johnson-Lindenstrauss lemma for circulant matrices. Random
Struct. Algor. 39(3) (2011), 391–398

[P8] J. Vyb́ıral, A variant of the Johnson-Lindenstrauss lemma for circulant matrices, J. Funct.
Anal. 260(4) (2011), 1096–1105

[P9] J. Vyb́ıral, Average best m-term approximation, Constr. Approx. 36 (1) (2012), 83–115

[P10] M. Fornasier, J. Haškovec, and J. Vyb́ıral, Particle systems and kinetic equations mod-
eling interacting agents in high dimension, SIAM: Multiscale Modeling and Simulation,
9(4)(2011), 1727–1764
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4.1 A Survey of Compressed Sensing

In December 2013, Holger Boche (Technical University Munich), Robert Calderbank (Duke
University), Gitta Kutyniok and Jan Vyb́ıral (both Technical University Berlin) organized the
Matheon workshop on Compressed Sensing and its Applications (CSA2013). The proceedings
of this workshop with contributions from the plenary and invited speakers were then published
by Birkhäuser, Springer. This chapter was the introductory one, its main aim was to present the
most important aspects of the theory of compressed sensing with self-contained proofs, accessible
also to non-mathematicians. This chapter was mainly based on the book [51] and the course
on the subject given by the last author at TU Berlin. We followed this chapter closely in our
introduction of compressed sensing in Section 2.

4.2 Johnson-Lindenstrauss lemma for circulant matrices

In papers [P7] and [P8] we studied the possibility of using circulant matrices in the random
dimensionality reduction as described by the Johnson-Lindenstrauss lemma 2.15.

The original proof of Johnson and Lindenstrauss [64] uses (up to a scaling factor) an orthogonal
projection onto a random k-dimensional subspace of Rd. We refer also to [33] for a beautiful
and self-contained proof. Later on, this lemma found many applications, especially in design
of algorithms, where it sometimes allows to reduce the dimension of the underlying problem
essentially and break the so-called “curse of dimension”, cf. [61] or [62].

The evaluation of f(x), where f is a projection onto a random k dimensional subspace, is a very
time-consuming operation. Therefore, a significant effort was devoted to

• minimize the running time of f(x),

• minimize the memory used,

• minimize the number of random bits used,

• simplify the algorithm to allow an easy implementation.

There has been an enormous effort to provide improved constructions of Johnson-Lindenstrauss
mappings [1, 4, 81, 15] and references therein. Let us recall that the close connection between
Johnson-Lindenstrauss lemma and the Restricted Isometry Property is nowadays well under-
stood, cf. [7] and [71].

Papers [P7] and [P8] investigated the possibility of using structured random matrices for di-
mensionality reduction. Let us give the necessary definitions and the statement of the theorem
proven in [P7].

Let a = (a0, . . . , ad−1) be independent identically distributed random variables. We denote by
Ma,k the partial circulant matrix

Ma,k =


a0 a1 a2 . . . ad−1

ad−1 a0 a1 . . . ad−2

ad−2 ad−1 a0 . . . ad−3
...

...
...

. . .
...

ad−k+1 ad−k+2 ad−k+3 . . . ad−k

 .
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Furthermore, if κ = (κ0, . . . ,κd−1) are independent Bernoulli variables, we put

Dκ =


κ0 0 . . . 0
0 κ1 . . . 0
...

...
. . .

...
0 0 . . . κd−1

 .

The main result of [P7] was then the following statement.

Theorem 4.1. Let x1, . . . , xn be arbitrary points in Rd, let ε ∈ (0, 1
2) and let k = Ω(ε−2 log3 n)

be a natural number. Let a = (a0, . . . , ad−1) be independent Bernoulli variables or independent
normally distributed variables. Let Ma,k and Dκ be as above and put f(x) = 1√

k
Ma,kDκx.

Then with probability at least 2/3 the following holds

(1− ε)‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖22 ≤ (1 + ε)‖xi − xj‖22, i, j = 1, . . . , n.

The proof is based on decoupling the dependencies of the randomness used in the entries.
Obviously, the main disadvantage of Theorem 4.1 is the high dependence of k on n. This
was improved in [P8], where a similar theorem was proven with k = Ω(ε−2 log2 n). The proof
techniques used in [P8] differ essentially, and are of more geometric nature.

4.3 Average best m-term approximation

The concept of best m-term approximation was defined in (2.2) and is the main prototype of
non-linear approximation, cf. [113, 37]. Moreover for 0 < p ≤ q ≤ ∞, we introduce the best
m-term approximation widths

σp,qm := sup
x:‖x‖p≤1

σm(x)q.

The use of this concept goes back to Schmidt [105] and after the work of Oskolkov [95], it was
widely used in the approximation theory, cf. [32, 38]. It is well known that

2−1/p(m+ 1)1/q−1/p ≤ σp,qm ≤ (m+ 1)1/q−1/p, m = 0, 1, 2, . . . . (4.1)

The proof of (4.1) is based on the simple fact that (roughly speaking) the best m-term approx-
imation error of x ∈ `p is realized by subtracting the m largest coefficients taken in absolute
value. Hence,

σm(x)q =


(∑∞

j=m+1(x∗j )
q

)1/q

, 0 < q <∞,

x∗m+1 = supj≥m+1 x
∗
j , q =∞,

where x∗ = (x∗1, x
∗
2, . . . ) denotes the so-called non-increasing rearrangement [12] of the vector

(|x1|, |x2|, |x3|, . . . ).
Let us recall the proof of (4.1) in the simplest case, namely q = ∞. The estimate from above
then follows by

σm(x)∞ = sup
j≥m+1

x∗j = x∗m+1 ≤
(

(m+ 1)−1
m+1∑
j=1

(x∗j )
p

)1/p

≤ (m+ 1)−1/p‖x‖p. (4.2)

The lower estimate is supplied by taking

x = (m+ 1)−1/p
m+1∑
j=1

ej , (4.3)
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where {ej}∞j=1 are the canonical unit vectors.

For general q, the estimate from above in (4.1) may be obtained from (4.2) and Hölder’s in-
equality

‖x‖q ≤ ‖x‖θp · ‖x‖1−θ∞ , where
1

q
=
θ

p
. (4.4)

The estimate from below follows for all q’s by simple modification of (4.3).
The discussion above exhibits two effects.

(i) Best m-term approximation works particularly well, when 1/p− 1/q is large, i.e. if p < 1
and q =∞.

(ii) The elements used in the estimate from below (and hence the elements, where the best
m-term approximation performs at worse) enjoy a very special structure.

Therefore, there is a reasonable hope that the best m-term approximation could behave better,
when considered in a certain average case. We now present the definition of the so-called average
best m-term widths, which were the main subject of our study in [P9].

First, we observe that

σm((x1, . . . , xn))q = σm((ε1x1, . . . , εnxn))q = σm((|x1|, . . . , |xn|))q

holds for every x ∈ Rn and ε ∈ {−1,+1}n. Also all the measures, which we shall consider, are
invariant under any of the mappings

(x1, . . . , xn)→ (ε1x1, . . . , εnxn), ε ∈ {−1,+1}n

and therefore we restrict our attention only to Rn+ in the following definition.

Definition 4.2. Let 0 < p ≤ q ≤ ∞ and let n ≥ 2 and 0 ≤ m ≤ n− 1 be natural numbers.

(i) We set

∆n
p =

{
{(t1, . . . , tn) ∈ Rn+ :

∑n
j=1 t

p
j = 1}, p <∞,

{(t1, . . . , tn) ∈ Rn+ : maxj=1,...,n tj = 1}, p =∞.

(ii) Let µ be a Borel probability measure on ∆n
p . Then

σp,qm (µ) =

∫
∆n
p

σm(x)qdµ(x)

is called average surface best m-term width of id : `np → `nq with respect to µ.

(iii) Let ν be a Borel probability measure on [0, 1] ·∆n
p . Then

σp,qm (ν) =

∫
[0,1]·∆n

p

σm(x)qdν(x)

is called average volume best m-term width of id : `np → `nq with respect to ν.

Following the classical works from geometry of Banach spaces [8, 9, 47, 86, 87, 89, 90] we were
able to characterize these widths for classical measures on ∆n

p including the normalized Lebesgue
measure, the n − 1 dimensional Hausdorff measure restricted to the surface of ∆n

p , and for the
so-called cone measure. We refer to [P9] for the detailed statements of the results.
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4.4 Particle systems and kinetic equations modeling interacting agents in
high dimension

The starting point of [P10] is the well-known Cucker-Smale model, introduced and analyzed in
[30, 31], which is described by

ẋi = vi ∈ Rd, (4.5)

v̇i =
1

N

N∑
j=1

g(‖xi − xj‖`d2)(vj − vi), i = 1, . . . , N. (4.6)

The function g : [0,∞)→ R is given by g(s) = G
(1+s2)β

, for β > 0, and bounded by g(0) = G > 0.

This model describes the emerging of consensus in a group of interacting agents, trying to align
(also in terms of abstract consensus) with their neighbors. One of the motivations of the model
from Cucker and Smale was to describe the formation and evolution of languages [31, Section
6], although, due to its simplicity, it has been eventually related mainly to the description of
the emergence of flocking in groups of birds [30]. In the latter case, in fact, spatial and velocity
coordinates are sufficient to describe a pointlike agent (d = 3 + 3), while for the evolution of
languages, one would have to take into account a much broader dictionary of parameters, hence
a higher dimension d � 3 + 3 of parameters, which is in fact was the case of our interest in
[P10].

We investigated dynamical systems of the type

ẋi(t) = fi(Dx(t)) +
N∑
j=1

fij(Dx(t))xj(t), (4.7)

where we use the following notation:

• N ∈ N - number of agents,

• x(t) = (x1(t), . . . , xN (t)) ∈ Rd×N , where xi : [0, T ]→ Rd, i = 1, . . . , N ,

• fi : RN×N → Rd, i = 1, . . . , N,

• fij : RN×N → R, i, j = 1, . . . , N ,

• D : Rd×N → RN×N , Dx := (‖xi − xj‖`d2)Ni,j=1 is the adjacency matrix of the point cloud x.

We assumed that the governing functions fi and fij are Lipschitz. The system (4.7) describes
the dynamics of multiple complex agents x(t) = (x1(t), . . . , xN (t)) ∈ Rd×N , interacting on
the basis of their mutual “social” distance Dx(t), and its general form includes several models
for swarming and collective motion of animals and micro-organisms, aggregation of cells, etc.
Several relevant effects can be included in the model by means of the functions fi and fij , in
particular, fundamental binary mechanisms of attraction, repulsion, aggregation and alignment
[22, 30, 31, 94, 65].

In [P10] we applied the following strategy for dimensionality reduction of such dynamical sys-
tems. To decide if some effects occurred during the evolution of the dynamical system, it is
often not necessary to know the full trajectory of the system. For the Cucker-Smale system we
might be interested, if flocking occurred or not - but this can be very well guessed also from
any lowdimensional projection of the system. We therefore first apply Johnson-Lindenstrauss
embedding of the initial data and then calculate the solution path in the lower dimension. It
turns out that (at least for small period of time) the result of this lies close to the projection of
the solution of the original (highdimensional) dynamical system.
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5 Ridge functions

It is very well known, cf. [91], that approximation of smooth functions is (at least in some
settings) intractable in high dimensions. Therefore, the aim of the next group of papers was to
study approximation of well structured multivariate functions, which take a form of a ridge, i.e.

f(x) = g(a · x), x ∈ Rd, x ∈ Ω. (5.1)

Here, one assumes that both the ridge vector a ∈ Rd and the univariate function g (sometimes
also called ridge profile) are unknown. Although the formula (5.1) is rather simple, it revealed
couple of features:

(i) Typical structural assumptions posed on multivariate functions are linear (i.e. the function
belongs to some Banach space, which is of course linear). In contrary, (5.1) is non-linear
and may serve as a prototype of non-linear function classes useful for multivariate problems.

(ii) Although the formula (5.1) is rather simple, the tractability of the approximation of ridge
functions runs through several of the tractability classes considered in the field of Infor-
mation Based Complexity, cf. [92, 93], depending on the assumptions made on a and g
(and on the domain Ω).

(iii) For certain assumptions on a, the theory of compressed sensing comes in as an useful tool.

The results reported in this section were based on [27, 39, 133] and were published in the
following papers.

[P11] M. Fornasier, K. Schnass, and J. Vyb́ıral, Learning functions of few arbitrary linear pa-
rameters in high dimensions, Found. Comput. Math. 12 (2) (2012), 229–262

[P12] A. Kolleck and J. Vyb́ıral, On some aspects of approximation of ridge functions, J. Appr.
Theory 194 (2015), 35–61

[P13] S. Mayer, T. Ullrich, and J. Vyb́ıral, Entropy and sampling numbers of classes of ridge
functions, Constr. Appr. 42 (2) (2015), 231–264

5.1 Learning functions of few arbitrary linear parameters in high dimensions

Paper [P11] exploited the straightforward formula

∂f

∂ϕ
(ξ) = [g′(a · ξ)]a · ϕ (5.2)

to get the access to scalar products of a with carefully chosen directional vectors ϕ. Furthermore,
replacing derivatives with first-order differences allowed for a sampling algorithm based on ran-
domly chosen sampling points and polynomial or even logarithmic complexity in the dimension
d.

To be more precise we define two sets X ,Φ of points. The first

X = {ξj ∈ Sd−1 : j = 1, . . . ,mX }, (5.3)
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contains the mX sampling points and is drawn at random in Sd−1 according to the probability
measure µSd−1 . For the second, containing the mΦ derivative directions, we have

Φ =

{
ϕi ∈ BRd(

√
d/
√
mΦ) : ϕi` =

1√
mΦ

{
1, with probability 1/2,
−1, with probability 1/2,

i = 1, . . . ,mΦ, and ` = 1, . . . , d} . (5.4)

Actually we identify Φ with the mΦ × d matrix whose rows are the vectors ϕi. To write the
mX ×mΦ instances of (5.2) in a concise way we collect the directional derivatives g′(a · ξj)a,
j = 1, . . . ,mX as columns in the d×mX matrix X, i.e.,

X = (g′(a · ξ1)aT , . . . , g′(a · ξmX )aT ), (5.5)

and we define the mΦ ×mX matrices Y and E entrywise by

yij =
f(ξj + εϕi)− f(ξj)

ε
, (5.6)

and
εij =

ε

2
[ϕTi ∇2f(ζij)ϕi]. (5.7)

We denote by yj the columns of Y and by εj the columns of E , j = 1, . . . ,mX . With these
matrices we can write the following factorization

ΦX = Y − E . (5.8)

Under the additional assumptions that a ∈ Rd is sparse, (5.8) may be interpreted as compressive
measurements of a with noise, and it is therefore possible to use the methods of sparse recovery
to approximate a. We therefore proposed the following algorithm.

Algorithm:

• Given mΦ,mX , draw at random the sets Φ and X as in (5.3) and (5.4), and
construct Y according to (5.6).

• Set x̂j = ∆(yj) := arg minyj=Φz ‖z‖`d1 .

• Find
j0 = arg max

j=1,...,mX
‖x̂j‖`d2 . (5.9)

• Set â = x̂j0/‖x̂j0‖`d2 .

• Define ĝ(y) := f(âT y) and f̂(x) := ĝ(â · x).

Using recent Chernoff bounds for sums of positive-semidefinite matrices, and classical stability
bounds for invariant subspaces of singular value decompositions, we were able to provide (prob-
abilistic) guarantees on the performance of this algorithm in approximating ridge function (5.1).
Furthermore, the general case f(x) = g(Ax), where A ∈ Rk×d is a matrix, was also considered.

5.2 On some aspects of approximation of ridge functions

In [P12] we addressed several issues of analysis of ridge functions, which were left open in the
previous works. The first aspect was the change of the domain from unit ball to unit cube, i.e.
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we considered functions
f(x) = g(〈a, x〉), x ∈ [−1, 1]d.

As the unit cube is much larger than the unit ball (a fact which is described in many ways in the
analysis of convex bodies) it is usually much more difficult to approximate a function on a unit
cube than on a unit ball. With the non-linear class of ridge functions the situation is different -
the larger domain can be used to learn the ridge direction a more accurately. The crucial notion
of our analysis was the sign of a vector sign(x), which is taken componentwise. Although this
mapping is not continuous, its scalar product with the vector x itself not only gives the `1-norm
of the original vector, but the mapping y → 〈y, sign(x)〉 becomes continuous at x.

The second issue discussed in [P12] was the subject of noisy sampling. As the methods used so far
were based on first order differences, their stability was an important question. We proposed an
algorithm, which involves the Dantzig selector of Candés and Tao [21]. This recovery algorithm
can deal with random noise much more effectively than the classical `1-norm minimization.
Especially, the effect of noise folding is completely avoided with this approach. As intuitively
expected, the distance parameter of the first order differences has to be optimized - if it is too
small, any small perturbation of the function values affects heavily the differences. If it is too
large, the first order differences do not approximate the first derivatives well any more.

Finally, we considered the class of shifted radial functions f(x) = g(‖a − x‖22). It turned out
that the approach developed so far can easily be translated to this setting.

5.3 Entropy and sampling numbers of classes of ridge functions

The paper [P13] discussed the approximation of ridge functions from the point of view of Infor-
mation Based Complexity, paying attention to optimality of the known algorithms and to lower
bounds on the error of approximation. We considered ridge functions defined on the unit ball

Ω = B̄d
2 = {x ∈ Rd : ‖x‖2 ≤ 1}.

Let α > 0 denote the order of Lipschitz smoothness. Further, let 0 < p ≤ 2. We define the class
of ridge functions with Lipschitz profiles as

Rα,pd =
{
f : Ω→ R : f(x) = g(a · x), ‖g‖Lipα[−1,1] ≤ 1, ‖a‖p ≤ 1

}
. (5.10)

In addition, we define the class of ridge functions with infinitely differentiable profiles by

R∞,pd =
{
f : Ω→ R : f(x) = g(a · x), ‖g‖C∞[−1,1] ≤ 1, ‖a‖p ≤ 1

}
.

The concept of entropy numbers is central to this work. They can be understood as a measure
to quantify the compactness of a set w.r.t. some reference space. For a detailed exposure and
historical remarks, we refer to the monographs [23, 45]. The k-th entropy number ek(K,X) of
a subset K of a (quasi-)Banach space X is defined as

ek(K,X) = inf
{
ε > 0 : K ⊂

2k−1⋃
j=1

(xj + εB̄X) for some x1, . . . , x2k−1 ∈ X
}
. (5.11)

Note that ek(K,X) = inf{ε > 0 : Nε(K,X) ≤ 2k−1} holds true, where

Nε(K,X) := min
{
n ∈ N : ∃x1, . . . , xn ∈ X : K ⊂

n⋃
j=1

(xj + εB̄X)
}

(5.12)
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denotes the covering number of the set K in the space X, which is the minimal natural number
n such that there is an ε-net of K in X of n elements. We can introduce entropy numbers for
operators, as well. The k-th entropy number ek(T ) of an operator T : X → Y between two
quasi-Banach spaces X and Y is defined by

ek(T ) = ek(T (B̄X), Y ). (5.13)

The main result on entropy numbers of classes of ridge functions obtained in [P13] was the
following theorem.

Theorem 5.1. Let d be a natural number and α > 0. For the entropy numbers of Rα,2d in
L∞(Ω) we have

max(k−α, 2−k/d) . ek(Rα,2d , L∞) .

{
1 : k ≤ cαd log d,

k−α : k ≥ cαd log d ,
(5.14)

for some universal constant cα > 0 which does not depend on d.

As the decay of these entropy numbers resembles very much the behaviour of the entropy
numbers of univariate Lipschitz functions, we can conclude that, when speaking in terms of
entropy, classes of ridge functions with Lipschitz profile are essentially as compact as the class
of univariate Lipschitz functions. Consequently, these classes must be much smaller than the
class of multivariate Lipschitz functions.

The situation changes dramatically, when we come from entropy numbers to the so-called sam-
pling numbers. These numbers describe the minimal worst-case error when approximating func-
tions from a certain class using only a limited budget of function values, which we are allowed
to take. It turned out that without any additional assumptions on g and a, the problem is
intractable. Interestingly, when changing the assumptions on a and g, the problem belongs to a
number of different tractability classes considered in Information Based Complexity. Assuming,
on the other hand, that |g′(0)| ≥ κ > 0 allows to use the techniques of compressed sensing and
restore tractability.

6 Applications in machine learning

[P14] A. Kolleck and J. Vyb́ıral, Non-asymptotic analysis of `1-Support Vector Machines, sub-
mitted

[P15] L. M. Ghiringhelli, J. Vyb́ıral, S. V. Levchenko, C. Draxl, and M. Scheffler, Big data of
materials science - Critical role of the descriptor, Phys. Rev. Lett. 114, 105503 (2015)

6.1 Non-asymptotic analysis of `1-Support Vector Machines

Support vector machines (SVM) are a group of popular classification methods in machine
learning. Their input is a set of data points x1, . . . , xm ∈ Rd, each equipped with a label
yi ∈ {−1,+1}, which assigns each of the data points to one of two groups. SVM aims for binary
linear classification based on separating hyperplane between the two groups of training data,
choosing a hyperplane with separating gap as large as possible.

Since their introduction by Vapnik and Chervonenkis [124], the subject of SVM was studied
intensively. We will concentrate on the so-called soft margin SVM [29], which allow also for
misclassification of the training data and are the most used version of SVM nowadays.
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In its most common form (and neglecting the bias term), the soft-margin SVM is a convex
optimization program

min
w∈Rd
ξ∈Rm

1

2
‖w‖22 + λ

m∑
i=1

ξi subject to yi〈xi, w〉 ≥ 1− ξi

and ξi ≥ 0 (6.1)

for some tradeoff parameter λ > 0 and so called slack variables ξi. It will be more convenient
for us to work with the following equivalent reformulation of (6.1)

min
w∈Rd

m∑
i=1

[1− yi〈xi, w〉]+ subject to ‖w‖2 ≤ R, (6.2)

where R > 0 gives the restriction on the size of w.

The aim of [P14] was to analyze the `1-based variant of SVM, which was introduced in [135]
and which performs well when looking for sparse classifiers, i.e. when w ∈ Rd is supposed to
have only few non-zero coordinates. Hence, we denote by â the minimizer of

min
w∈Rd

m∑
i=1

[1− yi〈xi, w〉]+ subject to ‖w‖1 ≤ R. (6.3)

The setting of our work, which we will later on refer to as “Standing assumptions”, was the
following.

Standing assumptions:

(i) a ∈ Rd is the true (nearly) sparse classifier with ‖a‖2 = 1, ‖a‖1 ≤ R, R ≥ 1, which
we want to approximate;

(ii) xi = rx̃i, x̃i ∼ N (0, Id), i = 1, . . . ,m are i.i.d. training data points for some constant
r > 0;

(iii) yi = sgn(〈xi, a〉), i = 1, . . . ,m are the labels of the data points;

(iv) â is the minimizer of (6.3);

(v) Furthermore, we denote

K = {w ∈ Rd | ‖w‖1 ≤ R}, (6.4)

fa(w) =
1

m

m∑
i=1

[1− yi〈xi, w〉]+, (6.5)

where the subindex a denotes the dependency of fa on a (via yi).

Using the methods of concentration of measure and of probability theory in Banach spaces
[74, 75], we could estimate the performance of (6.3) under the “Standing assumptions”.

Theorem 6.1. Let d ≥ 2, 0 < ε < 0.18, r >
√

2π(0.57 − πε)−1 and m ≥ Cε−2r2R2 log(d) for
some constant C. Under the “Standing assumptions” it holds∥∥∥a− â

‖â‖2

∥∥∥
2

〈a, â
‖â‖2 〉

≤ C ′
(
ε+

1

r

)
(6.6)
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with probability at least

1− γ exp
(
−C ′′ log(d)

)
(6.7)

for some positive constants γ,C ′, C ′′.

If a ∈ Rd is s-sparse, then (simply by Hölder’s inequality) ‖a‖1 ≤
√
s and we may take R =

√
s

in Theorem 6.1. The logarithmic dependence of m on d and the linear dependence of m on s
are the main achievements of Theorem 6.1 and explain the practical success of `1-SVM in many
different areas. On the other hand, we conjecture that the dependence of m on ε and r is not
optimal and could be improved by more detailed analysis.

6.2 Big data of materials science - Critical role of the descriptor

The last paper selected for this cumulative thesis arose from the collaboration with colleagues
from Fritz-Haber Institute in Berlin. They have been interested in speeding up the discovery of
new materials. Nowadays, important material properties may be calculated ab initio from the
known molecular structure of the material. Essentially, the only inputs of these calculations are
the nuclear numbers of the atoms in the molecule. Nevertheless, any such calculation takes quite
long amount of time. As the number of potential new materials is in thousands (and hundreds
of thousands), it is not feasible to calculate all of them through.

Instead of that, we would be interested in a very quick (but inaccurate) calculation of such
properties, which could (at least roughly) predict, were the interesting materials are to be found.
Afterwards, these preselected materials could indeed be treated by the full scale computation.

As a model example we have chosen the prediction of the crystal structure of binary compound
semiconductors, which are known to crystallize in zincblende (ZB), wurtzite (WZ), or rocksalt
(RS) structures. In 1970 Phillips and van Vechten (Ph-vV) [125, 98] analyzed the prediction or
classification challenge and came up with a two-dimensional descriptor, i.e., two numbers that
are related to the dielectric constant and the nearest-neighbor distance in the crystal [125, 98].
Figure 2 shows their conclusion. Clearly, in this representation ZB/WZ and RS structures
separate nicely: Materials in the upper left part crystallize in the RS structure, those in the
lower right part are ZB/WZ. Thus, based on the ingenious descriptor d = (Eh, C) one can predict
the structure of unknown compounds without the need of performing explicit experiments or
calculations. Several authors have taken up the Ph-vV challenge and identified alternative
descriptors [136, 97, 24].

We have therefore selected N = 82 binary compounds and calculated the property P - the
difference in LDA energy (∆E) between RS and ZB for the given atom pair AB. Then we
were searching for a descriptor that minimizes the Root Mean Square Error (RMSE), given by√

(1/N)‖P−Dc‖22. The order is such that element A is the one with the smallest electronega-
tivity EN, defined according to Mulliken: EN = 1/2 (IP+EA). IP and EA are atomic ionization
potential and electron affinity evaluated as the energy of the half-occupied Kohn-Sham orbital
in the half positively and half negatively charged LDA atom, respectively. For systematically
constructing the feature space, i.e., the candidate components of the descriptor, and then select-
ing the most relevant of them, we implement an iterative approach. We start from 7 atomic
features for atom A: IP(A) and EA(A), H(A) and L(A), the energies of the highest-occupied and
lowest-unoccupied Kohn-Sham (KS) levels, as well as rs(A), rp(A), and rd(A), i.e., the radius
where the radial probability density of the valence s, p, and d orbital is maximal. Besides,
information regarding the isolated AA, BB, and AB dimers was added to the list, namely their
equilibrium distance, binding energy, and HOMO-LUMO KS gap (a total of 9 more features).
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Figure 2: Ground-state structures of 68 octet binary compounds, arranged according to the
two-dimensional descriptor introduced by Phillips and van Vechten [125, 98]. Both descriptors
and classification derive from experimental data. Because of visibility reasons only 10 materials
are labeled for each structure.

Figure 3: Calculated energy differences of the 82 octet binary materials, arranged according
to our optimal two-dimensional descriptor. For visibility reasons, not all materials are labeled.
Seven ZB materials with predicted ∆E > 0.5 eV are outside the shown window.

Next, we define rules for linear and non-linear combinations of the just mentioned 23 starting
features. One can easily generate a huge number of candidate descriptors, e.g., all thinkable
but not violating basic physical rules. In the present study we used about 10 000 candidates
subdivided such to be used in different iterations, where we refined the feature space.

We form (non-)linear combinations of the starting features, which we expect to be potentially
of some causal significance. In the language of kernel ridge regression we design a kernel and
we do it by using physical insight. In this way we can check new mechanisms that are tested
one against each other. Due to the limited set of data points, the list cannot be exhaustive
because LASSO (and actually any other method) has difficulties in selecting between two highly
correlated features. In our case, for instance, rs and rp for the same atom have a large correlation
(Pearson’s index larger than 0.95, in other words the two 82-dimensional vectors of the feature
rs and rp are almost collinear).
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Figure 4: Error of a linear fit for Zunger’s descriptors (left figure) and for our best pair (right
figure). Each symbol represents one material, which was left out from training and afterwards
forecasted by the description found. Especially materials with high ∆ELDA are predicted by
our method with much higer accuracy (see the right-bottom zoom of the figures).

Our procedure identifies as best (i.e., yielding the lowest RMSE) one-, two-, and three-dimensional
(1D, 2D, and 3D) descriptors. These are the first, the first two, and all three of the following
features:

IP(B)− EA(B)

rp(A)2
,
|rs(A)− rp(B)|

exp(rs(A))
,
|rp(B)− rs(B)|

exp(rd(A) + rs(B))
.

The extensions of this method to problems closer to real-life questions is currently the subject
of further research.
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[40] L. Diening, P. Hästö and S. Roudenko, Function spaces of variable smoothness and integra-
bility, J. Funct. Anal. 256 (2009), no. 6, 1731–1768.

[41] D.L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

[42] M. Duarte, M. Davenport, D. Takhar, J. Laska, S. Ting, K. Kelly, and R. Baraniuk, Single-
pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25, 83–91 (2008)

[43] D. Dung, Approximation of functions of several variables on a torus by trigonometric poly-
nomials, Mat. Sb. (N.S.) 131(173) (1986), no. 2, 251–271; translated in Math. USSR-Sb. 59
(1988), no. 1, 247–267.

[44] D. Dung, Optimal non-linear approximation of functions with a mixed smoothness, East J.
Approx. 4 (1998), no. 1, 75–86.

[45] D.E. Edmunds and H. Triebel. Function Spaces, Entropy Numbers, Differential Operators.
Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996.

[46] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), no.
3-4, 137-193.

[47] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections
of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94.
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