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Abstract

We discuss the growth envelopes of Besov and Triebel-Lizorkin spaces Bs

p,q
(Rn) and F s

p,q
(Rn)

for s = σp = nmax( 1

p
− 1, 0). These results may be also reformulated as optimal embed-

dings into the scale of Lorentz spaces Lp,q(R
n). We close several open problems formulated by

D. D. Haroske in [4].
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1 Introduction and main results

We denote by Bs
p,q(R

n) and F s
p,q(R

n) the Fourier-analytic Besov and Triebel-Lizorkin spaces (see
Definition 2.4 for details). The embeddings of these function spaces (and other spaces of smooth
functions) play an important role in functional analysis. If s > n

p , then these spaces are continuously
embedded into C(Rn), the space of all complex-valued bounded and uniformly continuous functions
on R

n normed in the usual way. If s < n
p then these function spaces contain also unbounded

functions. This statement holds true also for s = n
p under some additional restrictions on the

parameters p and q. We refer to [8, Theorem 3.3.1] for a complete overview.

To describe the singularities of these unbounded elements, we use the technique of the non-
increasing rearrangement.

Definition 1.1. Let µ be the Lebesgue measure in R
n. If h is a measurable function on R

n, we
define the non-increasing rearrangement of h through

h∗(t) = sup{λ > 0 : µ{x ∈ R
n : |h(x)| > λ} > t}, t ∈ (0,∞). (1.1)

To be able to apply this procedure to elements of As
p,q(R

n) (with A standing for B or F ), we have

to know whether As
p,q(R

n) →֒ Lloc
1 (Rn), the space of all measurable, locally-integrable functions on

R
n. A complete treatment of this question may be found in [8, Theorem 3.3.2]:

Bs
p,q(R

n) →֒ Lloc
1 (Rn) ⇔






either s > σp := nmax(1
p − 1, 0),

or s = σp, 1 < p ≤ ∞, 0 < q ≤ min(p, 2),

or s = σp, 0 < p ≤ 1, 0 < q ≤ 1

(1.2)

and

F s
p,q(R

n) →֒ Lloc
1 (Rn) ⇔






either s > σp,

or s = σp, 1 ≤ p ≤ ∞, 0 < q ≤ 2,

or s = σp, 0 < p < 1, 0 < q ≤ ∞.

(1.3)

Let us assume, that a function space X is embedded into Lloc
1 (Rn). The growth envelope function

of X was defined by D. D. Haroske (see [3], [4] and references given there) by

EX
G (t) := sup

||f |X||≤1
f∗(t), 0 < t < 1.

If EX
G (t) ≈ t−α for 0 < t < 1 and some α > 0, then we define the growth envelope index uX as the

infimum of all numbers v, 0 < v ≤ ∞, such that

(∫ ǫ

0

[
f∗(t)

EX
G (t)

]v
dt

t

)1/v

≤ c ||f |X|| (1.4)

holds for some ǫ > 0, c > 0 and all f ∈ X.

The pair EG(X) = (EX
G , uX) is called growth envelope for the function space X.

In the case σp < s < n
p , the growth envelopes of As

p,q(R
n) are known, cf. [4, Theorem 7.1]. If s = n

p
and (1.2) or (1.3) is fulfilled in the B or F case, respectively, then the known information is not
complete, cf. [4, Prop. 7.10, 7.12]:

Theorem 1.2. (i) Let 1 < p <∞ and 0 < q ≤ min(p, 2). Then

EG(B0
p,q) = (t−

1
p , u) with q ≤ u ≤ p.
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(ii) Let 1 ≤ p <∞ and 0 < q ≤ 2. Then

EG(F 0
p,q) = (t−

1
p , p).

(iii) Let 0 < p ≤ 1, 0 < q ≤ 1. Then

EG(B
σp
p,q) = (t−1, u) with q ≤ u ≤ 1.

(iv) Let 0 < p < 1 and 0 < q ≤ ∞. Then

EG(F
σp
p,q) = (t−1, u) with p ≤ u ≤ 1.

We fill all the above mentioned gaps.

Theorem 1.3. (i) Let 1 ≤ p <∞ and 0 < q ≤ min(p, 2). Then

EG(B0
p,q) = (t

− 1
p , p).

(ii) Let 0 < p < 1, 0 < q ≤ 1. Then

EG(B
σp
p,q) = (t−1, q).

(iii) Let 0 < p < 1 and 0 < q ≤ ∞. Then

EG(F
σp
p,q) = (t−1, p).

We also reformulate these results as optimal local embeddings into the scale of Lorentz spaces (cf.
Definition 2.1):

Theorem 1.4. (i) Let 1 ≤ p <∞ and 0 < q ≤ min(p, 2). Then

B0
p,q(R

n) →֒ Lp(R
n).

(ii) Let 0 < p < 1, 0 < q ≤ 1 and s = σp. Then

B
σp
p,q(R

d) →֒ L1,q(R
n). (1.5)

(iii) Let 0 < p < 1 and 0 < q ≤ ∞. Then

F
σp
p,q(R

n) →֒ L1,p(R
n)

and all these embeddings are optimal with respect to the second fine parameter of the scale of the
Lorentz spaces.

Remark 1.5. Let us also observe, that (1.5) improves [8, Theorem 3.2.1] and [7, Theorem 2.2.3],

where the embedding B
n( 1

p
−1)

p,q (Rn) →֒ L1(R
n) is proved for all 0 < p < 1 and 0 < q ≤ 1.

2 Preliminaries, notation and definitions

We use standard notation: N denotes the collection of all natural numbers, R
n is the Euclidean

n-dimensional space, where n ∈ N, and C stands for the complex plane. Let S(Rn) be the Schwartz
space of all complex-valued rapidly decreasing, infinitely differentiable functions on R

n and let
S′(Rn) be its dual - the space of all tempered distributions.

3
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Definition 2.1. (i) Let 0 < p ≤ ∞. We denote by Lp(R
n) the Lebesgue spaces endowed with the

quasi-norm

||f |Lp(R
n)|| =






(∫

Rn

|f(x)|pdx

)1/p

, 0 < p <∞,

ess sup
x∈Rn

|f(x)|, p = ∞.

(ii) Let 0 < p, q ≤ ∞. Then the Lorentz space Lp,q(R
n) consists of all f ∈ Lloc

1 (Rn) such that the
quantity

||f |Lp,q(R
n)|| =






(∫ ∞

0
[t

1
p f∗(t)]q

dt

t

)1/q

, 0 < q <∞,

sup
0<t<∞

t
1
p f∗(t), q = ∞

is finite

Remark 2.2. These definitions are well-known, we refer to [1, Ch 4.4] for details and further
references. We shall need only very few properties of these spaces. Obviously, Lp,p = Lp. If
0 < q1 ≤ q2 ≤ ∞, then Lp,q1(R

n) →֒ Lp,q2(R
n) - so the Lorentz spaces are monotonically ordered

in q. We shall make us of the following lemma:

Lemma 2.3. Let 0 < q < 1. Then the || · |L1,q(R
n)|| is the q-norm, it means

||f1 + f2|L1,q(R
n)||q ≤ ||f1|L1,q(R

n)||q + ||f2|L1,q(R
n)||q

holds for all f1, f2 ∈ L1,q(R
n).

For f ∈ S′(Rn) we denote by f̂ = Ff its Fourier transform and by f∨ or F−1f its inverse Fourier
transform.

We give a Fourier-analytic definition of Besov and Triebel-Lizorkin spaces, which relies on the
so-called dyadic resolution of unity. Let ϕ ∈ S(Rn) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥
3

2
. (2.1)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx)−ϕ(2−j+1x) for j ∈ N and x ∈ R
n. This leads to the identity

∞∑

j=0

ϕj(x) = 1, x ∈ R
n.

Definition 2.4. (i) Let s ∈ R, 0 < p, q ≤ ∞. Then Bs
pq(R

n) is the collection of all f ∈ S′(Rn) such
that

||f |Bs
pq(R

n)|| =

( ∞∑

j=0

2jsq||(ϕj f̂)∨|Lp(R
n)||q

)1/q

<∞ (2.2)

(with the usual modification for q = ∞).

(ii) Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞. Then F s
pq(R

n) is the collection of all f ∈ S′(Rn) such that

||f |F s
pq(R

n)|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(R
n)

∣∣∣∣

∣∣∣∣ <∞ (2.3)

(with the usual modification for q = ∞).

4
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Remark 2.5. These spaces have a long history. In this context we recommend [6], [9], [10] and
[12] as standard references. We point out that the spaces Bs

pq(R
n) and F s

pq(R
n) are independent

of the choice of ϕ in the sense of equivalent (quasi-)norms. Special cases of these two scales in-
clude Lebesgue spaces, Sobolev spaces, Hölder-Zygmund spaces and many other important function
spaces.

We introduce the sequence spaces associated with the Besov and Triebel-Lizorkin spaces. Let
m ∈ Z

n and j ∈ N0. Then Qj m denotes the closed cube in R
n with sides parallel to the coordinate

axes, centred at 2−jm, and with side length 2−j . By χj m = χQj m
we denote the characteristic

function of Qj m. If
λ = {λj m : j ∈ N0,m ∈ Z

n},

−∞ < s <∞ and 0 < p, q ≤ ∞, we set

||λ|bspq|| =

( ∞∑

j=0

2j(s−n
p
)q
( ∑

m∈Zn

|λj m|p
) q

p

)1
q

(2.4)

appropriately modified if p = ∞ and/or q = ∞. If p <∞, we define also

||λ|f s
pq|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

∑

m∈Zn

|2jsλj mχj m(·)|q
)1/q

|Lp(R
n)

∣∣∣∣

∣∣∣∣. (2.5)

The connection between the function spaces Bs
pq(R

n), F s
pq(R

n) and the sequence spaces bspq, f
s
pq

may be given by various decomposition techniques, we refer to [12, Chapters 2 and 3] for details
and further references.

3 Proofs of the main results

3.1 Proof of Theorem 1.3 (i)

In view of Theorem 1.2, it is enough to prove, that for 1 ≤ p <∞ and 0 < q ≤ min(p, 2) the index
u associated to B0

p,q(R
n) is greater or equal to p.

We assume in contrary that (1.4) is fulfilled for some 0 < v < p, ǫ > 0, c > 0 and all f ∈ B0
p,q(R

n).
Let ψ be a non-vanishing C∞ function in R

n supported in [0, 1]n with
∫

Rn ψ(x)dx = 0.

Let J ∈ N be such that 2−Jn < ǫ and consider the function

fj =

2(j−J)n∑

m=1

λjmψ(2j(x− (m, 0, . . . , 0))), j > J, (3.1)

where

λjm =
1

m
1
p log

1
v (m+ 1)

.

Then (3.1) represents an atomic decomposition of f in the space B0
p,q(R

n) according to [12] and we
obtain (recall that v < p)

||fj|B
0
p,q(R

n)|| . 2
−j n

p




2(j−J)n∑

m=1

λ
p
j,m




1/p

≤ 2
−j n

p

(
∞∑

m=1

m−1(log(m+ 1))−
p

v

)1/p

. 2
−j n

p . (3.2)

5



J. Vyb́ıral On sharp embeddings . . .

On the other hand,

(∫ ǫ

0

[
f∗j (t)t

1
p

]v dt
t

)1/v

≥

(∫ 2−Jn

0
f∗j (t)vtv/p−1dt

)1/v

&




2(j−J)n∑

m=1

λv
j,m

∫ c 2−jnm

c 2−jn(m−1)
tv/p−1dt




1/v

&




2(j−J)n∑

m=1

λv
j,m2−jnv/pmv/p−1




1/v

= 2
−j n

p




2(j−J)n∑

m=1

1

m log(m+ 1)




1/v

.

As the last series is divergent, this is in a contradiction with (3.2) and (1.4) cannot hold for all
fj, j > J.

3.2 Proof of Theorem 1.3 (ii)

Let 0 < p < 1, 0 < q ≤ 1 and s = σp = n
(

1
p − 1

)
. We show that

B
n
p
−n

p,q (Rn) →֒ L1,q(R
n),

or, equivalently,

(∫ ∞

0
[tf∗(t)]q

dt

t

)1/q

≤ c ||f |B
n
p
−n

p,q (Rn)||, f ∈ B
n
p
−n

pq (Rn).

Let

f =

∞∑

j=0

fj =

∞∑

j=0

∑

m∈Zn

λjmajm

be the optimal atomic decomposition of an f ∈ B
n
p
−n

p,q (Rn), again in the sense of [12]. Then

||f |B
n
p
−n

p,q (Rn)|| ≈




∞∑

j=0

2−jqn

(
∑

m∈Zn

|λjm|p

)q/p



1/q

(3.3)

and by Lemma 2.3

||f |L1,q(R
n)|| = ||

∞∑

j=0

fj|L1,q(R
n)|| ≤




∞∑

j=0

||fj|L1,q(R
n)||q




1/q

. (3.4)

We shall need only one property of the atoms aj,m, namely that their support is contained in the
cube Q̃j,m - a cube centred at the point 2−jm with sides parallel to the coordinate axes and side
length α2−j , where α > 1 is fixed and independent of f . We denote by χ̃j,m(x) the characteristic
functions of Q̃j,m and by χj,l the characteristic function of the interval (l2−jn, (l + 1)2−jn). Hence

fj(x) ≤ c
∑

m∈Zn

|λj,m|χ̃j,m(x), x ∈ R
n

and

||fj |L1,q(R
n)|| .

(∫ ∞

0

∞∑

l=0

[(λj)
∗
l χj,l(t)]

q
tq−1dt

)1/q

≤

(
∞∑

l=0

[(λj)
∗
l ]

q
∫ 2−jn(l+1)

2−jnl
tq−1dt

)

≤ c 2−jn

(
∞∑

l=0

[(λj)
∗
l ]

q (l + 1)q−1

)1/q

≤ c 2−jn||λj |ℓp||. (3.5)

6
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The last inequality follows by (l + 1)q−1 ≤ 1 and ℓp →֒ ℓq if p ≤ q. If p > q, the same follows by
Hölder’s inequality with respect to indices α = p

q and α′ = p
p−q :

(
∞∑

l=0

[(λj)
∗
l ]

q (l + 1)q−1

)1/q

≤

(
∞∑

l=0

[(λj)
∗
l ]

q· p

q

) 1
q
· q

p

·

(
∞∑

l=0

(l + 1)(q−1)· p

p−q

) 1
q
· p−q

p

≤ c ||λj |ℓp||.

The proof now follows by (3.3), (3.4) and (3.5).

||f |L1,q(R
n)|| ≤




∞∑

j=0

||fj |L1,q(R
n)||q




1/q

≤ c




∞∑

j=0

2−jnq||λj |ℓp||
q




1/q

≤ c ||f |B
σp
p,q(R

n)||.

3.3 Proof of Theorem 1.3 (iii)

Let 0 < p < 1 and 0 < q ≤ ∞. By the Jawerth embedding (cf. [5] or [13]) and Theorem 1.3 (ii) we
get for any 0 < p < p̃ < 1

F
σp
p,q(R

n) →֒ B
σp̃

p̃,p(R
n) →֒ L1,p(R

n).
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