On sharp embeddings of Besov and Triebel-Lizorkin spaces

in the subcritical case

Jan Vybiral

Mathematisches Institut, Universitat Jena
Ernst-Abbe-Platz 2, 07740 Jena, Germany

email: vybiral@mathematik.uni-jena.de
July 4, 2008

Abstract

We discuss the growth envelopes of Besov and Triebel-Lizorkin spaces B, q(R") and Fy q(R")
for s = 0, = nmax(% — 1,0). These results may be also reformulated as optimal embed-

dings into the scale of Lorentz spaces Ly, ,(R™). We close several open problems formulated by
D. D. Haroske in [4].
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1 Introduction and main results

We denote by B, (R") and F; (R") the Fourier-analytic Besov and Triebel-Lizorkin spaces (see

Definition 2.4 for details). The embeddings of these function spaces (and other spaces of smooth

functions) play an important role in functional analysis. If s > %, then these spaces are continuously

embedded into C'(R™), the space of all complex-valued bounded and uniformly continuous functions

on R™ normed in the usual way. If s < 2 then these function spaces contain also unbounded
n

functions. This statement holds true also for s = > under some additional restrictions on the
parameters p and g. We refer to [8, Theorem 3.3.1] for a complete overview.

To describe the singularities of these unbounded elements, we use the technique of the non-
increasing rearrangement.

Definition 1.1. Let pu be the Lebesgue measure in R™. If h is a measurable function on R", we
define the non-increasing rearrangement of h through

h*(t) = sup{A > 0: u{x € R": |h(z)| > A} > t}, t € (0,00). (1.1)

To be able to apply this procedure to elements of Aj (R") (with A standing for B or F), we have
to know whether A5 (R") — L°¢(R™), the space of all measurable, locally-integrable functions on
R™. A complete treatment of this question may be found in [8, Theorem 3.3.2]:

either s> o) := nmax(% -1,0),

By (R") — LY(R") < < or s=0p,1<p<00,0<qg<min(p,2), (1.2)
or s=0p,0<p<1,0<qg<1
and
either s> oy,
FS (R") — LP(R") < { or s=0p1<p<00,0<q<2, (1.3)
or 5=0,,0<p<1,0<q< 0.

Let us assume, that a function space X is embedded into LIIOC(R"). The growth envelope function
of X was defined by D. D. Haroske (see [3], [4] and references given there) by

EX(t):= sup f*(t), O0<t<l.
IIfF1x11<1

If EX(t) ~ ¢ for 0 < ¢t < 1 and some « > 0, then we define the growth envelope index ux as the
infimum of all numbers v, 0 < v < oo, such that

</0 UQ%T %>/ < ell7IXl (1.4)

holds for some € > 0,c¢ > 0 and all f € X.

The pair €¢(X) = (X, ux) is called growth envelope for the function space X.

In the case 0, < s < 7, the growth envelopes of A} (R") are known, cf. [4, Theorem 7.1]. If s =
and (1.2) or (1.3) is fulfilled in the B or F case, respectively, then the known information is no
complete, cf. [4, Prop. 7.10, 7.12]:

I3

Theorem 1.2. (i) Let 1 < p < oo and 0 < ¢ < min(p,2). Then

@G(ng) = (f%,u) with g <u <p.
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(ii) Let 1 <p < oo and 0 < g < 2. Then
0 _1
Ea(F,,) = (t 7,p).

(iii) Let 0 <p < 1,0 < q<1. Then

Ca(Bph) =t Hu)  with ¢<u<l.
(iv) Let 0 < p <1 and 0 < g < oo. Then

Co(Fpg) = (7' u)  with p<u<l.
We fill all the above mentioned gaps.

Theorem 1.3. (i) Let 1 < p < 0o and 0 < ¢ < min(p,2). Then

e(BY,) = (t 7.p).
(ii) Let 0 <p < 1,0 < ¢ <1. Then

Ca(Byly) = (t71,q).
(iii) Let 0 <p <1 and 0 < ¢ < oco. Then

C(Fpg) = (t7p).

We also reformulate these results as optimal local embeddings into the scale of Lorentz spaces (cf.
Definition 2.1):

Theorem 1.4. (i) Let 1 <p < 0o and 0 < ¢ < min(p,2). Then

By (R") < L,(R™).
(11) Let 0 <p <1,0< ¢ <1 and s = 0,. Then

Bpy(RY) < Ly4(R"). (1.5)
(iii) Let 0 <p <1 and 0 < ¢ < o0o. Then

Fpa(R") = Ly p(R")

and all these embeddings are optimal with respect to the second fine parameter of the scale of the
Lorentz spaces.

Remark 1.5. Let us also observe, that (1.5) improves [8, Theorem 3.2.1] and [7, Theorem 2.2.3],

19
where the embedding B;(qp )(]R") — L1 (R™) is proved for all 0 <p < 1land 0 < g < 1.

2 Preliminaries, notation and definitions

We use standard notation: N denotes the collection of all natural numbers, R™ is the Euclidean
n-dimensional space, where n € N, and C stands for the complex plane. Let S(R™) be the Schwartz
space of all complex-valued rapidly decreasing, infinitely differentiable functions on R” and let
S’(R™) be its dual - the space of all tempered distributions.
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Definition 2.1. (i) Let 0 < p < co. We denote by L,(R"™) the Lebesgue spaces endowed with the

quasi-norm
(/ 1/p
) L 0<p<,
I[fILp(R™)|| = R™

ess sup |f(2)], p=oo.
PISING

(ii) Let 0 < p,q < co. Then the Lorentz space L, ,(R™) consists of all f € L°(R") such that the

quantity
dt l/q
o ([Terend) L 0<acs.
||f|Lp,q(]R )|| = 0 1
sup tr f*(t), q=o0
0<t<oo
is finite

Remark 2.2. These definitions are well-known, we refer to [1, Ch 4.4] for details and further
references. We shall need only very few properties of these spaces. Obviously, L,, = L,. If
0<q < g < o0, then Ly, (R") — L4 (R™) - so the Lorentz spaces are monotonically ordered
in g. We shall make us of the following lemma:

Lemma 2.3. Let 0 < g < 1. Then the || - |L1 4(R™)|| is the g-norm, it means
1+ FolLag R < [ fr]LagR™)|T + || f2| L1,q (R

holds for all fi1, fa € L1 4(R™).

For f € S'(R™) we denote by f: Ff its Fourier transform and by fY or F~!f its inverse Fourier
transform.

We give a Fourier-analytic definition of Besov and Triebel-Lizorkin spaces, which relies on the
so-called dyadic resolution of unity. Let ¢ € S(R™) with

o) =1 if o[ <1 and o(@)=0 if |x|2§. (2.1)

We put ¢g = ¢ and p;(z) = p(2772) — (277T1z) for j € N and = € R". This leads to the identity

o
Zgoj(x) =1, z € R".
5=0

Definition 2.4. (i) Let s € R,0 < p,q < oo. Then B;, (R") is the collection of all f € S'(R") such
that

o R 1/q
1185, = (X 2P <o 22)
=0
(with the usual modification for ¢ = c0).
(ii) Let s € R,0 < p < 00,0 < g < 0o. Then F;, (R™) is the collection of all f € S'(R") such that

< 00 (2.3)

1/q
1712 R"H—H(Z?”"Wf r) IL,(R")

(with the usual modification for ¢ = c0).
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Remark 2.5. These spaces have a long history. In this context we recommend [6], [9], [10] and
[12] as standard references. We point out that the spaces B, (R") and F, (R") are independent
of the choice of ¢ in the sense of equivalent (quasi-)norms. Special cases of these two scales in-
clude Lebesgue spaces, Sobolev spaces, Holder-Zygmund spaces and many other important function
spaces.

We introduce the sequence spaces associated with the Besov and Triebel-Lizorkin spaces. Let
m € Z" and j € Ng. Then @), denotes the closed cube in R" with sides parallel to the coordinate
axes, centred at 277m, and with side length 277. By Xjm = XQ;.» We denote the characteristic
function of Q. If

A= {)\jm :j€Ng,me Zn},

—oo<s<ooand 0<p,qg< o0, we set
~ 2
el = (X2 X yur)”) (2.4)
j=0 mezn
appropriately modified if p = 0o and/or ¢ = oo. If p < 00, we define also

il =[|(S S 2easmxmon) ey |

7=0 meZn

The connection between the function spaces B;q(R”), F;Q(R") and the sequence spaces by, fpq
may be given by various decomposition techniques, we refer to [12, Chapters 2 and 3| for detalls

and further references.

3 Proofs of the main results

3.1 Proof of Theorem 1.3 (i)

In view of Theorem 1.2, it is enough to prove, that for 1 < p < co and 0 < ¢ < min(p, 2) the index
u associated to BI(,],q(R”) is greater or equal to p.

We assume in contrary that (1.4) is fulfilled for some 0 < v < p, e >0, ¢ >0 and all f € ng(R").
Let 1 be a non-vanishing C'* function in R"™ supported in [0, 1]" with fRn x)dz = 0.

Let J € N be such that 27/" < € and consider the function

2(i—=J)n

> A2 (= (m,0,...,0)), j>J, (3.1)
m=1

where
1
Ajm =

1 1 :
m?r logv(m + 1)
Then (3.1) represents an atomic decomposition of f in the space By ,(R™) according to [12] and we
obtain (recall that v < p)

[2G=0n 1/p 1/p
B E <2 [ 5 -w<zm1%mH»>
m=1

<277y,

<3
—~

w

\V)
~—
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On the other hand,

v dt\ Vv 2= /v 20— )n c2-inm /v

(/ B0 t> > ( / f;(t)”ﬂ/pla) > mz_l . / o
o(i—JI)m ' 1/v - o T)m . 1/v

PR T B D Sl ey

As the last series is divergent, this is in a contradiction with (3.2) and (1.4) cannot hold for all
fj, 7> J

3.2 Proof of Theorem 1.3 (ii)

Let0<p<1,0<q§1ands:0p:n<%—1>. We show that
Big (R") — L14(R"),

or, equivalently,

1/q n_p n_n
(/0 L () ‘“) <clfiBE®IL fe Bl ®Y.

Let

f:Zf]:Z Z )‘jmajm
=0

7=0 meZzZ"
be the optimal atomic decomposition of an f € sz,q_n(R"), again in the sense of [12]. Then

1/q

o'} q/p
If1Bhy " (R ~ > 2 ( > |>‘jm|p> (3.3)
7=0 mezZm™
and by Lemma 2.3
- - 1/q
LR = 11D filLg®DI < | D1 Lig®MIE] (3.4)
j=0 §=0

We shall need only one property of the atoms a;,,, namely that their support is contained in the
cube Q]m a cube centred at the point 277m with sides parallel to the coordinate axes and side
length 277, where a > 1 is fixed and independent of f. We denote by Xj,m(x) the characteristic
functions of Q;, and by y;,; the characteristic function of the interval (12797, (I + 1)27/"). Hence

@) <c > PWimlGm@), zeR"

mezZn"

Y o0 2-9n(I41)
1 o) S ( [ i tHdt) < (Zmﬂq I tq_ldt)

1=0 2o

and

[e%¢) 1/q
< ¢27Im (Z T(141)1 ) < 27916 I- (3.5)

=0
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The last inequality follows by (I 4+ 1)4~! < 1 and by — Ly if p < q. If p> g, the same follows by

Holder’s inequality with respect to indices o = g and o = p%q:
e’} 1/‘1 e’} %'% e’} % p_;q
.p —1). P
(Z ()71 (1 + 1>q—1> < (Z ()71 ) : (Z(z + 1) ) < cl|Al6.
The proof now follows by (3.3), (3.4) and (3.5).
o 1/q ~ 1/q
1 1L1gRM)] < [ D115 L1g(R™)]) e | Y2710 < c||f|Bpa(R™)]|-
3=0 §=0

3.3 Proof of Theorem 1.3 (iii)

Let 0 < p < 1and 0 < ¢ < oo. By the Jawerth embedding (cf. [5] or [13]) and Theorem 1.3 (ii) we
get forany 0 <p<p<1
oz Op
Fpg(R") — Bﬁ;(Rn) — L1 p(R").
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