WEAK ESTIMATES CANNOT BE OBTAINED BY EXTRAPOLATION
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ABSTRACT. We prove that weak-type estimates cannot be obtained via extrapolation.

1. INTRODUCTION

One of the consequences of the classical extrapolation theorem of Yano ([5]; for a comprehensive theory
see [2] or [4]) asserts that if a sublinear operator T' is bounded on L?(0,1) for every p € (1,2) and

1T fllLr(0,1) C
1 T Lr0,1)—Lr = sup — <
(1) 17| r(0,1)— L (0,1) M o~ p—1

with C independent of p, then

T : LlogL(0,1) — L'(0,1),
where Llog L(0,1) is the logarithmic Zygmund class defined as the set of all measurable functions f on
(0,1) such that

/0 F@)(1 + log, | f(z)]) dz < oo,

This behaviour is typical for many important operators including the Hardy-Littlewood maximal oper-
ator, the Hilbert transform or singular integrals. Another typical property of operators satisfying (1) is
their weak (1, 1) boundedness, that is,

T:L'0,1) — L"*(0,1),

where L1:°°(0,1) is the weak Lebesgue space, defined as the set of all measurable functions f on (0, 1)
such that

sup A |{z € (0,1), |f(z)] > A}| < 0.
A>0

However, this property cannot be extrapolated from the behaviour of the LP-norms even when their
blow-up is arbitrarily slow. This fact was noted by several authors, we refer to a construction briefly
described in [3, Section 5.9] involving convolution operators or to the recent paper [1, Remark 4.5].

In this note we give an elementary proof of this fact, based on an assertion of independent ineterest
(Proposition below), which yields a construction of a function with a more or less prescribed behaviour
of its LP-norm in dependence on p.

2. THE RESULT AND THE PROOF

Theorem. Let F be a function defined on (1,2) with values in (1,00), satisfying

lim F(p) = co.
p—1y

Then there exists a sublinear operator T defined on L(0,1) such that
1T e (0,1)—1r0,1) < F (), pe(1,2),
but T is not bounded from L*(0,1) to L>°(0,1).

The key step in our proof of Theorem is the following proposition.
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Proposition. Assume that G is a function defined on (2,00) with values in (1,00), such that

(2) lim G(q) = .

q—00

Then there exists a nonnegative measurable function w on (0,1) such that

(3) thgo Hw”Lq(o,l) =00
and
(4) [wllrao1) <G(@), g€ (2,00).

Proof. We will first construct a decreasing sequence {ay} C (0,1). Let a3 = 1. Fix k € N and assume

that a1, ...,ax—1 have been already chosen. The set of all ¢ € (2, 00) such that G(q)q_% < k is bounded
by some gx. This easily follows from (2). Therefore, the number

. G(q)?
by = f —
b qEI(I%ka] 2qk4(k + 1)

is strictly positive. We set

aj := min 1 b k-1
b 2k+1) " 2 [

Then,
G(g9)! 1 )
gk lay, < {212(;411) Gy when G(q)q Z < k;
T S Wqﬂ) when G(q)q~ « > k.
Summing over all k, we get
(5) S gkt g < Glg)".
keN
We finally define
w(z) ==k when = € (aky1,ak).

Then (3) is obviously satisfied, since w is unbounded. Moreover, by (5)

k
lollfaoy = 3 [ o o € (0.1)5 () > A}

keN

< Z gk ay,

kEN
< G(g)?,

and (4) follows. The proof is complete. O

Proof of Theorem. For p € (1,0), define p’ = ﬁ. Let F(p) be a function satisfying the assumptions

of the Theorem. Applying the Proposition to the function G(p') := F(p), we obtain a nonnegative
measurable function w on (0,1) such that, for p € (1,2), |w| 1) < G(p') = F(p). We define the
operator T' by

1
rf = [ 1l ) xo.
0
Then
1T e 0,1)—zr(0,1) = Wl o 0,1y < F(P), P € (1,2),
but

swrso Alfe € 0,15 [TS@)| > A _ o F@)lw()dy _
£z 0.1 20 fllro,n

)

||Tf||L1 0,1)— L% (0,1) = Sup
(0,1) (0,1) 120

since w is unbounded. The proof is complete. O
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