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Preface

In this paper we deal with function spaces of dominating mixed smoothness properties. First
spaces of this type were defined by S. M. Nikol’skij in [N1] and [N2]. He introduced the
spaces of Sobolev type

Tlf
W <R2>={f|feL (B2), IF1STW @11 = 7111+ || G 1 o ||+
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s | b || < o<}
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where 1 < p < oo,7; = 0,1,2,...5(z = 1,2). The mixed derivative % plays the
Ty" 0Ty

dominant part here and gave the name to this class of spaces. The detailed study of spaces
of such type was performed by many authors, for example T. I. Amanov, O. V. Besov,
K. K. Golovkin, P. I. Lizorkin, S. M. Nikol’skij, M. K. Potapov and H.-J. Schmeisser. We
refer to [Am] for a systematic treatment of this topic. As in the theory of classical Sobolev
spaces an alternative definition in terms of Fourier transform may be given (see (1.6) and
(1.7)). This definition is based on a decomposition

f= Z (or, @ -~ @ @i, f)’, convergence in S'(R?),
keNg

where {@g tren, 1s a decomposition of unity on R known from the theory of classical Besov
spaces and ¢ = @k, @ - @ @g,, k = (k1,...,kq) is a tensor product.

We refer mainly to [SchT], as far as the Fourier-analytic approach to these spaces is con-
sidered. In Chapter 2 of this book the classical theory of spaces with dominating mixed
smoothness properties is developed. Several types of equivalent quasinorms, embedding and
trace theorems and characterisation of these spaces by differences are proven there. One
studies also basic properties of crucial operators on these spaces, namely of lifting and max-
imal operators and Fourier multipliers. We recall some facts from this book, which shall be
useful later on, in Chapter 1. As we don’t restrict the dimension of the underlying Euclidean
space to d = 2, we state these results formulated for general dimension d > 2. As mentioned
in [SchT)] this generalisation is obvious.

The second Chapter is devoted to local means, atomic and subatomic decompositions of
spaces with dominating mixed derivative. We prove our results only for spaces of Triebel-
Lizorkin type. The counterparts of our results for Besov-type spaces are formulated in
Chapter 3. Their proofs are omitted as they are very similar to the proofs presented here.
First of all, we characterise this class of spaces by so-called local means. See Theorem 2.4 for
details. This fundamental characterisation serve us as a basis for atomic (and subatomic)
decompositions.

By atomic decomposition of a function f one usually means a decomposition of type

= Z Z Ay m@ym (), convergence in  S'(R%),

where a,,, are some simple building blocks, called atoms, and \,,, are complex numbers.
A function f then belongs to some function space if and only if the sequence of coefficients
{Avm }vm belongs to some sequence space. For the exact formulation see Theorem 2.11. Let
us mention that the atoms are specified only implicitly - a function a is an atom if and only
if it satisfies some properties (see Definition 2.9).



By a subatomic decomposition we mean a decomposition of a type

Z Z Z )‘ ﬁqu vm ) convergence in S’(Rd)’

where (Bqu),m(z) are so-called quarks and \? — are complex numbers. A quark is a special
type of atom defined explicitly by (2.85). Hence the basic building blocks, quarks, are much
more specific in this kind of decomposition. The price one has to pay for that is a more
complicated connection between f and {\’ 1. It is described in detail in Theorem 2.13.
In this sence each of these decompositions has its advantages and disadvantages. But both
of them have something in common : they build a connection between function spaces and
sequence spaces. As the sequence spaces are simpler to deal with, it turns out that this
connection is very useful in many situations (embeddings, traces, entropy numbers, ...). On
this place we have to mention another important way how to switch from function spaces
to sequence spaces — namely the so-called ¢-transform of M. Frazier and B. Jawerth. We
refer to [Ho| as this topic is considered.

The classical theory of atomic decompositions of Besov and Triebel-Lizorkin spaces was
developed mainly in the works M. Frazier and B. Jawerth ([FrJ1], [FrJ2]) and H. Triebel
([Tr1], [Tr2]). The subatomic decomposition of these spaces is due to H. Triebel ([Tr3],
[T03]). We follow their ideas and prove similar decomposition theorems for spaces with
dominating mixed derivative. This is done in Chapter 2 and is the focus of this work.

In Chapter 3 we give some remarks and comments to Chapter 2. Namely, we present an
improved version of Theorem 2.1 based on [Rych], we give an alternative proof of the
existence of optimal atomic decomposition using some ideas from [HN] and we formulate
our results also for spaces of Besov type.

I would like to thank to Prof. Schmeisser and Prof. Sickel for supervising my research and
for many valuable discussions.



CHAPTER 1

Introduction
1. Notation
First of all, we shall introduce some basic notation. The dimension of the underlying Eu-
clidean space will be denoted by d. d-dimensional indices will be denoted by k,[,m, ... and
d-dimensional variables by x,y, z,.... Their components are numbered from 1 to d. Hence
we write k = (ky,...,kq). We use a standard vector notation in this connection, namely
k+7=(ki+r,....,ka+ra) k.7 €RY,
d
E'T:Zk’ﬂ“i, E,TERd,
i=1
Mo = (Mg, .. M), Ae R,k eRY
=t al, z, o € RY,
a+A= (g +A\...,ag+A), A eR,aeRY
A= (A A%, A €eR,aeRY
o= (a,...,q)), AeR,a e R

We write > y for x,y € R if and only if 2; > y; for all i = 1,...,d. Similarly we define
z <y,r <y and x> y. In the same sense we define z > \ for z € R, X\ € R.

We denote the d—dimensional Fourier transform by F or " and its inverse by F~! or V.
Sometimes we need also the one-dimensional Fourier transform. This will be denoted by F}

or " and its inverse by F; ' or Vi

2. Prerequisites
DEFINITION 1.1. Let ®(R) be the collection of all systems {(;(t)}32, C S(R) such that

(1.1) supppo C {t e R: [t] <2}
' suppp; C {t € R: 271 < || <27} if j=1,2,..;

for every a € Ny there exists a positive constant c, such that

(1.2) 2% D%;(t)| < co forall j=0,1,2,... and all t€ R,
and
(1.3) Z ;(t) =1 forevery teR.

=0

For k = (ki,...,ks) € Nd and z = (14, ..., 74) € R? we define ¢r(z) = ¢p, (71) .. . - o, (T4)-

Using this kind of notation, we can give a definition of spaces lo(Ly), Ly(ly), S; ,B(R?) and
Sy JF(R).
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DEFINITION 1.2. Let 0 < p < oo and 0 < ¢ < co. Having a sequence of complex-valued
functions { ff}rena on R? we put

(1.4) el Ll = (3 MLy lir)

keNd
and
1/q
(15) 1L ||—H(Z|fk )|Lp,
keNg

where the L, norm is taken with respect to x € R%. When ¢ = oo, the usual change is
necessary.

DEFINITION 1.3. Let 7 = (r1,...,74) € R, 0 < ¢ < 00 and {¢;}32, € P(R).
(i) Let 0 < p < co. Then S} B(R?) is the collection of all f € S'(R?) such that
16 IASBE, = (3 2 e 1Lal) = 127 D ()]

keNg
is finite.
(ii) Let 0 < p < co. Then S} F(R?) is the collection of all f € S'(R?) such that

17) IASEEE = [[( 3 127 eh OF) L@ | = 127 (o) Lyl

keNd

is finite.

REMARK 1.4. All function spaces considered in this paper are defined on R?. Hence we
write ST B and S7 F instead of S} B(R?) and S} F(R?).

REMARK 1.5. According to (1.3), we have
Z or(r) = (Z ¢k1($1)> e (Z SOkd(:cd)> =1 forallz = (zy, --,1q4) € R%
kend k1=0 kq=0

In this sense, {SOE}EeNg is also a decomposition of unity, in this case on R¢.

Let us recall some very well known notation, for details see [SchT].

Let € = {Qz},ena be a sequence of compact subset of R?. Then we denote by I{}(L,), resp.
LS (1y) a set of all sequences f = { S5} reng for which

(1.8) freS'(RY and supp fr C Qp forall ke N

(1.9) [ filla(Lp)l| < 00, resp. || fxLy(lg)]] < oo.

Next, we recall some known facts from the theory of these spaces. Their proves may be

found in [SchT] for d = 2.

THEOREM 1.6. (Nikol'skij inequality) Let 0 < p < u < o0 and a = (v, ..., aq) € Nf. Let
b= (br,...;ba) > 0 and Q5 = [~br,b1] X - -+ X [=bg,ba] C Re. Then there exists a positive
constant c, which is independent of b, such that

o Oél-l—%—% Oéd-f—%—% atl 1
D f|Lu|| < by by fILp|| = ™ 7w ][ f|Ly]]
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holds for every f € S'(RY) N L,(R?) with supp f C Q-
THEOREM 1.7. Let {©;}52,,{¢;}520 € ®(R). Let 7 = (r1,...,74) € R? and 0 < ¢ < 0.
(i) Let 0 < p < oo. Then ||f|S] ,Bll, and ||f|S} Blly are equivalent quasi-norms. Further-
more, S] B is a quasi-Banach space (Banach space if min(p,q) > 1) and
scs;,Bcs.

(ii) Let 0 < p < oo. Then ||f|S} F||, and || f|S] ,F||ly are equivalent quasi-norms. Further-
more, Sy F is a quasi-Banach space (Banach space if min(p, q) > 1) and

S C S;qF c s

For the proof in the case d = 2, see [SchT, pages 87, 93]. So, we may write ||f|S]  B|| and
1£1S; ,F || without any index ¢ or ¢ meaning one of these equivalent quasi-norms.

As in the case of classical Besov and Triebel-Lizorkin spaces, we can define a lifting operator.

DEFINITION 1.8. Let p= (p1,...,pa) € R% Then we define the so-called lifting operator I
by

(L.10)  Lif=F ' +a)72. (1 + 22 PFf = FY(1+2)2Ff,  feS'(RY.
THEOREM 1.9. Let , 0 < ¢ < oo, p,7 € R%

(i) Let 0 < p < oo. Then I; maps Sy B isomorphically onto S} P B and ||I5f]S; P B|| is an
equivalent quasi-norm in S, B.

(ii) Let 0 < p < oo. Then Iz maps S} I isomorphically onto S} PF and ||I5f|S} P F|| is an
equivalent quasi-norm in S;qF .

The proof may be again found in [SchT, page 98].
Next we collect some useful maximal theorems which play a crucial role in the further theory.

For every function f(x) € LP¢(R?) we define the classical Hardy-Littlewood maximal oper-
ator

1 d
(1.11) (M f)(e) = sup /Q Foldy,  xeRY,

where the supremum is taken over all cubes () cantered at x with sides parallel with coor-
dinate axes. The famous Hardy-Littlewood inequality tells that for every p with 1 < p < oo
there is a ¢ such that

(1.12) 1ML R < cllfIL,RD],  f € Ly(RY).

The following theorem is a vector-valued generalisation of (1.12) and is due to C. Fefferman

and E. M. Stein [FS].

THEOREM 1.10. Let 1 < p < oo and 1 < q < 0o. There exists a constant ¢ such that
(1.13) ||MfE|Lp(lq)|| < C||fE|Lp(lq)||

holds for all sequences {fE}EeNg of locally Lebesque-integrable functions on RY.

Next we define one-dimensional version of (1.11).
1 r1+s

(1.14) (M f)(x) = sup — |f(t, o, ... zq)|dt

S>0 28 r1—S
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and in a similar way for other variables. We denote the composition of these operators by
M = Mgo---o M. The following maximal theorem is due to R. J. Bagby [Ba] (it is a
special case of much more general theorem given there).

THEOREM 1.11. Let 1 < p < oo and 1 < q < 0o. There exists a constant ¢ such that
(1.15) M frl Ly < el fRl Lyl i=1,....d

holds for all sequences { fr}zeng C Lyp(lg) of functions on R<.

Iteration of this Theorem shows that the estimate (1.15) holds also for the operator M.

THEOREM 1.12. Let Q) = {QE}EeNg be the sequence of compact subset of R® with following
properties

QE = {37 ~ Rd . |.T}1| < A1 fyy - - - s ‘SL’d| < CLngd} with Al ks -+ Ad ey > 0.
Let 0 <p<o0,0<qg<o00and0<ry,...,rqg <min(p,q). Then there is a positive constant
¢ such that
[fe(- =)l
sup L,(l < c||fz| Ly (1
JRd (1 + |a1,k1y1|1/r1) .. (1 + |ad,kdyd|1/rd>| p( q) || k| p( q)||

holds for all systems { fz} € Li}(1,).
For 1 < p < oo and 7 € R% we denote

STH = S7,F = {f|f € S, [|(1 + 2%)*F f|Ly|| < oo}.
For more details, see [SchT, Theorem 2.3.1].

THEOREM 1.13. Let 0 < p < 00, 0 < g < 0o and 7 = (ry,...,1q9) > er%. Let
Q= {QE}EeNgaal,ku ..y aqr, > 0 be the same sequences as above. Then there is a positive
constant ¢ such that
o/ 1L (L) | < e sup loglare, s s aar NSTHN) - 1l (T
keNg
holds for all systems { f;} € L3 (l,) and all systems {oz} C STH.
DEFINITION 1.14. Let {€2;}22, be a sequence of compact subset of R such that
Qo C[-2,2], QC{teR: 27" <|¢|<2™}; jeN
Let {wE}EENg C S(Rd) with
supp ¥y C Qp, X ... X Qi k € Ng.
If feS(RY,a=(ai,...,aq) > 0 then we put
(e f)" (x —y)] a a
1.16 *fa(x) = su , reRkeN].
10 Wil el yess (1 (209 ]™) - (1 + [2rogig]oa) "

As usual for any » € R we put s, = max(s,0) and [5] stands for the largest integer smaller
then or equal to s.
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THEOREM 1.15. Let {€2;}32 and {¢y}rena be as in the above definition. For every L =
(Ly,...,Lq) € N& let us put

Cop = sup sup S (L+a2)/% L (14 23)™/2| D™ (a)].

T d d _
RENG TERT g <

(i) LetT € R, 0 <p<o0,0<q<oo. If
1 — 1 1
a>-, L>|—— ——
p {mln(l,p) 2}

and C,, 7 is finite, then there is a positive constant ¢ such that
127 (Wi Palla (L)l < ¢ Cuzllf1S,.Bll,  f € S5,B-

(i) LetT€RY, 0 < p < o0, 0 < q<oo. If
1 — 1 1
a>——, L> {7 + —]
min(p, q) min(p,q) 2
and C,, 7 is finite, then there is a positive constant ¢ such that

125 Pl Ly )| < ¢ CullfIST, Il f € 7, F

Furthermore, let
1

(1.17) Gy = (m - 1>+ and o, = (% - 1>+

for every 0 < p < o0 and 0 < g < o0.



CHAPTER 2

Local means, Atomic and Subatomic decompositions

1. Local means
THEOREM 2.1. Let 0 < p <00, 0 < q <00, 7= (r,..
Nd be d even numbers with 7 < N.

Let 1o and ", ..., 9% be d+1 complez-valued functions from S(R), which satisfy the Taube-
rian conditions

(21) (@) >0 i [2]<2,  and  |[¥'(2)]>0 if

.,Td) € R%. Let N = (Nl,...,Nd) €

<l|lz|<2, i=1,...,d

N | —

Let us also suppose that

(2.2) D*'(0) = 0, 0<a<N,—1, i=1,....d.

Let ¥ = by and i(t) = ' (277t) ift € R, j € Nand i = 1,...,d. Further let {p(x) =
Up, (@) - - (za) whenever k= (ky, ... kq) € NE and x = (z1,...,2q4) € R Then

(2.3 (3 12wy (1) "y ()|

keNd

is an equivalent quasi-norm in S}, F(R?).

First of all we derive some properties of the functions involved in this theorem.

LEMMA 2.2. Let h, H € S(R) be two functions with

swpph C {y€R:ly| <2}, swppH C{yeR: <[y <4),
W) =1 if |o| <1, H) =1 if %g\x|§2
Further let a,b € R?. Then
(2.4) sup/ (M)V O 1+ | dt < 00, i=1,....d,
KeNg JR | : |N1
(2.5) 512%2mbi/R\[z/;i(2m-)H(~)]V1(t)|(1+\t|)‘”dt<oo, i1,
(2.6) sgzmbiA|[wo(2m-)H(-)]vl(t)|(1+|t|)aidt<oo, i—1,....d

ProoF. Step 1. We show that
(2.7) sup 2m'v/| B2 (D)1 + ) dt < 0o
meN

for all real numbers v, € R and for all functions ¢, ¥ € S(R) with supp¥ C {t € R :
1/4 < |t| < 4}.
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Using the Holder inequality and elementary properties of Fourier transform, we get for
v>p+1

(@ ()®277E) " (1) (L + [N Lall < e [[((E)W(27E)) " ()L + [t])”] Loo|

(28) < e, (DM@ ) (0] Ll
< max [ID*@EPE OO

Next we use the support property of ¥ and the decay of ¢ and get
(2.9) [ D) (2E)(1)] < ¢ [nax | Dhp(t) |27 | (DY) (277
< e (14 [t) "X qreraja<a-min<ay ().

Putting (2.9) into (2.8), we obtain (2.7).
Step 2. To prove (2.5) put the identity

/ (@™ H() B1(1+ Je])dt = / (0 AL+ 27t
into (2.7). In the same way one can prove (2.6).

Step 3. To prove (2.4) use the decomposition h(27%.) = h(-) + Eff:l[h(Z_“-) — h(27+FL)],

(2.7) and the fact that TI# € S(R). O

PRrOOF. We follow the proof of Theorem 2.4.1 in [Tr1].

Part 1.
Let f € S),F. In the first part we prove that the quasi-norm (2.3) can be estimated
from above by ch| Gl Let {152, € ®(R). Let ¢;(x) = 0 if —j € N. Let us write
vi(z) = @ (x1) - <pld (:cd) for I € Z¢,x € RY. We shall deal with the decomposition
(2.10) (?/)_f szr @%‘Pkﬂf) (z) =
lezd
(Z Z) (Z Z)( "(Wreral)” (@),
l1=—00 lg=—00

The decomposition is given in the formal way. To obtain an exact expression, containing 24
terms, one has to proceed through the formal multiplication of sums.

The natural number K will be chosen later on.

In the first step we estimate the term with —oo < | < K, in the second step we deal with the
term with K + 1 <[ < oo. The third step is devoted to the other terms and in the fourth
step we discuss the convergence of (2.10). In the first three steps we take it for granted that

this decomposition converges pointwise and in S’(R?) to the same limit and that (¢ f)Y is
a regular distribution.

Step 1. —oco <1< K.
We fix a vector k € N¢ and suppose that & > 1. The other cases are discussed later.
Let Gm(r) = [27™a [N -+ |27 Mgy |Nipy(z), m € Z. Then we obtain

/¢E(z) 27(E+i)~7 7f V( )
27 %1y (N1 2 hazy|Na PRl |

(211)  2%7|(Upprgf) V(@) = 27V
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Using (1.1) we have @ ;(2) = @5, i(2)h(27F7K2) - ... h(27Fa=K ) for every | < K, every
k € N? and every z € R?, where h is the function from Lemma 2.2.
We have also ¢p(z) = ¢ (21) - ... - U (za) = ' (27F21) - ... - 427 M24). Then we may
estimate the absolute value on the right-hand side of (2.11) from above by
. iRy o\ .
(2.12) c2" Y /Rd 11 (mh@ . K~)) () | 1(Pr42h)" (x = y)|dy
i=1

Next we apply the formula (A(a™!))"1(t) = a(AV1)(at) to every term in the product in this
integral and substitute v; = 2%iy;. Then we use a maximal function from (1.16) and obtain
a formula

(2.13)
|(Graaf)" (w1 = 2701, g — 27500g)| < (G5, ale) (1420 01]™) - (14 ]20g]*)
K+l
where a = (ai, . ..,aq) € R? is greater than min%p,q)'

The indicated operations together with the formula (2.13) allows to estimate the right-hand
side of (2.11) by

21.(N—?)2?-(k+l)(@irzf)a(x)X
d ; Vi1
LAQ Py
<[ (Fre ) o)
R ‘ .| Ne
We use (2.4) to estimate the last integral and finally we arrive at

(2.14) ' Y () ()

—oo<I<K

(L4 250y |) - (1 + [2M4)™) do.

SCQK'E Z 2l-(N77)2F-(k+l)(@igf)E(x).

—co<I<K

We apply the [;,-quasi-norm with respect to k and the L,-quasi-norm with respect to . We

obtain
q\ 1/q
) L

— L 1/q
< ¢ ) (Z?qm"‘(@;ng(-)) L,

meNg

(2.15) ’ <

> 2 (Wpepaf) ()

—oo<I<K

»

keNd

There are still two problems left. We have to incorporate terms with (at least) one k; equal
to zero and we have to replace ¢, f by (¢mf)".

As for the second problem, we may use theorem 1.12 to replace ¢, f by (&, f )V. To use the
multiplier theorem 1.13 we write o9 = h,0,(t) = H(277t),j € N,t € R and define

om(z) = \2*m1x1|Nl o |2*mdxd|Nda,ﬂ,L1 (1) ... Omy(T4).

But this fact is trivial as all /V; are even non-negative numbers.

As for the first problem, one can modify the approach given above for k& > 1. One has
to replace our definition of @ by Guny...my)(2) = [27™ 21" @y, mp(2) (in the case when
ky=-++=ky =0,k >0 and similarly in other cases).



Altogether, we obtain
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a\ 1/q
J
keNg

with ¢ independent of K and 7.
Step 2. 1> K +1. We proceed in a similar way as in the Step 1. Let ¢/ (z) = [27™ 2|7 -
|27y (), € N4 2z € R The numbers r are to be specified later (in general,
they have to be sufficiently small). Let us again fix a k& € NZ. In this step we don’t have to
distinguish between k; = 0 and k; > 1. But we have to take care about the dependence of

constants on K and 7° = (r{,...,79) € R? as well.

< QN 157 R

> 2 (peraf)V ()

—oo<I<K

So we have a counterpart of (2.11):

(2:16)  2I(Wypppif)” (@)] = 207

Ur(2) G _(z)f> V(q;) ’

(|2—’“121|T9 co |27 Razy|ma

An as in the Step 1 we use a cut-off function, in this case the function H from Lemma 2.2.
Namely, the last expression doesn’t change if we replace 1(z) with ¢p(z)H(27F7zy) - .. .-
H(Q_kd_ldzd).

Instead of (2.12) we obtain that the left-hand side of (2.16) can be estimated from above by

(2.17) (2t gr (k4D / ﬁ(%fl@ki“-)yl(yi)

Rd i1 |27kZ . i

(k7)Y (z = y)ldy.

The ¢ is now independent of K and 7. Let us now suppose that k > 1. As we are now
working with expression vanishing identically around 0 and the conditions (2.5) and (2.6)
are the same for ¢, and v, this only simplifies the notation. Then we may substitute
Vi, () =" (27%). We apply again the formula (A(a "))V (t) = a(AV')(at) to every term in
the product, this time with the coefficient a = 2%+ Then we substitute v; = 2**liy; and
use the maximal function (1.16) to get an analogy of (2.13).

When we proceed through this indicated calculation we obtain in the same way as in the
Step 1, that the left-hand side of (2.16) can be estimated from above by

(1 -+ |Ui

e1) e ] [|(BE ) i+

2

When some k; = 0 just substitute 1* with 1y. We may trivially interchange (1 + |v;|%) for
(1 + |v;])*, but we have to show that each of this n integrals can be estimated from above
by

(2.19) 2ot [ @ HOM @I+ o) do.

To see that, let i, (t) = ¢(2¢) H(t) and introduce p € S(R) with

p(t)y=1 for {teR:1/4<|t| <4} and suppp C {t e R:1/8 < |t| < 8}.
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Then we may rewrite and estimate the i—th integral in (2.18) from above by
(14 |v;)*do; <

2t | (M)u
ot [ [hirea(§z ) =

Ik

We use a Fubini theorem for non-negative functions, make a shift in the inner integral
and apply the formula (1 + |v; + z|)% < (1 + |vs|)*(1 + |z])*. And using the fact, that
p(t)|t]7"" € S(R), we obtain that the integrals in (2.18) can be estimated from above by
(2.19), hence by a constant which depends on r? | see (2.5) and (2.6).

Altogether, we arrive at

dZZ<1 + |’UZ“)aid’Ui

(2.20) Z |2kr wkwkﬂf Z (PO (kD) (¢’ Hf) (@).

I>K+1 >K+

Assume that 7 < 7 and apply the [,-quasi-norm and after that the L,-quasi-norm. We get

(= q)l/qu (3 2™ (nntte >)1/q|Lp

meNd
As the terms with m; = 0 are now not present on the rlght hand side, we can use Theo-
rem 1.15 and estimate the last expresswn by ¢280=1)||f 1S5 Fll. Let us stress that c is
independent on K and depends on 7° < 7 in the Step 2.

S c 2K-(707T

> (e af) (2)

keNg'I>K+1

Step 3. In this step we shall discuss the remaining 2¢ — 2 terms of (2.10). We shall estimate
only one of them, the others being very similar. Let us choose a term with [; < K and

li> K+1fori=2,...,d Let us define s = (51,...,54) € R? as a combination of 7° and
N:

(2.21) si=Np, si=rli=2...4d.

Suppose that ky > 1. Let @l(z) = [27™a|* - .- |27Mdxy|5 @ (2). Then we get in analogy
with (2.11)

(2.22) 27| (el (x)] =

((f[p A Nyrtgr (/) ()]

The last expression again doesn’t change if we use the information about support of <p— . and

introduce the cut-off functions h, H. Hence, we may replace ¢} (z1) with ¢, (z1)h(2~ le Kz)
and ¥ (2;) with oy () H(27%hiz;) fori = 2, d.

Using the elementary properties of Fourier transform, we obtain a counterpart of (2.12) and
(2.17)

2| (Ve af)Y ()] <
(l‘p (2~ klzl)h(Q—kl—K21))\/1(y1)

c 2l~(§—?) —
12 ‘81

2 E (o )Y (@ — y)ldy
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We can now deal with the first term as in the Step 1. and with the other terms as in the
Step 2. Together with the analogy of (2.13)

~

d
|(90§+if)v(5€1 — 27 My, — 27 Ry, )] < <(‘0k+l Ja(z) (1+[2" i) H (14 fvi
=2

az

we get

2| (Wprpaf) (@)] < 2 T ED (I o) x

x /(T”f) h<2K->)Vl<v1><1+ \2llv1|>aldv1f£ / (]”.ifiw

When k; = 0 for some 2 < ¢ < d, just replace ¥ with .
We estimate these integral as in the Step 1, resp. Step 2, and get finally

27| (Uppriaf)Y (2)] < e2Katt DRI (1 Fa(e),

.)) I(Ui)(l + [vi])* dv;.

Applying [,-and L,-quasi-norm, we get an analogy of (2.15). We now proceed in the same
way as in the end of Step 1 to incorporate the term with k; = 0 and to replace (p#*f)a
with (gmf)Y. Hence all the middle 2¢ — 2 terms in (2.10) can be estimated from above
by ¢2Ka2K-G=7)||f 1S, . Fll; where 5 is defined by (2.21). Recall that this definition changes

slightly from one term to another and that c is again independent of K and depends on 7°.

Step 4. In the last step of the first part we shall discuss the convergence of (2.10). In the first

three steps we have used that (15 f)v is a regular distribution and that the decomposition
(2.10) converges pointwise to this function.

We know that this decomposition converges to (¢ F)Y in §'. If we prove that this de-
composition forms a fundamental sequence in some L,,1 < p < oo, then we obtain that

(¢ )Y e L, is a regular distribution. And when we prove that its also pointwise convergent,
then its pointwise limit must coincide with the L,-limit, hence with (¢; f)" and the pointwise
convergence of (2.10) to (¢rf)Y follows.

We shall restrict ourselves to the sum considered in the second step (I > K +1). The other
cases are completely the same. We start with the pointwise convergence. First recall that
the estimate (2.20) was obtained for each considered [ independently. So we may rewrite it
as

(2.23) Y TWepa) (@) < e Yo 2T EN (G faa),

L<I<M L<I<M

for every K +1 < L < M. Using 7° <7 and [, — [; if 0 < ¢ < 1 or the Hélder inequality if
1 < ¢ < o0, we conclude that the right-hand side of (2.23) may be further estimated by

Tt e 1/q
(22 )

According to the Theorem 1.15 and the discussion in the second step, this expression is finite
a.e. and arbitrary small for L large. Hence the decomposition (2.10) has some pointwise
limit.
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Let 0 < p < 1 and put & = 7 —0,. Then we have the embedding S} F < S7 F', see [SchT].
We use (2.23) and get

k7 ¢ Gpk 1-(7F0—7)+o-(k+
1Y 2 (W) @)Ll < e2F|| Y 28T (g F)a(a)| L]

L<I<KM L<I<KM
<020Pk||z2l" )| Ly]|.
L<l

We need 7 sufficiently small (7° < &) for the last estimate. Because of the embedding men-
tioned above, the last expression is arbitrary small as L increases. Hence the decomposition
(2.10) forms a fundamental sequence in L; and its limit must coincide with the S” limit :

(o f)Y.

When 1 < p < oo, we get the L, convergence in a similar way.

Part 2.

We prove that H f15) ,F|| may be estimated from above by (2.3). Unfortunately, we have to
use that f € S) F. Flrst of all let x(t) = Ej:o ©;(t),t € R. Hence

(2.24) suppy C {t e R:[t| <28t} and  x(¢) = 1if [¢] < 2.
We write again xm(z) = x(27™xy) - ... - x(27™xy) for m € N¢ and x € R%.
Using (2.1) and the support properties of ¢, we get for every k € N¢
\%

A A (p* A

22)  leeh @l = el @l e [ (%) )@ -
k

For fixed x € R, the Fourier transform of the y-function in the last integral has a support

contained in a cube cQp, x = {y € R?: |y;| < 28K i =1,...,d}. Let 0 < s < min(1,p, q).
We use the Nikol’skij inequality and obtain

(2.26) (pef)¥ ()] < 2+ (1-9) /

R4

dy.

S

<%) () (Wexeh)" (r = v)| dy

Both functions ¢y, ¢y are assumed to have a product structure and the dyadic structure of
@;(t) = p(277t),7 > 1 can be assumed without loss of generality. Hence we may estimate

(2.27) ] (%) )| = 2H (£) e

where b > 0 is at our disposal. A similar estimate holds when one or more of the numbers
ki,i=1,...,d1is equal to zero. We now split the integration over R? in (2.26) into ZieNg f[—’
l

s _d
< ch'sH(l + 28y k> 1

i=1

where Iy = [-1,1] C R, [, = {t e R: 2! < |[t| < 2*},v > 1land [; = I}, X - x .
Then we use (2.27) in each of these integrals and then we replace the integration over I; by
integration over ), where @), = [-2",2"] C R and Qz = Qi X - x Q. We get
()@ < 2P0 T 527D [ () e~ )P
leNd

These integrals may be estimated from above by

2N (|(x /)Y [9) ().

If we use this estimate and suppose that b > 1 we obtain finally

(2.28) ()" (@) < 29O IN(|(Upxi ) ) ().
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We multiply (2.28) by QSE'F, apply the [,/s and L,/, norm and use Theorem 1.11 to obtain

|(Z e enor )Uqu

s

keNd
- R 1s/q
(2.29) < 2" {Z M xel) YD Ly
keNg -
B ) 1/q s
< 2K ( > |(2k'r¢kxkf)v(')|q) Ly
keNd

We have used that 1 <2 < oo and 1 < ? < oo. Next we insert the decomposition
Urexz = Y5 — Yr(1 — xz)
into (2.29). We see that || f|.S] ,F'[|° can be estimated from above by the s-th power of (2.3)

and the additional term

s

1/q
(2.30) c2fdl=) (Z (251 _Xk)f)v(')|q) 1Ly
keNd
We may assume that
o
@0(27'11415) = ngy(t)’ 1% c N,t c R
v=0
and obtain
K
ngu sz Z (perkl(sz)

Hence the expression (2.30) is exactly that one which we estimated in the second and third
Step in Part 1. From the calculation done there, it follows that, if 7° is sufficiently small,
then there is an € > 0 such that (2.30) may be estlmated from above by C 275\ f|S] F||.
Let us remark that C' is now independent of K (but depends of 7°) and that the sultable
choice of 70 can be obtained by 7 < —d(1 — s) — EZ (@i + Ny — ;).

Recall that the natural number K is still at our disposal. We choose K large enough, so
that C275¢ < 1/2. Then (2.29) and the splitting mentioned above give the result. O

REMARK 2.3. Let us stress that the Tauberian conditions (2.1) were necessary only in the
second part of the proof.

Next we reformulate Theorem 2.1 using the local means.

THEOREM 2.4. Let 0 < p < 00,0 < ¢ < 00,T € Re. Let N € N¢ be d even nonnegative
integers with N > 7. Further let ko, k*, ... k% be d + 1 complex-valued functions from S(R)
whose supports lie in the set {t € R : |t| < 1}. Let us assume that

(2.31) Fi(ko)(0) £0,  F(K)0)#£0, i=1,....d.

Let us denote
N;

ko(t) = ko(t) and  k(t)=2" (dtN’ kl) (2"t), i=1,...,d, veN, t e R.

As usually, we denote by kg(x) =k}, (x1)-... k% (xq) the tensor product of these functions.
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The corresponding local means are defined by
(2.32) b)) = [ mlo) o+ ),
R

appropriately interpreted for any f € S'(RY). Then

(2.33) H ( 3 2qm~r|km<f><->|q) "l

meNg

1S an equivalent quasi-norm in S;qF.

PROOF. Put ¢y = F; 'ky and ¢' = Ffl(c?t]]v\fi k%). Then the Tauberian condition are
satisfied (maybe after some dilation in the arguments of kg, &%) and (2.2) is also true. If we

define 7, m € R? as in Theorem 2.1, we get

@31) U))@)) e =pdy=c [ Fumo)fat iy
d

— [ (TTFwn) ) e+ s

i1
Finally, if m; = 0 we get (Fi¢8)(yi) = (Fito)(y:) = ki(y;) and if m; > 1 we obtain in a
similar way
N;

(Futh ) () = (P8 (277) (32) = 27 (Fug) (27 = 27 (S k) (27) = iy ().

Using this calculation and (2.34) we get

A~

nf)*(2) = [ nlo) o+ )y
Rd
and the theorem follows. O

We shall need some other modifications of Theorem 2.1. The first of them is interesting on
its own, the second will be useful later on.

For m € Nd,I € Z¢ we denote by Q_; the cube with the centre at the point 2™ =
(271, ...,27™d];) with sides parallel to coordinate axes and of lengths 271 ... 274,
Hence

(2.35) Q;={r eR: |z; —27™;

If v > 0 then 7()~; denotes a cube concentric with ()—; with sides also parallel to coordinate
axes and of lengths y27™1 ... ~27d,

<ommitli=1,...,d}, meNg, 1 ¢z

THEOREM 2.5. Let 7 € R4, 0 < p <00, 0 < ¢ < oo. Let N € N& > 7 and ky; be as in
Theorem 2.4. Then for any vy > 0

(2.36) H(Z?m sup \km<f><y>\q)l/qu

r—yevdm
meNg Y 'YQm,O

18 an equivalent quasi-norm in S; o

PROOF. The proof is the combination of the approach described in the proof of Theorem
2.1 and the following Lemma.
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LEMMA 2.6. Let m € N3, a,@ € R% and f € S'(R?). Let (¢%f)a be defined by (1.16) and
let z,y € RY be two points with |x; — y;| < a;27™. Then

(2.37) (¢t f)aly) < caa® (i f)alz),

where the cz depends only on a.

The proof of this Lemma involves only the definition (1.16) and some trivial algebraic iden-
tities.

Now we proceed in the same way as in the proof of Theorem 2.1. For z,y € R? with
|z — ys] < 4270 < 427Fi7li2K we get in analogy to (2.14)

(2.38) 1257 (Yrpaf) ()] < B THEEDIRED (G a(y)
< 22K a+l-(N=7)47- (k+l)< k+l) (SL’)
which gives us the analogy of (2.15) with the supremum involved on the left-hand side and
additional constant 257 on the right-hand side.
The modification necessary in the second step is very similar. Namely, we obtain for z,y € R?

with |x; — ;| <427k = 427%~li2li in analogy to (2.20)

(2.39) 12" (Wpppaf)" ()] < 27T EN (L aly) < 2T TR (O ().

So, we have to choose 7 < 7 — @. The modification of Step 3. is just the combination of
(2.38) and (2.39). Hence the expression (2.36) may be estimated from above by c||f|S] ,F.
The reverse estimate is trivial, as (2.36) is smaller than (2.33). O

The second modification is rather technical and deals with ’directional’ local means, namely
with local means of the form (d = 2):

/ kil (1) f (21 + 1, 22)dy1.
R

To introduce these local means in the general dimension, we define for every A C {1,...,d}

(240)  kma(f) /A (TT ¥ (00)) £ 1 + wxa (D), 0+ waxald) (] ).
R4 ea i€cA

We simply restrict the integration in (2.32) to those variables y; for which i € A. The others
are left untouched.

Using this notation, we may state our next Lemma.

LEMMA27 Let 0 <p<o0,0<g<oo,AC{l,....d} andvy > 0. Let7 € R? be such that
r; > mm(pq fori ¢ A. Let N; € Ny and ki be as in Theorem 2.4 for every i € A. Further

let ki a(f) be defined by (2.40). Then

1/q
(2.41) H( >, 277 sup Ikva(f)(y)lq) Lo || < cllf1Sp,F i
N T—y€YQm,0
mi=0,ig A
holds for every f € S) F. The sum is taken over all m = (m1,...,mq) € N§ with m; =0

whenever ¢ ¢ A. The L,-quasi-norm is then taken with respect to x.
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PROOF. For every direction i ¢ A, we use the decomposition (1.3). This gives the
following equality for all 7 from the sum in (2.41)

(2.42) k. a(f Z / Hkl i) HFNO,,Z zZ fly + z)dz.

ueNd €A €A
Vi mZ,ZEA

Denoting the product of all &/, (z;) and ¢,,(z;) in the last integral by k(z) and using Holder
inequality (if ¢ > 1) we get for every € > 0

(2.43) K a(F) )" < e Y 2%t k() (y)]“.

veNd
vi=m;i€A

Using this estimate in the left-hand side of (2.41), we get

(2.44) Yo 27T supkma(f)(y)|? < ¢ Y 20l Riga ™ sup |k f) ()]
meNg meNg
m;=0,i¢A

The supremum on both sides is taken with respect to the same set as in (2.41). Now we
stand in the same position as in the beginning of the proof of Theorem 2.5 with only two
little changes.

The first is that we may use the decomposition (2.10) only for those directions x; for which
i € A. The local means kw(f)(y) are already based on the functions ¢,,, in the remaining
directions. The second is that the supremum is now taken over larger set.

To deal with the second problem, we just use Lemma 2.6 with o; = 2% for i € A and with
a; = 2™ for i ¢ A (in the Step 1) and with obvious modiﬁcations in Steps 2 and 3. This
change will result into the factor 292iga(mia) = Ag ;> min(p,q) for i ¢ A and € > 0 may be
chosen arbitrary small, we may assume that r; > a; + €. Hence

(2.45) qZ(mm) +qumi +qZ(mZa,~) <qgm-T
icA iZA iZA
and the Lemma follows.

We stress only that the convergence of (2.42) is covered by the Step 4. of the proof of
Theorem 2.1. 0

2. Atomic decomposition

In this section we shall describe an atomic decomposition for spaces S F'. We follow again
the approach given in [Trl]. First of all, we give the necessary definitions.

DEFINITION 2.8. Recall that for 7 € N¢,m € Z¢ we denote by Qyr; the cube with centre at
the point 277m = (27"'my, ..., 27 "4my) with sides parallel to coordinate axes and of lengths
277,277 see (2.35).

By X(v)m we denote a p-normalised characteristic function of Qys, it means that XSPL@) =

27 PXng(x). Finally, if 0 < p < 00, 0 < ¢ < 00 and
A={\m€eC:7e N, mez}
then we define

(2.16) s = {3 istl] = (3 (3 o )p)l/qm}

veENE meZd
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)

In the next definition we introduce the normalised building blocks called atoms.

and

240l = {3 sl = [ (2 3 om0 )Uq\Lp@%d)

VENd meZd

with the usual modification for p and/or ¢ equal to co.

DEFINITION 2.9. Let 7 € R4 0 < p < 00, K € N,L+1 € N& and v > 1. A K-times
differentiable complex-valued function a(z) is called (7, p)r-atom centred at Qpr if

(2.48) supp a C YQum,

(2.49) ID%(z)] < 277027 for 0<a<K

and

(2.50) /x{a(x)dxizo it i=1,...,d; 7=0,...,L; and v; >1.
R

REMARK 2.10. The condition (2.50) is void if v; =0 or if v; > 1 but L; = —1.

THEOREM 2.11. Let 0 < p < o0, 0 < qg< oo andT € R, Fiz K € Nd and L + 1 € NZ with

(2.51) K;> (1 +[r])+ and L;>max(—1,[o, —1i]), i=1,....d.

(1) If A € spof and {awm(2) tyena meze are (T, p)g p-atoms centred at Qym, then the sum
veNE meZd

converges in S'(R?), its limit f belongs to the space ST and

(2.53) 17155, F Il < elM syl

where the constant ¢ is universal for all admissible X and a; .

(ii) For every f € S F there is a A\ € spqf and (T, p)g p-atoms centred at Qpwm (denoted
again by {apm(x )}VeNg, ezd) such that the sum (2.52) converges in S'(R?) to f and

(2.54) M spafIl < eI £S5, FI-
The constant c is again universal for every f € S;qF.

PROOF. Step 1.

First of all we prove the convergence of (2.52) in S’(R?). Let ¢ € S(R?). We use the Taylor
expansion of ¢ with respect to the first variable

(a1,0,...,0) -
(255> <p(y) _ Z D @(2 ;7711,y2,---7yd> <y1 _2u1m1>a1
a1<ly -
1 . -1 L1 1y(L1+1,0,...,0)
I 2wm(yl =27 my ) DT Ro(t, ya, - ya)dt
and (2.50) to obtain
(2.56)

Arm\Y . -1 1 1
/d apm(y)p(y)dy = / Ll(l ! / (g1 — 27" my) DI O gty gy ya)dtydy.
R . 2

R4 —ulml
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Using an analogy of (2.55) iteratively for the remaining d — 1 variables we see that the left

hand side (2.56) is equal to

d

arm(y) [V v -y L; HL+1
(2.57) / n / / [ =27 ma) D" op(ta, ... ta)dtdy.
R 2 2

L! “Vimy TYdmg ;—q

Using the support property (2.48) of ay we may estimate the absolute value of the inner
d—dimensional integration from above by

(258) 27D Sup (D" ) ()] < 27 E+D ()M sup_ ()M (D"Hg) a),
rev{om revom

where M is at our disposal. Let us now suppose that p > 1 and use (2.49) and Holder
inequality to get for M large enough

< 2 VLAY sup (2)M|( DLJrl |/ (Z 2" |)\um|X’vam<y>) (y)~Mdy

d
z€R meZd

B 1/p —
<o T3 k) s )07 ) o)

d
mezd z€R

As N € s, 4f C Spocb and T+ L + 1 > 0, the convergence of (2.52) now follows.

If p <1 then we get a similar estimate

[ 3 romaom(sti

mezd
<2 U-(F+L+1-1/p+1) Sup| l)LJrl ‘/ Z QVI‘)\VWL‘X’YQ ( )
z€R? mezd
< e P THEPED N T | sup [(DM) ().
mezd zEeR

In this case we use the fact that 7+ L + 1 —1/p+ 1 > 0 and the embedding s,,f C 51,000
Step 2.
Next we prove (2.53). We use the equivalent quasi-norms in S F' given by (2.33). Let us

choose N > K and define the functions k; for [ € N¢ as in Theorem 2.4. Then we have for
all [,7 € Nd and all m € Z4

(2.59) QZ'Tki(avm)(x) =27 /Rd k?lll (). k;i(yd)aﬁm(x +y)dy.

Further calculation depends on the size of the supports of k; and ap7. Hence we have to
distinguish between [; > v; and [; < ;. This leads again to 2¢ cases. We describe the first
one (I > 7) and the last one (I < 7) in the full detail and then we discuss the 'mixed’ cases.

I. I>7.
We suppose that [ > 0. This only simplifies the notation, the terms with /; = v; = 0 may be
incorporated afterwards. We use the definition of klzl and make partial integration (K;-times
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in the i*" variable) to obtain

2 Tki(arm) (x) = 2T / H(dtN ) e

=1

d
o dVe .
=2 /d 11 (dtN,. k) (yi)apm(z1 + 271, .. wq 4 27yg)dy
R i=1

d
T dNi—Ki ; _ B B
=20 [ T (et ) 000 o) + 2+ 2y

i=1

Next we use smoothness of k%, the boundedness of their supports and the properties (2.48)
and (2.49) to estimate the absolute value of this expression.

2"k (apmm) (z)| < ¢ QL F—R) g7 (T )+ K,
/d (H Xsuppkl(yz)) X'nyf(fL'l + 2 y17 R P + 2_ldyd)dy'
R

Assuppk’ C{t e R: |t| < 1},i=1,...,d, it follows that
(2.60) 27 |ky(apm) (2)] < c2-FDEDP oy 0 (@),
1. I<w.

The integration in (2.59) may be restricted to {y : |y;| < 27%}. We use the Taylor expansion
of functions k:lll (y;) with respect to the off-points 27"im; — z; up to order L;

(2.61) 27K (y) = Y b (@) (y — 27my + )% + 28EDO(|zy + gy — 27| )

0<B;<L;
and (2.50) to get
i i d
2" ky(agm ) () = 200D / agm(x +y) [ [ 2500w+ ys — 27 mul ) dy

{y:lysl<27"i} i1

Since
(@ + )] <2770 xgp (@ + )

we obtain

(262) 27 |k(apm)(@)] < 2" CHV2T TR0 T4 / Yoo (T + y)dy.

{y:lys| <2714}

The last integral is always smaller then 277! and is zero if {y : x4+ vy € YQum} N{y : |ys] <
271} = (). Hence

(2.63) / Na@on (& )y < 2PN i (@),
{y:lyi|<27%}

But the last expression may be estimated from above with the use of maximal operators M;
defined by (1.14).

(2.64) 2(7—§)~1X62777Q§m (l‘) <c (MX?W) (l‘)



2. ATOMIC DECOMPOSITION 23

Let 0 < w < min(1, p, ¢). Taking the 1/w-power of (2.64) and inserting it in (2.63) we obtain

1

(2.65) / Xo@om (T + y)dy < 277120708 (M xpm) > ().
{y:lyil<2 ll}

Next we replace xzm by X?f in (2.65) and insert it in (2.62).
27 (o) (2)] < 20T (M) (2).

vrm

By (2.51) and (1.17) one may choose the number w such that = (F+1+L+1—2) > 0.
ITT. Mixed terms.
We estimate for example the term with [y > vy, ; < v, 1 =2,...,d.

First we apply (2.61) fori = 2,...,d and use (2.50) to leave out the terms with 3 < L. Then
we use K partial integration in the first variable. In the expression we get we use again the
support properties of the functions involved and (2.49) to obtain

27F|kjf(aﬁm)(l‘)| S 27-%2(11—1/1)(7’1—1(1)22?:2 Li(ri+ 1)+l —vi) (Li+1)—viry

/ Xy Qoo (21 + 27" Yi, o + Yo, .. ., Ta + ya)dy,

)
where A7 = {y € R? : |yy| < 1,|ys] < 27%i = 2,...,d}. Due to the product structure of
the integrated function we may split the last integral into a one-dimensional integral with
respect to dy; and d — 1 dimensional integral with respect to the remaining variables. The
first integral then may be estimated from above by exu.ji—o-v1m,|<2-»}(71). Finally we use
the maximal operators M;,i = 2,...,d to estimate the second integral. And, exactly as in
the second step, it turns out, that there is some vector g > 0 such that

(2.66) 27k (apm) ()] < 27 Zim limwales (AT Py 55 (),

Let us observe that also (2.60) may be estimated from above by the right-hand side of(2.66).
Hence the estimate (2.66) is valid for all [,7 € Ng.

Using this estimate, we get for ¢ < 1
o q
2l.rkfi <Z )\Vmalym> (l‘)

We sum over [, take the l—povver and then we apply the L,—quasi-norm with respect to .
)

<c Z Ny 12775 l=viles (RN )2 (),

vm

Denoting gym = )\pmx(p

(=

leNg

)|) e

we arrive at
1

22'?16[ <Z )\Vmal,m) (x

< (ZM (TN ) |y

w

—c||(Z g w) 12w

Using Theorem 1.11 and the definition of w, we see that this expression may be estimated
from above by [|A|s,f||- On the other hand, from the improved version of Theorem 2.1,
namely from Theorem 3.1, we see that this already ensures that f belongs to S;qF and
proves (2.53).
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Step 3.
It remains to prove (ii). Let us assume first that
(2.67) L=-1, K>7, T>o0,, 0<p<oo, 0<g<oo.

Furthermore, let N € N& be vector of even numbers with N > 7. According to the construc-
tion given at [Tr2, page 68], we may find functions kg, k', ..., k¢ such that

(2.68) ko, k',... k% € S(R);
(2.69)  suppko,suppk’ Cc {t cR: |t| <1},i=1,...,d;

(2.70) 1= Fy(ko)(¢) + i Fy(dNikh(27¢), €eRyi=1,....d;
(2.71)  Fiko(0) =1 .
(272)  Fu@VE)(€) = (Fiko)(€) — (Fiko)(2€), €€R,i=1,....d.

Further we may assume that no dilations mentioned in the beginning of the proof of Theorem
2.4 are necessary.

We define k;(x) and k;(f)(x) as in Theorem 2.4.
We claim that then

(2.73) f= Z ki(f)(z) = Plglgoz ki(f), convergence in S'(R%).

leNg i<p

To prove this, fix ¢ € S(R?). Since the Fourier transform is isomorphic mapping from S’(R¢)

onto itself and .
(k)" = (T (ki) (=€) Fe©)

it is enough to show that

(2.74) Z(Hm ki) ) o(€) in S(RY).

i<p =1

The last sum may be rewritten using (2.72) as
d

Z(ﬁﬂ%x—@)) H(Fk: &) +Z A(d"k)(-276)) = [T(Fuko)(-27").

<p i=1 i=1 =1

We denote the last expression by 1 —®(277¢) and fix M € N. Using the fact that ¢ € S(R?)
we obtain

_ d
Pu(p©e2E) <e sup 2 PIDT)E)(D7R) ") [] 16

0<a,B<M
¢er?
d
<c sup 2779(DPR) 27 ) e
0<B<M i1
R

where the constant ¢ doesn’t depend on P (but depends on M).

If at least one of 3; > 0, then this expression tends to zero if P — oco. If 3 = 0, then we
split the supremum into sup¢sor and supjgcop. The first supremum may be estimated from
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above by ¢27F. To estimate the second one, we notice that |®(£)| < ¢|€| in {& : |¢] < 1}.

Hence
d

¢ sup d(2-F A1 2771¢|
p &2 7 )" <csup

g1<2” i=1 £ER <§> '
Hence p(&)®(277¢) — 0 for P — oo. This proves (2.74) and, consequently, also (2.73).
Next we suppose that
(2.75) Y € S(RY), suppt is compact and Z Y(z —m) =1 for z € R
mezd

Then we define for 7 € N& and m € Z¢ the function ¢pm(x) = ¥ (2”2 —m). Then there is a
~ such that

(2.76) supp Yo C YQwm, v € Nj,m € Z°.

Then we multiply (2.73) by these decompositions of unity and obtain

(2.77) F= tom@ka( @) =D Y domapm(z),
veNd mezd veNd mezd
where
Mo = 270037 sup D k()] ()
W< yevQom
and
apm (1) = Agatom () ki (f)(2).
(If some Ay = 0, then we take aym(2) = 0 as well). It follows that a,m are (7, p)i —atoms
centred at Q. The properties (2.48) and (2.50) are satisfied trivially (recall that L = —1),
and the property (2.49) is fulfilled up to some constant ¢ independent of 7, and z. To
prove that this decomposition satisfies (2.54), write

1/q

.(7F—1 7.4 o

Mspafll < e (Z > 27T swp D [k;(f)(qu) L,
0<a<K'' ‘weNd mezd 2=yErQum

and use Theorem 2.5 with D%k, and D% k; in the place of ky and k*. We lose the Tauberian

condition for these new functions but according to Remark 2.3, this fact is rather harmless.

Step 4.
Now we prove the existence of the optimal decomposition for all 7 € R? and L restricted
by (2.51). To simplify the notation, we restrict ourselves in this step to d = 2. So, let us
take f € Sy F(R?). In Definition 1.8 we may substitute (1 4 2*)” by (1 + 2P (1 + x3?)
for p € N2 and (using twice Theorem 1.13) we obtain the respective counterpart of Theorem
1.9. Hence f can be decomposed as
2M, 20, 2M1+2Ma

f:nga 2M?Jra 2Mg L 2N 2Mg’

Oy Oxy"?  Ox] 'ay

(2.78)

where M = (My, M) € N is at our disposal and may be chosen arbitrary large, g €
7+2M 2 7+2M 2\|| ~ 7 2

Spa " F(R?) and |[[g|S; 5 F(R?)|| ~ [[ 155 ,F(R?)]].

The optimal decomposition of f will be obtained as a sum of decompositions of these four

terms.

To decompose the first term, choose M such that

lglS C®)|| < cllglSpy" F(®?)]].
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This is possible according to [SchT, Theorem 2.4.1.]. Then we decompose

:Z¢(x__ Z)\OmaOnw

where
Aom = €1 sup  |(D%g)(y)|
0<a<K VTmISe
and .
B = o~ ()
om

for ¢1, ¢, sufficiently large and for ¢ with (2.75) and (2.76). Then ag,; are (7, p)x z-atoms
centred at QQom. Furthermore, according to Lemma 2.7, we have

1/p
N sy f 1] = (Z \Aém\p) <oy

meZd a<K
< cllg|SpEPM F(R?)|| < c|| fIS] F(R?)]|.
We have used Lemma 2.7 with d = 2 and A = (.

As for the last term in the decomposition (2.78), we may assume that M is large enough
to apply Step 3. So we may assume that we have a decomposition (2.77) for g with, let’s
say, A\a.— and at,-(x) instead of Ay and apm(z) and [[A2]s, o f]] < c||g|S;ZQMF(R2)||. As

ap () are (T+2M, p)g 37 _i-atoms, the functions DXMM)gd (1) are (T, ) 37_1-atoms.

sup  |(D%g)(y)| [Ly

—y€YQo0

In the case of the second term we use the decomposition

(2.79) g@) =Y D> deml@kwalg)@) =D Y Nmasm(o)

DENZ mezd veEN? meZd
vo=0 I/2=0
where A = {1}, ky a(g)(x) are defined by (2.40),
(2.80) N = e 2Mignney) 3 sup | D7 (kz.4(9)) (y)]
B<EK+(2M1,0) yEc2Qom
and
(281) ) = 5= om(a) ) ).

2M7,0)
(@M.0)g2

If ¢; and ¢y are large enough, then D 2m(x) are (T, p)g z-atoms for Ly < 2M; — 1.

Finally, we use Lemma 2.7 to estimate ||A?|s,,f||

1/q
282) |Nsufll < Y (ZWWM sup \Dﬁ<ka,A<g>><y>|q) L,

B<K+2M1,0) " “penz yeearo
vo=0

< cllglSpe*M I < elIf1S, F

if M is chosen sufficiently large. We have used Lemma 2.7 with D%k, and D”g instead
of k1 and f. The third term can be estimated in a similar way. The sum of these four
decompositions then gives the decomposition for f.

In general dimension d one has to use the full generality of Lemma 2.7 but the proof is the
same. 0
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3. Subatomic decomposition

In this section we describe the subatomic decomposition for spaces S;qF . We follow closely
[Tr3] and [T03].
First of all, we shall introduce some special building blocks called quarks.

DEFINITION 2.12. Let ¢ € S(R) be a non-negative function with

(2.83) suppy) C {t € R: [t| < 29}

for some ¢ > 0 and

(2.84) Y w(t—n)=1, teR
neZ

We define W(z) = (1) - ... - Yg(xq) and UP(z) = 2°¥(z) for = (2y,...,24) and 3 € Nd.
Further let 7 € R and 0 < p < co. Then

(2.85) (Ba)ym(z) = 2770V —m), 7eN me 7

is called an (7, p)-B-quark related to Qum.

Recall that the spaces s,,f were defined by (2.47).

THEOREM 2.13. Let 0 < p < 00, 0 < g < 0o and ¥ € R be such that
T > Opg.
(i) Let
A={N:BeN} with ¥={\_cC:veN mez}
and let o > ¢, where ¢ is the number from (2.83). If

sup 29|6‘||)‘6|5qu|| < 00
BeNd

then the series
(2.86) YD D MomBaem(z)
BeNY veNd meZd

converges in S'(R?), its limit f belongs to St F and
(2.87) 1155, F Il < e sup 297127, f|].

BENG
(Bqu)pm has the same meaning as in (2.85).
(i) Every f € Sy F can be represented by (2.86) with convergence in S'(R%) and
289 sup 2091[3sy 1| < el 7157, 1l
BENE
PROOF. Step 1.

First of all, we shall discuss convergence of (2.86). It turns out that this series converges not
only in S’(R?) but also in some L, (R%),u > 1.

Let 1 < p < oo. Then 7 > 0 and we get

(2.89) F@<e Y ST ST 2l 1270 g (a),

BENE veNd meZd
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where Yy is a characteristic function of 2°7'Qy . Using two times the Holder inequality
we get for every € > 0

1f(2)] < ¢ sup 20798 sup 277057 sup |N2_|Xpm(2).
BeNG veNd mezd

Taking the p-power and replacing the suprema with sums we get

(2.90) f(@)P < e Z Z Z 2(¢+6)W|p2_7'(F_%_5)p|)\§m|p>zpm(x).

BeNY veNd meZd

Let us denote ¢ = max(p, q) and choose € such that 0 < 2¢ < 9 — ¢ and € < 7. Integration
of (2.90) and the Hélder inequality result in

1/p
1Lyl < e sup 2(¢+29 ﬁ'(Z Y 27Oy V’)

ueNd meZzZd

d/p\ 1/4
2.91) < e sup 24290 (Z (S ) )

d
BENG eNg “mezd

< csup QQW‘ | |)\ﬁ|5p7max(p,q)bH < csup 29'6‘ | |)‘ﬁ|8p7qf||'
BeNd BeNg

Therefore, for 1 < p < oo, (2.86) converges in L,(R?).

Let 0 <p < 1. Then 7 > % — 1 and we get again (2.89). Integrating this estimate and using
Holder inequality, we get for every € > 0

FEAESD DD DD DS e R

BeNd veNd mezd

< ¢ sup 200+l Z Z 97—y +) pra

BENg veNd mezd
By similar arguments as in (2.91) we get

1fIL1]] < e sup 297 |\]s, £
BeENG

and (2.86) converges in Li(RY).
Step 2.

We now prove that the function f defined as a limit of (2.86) belongs to S] F' and the
estimate (2.87).

We decompose (2.86) into
(2.92) f=>1
BENE

with

(2.93) =33 Xa

veNE meZd

Q\
S\

We show that (fqu)ym are (up to some normalising constants) (7, p)z _;-atoms centred at
m for every K € Nj. The conditions (2.48) and (2.50) are satisfied trivially. To prove
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(2.49) we chose 0 < o < K and estimate

d
D (Bqu)om(x) = 277 T [T 2 Do () (2" — my)

i=1
where 1% (t) = t%i1)(t). But for 0 < a; < K; and any t € supp v we get by Leibnitz rule

| D (%)(1)] < e, sup sup D7 - (DY) ()] < ek, sup DV
71 <K; 72<K; 7 <K;

The last absolute value may be estimated from above by (1 + 3;)%i2¢%. Hence we obtain
DX (5)(t)] < cxp(1+ 5) 12
and
— = 1 — — — = 1 —
| D (Bqu)m(x)] < 2 2770794V (1 4 )00 < gy 277 a0 Ald)
for every € > 0. The constant ¢, is independent of 3 but may depend on K, v and e.

It follows that the functions c; 2= @+l (Bqu)ym(z) are (7, p) k. _1-atoms and (2.93) may be
understood as atomic decomposition of f°. By Theorem 2.11 it follows that

1171554 F Il < 2@t IN s, ]
and for n = min(1, p, ¢) get by triangle inequality for S” F-quasi-norms
Pq
||f|5;7qF||n = Z ||fﬁ|S;qF||n =c Z 2(¢+e)n|m||)\ﬁ|5qu||n <c SuPd 2(¢+26)n\6|||)\5|5qu||n'
BeNd BeNd PBENG

If we choose € > 0 so small that ¢ + 2¢ < o we obtain (2.87). This finishes the proof of part
(1).

Step 3.

By Remark 1.5 we have

with convergence in S'(R?). Let Q5 be a cube in R? centred at the origin with side lengths

2m2v, ... 2w2v. Hence supp ¢ C () and we may interpret ¢ f as a periodic distribution.
Using its expansion into a Fourier series we get
(2.94) (euf)(&) = D byme E LeQ,
mezd
with

bom =2 [ T, f) (€€ = 2 g (2.

Here we used again the notation 277m = (27"'my, ..., 2 "4my) for 7 € N¢ and m € Z°.
Let now w € S(RY) with suppw C Qp and w(€) = 1if || <2 foralli =1,...,d. Then the
functions w;(£) = w(277¢) satisfy

suppwy C Qp, wyp(§) =1 if & € supppy

for all 7 € N¢. We multiply (2.94) with wy, extend it by zero outside @, and take the inverse
Fourier transform

(prf)Y(z) = Z bymws (x — 277m) = Z 2 by mw (27 — ), x € R%

meZd meZd
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Using (2.84) and the definition of ¥, we get

V()= 2y Y w27 —Dw" (272 —m).

meZd lezd

Expanding the entire analytic function wV(2” - —m) with respect to the off-point 2771 we

arrive at

mezd lezd BENE
_ (DB -7
_ iy o7, 7 (D'w)( —m)
- Y 2 Y Y w2
mezd lezd BeNG
Hence
IEDIDIDI il LCIEED B BP PREI0e
veNd BeNd eczd veNd BeNd iczd
where
o.(7—1 Dﬁwv Z—m . (7—1 o o Dﬁwv Z—m
)\gi =9 ( p+1) Z bﬁm< ;(' ) —c2 ( p) Z (4107,76)\/(2 m)( ;(l )
mezd ’ mezd ’

It remains to prove (2.88). For this reason we define
Mom =T (0 f) 27 m)
and prove that

(2.95) sup 297\, || < cl[AlspefI| < €I F1S5F -
BeNd

We start with the second inequality in (2.95).
Let x € Q7 be fixed. Then

(2.96) (pef)"27m) < sup ()" ()] < (5 f)al)

z—y€Qz0

for every @ € R%. We multiply (2.96) by 23'(?_%), take the g-power and sum over m € Z< to
get

S Aoml B (@) < 27727 T (r )i (2) = e 27T (5 f)i(x), = eR%LTeNL.

mezZd

Taking @ > ( o> We get finally with help of Theorem 1.15

1/q
||A|quf||:H(ZZ|Amx£% ) 1L,(RY)

veNE meZd

min

<c (Z QW‘I(SOH)E(:C)) L ®)

vENG

< |l £155,,FIl-

To prove the first inequality in (2. 95) we mention that
(2.97) §Z: 5 Y Aom(DwY) (I —m)

mezZd
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and recall a result proven in [T02], namely that for any given a > 0 there are constants
cg > 0 and C' > 0 such that

(2.98) |DPWY (2)| < e 29V(1 + |z)7e, = eR?Y B e N
Furthermore, we define
B _ B ()
(2.99) P) = S AP (@),
leza
(2.100) Holw) = 3 A (@)
leza

and let 0 < k < min(1, p, q). We prove (2.95) by the following chain of inequalities
20| X2 s f 1| = 29| BZ Ly (1) = 22P1[] [RE]™ |Le (L)

20‘,3| ke 1
(2101 < (20 ) IR )

< | [Hol" [Le(lo)l]~ = [[Alspqf]l-

The equalities in (2.101) involve only definitions of corresponding spaces. The second in-
equality follows from Theorem 1.10, choice of k and the growth of ! for |3| — oco. Hence
only the first inequality in (2.101) needs to be proven.

To prove it, put (2.98) into (2.97) to obtain

2617 | Az
2.102 o< U :
o N

meZd

Let us take z € Q.;. Using the definition of 22 from (2.99), (2.102) and the property & < 1
we get

5 < cp201PlF Z | Apm]|”

"= (5 TPy

meZd

(2.103) R (z)|" = 275 [\

We split the summation over m € Z? into two sums according to the size of |l — |

Aoml® o~ L r
(2.104) Z (1+|Z_m|2)a/@ _Z (14 k2)as Z | Azl

meZd

Finally we estimate the last sum using the iterated maximal operator M

> [Apm|t <2772 / | Hy(y)|"dy
: yy—z€(k+2)Qp,0

(2.105) < 2775 (k + 2)*M (| Hy|")(2).
We combine (2.103), (2.104) and (2.105) and arrive at
B K / 20181 K
|hyp ()" < L M(|Hy|")(x)

for every a > %. This finishes the proof of (2.101) and, consequently, also the proof of (2.95)
and hence also of the part (ii) of the Theorem. UJ
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Next we shall deal with subatomic decompositions in the general case. Namely, we would
like to prove an analogy of Theorem 2.13 without the restriction 7 > 0,,.

We start with the definition of quarks satisfying certain moment conditions.
DEFINITION 2.14. Let v, ¢ and ¥ be as in the Definition 2.12. Let

TERY 0<p<oo, BEN! and L+ 1N
Then

(Baw)%
is called an (T, p)*-3-quark related to Qpm.

(z) =277 D)D) (e —m), zeR! veN, mez

| 3

REMARK 2.15. If L = —1 then this definition coincides with Definition 2.12.

REMARK 2.16. For the need of this section we introduce temporarily following notation. Let
Ac{l,....d} and N = (N,,..., N,) € R% Then we define the vector N'' = (N2, .. L, NaY

by
‘ 0 if i¢g A
THEOREM 2.17. Let 0 < p <00, 0 < g <00 andT € Re. Further let L+ 1 € N¢ be such
that L > max(—1, [o,, — F]) and & € R? with & > max(c,,,T).
(i) Let for every set A C {1,...,d}
M=\ 3e N} with M ={ D3 eC:veN mez}
and let o > ¢, where ¢ is the number from (2.83). If

sup  sup 29|B‘||)‘A76|5qu|| < 00

then the series

(2.106) SO S Miataw)

Ac{l,...,d} BeNg veNd mez?
converges in S'(R?), its limit f belongs to ST F and

(2.107) 1f1Sp,Fll <c sup sup 22|40, £].
AcC{1,...,d} BeNg

Here (ﬁqu)?: are (c4° +?A,p)ZA*1AC -B-quarks.

vm

(i) Every f € Sy ,F can be represented by (2.106) with convergence in S'(R?) and

(2.108) sup sup 207 ||\ 1] < el 157,
Ac{1,...,d} BeNd
REMARK 2.18. 1. Note that 74° 474 is a vector whose i-th component is equal to o; if i & A

and equal to r; if ¢« € A. Similarly, the i-th component of vector Th 14 s equal to L; for
i € A and equal to —1 otherwise. So, for example, if d =2 and A = {1} then the quarks in
(2.106) are ((ry, 02), p) 1 ~V-B-quarks.

2. Because of the difficulties with notation we shall give the proof only for d = 2.
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PROOF OF THEOREM 2.17 FOR d = 2.
Step 1.

First we discuss the convergence of (2.106). As the first sum is only finite, we may discuss
the convergence of the triple sum over (3,7 and T separately for each A C {1,2}. Let us
do this for example for A = {1}. Then we may rewrite the ((r1, 02), p)*~Y-B-quarks from
(2.106) as

(ﬁqu)g;(x) _ 271/1(7’1*%)*1/2(027%)(D(L1+1,0)\Pﬁ)(2ﬁx _ m) _
(2.109) - D(L1+170){2*”1(7"1*%+L1+1)*I/2(027%)1116(27,1‘ —m)} =
— D(L1+1,O) (ﬁ(]b)ir—(l')

where (Bqu)t—(x) are ((r; + Ly + 1,03),p)-B-quarks according to the Definition 2.12. As
r1+ Ly +1 > 0y, and oy > 0,, we may use the same arguments as in the proof of Theorem
2.13 and obtain the same kind of convergence as there.

Step 2.

Let us assume that the function f is given by (2.106). Then we may understand this
decomposition as

(2.110) F= >
Ac{1,2}
We shall prove for every admissible set A that

(2.111) FA1Sm,f1] < ¢ sup 290|425, £
BENE

If A = () then the decomposition of f? in the triple sum according to (2.106) can be un-
derstood as a subatomic decomposition of f? in the space SZIF and from Theorem (2.13)
follows that

fesSyFcS),F and ||f®|5§qF|| < ¢ sup 29[| \PB)s,, f]|.

BENE

If A= {1} then we use (2.109) and obtain that f{!} = DI1+1.0) g where

ge SI()Z1+L1+1,02)F and Hg|Sz()Zl+Ll+1702)FH < ¢ sup 29\ﬁ|||)\{1},ﬁ|qufH.

BENG
Hence
LFOSG I FI| < LAV 1S5 Fl| = || D05 )|
(2.112) < [|g| Sl Pl < e sup 2971 | AUHF s, £,

BeENG
Using similar technique we prove (2.111) also for A = {2} and A = {1,2}. Now (2.110)
together with (2.111) shows that (2.107) holds.
Step 3.
We prove the part (ii) of the Theorem. By similar arguments as in the Step 4. of the proof
of Theorem 2.11 we prove in analogy with (2.78) that for every M € N¢ such that

F+M+1>5 and M>1L
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there is a function ¢ € S;;M“F with

8M1+1g aM2+1g aM1+1+M2+1

B g
(2'113) f =g+ 8xi\/11+1 axé\h—i—l ari\/h-l-lxé\/h-i-l'
Furthermore

(2.114) gl Sy MR & || 1Sp, F |-

Let us define
g1=9, go=DM"0g  gy= DOMTIg and gy = OBl g,

Then we can rewrite (2.113) and (2.114) as

aLlJrl aLerl 6L1+1+L2+1
.11 fog s 2 07y
Oxy

with

ga
dxktt  gpfaitiglett

g1 € SIHMHLE € ST F,

gs € S(T1+L1+1,T2+M2+1)F - S(T1+L1+1,U2)F
pq pq )

g3 € S(T’1+M1+177’2+L2+1)F - S(O1,T2+L2+1)F
pq pq )

g4 € S;;—L'HF.

Furthermore, the norm of g; in the corresponding space may be estimated from above by
1f1S;,F]| for all i = 1,...,4. We may use Theorem 2.13 for each function g; to get four
optimal decompositions and corresponding analogs of (2.88). Putting these estimates into
(2.116) and using (2.109) we get (2.108). O

(2.116)



CHAPTER 3

Remarks

In the previous chapter, we have followed the way of [SchT], [Tr1], [Tr2], [Tr3] and [T03]
to carry over some important aspects from theory of F5 (R?) spaces to Sy F(R?) spaces. In
this last chapter we add some useful comments and show another possible approach to this
topic. Namely, we generalise the proof of Theorem of Bui, Paluszynski and Taibleson given
in [Rych] and we give an alternative proof of the existence of optimal atomic decomposition
following the ideas of Netrusov and Hedberg as they are described in [HN]. We also formulate
our results for spaces S;  B(R?).

1. Improved version of Theorem 2.1.

The main disadvantage of Theorem 2.1 lies in the fact that (2.3) is an equivalent quasi-norm
only in the set S} F. To be more concrete, we don’t know if (2.3) is finite if and only if
fesS) F. The Crumal point lies in the beginning of Part 2 of the proof of this Theorem. By
estlmatmg of || f|S] .|| from above by (2.3) we have to use the fact that ||f]S] F|| < oc.
Closer look on this part of proof of Theorem 2.1 shows that in the case p,q¢ > 1 the Nikol’skij
inequality in (2.26) is not needed and, consequently, it is not necessary to use the fact
J € 5, But this answer is only partlal For all indices 0 < p < oo and 0 < ¢ < o0
the answer may be given by following generalisation of Theorem of Bui, Paluszynski and
Taibleson.

THEOREM 3.1. Let p,q,7 and N be as in Theorem 2.1. Also the functions ”QDE,E € N¢ have
the same meaning and satisfy (2.1) and (2.2). Then
< oo}

- Trs o 2 1/q
5.) S8 ={1 €8 ]|[(Z wenor) ity
keNg
PROOF. First of all we construct for every 1 < i < d a sequence of functions {\;(#)}32, C
S(R) such that

(3.2) i N(wi(t) =1, teR,

(3.3) N(t) =X(271), teR, j>0,
(3.4) supp Ay C {t € R:[t] <2} and supp A, C {t € R: 277! < |t| <27+

We may construct such functions for example by the choice A;(t) = :Z{ Eg for t € supp g,
J

and (2.3) is an equivalent quasi-norm in S'.

and Ai(t) = 0 elsewhere. Now we define, as usually, Ag(z) = A (1) - ...+ A} (2q) for every
k € N¢. From (3.2) we obtain

D> Mla)gle) =1, zeR?
keNg

35
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It follows that the expansions

(3.5) F=>"00eh)Y. (o) = (eodptnf)”

keNg keNg

converge in S’ for every f € S’ and every v € Ng.
We have

(3.6) (et ) ()] < ¢ / (o) ()] 1)y — 2)Id=

(W faly /m H<1+2k|z|>%

for every @ > 0. We denote the last integral by I+ and point out that

d d
- = H[Viki = ]‘_[/]R |(90V¢)‘Z‘i)\/1(zi)|(1 + oki
i=1 i=1

To estimate these integrals from above we use the following version of Lemma 1 from [Rych].

D“idzi.

LEMMA 3.2. Let g,h € S(R), M > —1 be integer,
D%g(0) =0 foralla < M.
Then for any N > 0, there is a constant Cy such that
Sup [(g()R() " (OIL + L)Y < Cnd™, b > 0.
€

With the change of variables 2% z; — z; we get
/]R (X)) (z)I(1+ 2%z ])dai = /R [(pw, (25 )N, (250) 7 () [ (1 + [zl ) Lz

We assume that k; > 1 and write X(t) = A, (2¥t). By (3.3), this definition doesn’t depend
on the choice of k;.

Using Lemma 3.2 we may estimate for k; < 14
/ (0 M) (2)|(1 4 2% zi]) " dz < e Sup (o i A () (1 4 [2]) 42 < 2D,
R z€

where M is at our disposal, as we may suppose that o, 1 (-) = ¢(2¥ %) and ¢ vanishes
around zero. The exceptional terms with 0 = k; < v; may be incorporated in the same way
(only some changes in notation are necessary).

As for 0 < v; < k;, the situation is very similar. We get

/R [ (00 i) () 11+ 28]z < 20 /R [(pw, (27) N, (2 (2| (1 + |ai])**dz

S CQ(Vifki)(MfarFl)’

where M is again at our disposal. Now we use that A’ vanishes in the neighbourhood of
zero. The exceptional terms may be incorporated in the same way (only some changes in
notation are necessary).

Hence choosing M large enough, we see that there is a number § > 0 such that

(3.7) W[ < 2P PR e NG E e NE
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We put (3.7) into (3.6) and (3.5) and get
(38) 27w/ W < 27T Y Ierdwr) W) < Y 25 TIWi )2,

keNd keNd

The pointwise convergence of (3.5), which was used in the first inequality in (3.8), may be
proved like in the Step 4 in the proof of Theorem 2.1. Namely, the second decomposition
(3.5) converges in S’. And for each term from this sum we have estimates (3.6) and (3.7).
These estimates allows to prove that partial sums of (3.5) form a fundamental sequence in
some L,,r > 1. Its L,-limit must coincide with its S’-limit and (3.5) converges also in L,..
The pointwise convergence than follows in the same way.

For ¢ > 1 we use Young’s convolution inequality and for ¢ < 1 we use the concavity of the
function ¢t — t9 to get

(Z zv.m|(90;f)v(y)lq) " <c (Z 2574|(2f)z (y)‘q) v

veNd keNg

We apply the L,-quasi-norm and choose @ > ) and use Theorem 1.15 to obtained the
desired result. O

2. Alternative proof optimal atomic decomposition

In this section we give the alternative to the proof of part (ii) of Theorem 2.11 under the
condition (2.67), namely the existence of optimal atomic decomposition. We use the ideas
expressed in [HN].

First of all, we quote Theorem 1.4.2. from [SchT].

THEOREM 3.3. Let 0 < w < oo. Let Q be a compact subset of R?. Then there exists a
positive constant ¢ > 0 such that

B\ G | [ G
ZERd ]_ + |Z|d/w ZeRd ]_ |Z|d/w

holds for all ¢ € S and all x € RY,

< [ My ()

The dependence of ¢ on the size of 2 may be studied by the classical dilation arguments. If
¢ € Sandsupp ¢ C Qp = [—Ry, Ri| X -+ x [=Rqg, Ry], we set (x) = ¢(Ryxy, ..., Rarg) and
use Theorem 3.3 for Q = [—1,1]%. Tt follows that

T po B B -

(39) sup | ¢(x Z)| S ¢ sup . |¢(l‘ Z)| S C[M|¢|w($)]1/w

sert [[L (14 |Rizm)Ve — sere [T, (1 + |Riz])V*

for every function ¢ € S9% and every x € R? with ¢ independent of R but dependent on the
multiindex a.

The optimal atomic decomposition may now be obtained as
f= Z Sokf Z Z Sokf 2k$ —m) = Z Z A @ ()
keNg keNd mezd keNd mezd
where

(310)  Nm =TV sup sup [D(epf)Y (@)u (2P — )

0<a<K g:|z—2—Fm|<cy
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and A B

(%) = At (0 f) ()9 (252 — ).
The function 9 is the function from (2.75). When ¢; and ¢y are chosen large enough, we see
immediately that az.(z) are (7, p)z _,-atoms.

Let us now take x,y € R? such that |z; — y;] < 727% where v > 0 is a fixed number. Then
we use (3.9) and obtain

D) (@25 —m)]| < ¢ sup 271D (o )Y ()

0<p<a
oif)" (x - 2)|

F | D¢
<c sup 2 p sup

0spsa sert [,
_ Da—ﬁ AV _
S ¢ sup 2k'ﬁ sup | , kaf) (y Z)|
0<B<a serd [ (1 + |Riz| )1/
< c2M02F D (| (0 f)Y (y)1) -,
where 0 < w < min(1, p, q). If we define
g(0) = 3 Pl

mezZd

| | =

and choose z € Q5 we get

-1 N

gi(@) = 257 | Nl < 25T (M| () (2)])
and

[N spaf 1] = Ngr() Lol = [1(g5()) 1 L2 (L) < |28 M| (e f)” ()*|Le (1)

< 12" epf) Y OIIL2 L)1 = (125 (0rf) Y OILp U = |1 £15)4F I,
which is (2.54).
The advantage of this proof is that it doesn’t use Theorem 2.1 or any of its versions. But to

count the coefficients (3.10) one has to know f and hence the global information about the
function f is needed. In some sense, one may say, that coefficients (3.10) are not local.

3. Another version of atomic and subatomic decomposition

Recall that (7,p)z z-atoms and (7, p)-B-quarks were defined in Definitions 2.9 and 2.12.
Both these definitions include the dependence on 7 and p. But this fact represents a very
uncomfortable complication for further applications. Hence we are going to reformulate these
Definitions and following Theorems in such a way, that new atoms and quarks don’t depend
on T neither p.

DEFINITION 3.4. Let K € N¢,L +1 € N¢, and v > 1. A K-times differentiable complex-

valued function a(z) is called [K, L]-atom centred at Qg if

(3.11) supp a C 7w,
(3.12) |D%(z)| <2*”  for 0<a<K
and

(3.13) /xga(x)dxizo if i=1,...,d;j=0,...,L; and v; >1.
R
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DEFINITION 3.5. Let ¢ € S(R) be a non-negative function with

(3.14) suppy C {t € R: [t| < 2}

for some ¢ > 0 and

(3.15) d w(t-n)=1, teR
neZ

We define W(z) = 1 (x1) - ... - Y4(x4) and VP (2) = 2°¥(2) for x = (1, ...,24) and 3 € NI
Further let 7 € R? and 0 < p < oo. Then

(3.16) (Bat)pm(z) = VP (2" —m), veNi mez?

is called an B-quark related to Q.

This change is reflected also in the definition of sequence spaces s,,b and s,,f.
DEFINITION 3.6. If 0 < p < 00, 0 < ¢ < 00, 7 € R? and

(3.17) A={\wmeC:7eN,mecz'}

then we define

(3.18) { [[A[sT bl = (Z 97 ("=3) (Z p— )q/p)l/q < oo}

vENG mezd
’ < OO}

REMARK 3.7. We point out that with A given by (3.17) and gy(x) = > - cya AomXom(x), We
obtain that

and

319 spur = sl = ||(Z 5 2t )l/qu(Rd)

veENE meZd

with the usual modification for p and/or ¢ equal to oc.

[M[spadll = 11277 galla(Lp)ll,  1IA[spaf 1] = 1127 gzl Lu(lo)]].
Sequence spaces of this kind were denoted by FEgs in [HIN] and may be understood as a

discrete version of S} F and S B. Let us also mention, that sp Pf = sp,f and qup b = speb,
where s,,f and qub Were deﬁned by (2.47) and (2.46) respectively.

Using this notation we may reformulate Theorems 2.11 and 2.13.

THEOREM 3.8. Let 0 < p<o00,0< ¢<oco and7 € R Fir K € N¢ and L + 1 € N& with

(3.20) K;>(1+[r])+ and L; > max(—1,[o, —1i]), i=1,....d.

(i) If A € spof and {apm(2) }yeng meze are [K, L]-atoms centred at Qum, then the sum
veNd mezd

converges in S'(R?), its limit f belongs to the space Sy F and

(3.22) IF1ST,F Il < el Il

where the constant ¢ is universal for all admissible A\ and apm.
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(ii) For every f € S F there is a X € s, f and [K, L]-atoms centred at Qpm (denoted again
by {arm(2) tpend meza) such that the sum (3.21) converges in S'(R%) to f and

(3.23) [Nlspaf1| < ellf1Sp o FII-

The constant c is again universal for every f € S;qF.

THEOREM 3.9. Let 0 < p < o0, 0 < ¢ < oo and 7 € RY be such that
T > Opg-
(i) Let
A={N:BeN} with N ={\N_cC:veN mez}
and let 0 > ¢, where ¢ is the number from (3.14). If

sup 297 [ \]7 f]] < oo
BeNd

then the series
(3.24) Z Z Z N (B ()
BeNY veNd meZd

converges in S'(R?), its limit f belongs to S} \F and

(3.25) 1£1Sy,FI < ¢ sup 2971|275, f]].
BeENG
(Bqu)pm are now [-quarks defined by (3.16).
(ii) Every f € Sy ,F can be represented by (3.24) with convergence in S'(R?) and

(3.26) sup 2471[A%]s fl| < el | £S5y, F -
BeENG 7

REMARK 3.10. Proofs of this two Theorems are obvious. We have only moved the factor
— = 1
277%) from (2.49) and (2.85) into the coefficients Ay or A2 respectively.

4. Spaces of Besov Type

All our results may be reformulated for S;qB (R%) spaces. The proofs are usually very similar,
only some technical details are easier. We state these formulation to provide some reference
to these results.

THEOREM 3.11. Let 0 < p < o0, 0 < g < o0, 7= (r,...,7a) € R Let N = (Ny,...,Ng) €
N¢ be d even numbers with T < N.

Let vy and 4, ... ® be d+ 1 complex-valued functions from S(R), which satisfy the Taube-
rian conditions

(3.27)  |vo(®)] >0 dif |t <2, and  |P'(t)] >0 if

Let us also suppose that

(3.28) DUYi(0) =0, O0<a<N,—1, i=1_...4d
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Let ¥ = by and i(t) = ' (277t) ift € R, j € Nand i = 1,...,d. Further let {p(x) =
Up, (@) - - (za) whenever k= (ky, ... kq) € NE and x = (z1,...,2q4) € R Then

_ R 1/q
(3.20) 57,8 = {f s (Z 2k'7q||<wgf>V\Lp<Rd>\\q) < oo}
keNg
and
_ . 1/q
(3.30) (Z 2’“’q||<wgf>V|Lp<Rd>||q)
keNg

is an equivalent quasi-norm in S'(R?).
THEOREM 3.12. Let 0 < p< 00,0 < ¢< oo andT € RY. Fiz K € Nd and L+ 1 € N¢ with
(3.31) K; > (1+[r])+ and L;>max(—1,[o, —1]), i=1,...,d

(i) If A € sppb and {apm(7) }yent ez are [K, L]-atoms centred at Qpm, then the sum
veNd meZd

converges in S'(R?), its limit f belongs to the space Sy B and

(3.33) 11554 BII < cl|Al bl
where the constant ¢ is universal for all admissible X and ap.

(ii) For every f € S} B there is a X € sy,b and [K, L]-atoms centred at Qpm (denoted again
by {avm () }pend meza) such that the sum (3.32) converges in S'(R%) to f and

(3.34) [[Alspdll < el fISyBll-
The constant c is again universal for every f € S;qB.
THEOREM 3.13. Let 0 < p < 00, 0 < ¢ < 00 and T € R? be such that
> 0p.
(i) Let
A={N:BeN} with N ={\N_ecC:veN mez}
and let 0 > ¢, where ¢ is the number from (3.14). If

sup 2971 A%|sT bl| < oo
BeENG

then the series
(3.35) YD D> MnlBaem(z)
BeNd veNd mezd

converges in S'(R?), its limit f belongs to Sr B and
(3.36) 1155, FI| < ¢ sup 2971[|A7]s,40]].

BeNG
(Bqu)wm are now (B-quarks defined by (3.16).
(ii) Every f € Sy B can be represented by (3.24) with convergence in S'(R%) and

(3.37) sup 299N 7, f1] < el £S5}, F -
BENE 7
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