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Preface

In this paper we deal with function spaces of dominating mixed smoothness properties. First
spaces of this type were defined by S. M. Nikol’skij in [N1] and [N2]. He introduced the
spaces of Sobolev type

SrpW (R2) =
{

f |f ∈ Lp(R
2), ||f |SrpW (R2)|| = ||f |Lp|| +
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where 1 < p < ∞, ri = 0, 1, 2, . . . ; (i = 1, 2). The mixed derivative ∂r1+r2f

∂x
r1
1
∂x

r2
2

plays the

dominant part here and gave the name to this class of spaces. The detailed study of spaces
of such type was performed by many authors, for example T. I. Amanov, O. V. Besov,
K. K. Golovkin, P. I. Lizorkin, S. M. Nikol’skij, M. K. Potapov and H.–J. Schmeisser. We
refer to [Am] for a systematic treatment of this topic. As in the theory of classical Sobolev
spaces an alternative definition in terms of Fourier transform may be given (see (1.6) and
(1.7)). This definition is based on a decomposition

f =
∑

k∈Nd
0

(ϕk1 ⊗ · · · ⊗ ϕkd
f̂)∨, convergence in S ′(Rd),

where {ϕk}k∈N0
is a decomposition of unity on R known from the theory of classical Besov

spaces and ϕk = ϕk1 ⊗ · · · ⊗ ϕkd
, k = (k1, . . . , kd) is a tensor product.

We refer mainly to [SchT], as far as the Fourier-analytic approach to these spaces is con-
sidered. In Chapter 2 of this book the classical theory of spaces with dominating mixed
smoothness properties is developed. Several types of equivalent quasinorms, embedding and
trace theorems and characterisation of these spaces by differences are proven there. One
studies also basic properties of crucial operators on these spaces, namely of lifting and max-
imal operators and Fourier multipliers. We recall some facts from this book, which shall be
useful later on, in Chapter 1. As we don’t restrict the dimension of the underlying Euclidean
space to d = 2, we state these results formulated for general dimension d ≥ 2. As mentioned
in [SchT] this generalisation is obvious.

The second Chapter is devoted to local means, atomic and subatomic decompositions of
spaces with dominating mixed derivative. We prove our results only for spaces of Triebel-
Lizorkin type. The counterparts of our results for Besov-type spaces are formulated in
Chapter 3. Their proofs are omitted as they are very similar to the proofs presented here.
First of all, we characterise this class of spaces by so-called local means. See Theorem 2.4 for
details. This fundamental characterisation serve us as a basis for atomic (and subatomic)
decompositions.

By atomic decomposition of a function f one usually means a decomposition of type

f(x) =
∑

ν

∑

m

λν maν m(x), convergence in S ′(Rd),

where aν m are some simple building blocks, called atoms, and λν m are complex numbers.
A function f then belongs to some function space if and only if the sequence of coefficients
{λν m}ν m belongs to some sequence space. For the exact formulation see Theorem 2.11. Let
us mention that the atoms are specified only implicitly - a function a is an atom if and only
if it satisfies some properties (see Definition 2.9).
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By a subatomic decomposition we mean a decomposition of a type

f(x) =
∑

β

∑

ν

∑

m

λβν m(βqu)ν m(x), convergence in S ′(Rd),

where (βqu)ν m(x) are so-called quarks and λβν m are complex numbers. A quark is a special
type of atom defined explicitly by (2.85). Hence the basic building blocks, quarks, are much
more specific in this kind of decomposition. The price one has to pay for that is a more
complicated connection between f and {λβν m}. It is described in detail in Theorem 2.13.
In this sence each of these decompositions has its advantages and disadvantages. But both
of them have something in common : they build a connection between function spaces and
sequence spaces. As the sequence spaces are simpler to deal with, it turns out that this
connection is very useful in many situations (embeddings, traces, entropy numbers, . . . ). On
this place we have to mention another important way how to switch from function spaces
to sequence spaces — namely the so-called ϕ-transform of M. Frazier and B. Jawerth. We
refer to [Ho] as this topic is considered.

The classical theory of atomic decompositions of Besov and Triebel-Lizorkin spaces was
developed mainly in the works M. Frazier and B. Jawerth ([FrJ1], [FrJ2]) and H. Triebel
([Tr1], [Tr2]). The subatomic decomposition of these spaces is due to H. Triebel ([Tr3],
[T03]). We follow their ideas and prove similar decomposition theorems for spaces with
dominating mixed derivative. This is done in Chapter 2 and is the focus of this work.

In Chapter 3 we give some remarks and comments to Chapter 2. Namely, we present an
improved version of Theorem 2.1 based on [Rych], we give an alternative proof of the
existence of optimal atomic decomposition using some ideas from [HN] and we formulate
our results also for spaces of Besov type.

I would like to thank to Prof. Schmeisser and Prof. Sickel for supervising my research and
for many valuable discussions.



CHAPTER 1

Introduction

1. Notation

First of all, we shall introduce some basic notation. The dimension of the underlying Eu-
clidean space will be denoted by d. d-dimensional indices will be denoted by k, l,m, . . . and
d-dimensional variables by x, y, z, . . . . Their components are numbered from 1 to d. Hence
we write k = (k1, . . . , kd). We use a standard vector notation in this connection, namely

k + r = (k1 + r1, . . . , kd + rd) k, r ∈ R
d,

k · r =
d

∑

i=1

kiri, k, r ∈ R
d,

λk = (λk1, . . . , λkd), λ ∈ R, k ∈ R
d,

xα = xα1

1 · . . . · xαd

d , x, α ∈ R
d,

α + λ = (α1 + λ, . . . , αd + λ), λ ∈ R, α ∈ R
d,

λα = (λα1 , . . . , λαd), λ ∈ R, α ∈ R
d,

αλ = (αλ1 , . . . , α
λ
d), λ ∈ R, α ∈ R

d.

We write x > y for x, y ∈ Rd if and only if xi > yi for all i = 1, . . . , d. Similarly we define
x < y, x ≤ y and x ≥ y. In the same sense we define x > λ for x ∈ Rd, λ ∈ R.

We denote the d−dimensional Fourier transform by F or ∧ and its inverse by F−1 or ∨.
Sometimes we need also the one-dimensional Fourier transform. This will be denoted by F1

or ∧1 and its inverse by F−1
1 or ∨1 .

2. Prerequisites

Definition 1.1. Let Φ(R) be the collection of all systems {ϕj(t)}
∞
j=0 ⊂ S(R) such that

(1.1)

{

suppϕ0 ⊂ {t ∈ R : |t| ≤ 2}

suppϕj ⊂ {t ∈ R : 2j−1 ≤ |t| ≤ 2j+1} if j = 1, 2, . . . ;

for every α ∈ N0 there exists a positive constant cα such that

(1.2) 2jα|Dαϕj(t)| ≤ cα for all j = 0, 1, 2, . . . and all t ∈ R,

and

(1.3)
∞

∑

j=0

ϕj(t) = 1 for every t ∈ R.

For k = (k1, . . . , kd) ∈ Nd
0 and x = (x1, . . . , xd) ∈ Rd we define ϕk(x) = ϕk1(x1) · . . . ·ϕkd

(xd).

Using this kind of notation, we can give a definition of spaces lq(Lp), Lp(lq), S
r
p,qB(Rd) and

Srp,qF (Rd).

4
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Definition 1.2. Let 0 < p ≤ ∞ and 0 < q ≤ ∞. Having a sequence of complex-valued
functions {fk}k∈Nd

0
on R

d we put

(1.4) ||fk|lq(Lp)|| =
(

∑

k∈Nd
0

||fk|Lp||
q
)1/q

and

(1.5) ||fk|Lp(lq)|| =

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

|fk(x)|
q

)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

,

where the Lp norm is taken with respect to x ∈ Rd. When q = ∞, the usual change is
necessary.

Definition 1.3. Let r = (r1, . . . , rd) ∈ R
d, 0 < q ≤ ∞ and {ϕj}

∞
j=0 ∈ Φ(R).

(i) Let 0 < p ≤ ∞. Then Srp,qB(Rd) is the collection of all f ∈ S ′(Rd) such that

(1.6) ||f |Srp,qB(Rd)||ϕ =
(

∑

k∈Nd
0

2qk·r||(ϕkf̂)∨|Lp||
q
)1/q

= ||2k·r(ϕkf̂)∨|lq(Lp)||

is finite.

(ii) Let 0 < p <∞. Then Srp,qF (Rd) is the collection of all f ∈ S ′(Rd) such that

(1.7) ||f |Srp,qF (Rd)||ϕ =
∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

|2k·r(ϕkf̂)∨(·)|q
)1/q

|Lp(R
d)

∣

∣

∣

∣

∣

∣
= ||2k·r(ϕkf̂)∨|Lp(lq)||

is finite.

Remark 1.4. All function spaces considered in this paper are defined on Rd. Hence we
write Srp,qB and Srp,qF instead of Srp,qB(Rd) and Srp,qF (Rd).

Remark 1.5. According to (1.3), we have

∑

k∈Nd
0

ϕk(x) =
(

∞
∑

k1=0

ϕk1(x1)
)

· . . . ·
(

∞
∑

kd=0

ϕkd
(xd)

)

= 1 for all x = (x1, · · · , xd) ∈ R
d.

In this sense, {ϕk}k∈Nd
0

is also a decomposition of unity, in this case on Rd.

Let us recall some very well known notation, for details see [SchT].

Let Ω = {Ωk}k∈Nd
0

be a sequence of compact subset of Rd. Then we denote by lΩq (Lp), resp.

LΩ
p (lq) a set of all sequences f = {fk}k∈Nd

0
for which

fk ∈ S ′(Rd) and supp f̂k ⊂ Ωk for all k ∈ N
d
0(1.8)

||fk|lq(Lp)|| <∞, resp. ||fk|Lp(lq)|| <∞.(1.9)

Next, we recall some known facts from the theory of these spaces. Their proves may be
found in [SchT] for d = 2.

Theorem 1.6. (Nikol’skij inequality) Let 0 < p ≤ u ≤ ∞ and α = (α1, . . . , αd) ∈ Nd
0. Let

b = (b1, . . . , bd) > 0 and Qb = [−b1, b1] × · · · × [−bd, bd] ⊂ Rd. Then there exists a positive

constant c, which is independent of b, such that

||Dαf |Lu|| ≤ c b
α1+ 1

p
− 1

u

1 · . . . · b
αd+ 1

p
− 1

u

d ||f |Lp|| = c bα+ 1

p
− 1

u ||f |Lp||
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holds for every f ∈ S ′(Rd) ∩ Lp(R
d) with supp f̂ ⊂ Qb.

Theorem 1.7. Let {ϕj}
∞
j=0, {ψj}

∞
j=0 ∈ Φ(R). Let r = (r1, . . . , rd) ∈ R

d and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. Then ||f |Srp,qB||ϕ and ||f |Srp,qB||ψ are equivalent quasi-norms. Further-

more, Srp,qB is a quasi-Banach space (Banach space if min(p, q) ≥ 1) and

S ⊂ Srp,qB ⊂ S ′.

(ii) Let 0 < p <∞. Then ||f |Srp,qF ||ϕ and ||f |Srp,qF ||ψ are equivalent quasi-norms. Further-

more, Srp,qF is a quasi-Banach space (Banach space if min(p, q) ≥ 1) and

S ⊂ Srp,qF ⊂ S ′.

For the proof in the case d = 2, see [SchT, pages 87, 93]. So, we may write ||f |Srp,qB|| and

||f |Srp,qF || without any index ϕ or ψ meaning one of these equivalent quasi-norms.

As in the case of classical Besov and Triebel-Lizorkin spaces, we can define a lifting operator.

Definition 1.8. Let ρ = (ρ1, . . . , ρd) ∈ R
d. Then we define the so-called lifting operator Iρ

by

(1.10) Iρf = F−1(1 + x2
1)
ρ1/2 · . . . · (1 + x2

d)
ρd/2Ff = F−1(1 + x2)ρ/2Ff, f ∈ S ′(Rd).

Theorem 1.9. Let , 0 < q ≤ ∞, ρ, r ∈ Rd.

(i) Let 0 < p ≤ ∞. Then Iρ maps Srp,qB isomorphically onto Sr−ρp,q B and ||Iρf |S
r−ρ
p,q B|| is an

equivalent quasi-norm in Srp,qB.

(ii) Let 0 < p <∞. Then Iρ maps Srp,qF isomorphically onto Sr−ρp,q F and ||Iρf |S
r−ρ
p,q F || is an

equivalent quasi-norm in Srp,qF .

The proof may be again found in [SchT, page 98].

Next we collect some useful maximal theorems which play a crucial role in the further theory.

For every function f(x) ∈ Lloc1 (Rd) we define the classical Hardy-Littlewood maximal oper-
ator

(1.11) (Mf)(x) = sup
Q

1

|Q|

∫

Q

|f(y)|dy, x ∈ R
d,

where the supremum is taken over all cubes Q cantered at x with sides parallel with coor-
dinate axes. The famous Hardy-Littlewood inequality tells that for every p with 1 < p ≤ ∞
there is a c such that

(1.12) ||Mf |Lp(R
d)|| ≤ c ||f |Lp(R

d)||, f ∈ Lp(R
d).

The following theorem is a vector-valued generalisation of (1.12) and is due to C. Fefferman
and E. M. Stein [FS].

Theorem 1.10. Let 1 < p <∞ and 1 < q ≤ ∞. There exists a constant c such that

(1.13) ||Mfk|Lp(lq)|| ≤ c ||fk|Lp(lq)||

holds for all sequences {fk}k∈Nd
0

of locally Lebesgue-integrable functions on R
d.

Next we define one-dimensional version of (1.11).

(1.14) (M1f)(x) = sup
s>0

1

2s

∫ x1+s

x1−s

|f(t, x2, . . . , xd)|dt
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and in a similar way for other variables. We denote the composition of these operators by
M = Md ◦ · · · ◦M1. The following maximal theorem is due to R. J. Bagby [Ba] (it is a
special case of much more general theorem given there).

Theorem 1.11. Let 1 < p <∞ and 1 < q ≤ ∞. There exists a constant c such that

(1.15) ||Mifk|Lp(lq)|| ≤ c ||fk|Lp(lq)||, i = 1, . . . , d

holds for all sequences {fk}k∈Nd
0
⊂ Lp(lq) of functions on Rd.

Iteration of this Theorem shows that the estimate (1.15) holds also for the operator M .

Theorem 1.12. Let Ω = {Ωk}k∈Nd
0

be the sequence of compact subset of Rd with following

properties

Ωk = {x ∈ R
d : |x1| ≤ a1,k1, . . . , |xd| ≤ ad,kd

} with a1,k1, . . . , ad,kd
> 0.

Let 0 < p <∞, 0 < q ≤ ∞ and 0 < r1, . . . , rd < min(p, q). Then there is a positive constant

c such that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
y∈Rd

|fk(· − y)|

(1 + |a1,k1y1|1/r1) · . . . · (1 + |ad,kd
yd|1/rd)

|Lp(lq)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ c||fk|Lp(lq)||

holds for all systems {fk} ∈ LΩ
p (lq).

For 1 < p <∞ and r ∈ Rd we denote

SrpH = Srp,2F = {f |f ∈ S ′, ||(1 + x2)r/2Ff |L2|| <∞}.

For more details, see [SchT, Theorem 2.3.1].

Theorem 1.13. Let 0 < p < ∞, 0 < q ≤ ∞ and r = (r1, . . . , rd) >
1

min(p,q)
+ 1

2
. Let

Ω = {Ωk}k∈Nd
0
, a1,k1, . . . , ad,kd

> 0 be the same sequences as above. Then there is a positive

constant c such that

||(%kf̂k)
∨|Lp(lq)|| ≤ c

(

sup
k∈Nd

0

||%k(a1,k1 ·, . . . , ad,kd
·)|Sr2H||

)

· ||fk|Lp(lq)||

holds for all systems {fk} ∈ LΩ
p (lq) and all systems {%k} ⊂ Sr2H.

Definition 1.14. Let {Ωj}
∞
j=0 be a sequence of compact subset of R such that

Ω0 ⊂ [−2, 2], Ωj ⊂ {t ∈ R : 2j−1 ≤ |t| ≤ 2j+1}; j ∈ N

Let {ψk}k∈Nd
0
⊂ S(Rd) with

suppψk ⊂ Ωk1 × . . .× Ωkd
; k ∈ N

d
0.

If f ∈ S ′(Rd), a = (a1, . . . , ad) > 0 then we put

(1.16) (ψ∗
k
f)a(x) = sup

y∈Rd

|(ψkf̂)∨(x− y)|

(1 + |2k1y1|a1) · . . . · (1 + |2kdyd|ad)
, x ∈ R

d, k ∈ N
d
0.

As usual for any κ ∈ R we put κ+ = max(κ, 0) and [κ] stands for the largest integer smaller
then or equal to κ.
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Theorem 1.15. Let {Ωj}
∞
j=0 and {ψk}k∈Nd

0
be as in the above definition. For every L =

(L1, . . . , Ld) ∈ Nd
0 let us put

Cψ,L = sup
k∈Nd

0

sup
x∈Rd

∑

0≤α≤L

(1 + x2
1)
α1/2 · . . . · (1 + x2

d)
αd/2|Dαψk(x)|.

(i) Let r ∈ Rd, 0 < p <∞, 0 < q ≤ ∞. If

a >
1

p
, L >

[

1

min(1, p)
−

1

2

]

and Cψ,L is finite, then there is a positive constant c such that

||2r·k(ψ∗
k
f)a|lq(Lp)|| ≤ c Cψ,L||f |S

r
p,qB||, f ∈ Srp,qB.

(ii) Let r ∈ Rd, 0 < p <∞, 0 < q ≤ ∞. If

a >
1

min(p, q)
, L >

[

1

min(p, q)
+

1

2

]

and Cψ,L is finite, then there is a positive constant c such that

||2r·k(ψ∗
k
f)a|Lp(lq)|| ≤ c Cψ,L||f |S

r
p,qF ||, f ∈ Srp,qF.

Furthermore, let

(1.17) σpq =
( 1

min(p, q)
− 1

)

+
and σp =

(1

p
− 1

)

+

for every 0 < p <∞ and 0 < q ≤ ∞.



CHAPTER 2

Local means, Atomic and Subatomic decompositions

1. Local means

Theorem 2.1. Let 0 < p < ∞, 0 < q ≤ ∞, r = (r1, . . . , rd) ∈ R
d. Let N = (N1, . . . , Nd) ∈

Nd
0 be d even numbers with r < N .

Let ψ0 and ψ1, . . . , ψd be d+1 complex-valued functions from S(R), which satisfy the Taube-

rian conditions

(2.1) |ψ0(x)| > 0 if |x| ≤ 2, and |ψi(x)| > 0 if
1

2
≤ |x| ≤ 2, i = 1, . . . , d.

Let us also suppose that

(2.2) Dαψi(0) = 0, 0 ≤ α ≤ Ni − 1, i = 1, . . . , d.

Let ψi0 = ψ0 and ψij(t) = ψi(2−jt) if t ∈ R, j ∈ N and i = 1, . . . , d. Further let ψk(x) =

ψ1
k1

(x1) · . . . · ψ
d
kd

(xd) whenever k = (k1, . . . , kd) ∈ Nd
0 and x = (x1, . . . , xd) ∈ Rd. Then

(2.3)
∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

|2k·r(ψkf̂)∨(·)|q
)1/q

|Lp(R
d)

∣

∣

∣

∣

∣

∣

is an equivalent quasi-norm in Srp,qF (Rd).

First of all we derive some properties of the functions involved in this theorem.

Lemma 2.2. Let h,H ∈ S(R) be two functions with

supp h ⊂ {y ∈ R : |y| ≤ 2}, suppH ⊂ {y ∈ R :
1

4
≤ |y| ≤ 4},

h(x) = 1 if |x| ≤ 1, H(x) = 1 if
1

2
≤ |x| ≤ 2.

Further let a, b ∈ Rd. Then

sup
K∈N0

∫

R

∣

∣

∣

∣

∣

(

ψi(·)h(2−K ·)

| · |Ni

)∨1

(t)

∣

∣

∣

∣

∣

(1 + |t|)aidt <∞, i = 1, . . . , d,(2.4)

sup
m∈N

2−mbi
∫

R

|[ψi(2m·)H(·)]∨1(t)|(1 + |t|)aidt <∞, i = 1, . . . , d,(2.5)

sup
m∈N

2−mbi
∫

R

|[ψ0(2
m·)H(·)]∨1(t)|(1 + |t|)aidt <∞, i = 1, . . . , d.(2.6)

Proof. Step 1. We show that

(2.7) sup
m∈N

2mγ
∫

R

|(ψ(ξ)Ψ(2−mξ))∨1(t)|(1 + |t|)µdt <∞

for all real numbers γ, µ ∈ R and for all functions ψ,Ψ ∈ S(R) with supp Ψ ⊂ {t ∈ R :
1/4 ≤ |t| ≤ 4}.

9
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Using the Hölder inequality and elementary properties of Fourier transform, we get for
ν > µ+ 1

||(ψ(ξ)Ψ(2−mξ))∨1(t)(1 + |t|)µ|L1|| ≤ c ||(ψ(ξ)Ψ(2−mξ))∨1(t)(1 + |t|)ν|L∞||

≤ c max
0≤λ≤ν+1

||[Dλ(ψ(ξ)Ψ(2−mξ))]∨1(t)|L∞||(2.8)

≤ c max
0≤λ≤ν+1

||Dλ(ψ(ξ)Ψ(2−mξ))(t)|L1||.

Next we use the support property of Ψ and the decay of ψ and get

|Dλ[ψ(ξ)Ψ(2−mξ)](t)| ≤ c max
0≤η≤λ

|Dηψ(t)|2−m(λ−η)|(Dλ−ηΨ)(2−mt)|(2.9)

≤ c (1 + |t|)−γχ{t∈R:1/4≤2−m|t|≤4}(t).

Putting (2.9) into (2.8), we obtain (2.7).

Step 2. To prove (2.5) put the identity
∫

R

|(ψi(2m·)H(·))∨1(t)|(1 + |t|)aidt =

∫

R

|(ψi(·)H(2−m·))∨1(t)|(1 + |2mt|)aidt

into (2.7). In the same way one can prove (2.6).

Step 3. To prove (2.4) use the decomposition h(2−K ·) = h(·) +
∑K

µ=1[h(2
−µ·) − h(2−µ+1·)],

(2.7) and the fact that ψi(·)

|·|Ni
∈ S(R). �

Proof. We follow the proof of Theorem 2.4.1 in [Tr1].

Part 1.

Let f ∈ Srp,qF . In the first part we prove that the quasi-norm (2.3) can be estimated

from above by c||f |Srp,qF ||. Let {ϕj}
∞
j=0 ∈ Φ(R). Let ϕj(x) = 0 if −j ∈ N. Let us write

ϕl(x) = ϕl1(x1) · . . . · ϕld(xd) for l ∈ Zd, x ∈ Rd. We shall deal with the decomposition

2k·r(ψkf̂)∨(x) =
∑

l∈Zd

2k·r(ψkϕk+lf̂)∨(x) =(2.10)

(

K
∑

l1=−∞

+

∞
∑

l1=K+1

)

× . . .×
(

K
∑

ld=−∞

+

∞
∑

ld=K+1

)(

2k·r(ψkϕk+lf̂)∨(x)
)

.

The decomposition is given in the formal way. To obtain an exact expression, containing 2d

terms, one has to proceed through the formal multiplication of sums.

The natural number K will be chosen later on.

In the first step we estimate the term with −∞ < l ≤ K, in the second step we deal with the
term with K + 1 ≤ l < ∞. The third step is devoted to the other terms and in the fourth
step we discuss the convergence of (2.10). In the first three steps we take it for granted that

this decomposition converges pointwise and in S ′(Rd) to the same limit and that (ψkf̂)∨ is
a regular distribution.

Step 1. −∞ < l ≤ K.

We fix a vector k ∈ Nd
0 and suppose that k ≥ 1. The other cases are discussed later.

Let ϕ̃m(x) = |2−m1x1|
N1 · . . . · |2−mdxd|

Ndϕm(x), m ∈ Z
d. Then we obtain

(2.11) 2k·r|(ψkϕk+lf̂)∨(x)| = 2l·(N−r)

∣

∣

∣

∣

(

ψk(z)

|2−k1z1|N1 · . . . · |2−kdzd|Nd
2r·(k+l)ϕ̃k+lf̂

)∨

(x)

∣

∣

∣

∣
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Using (1.1) we have ϕ̃k+l(z) = ϕ̃k+l(z)h(2
−k1−Kz1) · . . . · h(2

−kd−Kzd) for every l ≤ K, every

k ∈ N
d and every z ∈ R

d, where h is the function from Lemma 2.2.

We have also ψk(x) = ψ1
k1

(x1) · . . . · ψ
d
kd

(xd) = ψ1(2−k1x1) · . . . · ψ
d(2−kdxd). Then we may

estimate the absolute value on the right-hand side of (2.11) from above by

(2.12) c 2r·(k+l)
∫

Rd

∣

∣

∣

∣

∣

d
∏

i=1

(

ψi(2−ki·)

|2−ki · |Ni
h(2−ki−K ·)

)∨1

(yi)

∣

∣

∣

∣

∣

|(ϕ̃k+lf̂)∨(x− y)|dy

Next we apply the formula (λ(α−1·))∨1(t) = α(λ∨1)(αt) to every term in the product in this
integral and substitute vi = 2kiyi. Then we use a maximal function from (1.16) and obtain
a formula
(2.13)

|(ϕ̃k+lf̂)∨(x1 − 2−k1v1, . . . , xd − 2−kdvd)| ≤ (ϕ̃∗
k+l
f)a(x)

(

1 + |2l1v1|
a1

)

· . . . ·
(

1 + |2ldvd|
ad

)

,

where a = (a1, . . . , ad) ∈ R
d is greater than 1

min(p,q)
.

The indicated operations together with the formula (2.13) allows to estimate the right-hand
side of (2.11) by

2l·(N−r)2r·(k+l)(ϕ̃∗
k+l
f)a(x)×

×

∫

Rd

∣

∣

∣

∣

d
∏

i=1

(

ψi(·)

| · |Ni
h(2−K ·)

)∨1

(vi)

∣

∣

∣

∣

(

1 + |2l1v1|
a1

)

· . . . ·
(

1 + |2ldvd|
ad

)

dv.

We use (2.4) to estimate the last integral and finally we arrive at

(2.14)

∣

∣

∣

∣

∑

−∞<l≤K

2k·r(ψkϕk+lf̂)∨(x)

∣

∣

∣

∣

≤ c 2K·a
∑

−∞<l≤K

2l·(N−r)2r·(k+l)(ϕ̃∗
k+l
f)a(x).

We apply the lq-quasi-norm with respect to k and the Lp-quasi-norm with respect to x. We
obtain

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

k∈Nd

∣

∣

∣

∣

∑

−∞<l≤K

2k·r(ψkϕk+lf̂)∨(·)

∣

∣

∣

∣

q)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

≤(2.15)

≤ c 2K·a+K·(N−r)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

m∈Nd
0

2qm·r(ϕ̃∗
mf)qa(·)

)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

There are still two problems left. We have to incorporate terms with (at least) one ki equal

to zero and we have to replace ϕ̃∗
mf by (ϕmf̂)∨.

As for the second problem, we may use theorem 1.12 to replace ϕ̃∗
mf by (ϕ̃mf̂)∨. To use the

multiplier theorem 1.13 we write σ0 = h, σj(t) = H(2−jt), j ∈ N, t ∈ R and define

%m(x) = |2−m1x1|
N1 . . . |2−mdxd|

Ndσm1
(x1) . . . σmd

(xd).

We have to be sure that these functions belongs to the space S
(s,...,s)
2 H(Rd), s > σpq+1/2 and

that the norms ||%m(2m1x1, . . . , 2
mdxd)|S

(s,...,s)
2 H(Rd)|| are uniformly bounded for all m ∈ Nd

0.
But this fact is trivial as all Ni are even non-negative numbers.

As for the first problem, one can modify the approach given above for k ≥ 1. One has
to replace our definition of ϕ̃ by ϕ̃(m1,...,md)(z) = |2−m1z1|

N1ϕ(m1,...,md)(z) (in the case when
k2 = · · · = kd = 0, k1 > 0 and similarly in other cases).
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Altogether, we obtain

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

∣

∣

∣

∣

∑

−∞<l≤K

2k·r(ψkϕk+lf̂)∨(·)

∣

∣

∣

∣

q)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

≤ c 2K·a+K·(N−r)||f |Srp,qF ||

with c independent of K and r.

Step 2. l ≥ K + 1. We proceed in a similar way as in the Step 1. Let ϕ′
m(x) = |2−m1x1|

r0
1 ·

. . . · |2−mdxd|
r0
dϕm(x), m ∈ Nd, x ∈ Rd. The numbers r0

i are to be specified later (in general,
they have to be sufficiently small). Let us again fix a k ∈ Nd

0. In this step we don’t have to
distinguish between ki = 0 and ki ≥ 1. But we have to take care about the dependence of
constants on K and r0 = (r0

1, . . . , r
0
d) ∈ Rd as well.

So we have a counterpart of (2.11):

(2.16) 2k·r|(ψkϕk+lf̂)∨(x)| = 2l·(r
0−r)

∣

∣

∣

( ψk(z)

|2−k1z1|r
0
1 · . . . · |2−kdzd|r

0
d

2r·(k+l)ϕ′
k+l

(z)f̂
)∨

(x)
∣

∣

∣
.

An as in the Step 1 we use a cut-off function, in this case the function H from Lemma 2.2.
Namely, the last expression doesn’t change if we replace ψk(z) with ψk(z)H(2−k1−l1z1) · . . . ·
H(2−kd−ldzd).

Instead of (2.12) we obtain that the left-hand side of (2.16) can be estimated from above by

(2.17) c2l·(r
0−r)2r·(k+l)

∫

Rd

∣

∣

∣

d
∏

i=1

( ψiki
(·)

|2−ki · |r
0
i

H(2−ki−li·)
)∨1

(yi)
∣

∣

∣
|(ϕ′

k+l
f̂)∨(x− y)|dy.

The c is now independent of K and r0. Let us now suppose that k ≥ 1. As we are now
working with expression vanishing identically around 0 and the conditions (2.5) and (2.6)
are the same for ψ0 and ψi, this only simplifies the notation. Then we may substitute
ψiki

(·) = ψi(2−ki·). We apply again the formula (λ(α−1·))∨1(t) = α(λ∨1)(αt) to every term in

the product, this time with the coefficient α = 2ki+li . Then we substitute vi = 2ki+liyi and
use the maximal function (1.16) to get an analogy of (2.13).

When we proceed through this indicated calculation we obtain in the same way as in the
Step 1, that the left-hand side of (2.16) can be estimated from above by

(2.18) c 2l·(r
0−r)+r·(k+l)(ϕ′∗

k+lf)a(x)

d
∏

i=1

∫

R

∣

∣

∣

∣

(

ψi(2li ·)

|2li · |r
0
i

H(·)

)∨1

(vi)

∣

∣

∣

∣

(1 + |vi|
ai)dvi.

When some ki = 0 just substitute ψi with ψ0. We may trivially interchange (1 + |vi|
ai) for

(1 + |vi|)
ai, but we have to show that each of this n integrals can be estimated from above

by

(2.19) c2−lir
0
i

∫

R

|[ψi(2li·)H(·)]∨1(vi)|(1 + |vi|)
aidvi.

To see that, let χli(t) = ψi(2lit)H(t) and introduce ρ ∈ S(R) with

ρ(t) = 1 for {t ∈ R : 1/4 < |t| < 4} and supp ρ ⊂ {t ∈ R : 1/8 < |t| < 8}.
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Then we may rewrite and estimate the i−th integral in (2.18) from above by

2−lir
0
i

∫

R

∣

∣

∣

∣

(

χli(t)ρ(t)

|t|r
0
i

)∨1

(vi)

∣

∣

∣

∣

(1 + |vi|)
aidvi ≤

c2−lir
0
i

∫

R

∫

R

∣

∣

∣

∣

χ∨1

li
(zi)

(

ρ(t)

|t|r
0
i

)∨1

(vi − zi)

∣

∣

∣

∣

dzi(1 + |vi|)
aidvi

We use a Fubini theorem for non-negative functions, make a shift in the inner integral
and apply the formula (1 + |vi + zi|)

ai ≤ (1 + |vi|)
ai(1 + |zi|)

ai. And using the fact, that
ρ(t)|t|−r

0
i ∈ S(R), we obtain that the integrals in (2.18) can be estimated from above by

(2.19), hence by a constant which depends on r0
i , see (2.5) and (2.6).

Altogether, we arrive at

(2.20)
∑

l≥K+1

|2k·r(ψkϕk+lf̂)∨(x)| ≤ c
∑

l≥K+1

2l·(r
0−r)+r·(k+l)(ϕ′∗

k+lf)a(x).

Assume that r0 < r and apply the lq-quasi-norm and after that the Lp-quasi-norm. We get
∣

∣

∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

∣

∣

∣

∣

∑

l≥K+1

2k·r(ψkϕk+lf̂)∨(x)

∣

∣

∣

∣

q)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

≤ c 2K·(r0−r)

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

m∈Nd

2qm·r(ϕ′∗
mf)qa(x)

)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

As the terms with mi = 0 are now not present on the right-hand side, we can use Theo-
rem 1.15 and estimate the last expression by c 2K·(r0−r)||f |Srp,qF ||. Let us stress that c is

independent on K and depends on r0 < r in the Step 2.

Step 3. In this step we shall discuss the remaining 2d− 2 terms of (2.10). We shall estimate
only one of them, the others being very similar. Let us choose a term with l1 ≤ K and
li ≥ K + 1 for i = 2, . . . , d. Let us define s = (s1, . . . , sd) ∈ Rd as a combination of r0 and
N :

(2.21) s1 = N1, si = r0
i , i = 2, . . . , d.

Suppose that k1 ≥ 1. Let ϕ#
m(x) = |2−m1x1|

s1 · . . . · |2−mdxd|
sdϕm(x). Then we get in analogy

with (2.11)

(2.22) 2k·r|(ψkϕk+lf̂)∨(x)| = 2l·(s−r)
∣

∣

∣

∣

(

(

d
∏

i=1

ψiki
(zi)

|2−kizi|si

)

2r·(k+l)ϕ#

k+l
(z)f̂(z)

)∨

(x)

∣

∣

∣

∣

.

The last expression again doesn’t change if we use the information about support of ϕ#

k+l
and

introduce the cut-off functions h,H . Hence, we may replace ψ1
k1

(z1) with ψ1
k1

(z1)h(2
−k1−Kz1)

and ψiki
(zi) with ψiki

(zi)H(2−ki−lizi) for i = 2, . . . , d.

Using the elementary properties of Fourier transform, we obtain a counterpart of (2.12) and
(2.17)

2k·r|(ψkϕk+lf̂)∨(x)| ≤

c 2l·(s−r)
∫

Rd

∣

∣

∣

∣

(

ψ1(2−k1z1)

|2−k1z1|s1
h(2−k1−Kz1)

)∨1

(y1)

∣

∣

∣

∣

·

∣

∣

∣

∣

d
∏

i=2

(

ψiki
(zi)

|2−kizi|si
H(2−ki−lizi)

)∨1

(yi)

∣

∣

∣

∣

·

· |2r·(k+l)(ϕ#

k+l
f̂)∨(x− y)|dy
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We can now deal with the first term as in the Step 1. and with the other terms as in the
Step 2. Together with the analogy of (2.13)

|(ϕ#

k+l
f̂)∨(x1 − 2−k1v1, x2 − 2−k2−l2v2, . . . )| ≤ (ϕ#∗

k+l
f)a(x)

(

1 + |2l1v1|
a1

)

d
∏

i=2

(1 + |vi|
ai)

we get

2k·r|(ψkϕk+lf̂)∨(x)| ≤ c 2l·(s−r)+r·(k+l)(ϕ#∗

k+l
f)a(x)×

×

∫

R

(

ψ1(·)

| · |s1
h(2−K ·)

)∨1

(v1)(1 + |2l1v1|)
a1dv1

d
∏

i=2

∫

R

(

ψi(·)

| · |si
H(·)

)∨1

(vi)(1 + |vi|)
aidvi.

When ki = 0 for some 2 ≤ i ≤ d, just replace ψi with ψi0.

We estimate these integral as in the Step 1, resp. Step 2, and get finally

2k·r|(ψkϕk+lf̂)∨(x)| ≤ c 2Ka1+l·(s−r)+r·(k+l)(ϕ#∗

k+l
f)a(x),

Applying lq-and Lp-quasi-norm, we get an analogy of (2.15). We now proceed in the same
way as in the end of Step 1 to incorporate the term with k1 = 0 and to replace (ϕ#∗

m f)a
with (ϕmf̂)∨. Hence all the middle 2d − 2 terms in (2.10) can be estimated from above
by c 2K·a2K·(s−r)||f |Srp,qF ||, where s is defined by (2.21). Recall that this definition changes

slightly from one term to another and that c is again independent of K and depends on r0.

Step 4. In the last step of the first part we shall discuss the convergence of (2.10). In the first

three steps we have used that (ψkf̂)∨ is a regular distribution and that the decomposition
(2.10) converges pointwise to this function.

We know that this decomposition converges to (ψkf̂)∨ in S ′. If we prove that this de-
composition forms a fundamental sequence in some Lp, 1 ≤ p < ∞, then we obtain that

(ψkf̂)∨ ∈ Lp is a regular distribution. And when we prove that its also pointwise convergent,

then its pointwise limit must coincide with the Lp-limit, hence with (ψkf̂)∨ and the pointwise

convergence of (2.10) to (ψkf̂)∨ follows.

We shall restrict ourselves to the sum considered in the second step (l ≥ K + 1). The other
cases are completely the same. We start with the pointwise convergence. First recall that
the estimate (2.20) was obtained for each considered l independently. So we may rewrite it
as

(2.23)

∣

∣

∣

∣

∑

L≤l≤M

2k·r(ψkϕk+lf̂)∨(x)

∣

∣

∣

∣

≤ c
∑

L≤l≤M

2l·(r
0−r)+r·(k+l)(ϕ′∗

k+lf)a(x),

for every K + 1 < L < M . Using r0 < r and lq ↪→ l1 if 0 < q < 1 or the Hölder inequality if
1 < q ≤ ∞, we conclude that the right-hand side of (2.23) may be further estimated by

(

∑

L≤l

2ql·r(ϕ′∗
l
f)qa(x)

)1/q

.

According to the Theorem 1.15 and the discussion in the second step, this expression is finite
a.e. and arbitrary small for L large. Hence the decomposition (2.10) has some pointwise
limit.
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Let 0 < p < 1 and put σ = r−σp. Then we have the embedding Srp,qF ↪→ Sσ1,1F , see [SchT].
We use (2.23) and get

||
∑

L≤l≤M

2k·r(ψkϕk+lf̂)∨(x)|L1|| ≤ c 2σp·k||
∑

L≤l≤M

2l·(r
0−σ)+σ·(k+l)(ϕ′∗

k+l
f)a(x)|L1||

≤ c 2σp·k||
∑

L≤l

2l·σ(ϕ′∗
l
f)a(x)|L1||.

We need r0 sufficiently small (r0 < σ) for the last estimate. Because of the embedding men-
tioned above, the last expression is arbitrary small as L increases. Hence the decomposition
(2.10) forms a fundamental sequence in L1 and its limit must coincide with the S ′ limit :

(ψkf̂)∨.

When 1 ≤ p <∞, we get the Lp convergence in a similar way.

Part 2.

We prove that ||f |Srp,qF || may be estimated from above by (2.3). Unfortunately, we have to

use that f ∈ Srp,qF . First of all let χ(t) =
∑K

j=0 ϕj(t), t ∈ R. Hence

(2.24) suppχ ⊂ {t ∈ R : |t| ≤ 2K+1} and χ(t) = 1 if |t| ≤ 2K .

We write again χm(x) = χ(2−m1x1) · . . . · χ(2−mdxd) for m ∈ Nd
0 and x ∈ Rd.

Using (2.1) and the support properties of ϕk, we get for every k ∈ Nd
0

(2.25) |(ϕkf̂)∨(x)| = |(ϕkχkf̂)∨(x)| ≤ c

∫

Rd

∣

∣

∣

∣

(

ϕk
ψk

)∨

(y)(ψkχkf̂)∨(x− y)

∣

∣

∣

∣

dy.

For fixed x ∈ Rd, the Fourier transform of the y-function in the last integral has a support
contained in a cube cQk+K = {y ∈ Rd : |yi| ≤ c2ki+K , i = 1, . . . , d}. Let 0 < s < min(1, p, q).
We use the Nikol’skij inequality and obtain

(2.26) |(ϕkf̂)∨(x)|s ≤ c 2(k+K)·(1−s)

∫

Rd

∣

∣

∣

∣

(

ϕk
ψk

)∨

(y)(ψkχkf̂)∨(x− y)

∣

∣

∣

∣

s

dy

Both functions ϕk, ψk are assumed to have a product structure and the dyadic structure of
ϕj(t) = ϕ(2−jt), j ≥ 1 can be assumed without loss of generality. Hence we may estimate

(2.27)

∣

∣

∣

∣

(

ϕk
ψk

)∨

(y)

∣

∣

∣

∣

s

= 2k·s
d

∏

i=1

∣

∣

∣

∣

(

ϕ

ψi

)

(2kiyi)

∣

∣

∣

∣

s

≤ c 2k·s
d

∏

i=1

(1 + |2kiyi|)
−b, k ≥ 1,

where b > 0 is at our disposal. A similar estimate holds when one or more of the numbers
ki, i = 1, . . . , d is equal to zero. We now split the integration over Rd in (2.26) into

∑

l∈Nd
0

∫

I
l

,

where I0 = [−1, 1] ⊂ R, Iν = {t ∈ R : 2ν−1 ≤ |t| ≤ 2ν}, ν ≥ 1 and Il = Il1 × · · · × Ild .
Then we use (2.27) in each of these integrals and then we replace the integration over Il by
integration over Ql, where Qν = [−2ν , 2ν ] ⊂ R and Ql = Ql1 × · · · ×Qld . We get

|(ϕkf̂)∨(x)|s ≤ c 2(k+K)·(1−s)+k·s
∑

l∈Nd
0

2−b·(k+l)
∫

Q
l

|(ψkχkf̂)∨(x− y)|sdy.

These integrals may be estimated from above by

c 2l1+···+ldM(|(ψkχkf̂)∨|s)(x).

If we use this estimate and suppose that b > 1 we obtain finally

(2.28) |(ϕkf̂)∨(x)|s ≤ c 2Kd(1−s)M(|(ψkχkf̂)∨|s)(x).
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We multiply (2.28) by 2sk·r, apply the lq/s and Lp/s norm and use Theorem 1.11 to obtain
∣

∣

∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

|2k·r(ϕkf̂)∨(·)|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

s

≤ c 2Kd(1−s)
∣

∣

∣

∣

∣

∣

∣

∣

[

∑

k∈Nd
0

(M(|(2k·rψkχkf̂)∨|s)(·))q/s
]s/q

|Lp/s

∣

∣

∣

∣

∣

∣

∣

∣

(2.29)

≤ c 2Kd(1−s)
∣

∣

∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

|(2k·rψkχkf̂)∨(·)|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

s

.

We have used that 1 < p
s
<∞ and 1 < q

s
≤ ∞. Next we insert the decomposition

ψkχk = ψk − ψk(1 − χk)

into (2.29). We see that ||f |Srp,qF ||
s can be estimated from above by the s-th power of (2.3)

and the additional term

(2.30) c 2Kd(1−s)
∣

∣

∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

|(2k·rψk(1 − χk)f̂)∨(·)|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

s

.

We may assume that

ϕ0(2
−µt) =

µ
∑

ν=0

ϕν(t), µ ∈ N, t ∈ R

and obtain

χki
(xi) =

K
∑

ν=0

ϕν(2
−kixi) =

K
∑

ν=−∞

ϕν+ki
(xi).

Hence the expression (2.30) is exactly that one which we estimated in the second and third
Step in Part 1. From the calculation done there, it follows that, if r0 is sufficiently small,
then there is an ε > 0 such that (2.30) may be estimated from above by C 2−Kε||f |Srp,qF ||.
Let us remark that C is now independent of K (but depends of r0) and that the suitable

choice of r0 can be obtained by r0 < −d(1 − s) −
∑d

i=1(ai +Ni − ri).

Recall that the natural number K is still at our disposal. We choose K large enough, so
that C2−Kε < 1/2. Then (2.29) and the splitting mentioned above give the result. �

Remark 2.3. Let us stress that the Tauberian conditions (2.1) were necessary only in the
second part of the proof.

Next we reformulate Theorem 2.1 using the local means.

Theorem 2.4. Let 0 < p < ∞, 0 < q ≤ ∞, r ∈ Rd. Let N ∈ Nd
0 be d even nonnegative

integers with N > r. Further let k0, k
1, . . . , kd be d + 1 complex-valued functions from S(R)

whose supports lie in the set {t ∈ R : |t| < 1}. Let us assume that

(2.31) F1(k0)(0) 6= 0, F1(k
i)(0) 6= 0, i = 1, . . . , d.

Let us denote

ki0(t) = k0(t) and kiν(t) = 2ν
(

dNi

dtNi
ki

)

(2νt), i = 1, . . . , d, ν ∈ N, t ∈ R.

As usually, we denote by km(x) = k1
m1

(x1) · . . . ·k
d
md

(xd) the tensor product of these functions.
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The corresponding local means are defined by

(2.32) km(f)(x) =

∫

Rd

km(y)f(x+ y)dy,

appropriately interpreted for any f ∈ S ′(Rd). Then

(2.33)

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

m∈Nd
0

2qm·r|km(f)(·)|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

is an equivalent quasi-norm in Srp,qF .

Proof. Put ψ0 = F−1
1 k0 and ψi = F−1

1 ( dNi

dtNi
ki). Then the Tauberian condition are

satisfied (maybe after some dilation in the arguments of k0, k
i) and (2.2) is also true. If we

define ψm, m ∈ Rd as in Theorem 2.1, we get

(ψmf̂)∨(x) = c

∫

Rd

(ψm)∨(y)f(x− y)dy = c

∫

Rd

(Fψm)(y)f(x+ y)dy(2.34)

= c

∫

Rd

( d
∏

i=1

(F1ψ
i
mi

)(yi)

)

f(x+ y)dy.

Finally, if mi = 0 we get (F1ψ
i
0)(yi) = (F1ψ0)(yi) = ki0(yi) and if mi ≥ 1 we obtain in a

similar way

(F1ψ
i
mi

)(yi) = (F1(ψ
i(2−mi ·)))(yi) = 2mi(F1ψ

i)(2miyi) = 2mi
( dNi

dtNi
ki

)

(2miyi) = kimi
(yi).

Using this calculation and (2.34) we get

(ψmf̂)∨(x) =

∫

Rd

km(y)f(x+ y)dy

and the theorem follows. �

We shall need some other modifications of Theorem 2.1. The first of them is interesting on
its own, the second will be useful later on.

For m ∈ Nd
0, l ∈ Zd we denote by Qm l the cube with the centre at the point 2−ml =

(2−m1l1, . . . , 2
−mdld) with sides parallel to coordinate axes and of lengths 2−m1 , . . . , 2−md .

Hence

(2.35) Qm l = {x ∈ R
d : |xi − 2−mi li| ≤ 2−mi−1, i = 1, . . . , d}, m ∈ N

d
0, l ∈ Z

d.

If γ > 0 then γQml denotes a cube concentric with Qm l with sides also parallel to coordinate
axes and of lengths γ2−m1 , . . . , γ2−md.

Theorem 2.5. Let r ∈ R
d, 0 < p < ∞, 0 < q ≤ ∞. Let N ∈ N

d
0 > r and km be as in

Theorem 2.4. Then for any γ > 0

(2.36)

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

m∈Nd
0

2qm·r sup
x−y∈γQm ,0

|km(f)(y)|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

is an equivalent quasi-norm in Srp,qF .

Proof. The proof is the combination of the approach described in the proof of Theorem
2.1 and the following Lemma.
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Lemma 2.6. Let m ∈ Nd
0, a, α ∈ Rd

+ and f ∈ S ′(Rd). Let (ϕ∗
mf)a be defined by (1.16) and

let x, y ∈ R
d be two points with |xi − yi| ≤ αi2

−mi. Then

(2.37) (ϕ∗
mf)a(y) ≤ ca α

a(ϕ∗
mf)a(x),

where the ca depends only on a.

The proof of this Lemma involves only the definition (1.16) and some trivial algebraic iden-
tities.

Now we proceed in the same way as in the proof of Theorem 2.1. For x, y ∈ Rd with
|xi − yi| ≤ γ2−ki ≤ γ2−ki−li2K we get in analogy to (2.14)

|2k·r(ψkϕk+lf̂)∨(y)| ≤ c2K·a+l·(N−r)+r·(k+l)(ϕ̃∗
k+l

)a(y)(2.38)

≤c22K·a+l·(N−r)+r·(k+l)(ϕ̃∗
k+l

)a(x),

which gives us the analogy of (2.15) with the supremum involved on the left-hand side and
additional constant 2K·a on the right-hand side.

The modification necessary in the second step is very similar. Namely, we obtain for x, y ∈ Rd

with |xi − yi| ≤ γ2−ki = γ2−ki−li2li in analogy to (2.20)

(2.39) |2k·r(ψkϕk+lf̂)∨(y)| ≤ c 2l·(r
0−r)+r·(k+l)(ϕ′∗

k+lf)a(y) ≤ c 2l·(r
0−r+a)+r·(k+l)(ϕ′∗

k+lf)a(x).

So, we have to choose r0 < r − a. The modification of Step 3. is just the combination of
(2.38) and (2.39). Hence the expression (2.36) may be estimated from above by c||f |Srp,qF ||.
The reverse estimate is trivial, as (2.36) is smaller than (2.33). �

The second modification is rather technical and deals with ’directional’ local means, namely
with local means of the form (d = 2):

∫

R

k1
ν1

(y1)f(x1 + y1, x2)dy1.

To introduce these local means in the general dimension, we define for every A ⊂ {1, . . . , d}

(2.40) km,A(f)(x) =

∫

R|A|

(

∏

i∈A

kimi
(yi)

)

f(x1 + y1χA(1), . . . , xd + ydχA(d))
(

∏

i∈A

dyi
)

.

We simply restrict the integration in (2.32) to those variables yi for which i ∈ A. The others
are left untouched.

Using this notation, we may state our next Lemma.

Lemma 2.7. Let 0 < p <∞, 0 < q ≤ ∞, A ⊂ {1, . . . , d} and γ > 0. Let r ∈ Rd be such that

ri >
1

min(p,q)
for i 6∈ A. Let Ni ∈ N0 and kim be as in Theorem 2.4 for every i ∈ A. Further

let km,A(f) be defined by (2.40). Then

(2.41)

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

m∈Nd
0

mi=0,i6∈A

2qm·r sup
x−y∈γQm,0

|km,A(f)(y)|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

≤ c||f |Srp,qF ||

holds for every f ∈ Srp,qF . The sum is taken over all m = (m1, . . . , md) ∈ Nd
0 with mi = 0

whenever i 6∈ A. The Lp-quasi-norm is then taken with respect to x.
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Proof. For every direction i 6∈ A, we use the decomposition (1.3). This gives the
following equality for all m from the sum in (2.41)

(2.42) km,A(f)(y) =
∑

ν∈N
d
0

νi=mi,i∈A

∫

Rd

(

∏

i∈A

kiνi
(zi)

)(

∏

i6∈A

F1ϕνi
(zi)

)

f(y + z)dz.

Denoting the product of all kiνi
(zi) and ϕνi

(zi) in the last integral by k̃ν(z) and using Hölder
inequality (if q > 1) we get for every ε > 0

(2.43) |km,A(f)(y)|q ≤ c
∑

ν∈Nd
0

νi=mi,i∈A

2qε
P

i6∈A νi|k̃ν(f)(y)|q.

Using this estimate in the left-hand side of (2.41), we get

(2.44)
∑

m∈Nd
0

mi=0,i6∈A

2qm·r sup |km,A(f)(y)|q ≤ c
∑

m∈Nd
0

2q
P

i∈A(miri)+qε
P

i6∈Ami sup |k̃m(f)(y)|q.

The supremum on both sides is taken with respect to the same set as in (2.41). Now we
stand in the same position as in the beginning of the proof of Theorem 2.5 with only two
little changes.

The first is that we may use the decomposition (2.10) only for those directions xi for which

i ∈ A. The local means k̃m(f)(y) are already based on the functions ϕmi
in the remaining

directions. The second is that the supremum is now taken over larger set.

To deal with the second problem, we just use Lemma 2.6 with αi = 2K for i ∈ A and with
αi = 2mi for i 6∈ A (in the Step 1) and with obvious modifications in Steps 2 and 3. This
change will result into the factor 2q

P

i6∈A(miai). As ri >
1

min(p,q)
for i 6∈ A and ε > 0 may be

chosen arbitrary small, we may assume that ri > ai + ε. Hence

(2.45) q
∑

i∈A

(miri) + qε
∑

i6∈A

mi + q
∑

i6∈A

(miai) ≤ qm · r

and the Lemma follows.

We stress only that the convergence of (2.42) is covered by the Step 4. of the proof of
Theorem 2.1. �

2. Atomic decomposition

In this section we shall describe an atomic decomposition for spaces Srp,qF . We follow again
the approach given in [Tr1]. First of all, we give the necessary definitions.

Definition 2.8. Recall that for ν ∈ Nd
0, m ∈ Zd we denote by Qν m the cube with centre at

the point 2−νm = (2−ν1m1, . . . , 2
−νdmd) with sides parallel to coordinate axes and of lengths

2−ν1, . . . , 2−νd, see (2.35).

By χ
(p)
ν m we denote a p-normalised characteristic function of Qν m, it means that χ

(p)
ν m(x) =

2ν·
1

pχQν m
(x). Finally, if 0 < p ≤ ∞, 0 < q ≤ ∞ and

λ = {λν m ∈ C : ν ∈ N
d
0, m ∈ Z

d}

then we define

(2.46) spqb =

{

λ : ||λ|spqb|| =

(

∑

ν∈Nd
0

(

∑

m∈Zd

|λν m|
p
)q/p

)1/q

<∞

}
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and

(2.47) spqf =

{

λ : ||λ|spqf || =

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

ν∈Nd
0

∑

m∈Zd

|λν mχ
(p)
ν m(·)|q

)1/q

|Lp(R
d)

∣

∣

∣

∣

∣

∣

∣

∣

<∞

}

with the usual modification for p and/or q equal to ∞.

In the next definition we introduce the normalised building blocks called atoms.

Definition 2.9. Let r ∈ Rd, 0 < p ≤ ∞, K ∈ Nd
0, L + 1 ∈ Nd

0, and γ > 1. A K-times
differentiable complex-valued function a(x) is called (r, p)KL-atom centred at Qν m if

(2.48) supp a ⊂ γQν m,

(2.49) |Dαa(x)| ≤ 2−ν·(r−
1

p
)+α·ν for 0 ≤ α ≤ K

and

(2.50)

∫

R

xjia(x)dxi = 0 if i = 1, . . . , d; j = 0, . . . , Li and νi ≥ 1.

Remark 2.10. The condition (2.50) is void if νi = 0 or if νi ≥ 1 but Li = −1.

Theorem 2.11. Let 0 < p <∞, 0 < q ≤ ∞ and r ∈ R
d. Fix K ∈ N

d
0 and L+ 1 ∈ N

d
0 with

(2.51) Ki ≥ (1 + [ri])+ and Li ≥ max(−1, [σpq − ri]), i = 1, . . . , d.

(i) If λ ∈ spqf and {aν m(x)}ν∈Nd
0
,m∈Zd are (r, p)K,L-atoms centred at Qν m, then the sum

(2.52)
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x)

converges in S ′(Rd), its limit f belongs to the space Srp,qF and

(2.53) ||f |Srp,qF || ≤ c ||λ|spqf ||,

where the constant c is universal for all admissible λ and aν m.

(ii) For every f ∈ Srp,qF there is a λ ∈ spqf and (r, p)K,L-atoms centred at Qν m (denoted

again by {aν m(x)}ν∈Nd
0
,m∈Zd) such that the sum (2.52) converges in S ′(Rd) to f and

(2.54) ||λ|spqf || ≤ c ||f |Srp,qF ||.

The constant c is again universal for every f ∈ Srp,qF .

Proof. Step 1.

First of all we prove the convergence of (2.52) in S ′(Rd). Let ϕ ∈ S(Rd). We use the Taylor
expansion of ϕ with respect to the first variable

ϕ(y) =
∑

α1≤L1

D(α1,0,...,0)ϕ(2−ν1m1, y2, . . . , yd)

α1!
(y1 − 2ν1m1)

α1(2.55)

+
1

L1!

∫ y1

2−ν1m1

(y1 − 2−ν1m1)
L1D(L1+1,0,...,0)ϕ(t1, y2, . . . , yd)dt1

and (2.50) to obtain
(2.56)
∫

Rd

aν m(y)ϕ(y)dy =

∫

Rd

aν m(y)

L1!

∫ y1

2−ν1m1

(y1 − 2−ν1m1)
L1D(L1+1,0,...,0)ϕ(t1, y2, . . . , yd)dt1dy.
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Using an analogy of (2.55) iteratively for the remaining d− 1 variables we see that the left
hand side (2.56) is equal to

(2.57)

∫

Rd

aν m(y)

L!

∫ y1

2−ν1m1

. . .

∫ yd

2−νdmd

d
∏

i=1

(yi − 2−νimi)
LiDL+1ϕ(t1, . . . , td)dtdy.

Using the support property (2.48) of aν m we may estimate the absolute value of the inner
d−dimensional integration from above by

(2.58) c2−ν·(L+1) sup
x∈γQν m

|(DL+1ϕ)(x)| ≤ c2−ν·(L+1)〈y〉−M sup
x∈γQν m

〈x〉M |(DL+1ϕ)(x)|,

where M is at our disposal. Let us now suppose that p ≥ 1 and use (2.49) and Hölder
inequality to get for M large enough

∣

∣

∣

∣

∫

Rd

∑

m∈Zd

λν maν m(y)ϕ(y)dy

∣

∣

∣

∣

≤ c 2−ν·(r+L+1) sup
x∈Rd

〈x〉M |(DL+1ϕ)(x)|

∫

Rd

(

∑

m∈Zd

2ν·
1

p |λν m|χγQν m
(y)

)

〈y〉−Mdy

≤ c 2−ν·(r+L+1)

(

∑

m∈Zd

|λν m|
p

)1/p

sup
x∈Rd

〈x〉M |(DL+1ϕ)(x)|.

As λ ∈ sp,qf ⊂ sp,∞b and r + L+ 1 > 0, the convergence of (2.52) now follows.

If p < 1 then we get a similar estimate
∣

∣

∣

∣

∫

Rd

∑

m∈Zd

λν maν m(y)ϕ(y)dy

∣

∣

∣

∣

≤ c 2−ν·(r+L+1−1/p+1) sup
x∈Rd

|(DL+1ϕ)(x)|

∫

Rd

∑

m∈Zd

2ν·1|λν m|χγQν m
(y)dy

≤ c 2−ν·(r+L+1−1/p+1)
∑

m∈Zd

|λν m| sup
x∈Rd

|(DL+1ϕ)(x)|.

In this case we use the fact that r + L+ 1 − 1/p+ 1 > 0 and the embedding spqf ⊂ s1,∞b.

Step 2.

Next we prove (2.53). We use the equivalent quasi-norms in Srp,qF given by (2.33). Let us

choose N > K and define the functions kl for l ∈ Nd
0 as in Theorem 2.4. Then we have for

all l, ν ∈ N
d
0 and all m ∈ Z

d

(2.59) 2l·rkl(aν m)(x) = 2l·r
∫

Rd

k1
l1
(y1) · . . . · k

d
ld
(yd)aν m(x+ y)dy.

Further calculation depends on the size of the supports of kl and aν m. Hence we have to
distinguish between li ≥ νi and li < νi. This leads again to 2d cases. We describe the first
one (l ≥ ν) and the last one (l < ν) in the full detail and then we discuss the ’mixed’ cases.

I. l ≥ ν.

We suppose that l > 0. This only simplifies the notation, the terms with li = νi = 0 may be
incorporated afterwards. We use the definition of kili and make partial integration (Ki-times
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in the ith variable) to obtain

2l·rkl(aν m)(x) = 2l·(r+1)

∫

Rd

d
∏

i=1

(

dNi

dtNi
ki

)

(2liyi)aν m(x+ y)dy

= 2l·r
∫

Rd

d
∏

i=1

(

dNi

dtNi
ki

)

(yi)aν m(x1 + 2−l1y1, . . . , xd + 2−ldyd)dy

= 2l·(r−K)

∫

Rd

d
∏

i=1

(

dNi−Ki

dtNi−Ki
ki

)

(yi)(D
Kaν m)(x1 + 2−l1y1, . . . , xd + 2−ldyd)dy.

Next we use smoothness of ki, the boundedness of their supports and the properties (2.48)
and (2.49) to estimate the absolute value of this expression.

2l·r|kl(aν m)(x)| ≤ c 2l·(r−K)2−ν·(r−
1

p
)+ν·K·

·

∫

Rd

( d
∏

i=1

χsupp ki(yi)

)

χγQν m
(x1 + 2−l1y1, . . . , xd + 2−ldyd)dy.

As supp ki ⊂ {t ∈ R : |t| ≤ 1}, i = 1, . . . , d, it follows that

(2.60) 2l·r|kl(aν m)(x)| ≤ c 2−(K−r)(l−ν)2ν·
1

pχγQν m
(x).

II. l < ν.

The integration in (2.59) may be restricted to {y : |yi| ≤ 2−li}. We use the Taylor expansion
of functions kili(yi) with respect to the off-points 2−νimi − xi up to order Li

(2.61) 2−likili(yi) =
∑

0≤βi≤Li

ciβi
(xi)(yi − 2−νimi + xi)

βi + 2li(Li+1)O(|xi + yi − 2−νimi|
Li+1)

and (2.50) to get

2l·rkl(aν m)(x) = 2l·(r+1)

∫

{y:|yi|≤2−li}

aν m(x+ y)

d
∏

i=1

2li(Li+1)O(|xi + yi − 2−νimi|
Li+1)dy.

Since

|aν m(x+ y)| ≤ 2−ν·(r−
1

p
)χγQν m

(x+ y)

we obtain

(2.62) 2l·r|kl(aν m)(x)| ≤ c 2l·(r+1)2−ν·(r−
1

p
)2(l−ν)·(L+1)

∫

{y:|yi|≤2−li}

χγQν m
(x+ y)dy.

The last integral is always smaller then 2−ν·1 and is zero if {y : x+ y ∈ γQν m} ∩ {y : |yi| ≤
2−li} = ∅. Hence

(2.63)

∫

{y:|yi|≤2−li}

χγQν m
(x+ y)dy ≤ c 2−ν·1χc2ν−lQν m

(x).

But the last expression may be estimated from above with the use of maximal operators Mi

defined by (1.14).

(2.64) 2(l−ν)·1χc2ν−lQν m
(x) ≤ c (Mχν m)(x).
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Let 0 < ω < min(1, p, q). Taking the 1/ω-power of (2.64) and inserting it in (2.63) we obtain

(2.65)

∫

{y:|yi|≤2−li}

χγQν m
(x+ y)dy ≤ c 2−ν·12(ν−l)· 1

ω (Mχν m)
1

ω (x).

Next we replace χν m by χ
(p)
ν m in (2.65) and insert it in (2.62).

2l·r|kl(aν m)(x)| ≤ c 2(l−ν)·(r+1+L+1− 1

ω
)(Mχ

(p)ω
ν m )

1

ω (x).

By (2.51) and (1.17) one may choose the number ω such that κ = (r + 1 + L+ 1 − 1
ω
) > 0.

III. Mixed terms.

We estimate for example the term with l1 ≥ ν1, li < νi, i = 2, . . . , d.

First we apply (2.61) for i = 2, . . . , d and use (2.50) to leave out the terms with β ≤ L. Then
we use K1 partial integration in the first variable. In the expression we get we use again the
support properties of the functions involved and (2.49) to obtain

2l·r|kl(aν m)(x)| ≤ 2ν·
1

p 2(l1−ν1)(r1−K1)2
Pd

i=2
li(ri+1)+(li−νi)(Li+1)−νiri

∫

A
l

χγQν m
(x1 + 2−l1y1, x2 + y2, . . . , xd + yd)dy,

where Al = {y ∈ Rd : |y1| ≤ 1, |yi| ≤ 2−li, i = 2, . . . , d}. Due to the product structure of
the integrated function we may split the last integral into a one-dimensional integral with
respect to dy1 and d − 1 dimensional integral with respect to the remaining variables. The
first integral then may be estimated from above by cχ{t:|t−2−ν1m1|≤2−νi}(x1). Finally we use
the maximal operators Mi, i = 2, . . . , d to estimate the second integral. And, exactly as in
the second step, it turns out, that there is some vector % > 0 such that

(2.66) 2l·r|kl(aν m)(x)| ≤ c 2−
Pd

i=1 |li−νi|%i(Mχ
(p)ω
ν m )

1

ω (x).

Let us observe that also (2.60) may be estimated from above by the right-hand side of(2.66).
Hence the estimate (2.66) is valid for all l, ν ∈ Nd

0.

Using this estimate, we get for q ≤ 1
∣

∣

∣

∣

2l·rkl

(

∑

ν,m

λν maν m

)

(x)

∣

∣

∣

∣

q

≤ c
∑

ν,m

|λν m|
q2−q

Pd
i=1 |li−νi|%i(Mχ

(p)ω
ν m )

q
ω (x).

We sum over l, take the 1
q
−power and then we apply the Lp−quasi-norm with respect to x.

Denoting gν m = λν mχ
(p)
ν m we arrive at

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

l∈Nd
0

∣

∣

∣

∣

2l·rkl

(

∑

ν,m

λν maν m

)

(x)

∣

∣

∣

∣

q) 1

q

|Lp(R
d)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

ν,m

|λν m|
q(Mχ

(p)ω
ν m )

q
ω (x)

)
1

q

|Lp(R
d)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

ν,m

(Mgων m)
q
ω (x)

)
ω
q

|L p
ω
(Rd)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

ω

.

Using Theorem 1.11 and the definition of ω, we see that this expression may be estimated
from above by ||λ|spqf ||. On the other hand, from the improved version of Theorem 2.1,
namely from Theorem 3.1, we see that this already ensures that f belongs to SrpqF and
proves (2.53).
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Step 3.

It remains to prove (ii). Let us assume first that

(2.67) L = −1, K > r, r > σpq, 0 < p <∞, 0 < q ≤ ∞.

Furthermore, let N ∈ Nd
0 be vector of even numbers with N > r. According to the construc-

tion given at [Tr2, page 68], we may find functions k0, k
1, . . . , kd such that

k0, k
1, . . . , kd ∈ S(R);(2.68)

supp k0, supp ki ⊂ {t ∈ R : |t| ≤ 1}, i = 1, . . . , d;(2.69)

1 = F1(k0)(ξ) +
∞

∑

νi=1

F1(d
Niki)(2−νiξ), ξ ∈ R, i = 1, . . . , d;(2.70)

F1k0(0) = 1;(2.71)

F1(d
Niki)(ξ) = (F1k0)(ξ) − (F1k0)(2ξ), ξ ∈ R, i = 1, . . . , d.(2.72)

Further we may assume that no dilations mentioned in the beginning of the proof of Theorem
2.4 are necessary.

We define kl(x) and kl(f)(x) as in Theorem 2.4.

We claim that then

(2.73) f =
∑

l∈Nd
0

kl(f)(x) = lim
P→∞

∑

l≤P

kl(f), convergence in S ′(Rd).

To prove this, fix ϕ ∈ S(Rd). Since the Fourier transform is isomorphic mapping from S ′(Rd)
onto itself and

(kl(f))∧(ξ) =
(

d
∏

i=1

F1(k
i
li
)(−ξi)

)

f̂(ξ).

it is enough to show that

(2.74) ϕ(ξ)
∑

l≤P

(

d
∏

i=1

F1(k
i
li
)(−ξi)

)

→ ϕ(ξ) in S(Rd).

The last sum may be rewritten using (2.72) as

∑

l≤P

(

d
∏

i=1

F1(k
i
li
)(−ξi)

)

=

d
∏

i=1

(

(F1k0)(−ξi) +

P
∑

li=1

(F1(d
Niki))(−2−νiξi)

)

=

d
∏

i=1

(F1k0)(−2−P ξi).

We denote the last expression by 1−Φ(2−P ξ) and fix M ∈ N. Using the fact that ϕ ∈ S(Rd)
we obtain

pM(ϕ(ξ)Φ(2−P ξ)) ≤ c sup
0≤α,β≤M
ξ∈R

d

2−P ·β(Dαϕ)(ξ)(DβΦ)(2−P ξ)

d
∏

i=1

〈ξi〉
M

≤ c sup
0≤β≤M
ξ∈Rd

2−P ·β(DβΦ)(2−P ξ)

d
∏

i=1

〈ξi〉
−1

where the constant c doesn’t depend on P (but depends on M).

If at least one of βi > 0, then this expression tends to zero if P → ∞. If β = 0, then we
split the supremum into sup|ξ|≥2P and sup|ξ|<2P . The first supremum may be estimated from
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above by c2−P . To estimate the second one, we notice that |Φ(ξ)| ≤ c|ξ| in {ξ : |ξ| ≤ 1}.
Hence

c sup
|ξ|≤2P

Φ(2−P ξ)

d
∏

i=1

〈ξi〉
−1 ≤ c sup

ξ∈Rd

2−P |ξ|

〈ξ〉
.

Hence ϕ(ξ)Φ(2−P ξ) → 0 for P → ∞. This proves (2.74) and, consequently, also (2.73).

Next we suppose that

(2.75) ψ ∈ S(Rd), suppψ is compact and
∑

m∈Zd

ψ(x−m) = 1 for x ∈ R
d.

Then we define for ν ∈ Nd
0 and m ∈ Zd the function ψν m(x) = ψ(2νx−m). Then there is a

γ such that

(2.76) suppψν m ⊂ γQν m, ν ∈ N
d
0, m ∈ Z

d.

Then we multiply (2.73) by these decompositions of unity and obtain

(2.77) f =
∑

ν∈Nd
0

∑

m∈Zd

ψν m(x)kν(f)(x) =
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x),

where
λν m = 2ν·(r−

1

p
)
∑

α≤K

sup
y∈γQν m

|Dα[kν(f)](y)|

and
aν m(x) = λ−1

ν mψν m(x)kν(f)(x).

(If some λν m = 0, then we take aν m(x) = 0 as well). It follows that aν m are (r, p)K,L−atoms

centred at Qν m. The properties (2.48) and (2.50) are satisfied trivially (recall that L = −1),
and the property (2.49) is fulfilled up to some constant c independent of ν,m and x. To
prove that this decomposition satisfies (2.54), write

||λ|spqf || ≤ c
∑

0≤α≤K

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

ν∈Nd
0

∑

m∈Zd

2ν·(r−
1

p
)q2ν·

q
p sup
x−y∈γQν m

|Dα[kν(f)(y)]|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

and use Theorem 2.5 with Dαik0 and Dαiki in the place of k0 and ki. We lose the Tauberian
condition for these new functions but according to Remark 2.3, this fact is rather harmless.

Step 4.

Now we prove the existence of the optimal decomposition for all r ∈ R
d and L restricted

by (2.51). To simplify the notation, we restrict ourselves in this step to d = 2. So, let us
take f ∈ Srp,qF (R2). In Definition 1.8 we may substitute (1 + x2)ρ by (1 + x2ρ1

1 )(1 + x2ρ2
2 )

for ρ ∈ N2
0 and (using twice Theorem 1.13) we obtain the respective counterpart of Theorem

1.9. Hence f can be decomposed as

(2.78) f = g +
∂2M1g

∂x2M1

1

+
∂2M2g

∂x2M2

2

+
∂2M1+2M2g

∂x2M1

1 x2M2

2

,

where M = (M1,M2) ∈ N
2
0 is at our disposal and may be chosen arbitrary large, g ∈

Sr+2M
p,q F (R2) and ||g|Sr+2M

p,q F (R2)|| ≈ ||f |Srp,qF (R2)||.

The optimal decomposition of f will be obtained as a sum of decompositions of these four
terms.

To decompose the first term, choose M such that

||g|SKC(R2)|| ≤ c ||g|Sr+2M
p,q F (R2)||.
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This is possible according to [SchT, Theorem 2.4.1.]. Then we decompose

g(x) =
∑

m

ψ(x−m)g(x) =
∑

m

λ1
0ma

1
0m,

where

λ1
0m = c1

∑

0≤α≤K

sup
|y−m|≤c2

|(Dαg)(y)|

and

a1
0m =

1

λ1
0m

ψ(x−m)g(x)

for c1, c2 sufficiently large and for ψ with (2.75) and (2.76). Then a1
0m are (r, p)K,L-atoms

centred at Q0m. Furthermore, according to Lemma 2.7, we have

||λ1|spqf || =

(

∑

m∈Zd

|λ1
0m|

p

)1/p

≤ c1
∑

α≤K

∣

∣

∣

∣

∣

∣

∣

∣

sup
·−y∈γQ0 0

|(Dαg)(y)| |Lp

∣

∣

∣

∣

∣

∣

∣

∣

≤ c||g|Sr+2M
p,q F (R2)|| ≤ c||f |Srp,qF (R2)||.

We have used Lemma 2.7 with d = 2 and A = ∅.

As for the last term in the decomposition (2.78), we may assume that M is large enough
to apply Step 3. So we may assume that we have a decomposition (2.77) for g with, let’s

say, λ4
ν m and a4

ν m(x) instead of λν m and aν m(x) and ||λ4
ν m|sp,qf || ≤ c ||g|Sr+2M

p,q F (R2)||. As

a4
ν m(x) are (r+2M, p)K+2M,−1-atoms, the functions D2(M1,M2)a4

ν m(x) are (r, p)K,2M−1-atoms.

In the case of the second term we use the decomposition

(2.79) g(x) =
∑

ν∈N2
0

ν2=0

∑

m∈Zd

ψν m(x)kν,A(g)(x) =
∑

ν∈N2
0

ν2=0

∑

m∈Zd

λ2
ν ma

2
ν m(x),

where A = {1}, kν,A(g)(x) are defined by (2.40),

(2.80) λ2
ν m = c12

2ν1M12ν1(r1−
1

p
)

∑

β≤K+(2M1,0)

sup
y∈c2Qν m

|Dβ(kν,A(g))(y)|

and

(2.81) a2
ν m(x) =

1

λ2
ν m

ψν m(x)kν,A(g)(x).

If c1 and c2 are large enough, then D(2M1,0)a2
ν m(x) are (r, p)K,L-atoms for L1 ≤ 2M1 − 1.

Finally, we use Lemma 2.7 to estimate ||λ2|spqf ||

||λ2|spqf || ≤ c1
∑

β≤K+(2M1,0)

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

ν∈N
2
0

ν2=0

2qν1(2M1+r1) sup
·−y∈c2Qν 0

|Dβ(kν,A(g))(y)|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣

∣

∣

(2.82)

≤ c ||g|Sr+2M
p,q F || ≤ c ||f |Srp,qF ||

if M is chosen sufficiently large. We have used Lemma 2.7 with Dβ1k1 and Dβ2g instead
of k1 and f . The third term can be estimated in a similar way. The sum of these four
decompositions then gives the decomposition for f .

In general dimension d one has to use the full generality of Lemma 2.7 but the proof is the
same. �



3. SUBATOMIC DECOMPOSITION 27

3. Subatomic decomposition

In this section we describe the subatomic decomposition for spaces Srp,qF . We follow closely
[Tr3] and [T03].

First of all, we shall introduce some special building blocks called quarks.

Definition 2.12. Let ψ ∈ S(R) be a non-negative function with

(2.83) suppψ ⊂ {t ∈ R : |t| < 2φ}

for some φ ≥ 0 and

(2.84)
∑

n∈Z

ψ(t− n) = 1, t ∈ R.

We define Ψ(x) = ψ1(x1) · . . . · ψd(xd) and Ψβ(x) = xβΨ(x) for x = (x1, . . . , xd) and β ∈ Nd
0.

Further let r ∈ Rd and 0 < p ≤ ∞. Then

(2.85) (βqu)ν m(x) = 2−ν·(r−
1

p
)Ψβ(2νx−m), ν ∈ N

d
0, m ∈ Z

d

is called an (r, p)-β-quark related to Qν m.

Recall that the spaces spqf were defined by (2.47).

Theorem 2.13. Let 0 < p <∞, 0 < q ≤ ∞ and r ∈ Rd be such that

r > σpq.

(i) Let

λ = {λβ : β ∈ N
d
0} with λβ = {λβν m ∈ C : ν ∈ N

d
0, m ∈ Z

d}

and let % > φ, where φ is the number from (2.83). If

sup
β∈Nd

0

2%|β|||λβ|spqf || <∞

then the series

(2.86)
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

λβν m(βqu)νm(x)

converges in S ′(Rd), its limit f belongs to Srp,qF and

(2.87) ||f |Srp,qF || ≤ c sup
β∈Nd

0

2%|β|||λβ|spqf ||.

(βqu)ν m has the same meaning as in (2.85).

(ii) Every f ∈ Srp,qF can be represented by (2.86) with convergence in S ′(Rd) and

(2.88) sup
β∈Nd

0

2%|β|||λβ|spqf || ≤ c||f |Srp,qF ||.

Proof. Step 1.

First of all, we shall discuss convergence of (2.86). It turns out that this series converges not
only in S ′(Rd) but also in some Lu(R

d), u ≥ 1.

Let 1 ≤ p <∞. Then r > 0 and we get

(2.89) |f(x)| ≤ c
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2φ|β||λβν m|2
−ν·(r− 1

p
)χ̃ν m(x),
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where χ̃ν m is a characteristic function of 2φ+1Qν m. Using two times the Hölder inequality
we get for every ε > 0

|f(x)| ≤ c sup
β∈Nd

0

2(φ+ε)|β| sup
ν∈Nd

0

2−ν·(r−
1

p
−ε) sup

m∈Zd

|λβν m|χ̃ν m(x).

Taking the p-power and replacing the suprema with sums we get

(2.90) |f(x)|p ≤ c
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2(φ+ε)|β|p2−ν·(r−
1

p
−ε)p|λβν m|

pχ̃ν m(x).

Let us denote q̃ = max(p, q) and choose ε such that 0 < 2ε < % − φ and ε < r. Integration
of (2.90) and the Hölder inequality result in

||f |Lp|| ≤ c sup
β∈Nd

0

2(φ+2ε)|β|

(

∑

ν∈Nd
0

∑

m∈Zd

2−ν·(r−ε)p|λβν m|
p

)1/p

≤ c sup
β∈Nd

0

2(φ+2ε)|β|

(

∑

ν∈Nd
0

(

∑

m∈Zd

|λβν m|
p

)q̃/p)1/q̃

(2.91)

≤ c sup
β∈Nd

0

2%|β|||λβ|sp,max(p,q)b|| ≤ c sup
β∈Nd

0

2%|β|||λβ|sp,qf ||.

Therefore, for 1 ≤ p <∞, (2.86) converges in Lp(R
d).

Let 0 < p < 1. Then r > 1
p
− 1 and we get again (2.89). Integrating this estimate and using

Hölder inequality, we get for every ε > 0

||f |L1|| ≤ c
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2φ|β|2−ν·(r−
1

p
+1)|λβν m|

≤ c sup
β∈Nd

0

2(φ+ε)|β|
∑

ν∈Nd
0

∑

m∈Zd

2−ν·(r−
1

p
+1)|λβν m|.

By similar arguments as in (2.91) we get

||f |L1|| ≤ c sup
β∈Nd

0

2%|β|||λβ|sp,qf ||

and (2.86) converges in L1(R
d).

Step 2.

We now prove that the function f defined as a limit of (2.86) belongs to Srp,qF and the
estimate (2.87).

We decompose (2.86) into

(2.92) f =
∑

β∈Nd
0

fβ

with

(2.93) fβ =
∑

ν∈Nd
0

∑

m∈Zd

λβν m(βqu)ν m(x).

We show that (βqu)ν m are (up to some normalising constants) (r, p)K,−1-atoms centred at
Qν m for every K ∈ N0. The conditions (2.48) and (2.50) are satisfied trivially. To prove
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(2.49) we chose 0 ≤ α ≤ K and estimate

Dα(βqu)ν m(x) = 2−ν·(r−
1

p
)

d
∏

i=1

2νiαiDαi(ψβi)(2νixi −mi)

where ψβi(t) = tβiψ(t). But for 0 ≤ αi ≤ Ki and any t ∈ suppψ we get by Leibnitz rule

|Dαi(ψβi)(t)| ≤ cKi
sup
γ1≤Ki

sup
γ2≤Ki

|Dγ1tβi| · |(Dγ2ψ)(t)| ≤ cKi,ψ sup
γ1≤Ki

|Dγ1tβi|.

The last absolute value may be estimated from above by (1 + βi)
Ki2φβi. Hence we obtain

|Dαi(ψβi)(t)| ≤ cKi,ψ(1 + βi)
Ki2φβi

and

|Dα(βqu)ν m(x)| ≤ c1 2−ν·(r−
1

p
)+α·ν(1 + β)K2φ|β| ≤ c2 2−ν·(r−

1

p
)+α·ν2(φ+ε)|β|

for every ε > 0. The constant c2 is independent of β but may depend on K, ψ and ε.

It follows that the functions c−1
2 2−(φ+ε)|β|(βqu)ν m(x) are (r, p)K,−1-atoms and (2.93) may be

understood as atomic decomposition of fβ. By Theorem 2.11 it follows that

||fβ|Srp,qF || ≤ c2(φ+ε)|β|||λβ|spqf ||

and for η = min(1, p, q) get by triangle inequality for SrpqF -quasi-norms

||f |Srp,qF ||
η ≤

∑

β∈Nd
0

||fβ|Srp,qF ||
η ≤ c

∑

β∈Nd
0

2(φ+ε)η|β|||λβ|spqf ||
η ≤ c sup

β∈Nd
0

2(φ+2ε)η|β|||λβ|spqf ||
η.

If we choose ε > 0 so small that φ+ 2ε < % we obtain (2.87). This finishes the proof of part
(i).

Step 3.

By Remark 1.5 we have

f̂(ξ) =
∑

ν∈Nd
0

ϕν(ξ)f̂(ξ)

with convergence in S ′(Rd). Let Qν be a cube in R
d centred at the origin with side lengths

2π2ν1, . . . , 2π2νd. Hence suppϕν ⊂ Qν and we may interpret ϕν f̂ as a periodic distribution.
Using its expansion into a Fourier series we get

(2.94) (ϕν f̂)(ξ) =
∑

m∈Zd

bν me
−i(2−νm)·ξ, ξ ∈ Qν

with

bν m = c2−|ν|

∫

Qν

ei(2
−νm)·ξ(ϕν f̂)(ξ)dξ = c′2−|ν|(ϕν f̂)∨(2−νm).

Here we used again the notation 2−νm = (2−ν1m1, . . . , 2
−νdmd) for ν ∈ Nd

0 and m ∈ Zd.

Let now ω ∈ S(Rd) with suppω ⊂ Q0 and ω(ξ) = 1 if |ξi| ≤ 2 for all i = 1, . . . , d. Then the
functions ων(ξ) = ω(2−νξ) satisfy

suppων ⊂ Qν , ων(ξ) = 1 if ξ ∈ suppϕν

for all ν ∈ Nd
0. We multiply (2.94) with ων , extend it by zero outside Qν and take the inverse

Fourier transform

(ϕν f̂)∨(x) =
∑

m∈Zd

bν mω
∨
ν (x− 2−νm) =

∑

m∈Zd

2|ν|bν mω
∨(2νx−m), x ∈ R

d.
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Using (2.84) and the definition of Ψ, we get

(ϕν f̂)∨(x) =
∑

m∈Zd

2|ν|bν m
∑

l∈Zd

Ψ(2νx− l)ω∨(2νx−m).

Expanding the entire analytic function ω∨(2ν · −m) with respect to the off-point 2−νl we
arrive at

(ϕν f̂)∨(x) =
∑

m∈Zd

2|ν|bν m
∑

l∈Zd

Ψ(2νx− l)
∑

β∈Nd
0

2ν·β
(Dβω∨)(l −m)

β!
(x− 2−νl)β

=
∑

m∈Zd

2|ν|bν m
∑

l∈Zd

∑

β∈Nd
0

Ψβ(2νx− l)
(Dβω∨)(l −m)

β!
.

Hence
f =

∑

ν∈Nd
0

∑

β∈Nd
0

∑

l∈Zd

λβ
ν l

2−ν·(r−
1

p
)Ψβ(2νx− l) =

∑

ν∈Nd
0

∑

β∈Nd
0

∑

l∈Zd

λβ
ν l

(βqu)ν l(x),

where

λβ
ν l

= 2ν·(r−
1

p
+1)

∑

m∈Zd

bν m
(Dβω∨)(l −m)

β!
= c 2ν·(r−

1

p
)

∑

m∈Zd

(ϕν f̂)∨(2−νm)
(Dβω∨)(l −m)

β!
.

It remains to prove (2.88). For this reason we define

Λν m = 2ν·(r−
1

p
)(ϕν f̂)∨(2−νm)

and prove that

(2.95) sup
β∈Nd

0

2%|β|||λβ|spqf || ≤ c||Λ|spqf || ≤ c′||f |SrpqF ||.

We start with the second inequality in (2.95).

Let x ∈ Qν m be fixed. Then

(2.96) |(ϕν f̂)∨(2−νm)| ≤ sup
x−y∈Qν,0

|(ϕν f̂)∨(y)| ≤ c(ϕ∗
νf)a(x)

for every a ∈ Rd
+. We multiply (2.96) by 2ν·(r−

1

p
), take the q-power and sum over m ∈ Zd to

get
∑

m∈Zd

|Λν m|
q|χ

(p)
ν m(x)|q ≤ c 2ν·

q
p 2ν·(r−

1

p
)q(ϕ∗

νf)qa(x) = c 2ν·rq(ϕ∗
νf)qa(x), x ∈ R

d, ν ∈ N
d
0.

Taking a > n
min(p,q)

, we get finally with help of Theorem 1.15

||Λ|spqf || =

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

ν∈Nd
0

∑

m∈Zd

|Λν mχ
(p)
ν m(x)|q

)1/q

|Lp(R
d)

∣

∣

∣

∣

∣

∣

∣

∣

≤ c

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

ν∈Nd
0

2ν·rq(ϕ∗
νf)qa(x)

)1/q

|Lp(R
d)

∣

∣

∣

∣

∣

∣

∣

∣

≤ c||f |Srp,qF ||.

To prove the first inequality in (2.95), we mention that

(2.97) λβ
ν l

=
1

β!

∑

m∈Zd

Λν m(Dβω∨)(l −m)
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and recall a result proven in [T02], namely that for any given a > 0 there are constants
ca > 0 and C > 0 such that

(2.98) |Dβω∨(x)| ≤ ca2
C|β|(1 + |x|2)−a, x ∈ R

d, β ∈ N
d
0.

Furthermore, we define

hβν (x) =
∑

l∈Zd

λβ
ν l
χ

(p)

ν l
(x),(2.99)

Hν(x) =
∑

l∈Zd

Λν lχ
(p)

ν l
(x)(2.100)

and let 0 < κ < min(1, p, q). We prove (2.95) by the following chain of inequalities

2%|β|||λβ|spqf || = 2%|β|||hβν |Lp(lq)|| = 2%|β||| |hβν |
κ |L p

κ
(l q

κ
)||

1

κ

≤ c2%|β|
(

2C|β|

β!

)κ

||M(|Hν |
κ)|L p

κ
(l q

κ
)||

1

κ(2.101)

≤ c′|| |Hν |
κ |L p

κ
(l q

κ
)||

1

κ = ||Λ|spqf ||.

The equalities in (2.101) involve only definitions of corresponding spaces. The second in-
equality follows from Theorem 1.10, choice of κ and the growth of β! for |β| → ∞. Hence
only the first inequality in (2.101) needs to be proven.

To prove it, put (2.98) into (2.97) to obtain

(2.102) |λβν m| ≤
ca2

C|β|

β!

∑

m∈Zd

|Λν m|

(1 + |l −m|2)a
.

Let us take x ∈ Qν l. Using the definition of hβν from (2.99), (2.102) and the property κ < 1
we get

(2.103) |hβν (x)|
κ = 2ν·

κ
p |λβ

ν l
|κ ≤

cκa2
C|β|κ

(β!)κ
2ν·

κ
p

∑

m∈Zd

|Λν m|
κ

(1 + |l −m|2)aκ
.

We split the summation over m ∈ Zd into two sums according to the size of |l −m|

(2.104)
∑

m∈Zd

|Λν m|
κ

(1 + |l −m|2)aκ
=

∞
∑

k=0

1

(1 + k2)aκ

∑

m:|l−m|=k

|Λν m|
κ.

Finally we estimate the last sum using the iterated maximal operator M

∑

m:|l−m|=k

|Λν m|
κ ≤ 2−ν

κ
p 2|ν|

∫

y:y−x∈(k+2)Qν,0

|Hν(y)|
κdy

≤ 2−ν
κ
p (k + 2)dM(|Hν |

κ)(x).(2.105)

We combine (2.103), (2.104) and (2.105) and arrive at

|hβν (x)|
κ ≤ c′a

2C|β|κ

(β!)κ
M(|Hν |

κ)(x)

for every a > d
κ
. This finishes the proof of (2.101) and, consequently, also the proof of (2.95)

and hence also of the part (ii) of the Theorem. �
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Next we shall deal with subatomic decompositions in the general case. Namely, we would
like to prove an analogy of Theorem 2.13 without the restriction r > σpq.

We start with the definition of quarks satisfying certain moment conditions.

Definition 2.14. Let ψ, φ and Ψ be as in the Definition 2.12. Let

r ∈ R
d, 0 < p ≤ ∞, β ∈ N

d
0 and L+ 1 ∈ N

d
0.

Then

(βqu)Lνm(x) = 2−ν·(r−
1

p
)(DL+1Ψβ)(2νx−m), x ∈ R

d, ν ∈ N
d
0, m ∈ Z

d

is called an (r, p)L-β-quark related to Qν m.

Remark 2.15. If L = −1 then this definition coincides with Definition 2.12.

Remark 2.16. For the need of this section we introduce temporarily following notation. Let

A ⊂ {1, . . . , d} and N = (N1, . . . , Nd) ∈ Rd. Then we define the vector N
A

= (NA
1 , . . . , N

A
d )

by

NA
i =

{

Ni if i ∈ A,

0 if i 6∈ A.

Theorem 2.17. Let 0 < p < ∞, 0 < q ≤ ∞ and r ∈ R
d. Further let L + 1 ∈ N

d
0 be such

that L ≥ max(−1, [σpq − r]) and σ ∈ Rd with σ > max(σpq, r).

(i) Let for every set A ⊂ {1, . . . , d}

λA = {λA,β : β ∈ N
d
0} with λA,β = {λA,βν m ∈ C : ν ∈ N

d
0, m ∈ Z

d}

and let % > φ, where φ is the number from (2.83). If

sup
A⊂{1,...,d}

sup
β∈Nd

0

2%|β|||λA,β|spqf || <∞

then the series

(2.106)
∑

A⊂{1,...,d}

∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

λA,βν m(βqu)L
A

ν m(x)

converges in S ′(Rd), its limit f belongs to Srp,qF and

(2.107) ||f |Srp,qF || ≤ c sup
A⊂{1,...,d}

sup
β∈Nd

0

2%|β|||λA,β|spqf ||.

Here (βqu)L
A

ν m are (σA
c

+ rA, p)L
A
−1Ac

-β-quarks.

(ii) Every f ∈ Srp,qF can be represented by (2.106) with convergence in S ′(Rd) and

(2.108) sup
A⊂{1,...,d}

sup
β∈Nd

0

2%|β|||λA,β|spqf || ≤ c||f |Srp,qF ||.

Remark 2.18. 1. Note that σA
c

+rA is a vector whose i-th component is equal to σi if i 6∈ A

and equal to ri if i ∈ A. Similarly, the i-th component of vector L
A
− 1A

c

is equal to Li for
i ∈ A and equal to −1 otherwise. So, for example, if d = 2 and A = {1} then the quarks in
(2.106) are ((r1, σ2), p)

(L1,−1)-β-quarks.

2. Because of the difficulties with notation we shall give the proof only for d = 2.
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Proof of Theorem 2.17 for d = 2.

Step 1.

First we discuss the convergence of (2.106). As the first sum is only finite, we may discuss
the convergence of the triple sum over β, ν and m separately for each A ⊂ {1, 2}. Let us
do this for example for A = {1}. Then we may rewrite the ((r1, σ2), p)

(L1,−1)-β-quarks from
(2.106) as

(βqu)L
A

ν m(x) = 2−ν1(r1−
1

p
)−ν2(σ2−

1

p
)(D(L1+1,0)Ψβ)(2νx−m) =

= D(L1+1,0){2−ν1(r1−
1

p
+L1+1)−ν2(σ2−

1

p
)Ψβ(2νx−m)} =(2.109)

= D(L1+1,0)(βqu)+
ν m(x)

where (βqu)+
ν m(x) are ((r1 + L1 + 1, σ2), p)-β-quarks according to the Definition 2.12. As

r1 + L1 + 1 > σpq and σ2 > σpq we may use the same arguments as in the proof of Theorem
2.13 and obtain the same kind of convergence as there.

Step 2.

Let us assume that the function f is given by (2.106). Then we may understand this
decomposition as

(2.110) f =
∑

A⊂{1,2}

fA.

We shall prove for every admissible set A that

(2.111) ||fA|Srpqf || ≤ c sup
β∈Nd

0

2%|β|||λA,β|spqf ||.

If A = ∅ then the decomposition of f ∅ in the triple sum according to (2.106) can be un-
derstood as a subatomic decomposition of f ∅ in the space SσpqF and from Theorem (2.13)
follows that

f ∈ SσpqF ⊂ SrpqF and ||f ∅|SrpqF || ≤ c sup
β∈Nd

0

2%|β|||λ∅,β|spqf ||.

If A = {1} then we use (2.109) and obtain that f {1} = D(L1+1,0)g, where

g ∈ S(r1+L1+1,σ2)
pq F and ||g|S(r1+L1+1,σ2)

pq F || ≤ c sup
β∈Nd

0

2%|β|||λ{1},β|spqf ||.

Hence

||f {1}|S(r1,r2)
pq F || ≤ ||f {1}|S(r1,σ2)

pq F || = ||D(L1+1,0)g|S(r1,σ2)
pq F ||

≤ ||g|S(r1+L1+1,σ2)
pq F || ≤ c sup

β∈Nd
0

2%|β|||λ{1},β|spqf ||.(2.112)

Using similar technique we prove (2.111) also for A = {2} and A = {1, 2}. Now (2.110)
together with (2.111) shows that (2.107) holds.

Step 3.

We prove the part (ii) of the Theorem. By similar arguments as in the Step 4. of the proof
of Theorem 2.11 we prove in analogy with (2.78) that for every M ∈ N

d
0 such that

r +M + 1 ≥ σ and M ≥ L
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there is a function g ∈ Sr+M+1
pq F with

(2.113) f = g +
∂M1+1g

∂xM1+1
1

+
∂M2+1g

∂xM2+1
2

+
∂M1+1+M2+1g

∂xM1+1
1 xM2+1

2

.

Furthermore

(2.114) ||g|Sr+M+1
pq F || ≈ ||f |SrpqF ||.

Let us define

g1 = g, g2 = D(M1−L1,0)g, g3 = D(0,M2−L2)g and g4 = D(M1−L1,M2−L2)g.

Then we can rewrite (2.113) and (2.114) as

(2.115) f = g1 +
∂L1+1g2

∂xL1+1
1

+
∂L2+1g3

∂xL2+1
2

+
∂L1+1+L2+1g4

∂xL1+1
1 xL2+1

2

with


















g1 ∈ Sr+M+1
pq F ⊂ SσpqF,

g2 ∈ S
(r1+L1+1,r2+M2+1)
pq F ⊂ S

(r1+L1+1,σ2)
pq F,

g3 ∈ S
(r1+M1+1,r2+L2+1)
pq F ⊂ S

(σ1,r2+L2+1)
pq F,

g4 ∈ Sr+L+1
pq F.

(2.116)

Furthermore, the norm of gi in the corresponding space may be estimated from above by
||f |SrpqF || for all i = 1, . . . , 4. We may use Theorem 2.13 for each function gi to get four
optimal decompositions and corresponding analogs of (2.88). Putting these estimates into
(2.116) and using (2.109) we get (2.108). �



CHAPTER 3

Remarks

In the previous chapter, we have followed the way of [SchT], [Tr1], [Tr2], [Tr3] and [T03]
to carry over some important aspects from theory of F s

p,q(R
d) spaces to SrpqF (Rd) spaces. In

this last chapter we add some useful comments and show another possible approach to this
topic. Namely, we generalise the proof of Theorem of Bui, Paluszyński and Taibleson given
in [Rych] and we give an alternative proof of the existence of optimal atomic decomposition
following the ideas of Netrusov and Hedberg as they are described in [HN]. We also formulate
our results for spaces Srp,qB(Rd).

1. Improved version of Theorem 2.1.

The main disadvantage of Theorem 2.1 lies in the fact that (2.3) is an equivalent quasi-norm
only in the set Srp,qF . To be more concrete, we don’t know if (2.3) is finite if and only if

f ∈ Srp,qF . The crucial point lies in the beginning of Part 2 of the proof of this Theorem. By

estimating of ||f |Srp,qF || from above by (2.3) we have to use the fact that ||f |Srp,qF || < ∞.
Closer look on this part of proof of Theorem 2.1 shows that in the case p, q > 1 the Nikol’skij
inequality in (2.26) is not needed and, consequently, it is not necessary to use the fact
f ∈ Srp,qF . But this answer is only partial. For all indices 0 < p < ∞ and 0 < q ≤ ∞
the answer may be given by following generalisation of Theorem of Bui, Paluszyński and
Taibleson.

Theorem 3.1. Let p, q, r and N be as in Theorem 2.1. Also the functions ψk, k ∈ N
d
0 have

the same meaning and satisfy (2.1) and (2.2). Then

(3.1) Srp,qF =

{

f ∈ S ′ :
∣

∣

∣

∣

∣

∣

(

∑

k∈Nd
0

|2k·r(ψkf̂)∨(·)|q
)1/q

|Lp

∣

∣

∣

∣

∣

∣
<∞

}

and (2.3) is an equivalent quasi-norm in S ′.

Proof. First of all we construct for every 1 ≤ i ≤ d a sequence of functions {λij(t)}
∞
j=0 ⊂

S(R) such that
∞

∑

j=0

λij(t)ψ
i
j(t) = 1, t ∈ R,(3.2)

λij(t) = λi1(2
j−1t), t ∈ R, j > 0,(3.3)

supp λi0 ⊂ {t ∈ R : |t| ≤ 2} and supp λij ⊂ {t ∈ R : 2j−1 ≤ |t| ≤ 2j+1}.(3.4)

We may construct such functions for example by the choice λij(t) =
ϕj(t)

ψi
j(t)

for t ∈ suppϕj

and λij(t) = 0 elsewhere. Now we define, as usually, λk(x) = λ1
k1

(x1) · . . . · λ
d
kd

(xd) for every

k ∈ Nd
0. From (3.2) we obtain

∑

k∈Nd
0

λk(x)ψk(x) = 1, x ∈ R
d.

35
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It follows that the expansions

(3.5) f =
∑

k∈Nd
0

(λkψkf̂)∨, (ϕν f̂)∨ =
∑

k∈Nd
0

(ϕνλkψkf̂)∨

converge in S ′ for every f ∈ S ′ and every ν ∈ N
d
0.

We have

|(ϕνλkψkf̂)∨(y)| ≤ c

∫

Rd

|(ϕνλk)
∨(z)| |(ψkf̂)∨(y − z)|dz(3.6)

≤ c(ψ∗
k
f)a(y)

∫

Rd

|(ϕνλk)
∨(z)|

d
∏

i=1

(1 + 2ki|zi|)
aidz

for every a > 0. We denote the last integral by Iν k and point out that

Iν k =
d

∏

i=1

Iνi ki
=

d
∏

i=1

∫

R

|(ϕνi
λiki

)∨1(zi)|(1 + 2ki|zi|)
aidzi.

To estimate these integrals from above we use the following version of Lemma 1 from [Rych].

Lemma 3.2. Let g, h ∈ S(R), M ≥ −1 be integer,

Dαg(0) = 0 for all α ≤M.

Then for any N > 0, there is a constant CN such that

sup
t∈R

|(g(b·)h(·))∨1(t)|(1 + |t|)N ≤ CNb
M+1, b > 0.

With the change of variables 2kizi → zi we get
∫

R

|(ϕνi
λiki

)∨1(zi)|(1 + 2ki|zi|)
aidzi =

∫

R

|(ϕνi
(2ki·)λiki

(2ki·))∨1(zi)|(1 + |zi|)
aidzi.

We assume that ki ≥ 1 and write λi(t) = λiki
(2kit). By (3.3), this definition doesn’t depend

on the choice of ki.

Using Lemma 3.2 we may estimate for ki < νi
∫

R

|(ϕνi
λiki

)∨1(zi)|(1 + 2ki|zi|)
aidzi ≤ c sup

zi∈R

|(ϕνi−ki
λi)∨1(zi)|(1 + |zi|)

ai+2 ≤ c 2(ki−νi)(M+1),

where M is at our disposal, as we may suppose that ϕνi−ki
(·) = ϕ(2νi−ki·) and ϕ vanishes

around zero. The exceptional terms with 0 = ki < νi may be incorporated in the same way
(only some changes in notation are necessary).

As for 0 ≤ νi ≤ ki, the situation is very similar. We get
∫

R

|(ϕνi
λiki

)∨1(zi)|(1 + 2ki|zi|)
aidzi ≤ 2(ki−νi)ai

∫

R

|(ϕνi
(2νi·)λiki

(2νi·))∨1(zi)|(1 + |zi|)
aidzi

≤ c2(νi−ki)(M−ai+1),

where M is again at our disposal. Now we use that λi vanishes in the neighbourhood of
zero. The exceptional terms may be incorporated in the same way (only some changes in
notation are necessary).

Hence choosing M large enough, we see that there is a number δ > 0 such that

(3.7) 2ν·rIν k ≤ c2k·r2−|ν−k|δ, ν ∈ N
d
0, k ∈ N

d
0.
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We put (3.7) into (3.6) and (3.5) and get

(3.8) 2ν·r|(ϕν f̂)∨(y)| ≤ 2ν·r
∑

k∈Nd
0

|(ϕνλkψkf̂)∨(y)| ≤
∑

k∈Nd
0

2k·r|(ψ∗
k
f)a(y)|2

−δ|k−ν|.

The pointwise convergence of (3.5), which was used in the first inequality in (3.8), may be
proved like in the Step 4 in the proof of Theorem 2.1. Namely, the second decomposition
(3.5) converges in S ′. And for each term from this sum we have estimates (3.6) and (3.7).
These estimates allows to prove that partial sums of (3.5) form a fundamental sequence in
some Lr, r ≥ 1. Its Lr-limit must coincide with its S ′-limit and (3.5) converges also in Lr.
The pointwise convergence than follows in the same way.

For q ≥ 1 we use Young’s convolution inequality and for q < 1 we use the concavity of the
function t→ tq to get

(

∑

ν∈Nd
0

2ν·rq|(ϕν f̂)∨(y)|q
)1/q

≤ c

(

∑

k∈Nd
0

2k·rq|(ψ∗
k
f)a(y)|

q

)1/q

.

We apply the Lp-quasi-norm and choose a > 1
min(p,q)

and use Theorem 1.15 to obtained the

desired result. �

2. Alternative proof optimal atomic decomposition

In this section we give the alternative to the proof of part (ii) of Theorem 2.11 under the
condition (2.67), namely the existence of optimal atomic decomposition. We use the ideas
expressed in [HN].

First of all, we quote Theorem 1.4.2. from [SchT].

Theorem 3.3. Let 0 < ω < ∞. Let Ω be a compact subset of R
d. Then there exists a

positive constant c > 0 such that

sup
z∈Rd

|∇ψ(x− z)|

1 + |z|d/ω
≤ c sup

z∈Rd

|ψ(x− z)|

1 + |z|d/ω
≤ c[M |ψ|ω(x)]1/ω

holds for all ψ ∈ SΩ and all x ∈ Rd.

The dependence of c on the size of Ω may be studied by the classical dilation arguments. If
φ ∈ S and supp φ̂ ⊂ QR = [−R1, R1]×· · ·× [−Rd, Rd], we set ψ̂(x) = φ̂(R1x1, . . . , Rdxd) and
use Theorem 3.3 for Ω = [−1, 1]d. It follows that

(3.9) sup
z∈Rd

R
−α

|Dαφ(x− z)|
∏d

i=1(1 + |Rizi|)1/ω
≤ c sup

z∈Rd

|φ(x− z)|
∏d

i=1(1 + |Rizi|)1/ω
≤ c[M |φ|ω(x)]1/ω

for every function φ ∈ SQR and every x ∈ Rd with c independent of R but dependent on the
multiindex α.

The optimal atomic decomposition may now be obtained as

f =
∑

k∈Nd
0

(ϕkf̂)∨ =
∑

k∈Nd
0

∑

m∈Zd

(ϕkf̂)∨(x)ψ(2kx−m) =
∑

k∈Nd
0

∑

m∈Zd

λkmakm(x),

where

(3.10) λkm = c12
k·(r− 1

p
)−α·k sup

0≤α≤K

sup
x:|x−2−km|≤c2

|Dα[(ϕkf̂)∨(x)ψ(2kx−m)]|
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and
akm(x) = λ−1

km
(ϕkf̂)∨(x)ψ(2kx−m).

The function ψ is the function from (2.75). When c1 and c2 are chosen large enough, we see
immediately that akm(x) are (r, p)K,−1-atoms.

Let us now take x, y ∈ R
d such that |xi − yi| ≤ γ2−ki where γ > 0 is a fixed number. Then

we use (3.9) and obtain

|Dα[(ϕkf̂)∨(x)ψ(2kx−m)]| ≤ c sup
0≤β≤α

2k·β|Dα−β(ϕkf̂)∨(x)|

≤ c sup
0≤β≤α

2k·β sup
z∈Rd

|Dα−β(ϕkf̂)∨(x− z)|
∏d

i=1(1 + |Rizi|)1/ω

≤ c sup
0≤β≤α

2k·β sup
z∈Rd

|Dα−β(ϕkf̂)∨(y − z)|
∏d

i=1(1 + |Rizi|)1/ω

≤ c 2k·β2k·(α−β)(M |(ϕkf̂)∨(y)|ω)1/ω,

where 0 < ω < min(1, p, q). If we define

gk(x) =
∑

m∈Zd

|λkmχ
(p)

km
(x)|

and choose x ∈ Qkm we get

gk(x) = 2k·
1

p |λkm| ≤ c2k·r(M |(ϕkf̂)∨(x)|ω)1/ω

and

||λ|spqf || = ||gk(·)|Lp(lq)|| = ||(gk(·))
ω|L p

ω
(l q

ω
)||1/ω ≤ c||2k·rωM |(ϕkf̂)∨(·)|ω|L p

ω
(l q

ω
)||1/ω

≤ ||2k·rω|(ϕkf̂)∨(·)|ω|L p
ω
(l q

ω
)||1/ω = ||2k·r(ϕkf̂)∨(·)|Lp(lq)|| = ||f |Srp,qF ||,

which is (2.54).

The advantage of this proof is that it doesn’t use Theorem 2.1 or any of its versions. But to
count the coefficients (3.10) one has to know f̂ and hence the global information about the
function f is needed. In some sense, one may say, that coefficients (3.10) are not local.

3. Another version of atomic and subatomic decomposition

Recall that (r, p)K,L-atoms and (r, p)-β-quarks were defined in Definitions 2.9 and 2.12.
Both these definitions include the dependence on r and p. But this fact represents a very
uncomfortable complication for further applications. Hence we are going to reformulate these
Definitions and following Theorems in such a way, that new atoms and quarks don’t depend
on r neither p.

Definition 3.4. Let K ∈ Nd
0, L + 1 ∈ Nd

0, and γ > 1. A K-times differentiable complex-
valued function a(x) is called [K,L]-atom centred at Qν m if

(3.11) supp a ⊂ γQν m,

(3.12) |Dαa(x)| ≤ 2α·ν for 0 ≤ α ≤ K

and

(3.13)

∫

R

xjia(x)dxi = 0 if i = 1, . . . , d; j = 0, . . . , Li and νi ≥ 1.
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Definition 3.5. Let ψ ∈ S(R) be a non-negative function with

(3.14) suppψ ⊂ {t ∈ R : |t| < 2φ}

for some φ ≥ 0 and

(3.15)
∑

n∈Z

ψ(t− n) = 1, t ∈ R.

We define Ψ(x) = ψ1(x1) · . . . · ψd(xd) and Ψβ(x) = xβΨ(x) for x = (x1, . . . , xd) and β ∈ Nd
0.

Further let r ∈ Rd and 0 < p ≤ ∞. Then

(3.16) (βqu)ν m(x) = Ψβ(2νx−m), ν ∈ N
d
0, m ∈ Z

d

is called an β-quark related to Qν m.

This change is reflected also in the definition of sequence spaces spqb and spqf .

Definition 3.6. If 0 < p ≤ ∞, 0 < q ≤ ∞, r ∈ Rd and

(3.17) λ = {λν m ∈ C : ν ∈ N
d
0, m ∈ Z

d}

then we define

(3.18) srpqb =

{

λ : ||λ|srpqb|| =

(

∑

ν∈Nd
0

2ν·(r−
1

p
)q
(

∑

m∈Zd

|λν m|
p
)q/p

)1/q

<∞

}

and

(3.19) srpqf =

{

λ : ||λ|srpqf || =

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

ν∈Nd
0

∑

m∈Zd

|2ν·rλν mχν m(·)|q
)1/q

|Lp(R
d)

∣

∣

∣

∣

∣

∣

∣

∣

<∞

}

with the usual modification for p and/or q equal to ∞.

Remark 3.7. We point out that with λ given by (3.17) and gν(x) =
∑

m∈Zd λν mχν m(x), we
obtain that

||λ|srpqb|| = ||2ν·rgν |lq(Lp)||, ||λ|srpqf || = ||2ν·rgν |Lp(lq)||.

Sequence spaces of this kind were denoted by Edis in [HN] and may be understood as a

discrete version of Srp,qF and Srp,qB. Let us also mention, that s
1/p
pq f = spqf and s

1/p
pq b = spqb,

where spqf and spqb were defined by (2.47) and (2.46) respectively.

Using this notation we may reformulate Theorems 2.11 and 2.13.

Theorem 3.8. Let 0 < p <∞, 0 < q ≤ ∞ and r ∈ R
d. Fix K ∈ N

d
0 and L+ 1 ∈ N

d
0 with

(3.20) Ki ≥ (1 + [ri])+ and Li ≥ max(−1, [σpq − ri]), i = 1, . . . , d.

(i) If λ ∈ srpqf and {aν m(x)}ν∈Nd
0
,m∈Zd are [K,L]-atoms centred at Qν m, then the sum

(3.21)
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x)

converges in S ′(Rd), its limit f belongs to the space Srp,qF and

(3.22) ||f |Srp,qF || ≤ c ||λ|srpqf ||,

where the constant c is universal for all admissible λ and aν m.
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(ii) For every f ∈ Srp,qF there is a λ ∈ srpqf and [K,L]-atoms centred at Qν m (denoted again

by {aν m(x)}ν∈Nd
0
,m∈Zd) such that the sum (3.21) converges in S ′(Rd) to f and

(3.23) ||λ|srpqf || ≤ c ||f |Srp,qF ||.

The constant c is again universal for every f ∈ Srp,qF .

Theorem 3.9. Let 0 < p <∞, 0 < q ≤ ∞ and r ∈ Rd be such that

r > σpq.

(i) Let

λ = {λβ : β ∈ N
d
0} with λβ = {λβν m ∈ C : ν ∈ N

d
0, m ∈ Z

d}

and let % > φ, where φ is the number from (3.14). If

sup
β∈Nd

0

2%|β|||λβ|srpqf || <∞

then the series

(3.24)
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

λβν m(βqu)νm(x)

converges in S ′(Rd), its limit f belongs to Srp,qF and

(3.25) ||f |Srp,qF || ≤ c sup
β∈Nd

0

2%|β|||λβ|spqf ||.

(βqu)ν m are now β-quarks defined by (3.16).

(ii) Every f ∈ Srp,qF can be represented by (3.24) with convergence in S ′(Rd) and

(3.26) sup
β∈Nd

0

2%|β|||λβ|srpqf || ≤ c||f |Srp,qF ||.

Remark 3.10. Proofs of this two Theorems are obvious. We have only moved the factor

2ν·(r−
1

p
) from (2.49) and (2.85) into the coefficients λν m or λβν m respectively.

4. Spaces of Besov Type

All our results may be reformulated for Srp,qB(Rd) spaces. The proofs are usually very similar,
only some technical details are easier. We state these formulation to provide some reference
to these results.

Theorem 3.11. Let 0 < p <∞, 0 < q ≤ ∞, r = (r1, . . . , rd) ∈ Rd. Let N = (N1, . . . , Nd) ∈
Nd

0 be d even numbers with r < N .

Let ψ0 and ψ1, . . . , ψd be d+1 complex-valued functions from S(R), which satisfy the Taube-

rian conditions

(3.27) |ψ0(t)| > 0 if |t| ≤ 2, and |ψi(t)| > 0 if
1

2
≤ |t| ≤ 2, i = 1, . . . , d.

Let us also suppose that

(3.28) Dαψi(0) = 0, 0 ≤ α ≤ Ni − 1, i = 1, . . . , d.
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Let ψi0 = ψ0 and ψij(t) = ψi(2−jt) if t ∈ R, j ∈ N and i = 1, . . . , d. Further let ψk(x) =

ψ1
k1

(x1) · . . . · ψ
d
kd

(xd) whenever k = (k1, . . . , kd) ∈ Nd
0 and x = (x1, . . . , xd) ∈ Rd. Then

(3.29) Srp,qB =

{

f ∈ S ′ :

(

∑

k∈Nd
0

2k·rq||(ψkf̂)∨|Lp(R
d)||q

)1/q

<∞

}

and

(3.30)

(

∑

k∈Nd
0

2k·rq||(ψkf̂)∨|Lp(R
d)||q

)1/q

is an equivalent quasi-norm in S ′(Rd).

Theorem 3.12. Let 0 < p <∞, 0 < q ≤ ∞ and r ∈ Rd. Fix K ∈ Nd
0 and L+ 1 ∈ Nd

0 with

(3.31) Ki ≥ (1 + [ri])+ and Li ≥ max(−1, [σp − ri]), i = 1, . . . , d.

(i) If λ ∈ srpqb and {aν m(x)}ν∈Nd
0
,m∈Zd are [K,L]-atoms centred at Qν m, then the sum

(3.32)
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x)

converges in S ′(Rd), its limit f belongs to the space Srp,qB and

(3.33) ||f |Srp,qB|| ≤ c ||λ|srpqb||,

where the constant c is universal for all admissible λ and aν m.

(ii) For every f ∈ Srp,qB there is a λ ∈ srpqb and [K,L]-atoms centred at Qν m (denoted again

by {aν m(x)}ν∈Nd
0
,m∈Zd) such that the sum (3.32) converges in S ′(Rd) to f and

(3.34) ||λ|srpqb|| ≤ c ||f |Srp,qB||.

The constant c is again universal for every f ∈ Srp,qB.

Theorem 3.13. Let 0 < p <∞, 0 < q ≤ ∞ and r ∈ R
d be such that

r > σp.

(i) Let

λ = {λβ : β ∈ N
d
0} with λβ = {λβν m ∈ C : ν ∈ N

d
0, m ∈ Z

d}

and let % > φ, where φ is the number from (3.14). If

sup
β∈Nd

0

2%|β|||λβ|srpqb|| <∞

then the series

(3.35)
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

λβν m(βqu)νm(x)

converges in S ′(Rd), its limit f belongs to Srp,qB and

(3.36) ||f |Srp,qF || ≤ c sup
β∈Nd

0

2%|β|||λβ|spqb||.

(βqu)ν m are now β-quarks defined by (3.16).

(ii) Every f ∈ Srp,qB can be represented by (3.24) with convergence in S ′(Rd) and

(3.37) sup
β∈Nd

0

2%|β|||λβ|srpqf || ≤ c||f |Srp,qF ||.
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